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Adults’ simple arithmetic performance is more efficient when operands are 
presented in Arabic digit (3 + 5) than in number word (three + five) formats. 
An explanation provided is that visual familiarity with digits is higher 
respect to number words. However, most studies have been limited to 
single-digit addition and multiplication problems. In this article, we examine 
to what extent format effects can be found in the context of arithmetic word 
problems, in which visual familiarity is reduced (Manuel had 3 marbles, and 
then Pedro gave to him 5). Participants with high and low arithmetic fluency 
solved addition and subtraction word problems in which operands were 
presented in both formats. The overall results showed an advantage for 
digits operands relative to words operands. In addition, the format effects 
were more evident for subtraction and low-skilled participants. These results 
were interpreted in terms of more rapid access of digits to numerical 
magnitude. 

 

 

To what extent number format affects the representation of numerical 
information? The answer to this question is a central issue in the field of 
numerical cognition (Cohen Kadosh & Walsh, 2009). On the one hand, it is 
assumed that the numerical representation of quantity is abstract or amodal 
and independent of notation (e.g., Dehaene & Akhavein, 1995; Naccache & 
Dehaene, 2001; Schwarz & Ischebeck, 2000); on the other hand, it is 
suggested that such representation is not abstract, and it is mediated by 
modality-specific processes (e.g., Cohen Kadosh, 2008; Cohen Kadosh, 
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Henik, & Rubinstein, 2008). Much of this research has focused on 
exploring whether number format influences well-described effects related 
to quantity processing. Some of those effects are the “numerical distance 
effect” (discrimination between two numbers is faster when the distance 
between them increases; Moyer & Landauer, 1967), or the “SNARC effect” 
(responses to relatively larger numbers are faster for the right hand, those to 
smaller numbers for the left hand; Dehaene, Bossini, & Giroux, 1993). In 
this article, however, we analyze the influence of format in elementary 
arithmetic, a research area that has generated the same debate that involves 
the numerical representation of quantity and the idea of abstraction 
(Campbell & Metcalfe, 2009). Thus, several works (see Campbell & Epp, 
2005, for a review) indicate that adults are slower and more error prone in 
simple arithmetic tasks when operands are displayed as number words (e.g., 
two + four) than when they are presented in Arabic digits (e.g., 2 + 4). This 
effect, the so-called “format effect”, has led to different interpretations 
based on the above-mentioned two theoretical perspectives. One 
interpretation is that calculation relies on amodal representations that are 
abstracted from surface forms, whereas another different explanation 
suggests that representations depend on modality. These interpretations 
have arisen from different models describing the componential architecture 
of numerical processing and calculus, and how the various, involved 
processes are interrelated. 

Thus, according to McCloskey´s single-abstract-code model 
(McCloskey, 1992; McCloskey & Macaruso, 1995; Sokol, McCloskey, 
Cohen, & Aliminosa, 1991), the format effect arises while operands are 
being encoded and does not affect the mechanisms of calculation. These 
mechanisms would operate on an abstract representation that does not rely 
on format. In other words, operands (whether they are numeric words or 
Arabic digits) are converted into a single abstract numerical representation 
before the calculation processes are triggered. This means that encoding and 
calculation processes are independent and additive. Meanwhile, Dehaene 
(1992; Dehaene & Cohen, 1995) proposed the triple code model. According 
to that model there would not be just a single abstract numerical 
representation but three internal codes to represent numbers: a verbal code 
used for verbal counting and arithmetic-facts retrieval, an visual Arabic 
code for multi-digit calculation and parity judgment, and an analog 
magnitude code used for numerical comparison and calculus estimation. 
However, this model does not predict format effects on the mechanisms of 
calculation since each format, number words or Arabic digits, is transferred 
to a verbal code before calculation starts (Noël, Fias, & Brysbaert, 1997), 
mainly for overlearned calculations such as single-digit addition and 
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multiplication problems (but not for subtraction problems, in which a 
magnitude code is used). Therefore, coding and calculation processes 
remain independent. In a different vein, the complex coding model 
(Campbell, 1992, 1994; Campbell & Clark, 1988, 1992) suggests that 
operands´ format affects not only coding but also calculation. This model 
assumes that numbers are not represented in an abstract fashion but 
different numerical codes exist, which depends on modality. Therefore, 
calculation processes would be mediated by specific format encoding 
processes rather than by an abstract code. Campbell’s model suggests that 
those processes interact. 

