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A comparison between six rater agreement measures obtained using three 

different approaches was achieved by means of a simulation study. Rater 

coefficients suggested by Bennet’s  σ  (1954), Scott’s π  (1955), Cohen’s 

κ (1960) and Gwet’s γ  (2008) were selected to represent the classical, 

descriptive approach, α agreement parameter from Aickin (1990) to 

represent loglinear and mixture model approaches and ∆  measure from 

Martín and Femia (2004) to represent multiple-choice test. Main results 

confirm that π  and κ descriptive measures present high levels of mean bias 

in presence of extreme values of prevalence and rater bias but small to null 

levels with moderate values. The best behavior was observed with Bennet 

and Martín and Femia agreement measures for all levels of prevalence. 

 

 

There are a lot of behavioral research applications where is needed to 

quantify the homogeneity of agreement between responses given by two (or 

more) observers or between two (or more) measurement devices.  With 

responses in a numerical scale, the classical intraclass correlation coefficient 

(Shrout & Fleiss, 1972; McGraw & Gow, 1996) and more recent 

concordance coefficient (Lin et al., 2002) are the most frequently used 

alternatives, and it has been demonstrated that Lin’s coefficient can be 

estimated by means of an special intraclass coefficient (Carrasco & Jover, 

2003). With measures in a categorical scale there are a greater variety of 

options (Shroukri, 2004, von Eye and Mun, 2005). In both cases the 

methodological scenario is matched pairs where two o more raters classify 

� targets on a categorical scale with M categories producing a M × M  

contingency table also known as agreement table (Agresti, 2002).  
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Three general approaches to rater agreement measurement for 

categorical data leads to three different forms of agreement coefficients 

(Ato, Benavente y Lopez, 2006). A first, descriptive approach started from a 

suggestion of Scott (1955) to correct from observed agreement the 

proportion of cases in which agreement occurred only at random. Several 

descriptive measures have been defined within this approach. In this paper 

the interest will be focused on the π -coefficient (Scott, 1955), on a proposal 

firstly suggested by Bennet et al. (1954), reused afterwards with different 

names and relabeled as σ -coefficient (see Zwick, 1988; Hsu & Smith, 

2003), the classical κ -coefficient (Cohen, 1960) and a more recent proposal 

of Gwett’s γ -coefficient (2008). Differences between these measures are 

relative to the particular definition of chance correction. 

Loglinear and mixture modelling is a second approach which is used 

when the focus is the detailed examination of agreement and disagreement 

patterns (Tanner & Young, 1986, Agresti, 1992). Mixture modelling is a 

generalization of loglinear approach with an unobserved (categorical) latent 

variable. The set of targets to be classified is assumed to be drawn from a 

population that is a mixture of two subpopulations (latent classes), one 

related to objects easy to classify by both raters (systematic agreement) and 

the other to objects hard to classify (random agreement and disagreement). 

Within this approach it is also possible to reproduce all the descriptive rater 

measures (Guggenmoos-Holtzman & Vonk, 1998; Schuster & von Eye, 

2001, Schuster & Smith, 2002; Ato, Benavente y López, 2006) and also to 

define new rater agreement measures as α -coefficient (Aickin, 1990). 

A third alternative approach is inspired in the tradition of multiple-

choice test and developed in order to overcome the limitations shown for 

many descriptive measures. Within this tradition, Martín & Femia (2004, 

2008) defined a new measure of agreement, the ∆-coefficient, as ‘the 

proportion of agreements that are not due to chance’.  

In this paper we use a simulation study to compare the behavior of 

these rater agreement measures for 2 (rater) × 2 (categories) agreement 

tables. The rest of this paper is organized as follows. The second section 

comments the main notation and formulas used for descriptive, loglinear 

and mixture rater agreement measures. The third section describes with 

detail the simulation process of this study. The final section shows the main 

results obtained and some implications for research practice.  
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Rater agreement measures 

 

�otation 

Let A and B denote 2 raters classifying a set of targets into M categories, 

with responses i = 1,..., M for observer A and j = 1,…, M for observer B. In 

this work we confine our interest to the 2 (raters) ×  2 (categories) agreement 

table case. Let {πij} the joint probabilities of responses in i row and j column 

given for both raters, and {πi+} and {π+j} the row and column marginal 

distributions resulting of summing the joint probabilities where 

 

 

Given a sample of N objects to be classified, Table 1 summarizes the 

notation used in this paper characterizing four cells inside the agreement 

table: 
   
p

11
= n

11
/ �  refers to the proportion of responses of both raters for 

first (or positive) category, 
   
p

22
= n

22
/ �  to the proportion of agreement 

responses for second (or negative) category, and 
   
p

12
= n

12
/ �  and 

   
p

21
= n

21
/ �  are proportions of disagreement responses between raters. 

Similarly, 
   
p

1+
= n

1+
/ �  and 

   
p

2+
= n

2+
/ �  are marginal proportions for 

both categories corresponding to rater A and 
   
p

+ 1
= n

+ 1
/ �  and 

   
p

+ 2
= n

+ 2
/ �  are marginal proportions for rater B.  

 

 

 

Table 1. Joint and marginal proportions for the 2 x 2 agreement table. 

 

 Rater B 

Rater A 1 2 Marginal A 

1 p11 p12 p1+ 

2 p21 p22 p2+ 

Marginal B p+1 p+ 2 p++ 
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Descriptive measures 

A simple formula to measure agreement is the observed proportion of 

agreement which is the sum of diagonal cells of Table 1. For the  2 × 2  

agreement table, 
  
p

o
= p

11
+ p

22
. This formula is a common component in 

all measures of agreement considered in this paper but it fails to point us 

how much of observed agreement is due to chance. Thus the concept of 

“random corrected agreement” (RCA) is the basic notion that pervades the 

practical utilization of descriptive measures on agreement. 

A general measure of RCA is 

  

RCA =
p

o
− p

e

1 − p
e

 =  
p

o

1− p
e

−
p

e

1− p
e

    (1) 

where 
 
p

e  is chance agreement proportion and 
 
p

o
− p

e
 corrects the excess 

of observed agreement proportion that is assumed to be computed with 
 
p

o
. 

The difference must be weighted with 
  
1− p

e
, the possible maximum of non 

chance agreement proportion. The values of RCA are constrained to lie 

inside the interval [
  
− p

e
/ (1− p

e
);   + p

o
/ (1− p

e
) ], where 

  
RCA = − p

e
/ (1− p

e
) > −1  is the lower limit associated with perfect 

disagreement, 0RCA =  means that observed agreement is equal to chance 

agreement probability and 
  
RCA = p

o
/ (1− p

e
) ≤ 1  is the higher limit 

associated with perfect agreement that is only possible when chance 

agreement proportion is zero. 

The four descriptive measures used in this study are based on the 

general formula (1) and assume independence between raters in the 

classification process. Differences between them are due to the specific 

definition of chance-corrected agreement ep .  

A first solution was originally proposed by  Bennet et al. (1954) by 

using as chance correction formula a fixed value, the inverse of the number 

of categories. This solution has been relabeled as σ -coefficient, and 

chance-corrected proportion as 
 
p

e

σ
=1/M.  More recently, σ -coefficient has 

become a consolidated agreement measure and reconsidered in works such 

as Holley & Guilford (1964), Janson & Vegelius (1979), Maxwell (1977) 

and Brennan & Prediger (1981). See Zwick, 1988 and Hsu & Field, 2003, 

for a more detailed explanation of how researchers have been using different 

names for the same procedure. This form of chance correction assumes that 

observers uniformly classify targets in categories, and then is based on an 
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uniform distribution of targets. For 2M = categories, 
  
p

e

σ = .5 , and using (1) 

σ -coefficient can be estimated as 

 

A second solution was proposed by Scott (1955) using the squared 

mean of row and column marginal proportions for each category as chance-

corrected agreement. Defining the mean of marginal probabilities for each 

category simply as 
   
p1 = ( p1+ + p+ 1) / 2 and

   
p2 = ( p2+ + p+ 2 ) / 2 , then 

  
p

e

π = p
1

2 + p
2

2                                                    (3) 

This formula assumes that observers classify targets using a common 

homogeneous distribution. The resulting π -coefficient can be estimated 

using (1) as 

 

A third solution was proposed by Cohen (1960) using as chance-

corrected formula the sum of products of row and column marginal 

probabilities for each category 

  
p

e

κ = p
1+

p
+1

+ p
2+

p
+2

                                      (5) 

and so assumes that each observer classify targets using his/her own 

distribution. The resulting κ -coefficient is also estimated using (1) as 

 

Research literature (see Feinstein & Cichetti, 1990; Byrt, Bishop & 

Carlin, 1993; Agresti, Ghosh & Bini, 1995; Lantz & Nebenzahl, 1996 and 

Hoehler, 2000, among others) reports that κ - and π -coefficients have two 

main limitations as a direct consequence of using these chance-corrected 

agreement measures: prevalence problems refer to the particular distribution 

of data across the categories and arise in presence of extreme values for one 

of the two categories and rater bias problems appear particularly with 

extreme marginal distributions of two raters. 

More recently, Gwett (2001, 2008) proposed a RCA formula that 

seems to be more stable under certain conditions and uses the mean of 

marginal probabilities for each category simply as chance-corrected 

agreement 
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p

e

γ = 2 p
1
p

2
           (7) 

and the resulting 
 
g -coefficient is estimated using (1) as 

 

Descriptive measures, and κ -coefficient in particular, are very 

popular between researchers of behavioral and social sciences. The 

interpretation of these measures has been generally focused as a classical 

null hypothesis of RCA equal zero (see Fleiss, Levin and Paik, 2003). It has 

been shown that they can also be understood as a restricted loglinear or 

mixture model within the QI family (see Ato, Benavente y López, 2006). 

 

Loglinear and mixture model measures 

Given a set of � targets to be classified by 2 raters in 2 response 

categories, loglinear models distinguish between components such as 

random expected agreement and non random expected agreement and so 

they can evaluate the fit of the model to the data (von Eye & Mun, 2005). 

The basic, starting model representing random expected agreement is 

independence model, 
  
log(m

ij
) = λ + λ

i

A + λ
j

B
, where ijm are expected 

values, 
 
λ

i

A  and 
 
λ

j

B
are individual rater effects and the model releases 

  M
2 − 2M + 1  residual degrees of freedom with M being the number of 

categories. Because rater agreement is concentrated on diagonal cells, a 

more appropriate model is the quasi-independence (QI) model,  

  
log(m

ij
) = λ + λ

i

A + λ
j

B + δ
i
       (9) 

where 
 
δ

i
 is a diagonal parameter that represents systematic agreement for   

i-th category. This model releases   M
2 − 3M +1  residual degrees of 

freedom and so cannot be directly estimated with 2 × 2  agreement tables. 

QI model is directly related with the concept of RCA. A general 

formula to obtain a model-based agreement measure, which allows 

correcting from observed agreement a component due to chance, can be 

defined (see Guggenmoos-Holtzmann, 1993; Guggenmoos-Holtzmann and 

Vonk, 1998; Ato, Benavente and López, 2006) by: 



A simulation study of rater agreement measures 391

 

where 
 
p

ii
is the observed agreement proportion in i-th diagonal cell and 

 is the estimation of exponential transformation of iδ  diagonal 

parameter in the QI model (9). As it can be seen, the framework of equation 

(10) is very similar to RCA equation (1) and the range of possible values 

spreads from 

  

p
ii

i

∑ ≤ 1 , when there is no disagreement, to 

  

− p
ii

i

∑ / exp(δ
i
) > −1, when agreement is null.  

QI model is the most general of a family of models whose members 

can be defined applying some restrictions on the basic model. A basic kind 

of restriction is the constant quasi-independence (QIC) model (Ato, 

Benavente and López, 2006),  

  
log(m

ij
) = λ + λ

i

A + λ
j

B + δ                      (11) 

where δ represents systematic agreement and is assumed constant for all 

categories. This model, which was firstly proposed by Tanner & Young 

(1996), releases   M
2 − 2M  residual degrees of freedom being saturated for 

2 × 2 tables and can be defined using a similar formulation to (10) by 

 

A generalization of loglinear models including a latent variable leads to 

latent-class mixture models where targets to be classified are assumed to 

come from a population representing a mixture of two finite subpopulations. 

Each subpopulation identifies a cluster of homogeneous items, one related 

with easy to classify items where both raters give the same response 

(systematic agreement), and the other related with items of difficult 

classification where both raters give a random response (random agreement 

and disagreement). This generalization change the status of  M × M

agreement table into a   2 × M × M table, but it hardly affect to the loglinear 

model required to estimate its parameters. Assuming a QI loglinear model, 

the representation of a QI mixture model is very similar to (9), 
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log(m

ijk
) = λ + λ

i

A + λ
j

B + ξ
i
                                    (13) 

where mixture 
 
ξ

i
parameters are related with loglinear 

 
δ

i
parameters 

(Guggenmoos-Holtzman, 1993, Ato, Benavente & López, 2006) by 

  
exp(ξ

i
) = exp(δ

i
) − 1     (14) 

and the new subscript k indicates the re-dimensionality of agreement table 

due to the latent variable.  

A popular agreement measure derived from a mixture model is α
(Aickin, 1990) and its equivalent loglinear model is QIC (11). The 

representation of QIC mixture model is 

  
log(m

ijk
) = λ + λ

i

A + λ
j

B + ξ                                     (15) 

where again the correspondence (14) allows to estimate a QIC mixture 

model by means of its equivalent loglinear model using (12). For the case of 

a 2 ×  2 agreement table, Guggenmoos-Holtzman (1993: 2194) also showed 

that constant parameter exp(δ)could also be estimated using the odds ratio  

 

and the agreement measure can be obtained using (12).   

    

Multiple-choice test measures 

Martín & Femia (2004) proposed a new rater agreement measure, 

called Delta (∆), which was developed in the context of multiple-choice test 

where a student has to choose among one of M possible responses for each 

of � targets known to the evaluator. If a student knows a fraction (say         

∆ =.4) of responses and fill out all the test, then it is assumed that the 40% 

of responses will be accurately recognized and the other 60% will be 

classified at random. The response model postulated for this situation (see 

Martín and Luna, 1989) is that the student will give a correct reply if the 

response is known and will pick a response at random if the response is 

unknown. In this case ∆ is really a measure of the conformity of student 

with evaluator. 

∆-coefficient, as will be used in this paper, is the generalization of the 

situation of multiple choice-test where there is a sole object, to the situation 

of agreement where there are several objects and the intensity of 

recognitions for each object need not be necessarily the same (Martín and 

Femia, 2004).   
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Although inspired in a different tradition, in practice ∆-coefficient 

seems to reproduce exactly the same results than that obtained from 

RCA(QI) model (10) for the general M x M case. But for the 2 x 2 

agreement table, as was pointed before, ∆ and  RCA(QI) cannot be 

estimated. Nevertheless Martín & Femia (2004: 9) suggested an simple 

asymptotic approximation of ∆ -coefficient formulated as  

  
∆ = ( p

11
+ p

22
) − 2 p

12
p

21
       (17) 

which can be used as a consistent rater agreement measure in this context. A 

more recent asymptotic re-formulation of ∆-coefficient (Martin & Femia, 

2008: 766), which is specially useful for contingency tables with zero cells, 

is a simple modification of equation (16) which can be obtained in practice 

after adding the constant 1 to all the observed frequency cells of a 

contingency table, but it will not be used in this paper.  

 

A SIMULATIO$ STUDY 

A simulation study with these descriptive, loglinear/mixture and 

multiple-choice test rater measures for  2 × 2  agreement tables was 

performed varying parameters of prevalence of first or positive category 

(PCP, from 0.10 to 0.90 in steps of 0.10), discrimination probability (DP, 

from 0.50 to 0.90 in steps of 0.10) and number of targets (N of 30, 100 and 

300).  DP is a key variable that is used to capture the random responses of 

raters. It refers to the ability of raters to discriminate between easy and 

difficult to classify targets and so allows distinguishing between reliable 

(with high DP) and unreliable (with low DP) raters. So a total of 3 (number 

of targets, N) x 9 (levels of PCP) x 5 (levels of DP) combinations were 

generated for this simulation study. 
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The model of simulation process borrowed the essential aspects from 

the latent mixture and multiple-choice test models, but it also has some 

peculiarities added in order to refine the random behavior of raters in the 

choice of categories.  

The process is initiated fixing the number N of targets, a prevalence 

value for the first or positive category value PCP and a discrimination 

probability DP. 1000 empty  2 × 2  agreement tables were generated for each 

combination of N, PCP and DP.  In all cases, we assumed that 

discrimination probability was the same in both observers, a reasonable 

assumption if raters receive the same training as is usual with many rater 

agreement studies. Given both values of prevalence and discrimination, the 

average proportion of 
  
p

11
 would be PCP*DP+(1-DP)/4, which can be 

partitioned in a portion due to systematic agreement, (PCP*DP), and 

another due to random agreement, (1-DP)/4, whereas the average proportion 

of 
  
p

22
 would be (1-PCP)*DP+(1-DP)/4, also partitioned in a portion of 

systematic agreement, (1-PCP)*DP, and another of random agreement,     

(1-DP)/4. 

For each case of an empty agreement table, the element was assigned 

to the positive or negative category (depending of the fixed PCP), and a 

random number R between 0 and 1 was generated and evaluated. If R  £  

DP, the case was included inside of discrimination range being easy to 

classify and so was considered as correctly classified. If R > DP, the case 

was considered as difficult to classify and so it was randomly assigned to 

any one of the four cells. In some cases where was detected the presence of 

zero values for one or more cells in an agreement table, the table was 

deleted and proceeding with the following. A few cases occurred in 

particular with extreme values of DP and number of targets of N=30 (see the 

total number of tables used for all combinations of PCP and DP in Table 2). 

A flow diagram of the simulation process is represented on Figure 1. 

Since the raw observed agreement (ROA) is the sum of proportions 

for responses to diagonal cells of each agreement table, the simulation 

process distinguished between two components of ROA: systematic 

agreement (SA), as the non-random proportion of easy to classify targets 

and so correctly classified in the diagonal cells, and random agreement 

(RA), as the proportion of difficult to classify targets that were randomly 

classified in the diagonal cells.    
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Figure 1. Flow diagram of the simulat

For each agreement table, the response of interest was focused on 

absolute bias, defined as the absolute difference between systematic 

agreement proportion (SA) and estimates for each one of six rater agreement 

measures. Absolute bias 

(DP), prevalence of positive category (PCP) and number of targets (N), but 

due to the high similarity of results for different number of targets, all data 

from three options were merged. Table 2 shows 

(with standard errors in brackets) of six rater measures for a selected 20 of 

the 45 combinations of PCP and DP and the number of 2 x 2 contingency 
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Figure 1. Flow diagram of the simulation process. 

RESULTS 

For each agreement table, the response of interest was focused on 

, defined as the absolute difference between systematic 

agreement proportion (SA) and estimates for each one of six rater agreement 

measures. Absolute bias was firstly evaluated for all levels of discrimination 

(DP), prevalence of positive category (PCP) and number of targets (N), but 

due to the high similarity of results for different number of targets, all data 

from three options were merged. Table 2 shows the absolute mean bias 

(with standard errors in brackets) of six rater measures for a selected 20 of 

the 45 combinations of PCP and DP and the number of 2 x 2 contingency 

395

 

For each agreement table, the response of interest was focused on 

, defined as the absolute difference between systematic 

agreement proportion (SA) and estimates for each one of six rater agreement 

was firstly evaluated for all levels of discrimination 

(DP), prevalence of positive category (PCP) and number of targets (N), but 

due to the high similarity of results for different number of targets, all data 

the absolute mean bias 

(with standard errors in brackets) of six rater measures for a selected 20 of 

the 45 combinations of PCP and DP and the number of 2 x 2 contingency 
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tables used for each combination with all merged data after discarding tables 

containing zero values on any of the four cells. 

Three different sets of rater agreement measures emerged. All of them 

were easily detected at all levels of discrimination probability. Ordered from 

greater to smaller mean bias, the first set was integrated with Cohen’s κ and 

Scott’s π  coefficients, the second one included Gwet’s 
 
g  and Aickin’s α , 

and the third with Bennet’s σ  and Martin’s ∆  coefficients.  

First and second sets scored similar absolute mean bias results with 

moderate prevalence levels ranged between .30 and .70, but diverged from 

these stable levels with more extreme prevalence values. We also noted that 

all rater measures presented a moderate deviation from a stable performance 

inside the range 30-70, but deviation was more marked with κ and π  set, 

than with α  and 
 
g  set whereas σ  and ∆ set were near of unbiased 

performance.  

The behavior of the first set was the most biased of all rater agreement 

measures evaluated, particularly with low and high prevalence levels (see 

Figures 1 to 4). This result confirms a solid finding of research literature 

concerning the high sensibility of κ  (and π ) coefficients to trait prevalence 

in the population and reinforces the recommendation to avoid using any of 

both coefficients as reliable rater measures with extreme prevalence levels 

(Byrt, Bishop and Carlin, 1993; Feinstein and Cichetti, 1990; Lantz and 

Nebenzahl, 1996). 

The behavior of the second set was less biased than the first set, 

particularly with higher levels of prevalence but the bias was the same with 

intermediate levels of prevalence for all DP levels.  We were disappointed 

in particular with the behavior of Aickin’s α -coefficient, but as was pointed 

before, the assumption of homogeneity of 
 
x  parameter is a restrictive 

assumption for 2 x 2 agreement tables.  

The behavior of the third set was excellent, scoring next of null mean 

bias for all levels of prevalence of positive category and for all levels of 

discrimination probability used. Both σ and ∆  coefficients may be 

considered as unbiased rater agreement coefficients with 2 × 2 agreement 

tables. Although differences between measures of third set were negligible, 

the best behavior was related in all cases with the asymptotic approximation 

of Martín and Femia’s ∆ .  σ coefficient had an excellent behavior with      

2 x 2 agreement tables, but due to the uniform distribution of targets we 

suspect that it cannot be extrapolated to agreement tables of higher 

dimensionality where uniformity feature could be severely penalized.  
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Comparing the behavior of rater agreement measures between levels 

of discrimination probability, a noticeable result was that mean bias was 

higher in the range DP=.70-.80 than for DP ≤ .69 or DP ≥ .81, particularly 

with extreme levels of prevalence, and with first and second sets of rater 

measures, a strange result that deserve to be further investigated. 

 

Table 2. Absolute mean bias (standard error in brackets) and number 

of tables used for selected combinations of discrimination (DP) and 

prevalence (PCP) for all agreement measures. 
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Figure 2. Behaviour of rater measures for DP=.60 

 
Figure 3. Behaviour of rater measures with DP = .70  
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Figure 4. Behaviour of rater measures with DP = .80 

 
Figure 5. Behaviour of rater measures with DP = .90 
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RESUME$ 

Un estudio de simulación de medidas de acuerdo entre observadores 
para tablas de contingencia 2x2. Mediante un estudio de simulación se 

aborda una comparación entre seis medidas obtenidas usando tres enfoques 

diferentes para la evaluación del acuerdo. Los coeficientes de acuerdo 

elegidos fueron σ  de Bennet (1954), π  de Scott (1955), κ  de Cohen 

(1960) y γ de Gwet (2001; 2008) para representar el enfoque clásico 

descriptivo, el coeficiente α de Aickin (1990), para representar el enfoque 

de los modelos loglineal y mixtura (“mixture models”) y la medida ∆  de 

Martín and Femia (2004) para representar el enfoque de los test de elección 

multiple. Los resultados obtenidos confirman que los coeficientes π  y κ  

presentan diferencias notables en relación a los restantes coeficientes 

particularmente en presencia de valores extremos de prevalencia y sesgo 

entre observadores. El mejor comportamento fue observado con los 

coeficientes σ  de Bennet y ∆  de Martín and Femia para todos los valores 

de prevalencia y sesgo entre observadores.  
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