An argument that is often used by Campbell and colleagues to support 
their model is that operands´ format interacts with the so-called “problem-
size effect” (PSE). PSE has been found in numerous studies (see Ashcraft, 
1992; Ashcraft & Guillaume, 2009; and Zbrodoff & Logan, 2005, for 
various revisions), and refers to the fact that reaction times to simple 
arithmetic problems are, in general, slower and more error prone if the 
operands and their correct solutions become numerically larger. Different 
explanations have been suggested to explain PSE. Thus, some models 
assume that the association between small numbers and response in 
memory is stronger (Ashcraft, 1982, 1987; Campbell & Graham, 1985; 
Siegler & Jenkins, 1989; Siegler & Shipley, 1995), probably, because small 
problems are more frequently practiced (Hamann & Ashcraft, 1986). 
Alternatively, it is possible that different procedures, others than memory 
retrieval for large problems, may contribute to PSE. In this sense, there is 
evidence that adults not only use retrieval procedures when solving simple 
arithmetic problems (e.g., Campbell & Xue, 2001; Hecht, 1999; LeFevre, 
Sadesky, & Bisanz, 1996; Thevenot, Fanget, & Fayol, 2007). For example, 
Lefevre et al. (1996) found that adults use a variety of strategies to solve 
single-digit addition, such as counting or transformations (e.g., 9 + 6 is 9 + 
1 + 5). And, consequently, these strategies increased with problem size. 
Since strategies are slower than retrieval from memory, it is possible that 
PSE is mediated by its use. But, what is important in the context of this 
article is that different studies have shown that PSE is larger when operands 
are presented as number words than when presented in Arabic digits format 
(e.g., Campbell, 1994; Campbell & Alberts, 2009; Campbell & Clark, 1992; 
Campbell & Fugelsang, 2001; Campbell & Penner-Wilger, 2006; Jackson & 
Coney, 2007a; Noël, Fias, & Brysbaert, 1997). 

In a novel study, Campbell and Clark (1992) asked participants to 
solve basic multiplications presented in Arabic digit format or number word 
format. Their results showed an interaction between problem size and 
format (longer response times and higher error rates for large problems 
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presented in number word format). Since PSE can only occur during 
calculation, the cognitive cost of the number word format cannot be solely 
attributed to operands coding but it also impacts on calculation. However, 
McCloskey, Macaruso, and Whetstone (1992; see also Noël et al. 1997) 
argued that the interaction between format and problem size could be 
attributed to encoding differences between number words and Arabic digits 
since words demand more time to be coded than Arabic digits. Hence, those 
differences increase with numerical magnitude. In a later study, however, 
Campbell (1994) contrasted format effects in addition and multiplication. 
The author found that the interaction between format and problem size was 
larger for addition than for multiplication. This finding would be difficult to 
explain in terms of encoding processes since the same operands were used 
for both operations. More recently, Campbell et al. investigated the 
interaction between format and problem size by analyzing format effects in 
strategy choice to solve simple arithmetic problems (Campbell & Alberts, 
2009; Campbell & Fugelsang, 2001; Campbell, Parker, & Doetzel, 2004). 
In these studies, participants reported their solution strategy (e.g. retrieval or 
calculation strategies such as counting and transformations). Results of 
these studies showed that participants reported more calculation strategies 
for stimuli presented as number words than for stimuli presented as Arabic 
digits. In addition, that difference increased with problem size. These 
findings support the idea that format affects the mechanisms involved in 
calculation and not just the encoding process. 

Therefore, although some researchers believe that format effects work 
only during the encoding processes and, hence, do not affect calculation, 
others provide evidence that format directly affects calculation. The 
explanation offered by the latter is particularly relevant for the present 
study. Campbell and colleagues have repeatedly suggested that since simple 
arithmetic is presented rarely as number words, then, the visual familiarity 
of this format is lower compared to the familiarity of the Arabic format. 
Hence, the strength of association between operands and answer will be 
weaker (e.g., Campbell, 1994; Campbell et al., 2004) and will influence the 
use of strategies. Less familiarity promotes greater use of calculation 
strategies against direct memory retrieval (Campbell & Fugelsang, 2001). 
According to the complex coding model, numbers can be presented in 
different codes (e.g., visual, verbal, visuospatial...) that are used in different 
tasks (e.g., addition, reading, counting...). The experience and practice with 
a particular format, such as simple arithmetic in Arabic format, would 
optimize individuals’ performance in that format. Based on terms of visual 
familiarity, this argument is supported by Colome, Bafalluy, and Noël 



Effects of numerical surface form 269 

(2011), who reported that adults prefer Arabic numerals to run arithmetic 
operations. 

However, most of the studies that have examined format effects in 
simple calculation have presented numbers in the context of simple 
arithmetic problems (i.e., 3 + 5 vs. three + five), where visual familiarity 
may intervene. Less is known about the effects of format in tasks where 
calculation is one of the components of the task. In the present study, we 
analyze the influence of format in the context of simple arithmetic word 
problems (e.g., Manuel had 3 marbles and someone gave him 5 more). Two 
reasons underlie our rationale. First, since calculation is a component of 
solving word problems, our task allows analyzing the processes underlying 
basic calculation (Orrantia, Múñez, Vicente, Verschaffel, & Rosales, 2014; 
Orrantia, Rodriguez, & Vincent, 2010; Orrantia, Rodriguez, Múñez, & 
Vincent, 2012). Second, and more important, our stimuli operands do not 
induce any activation of a “more-or-less-familiar” visual representation. 
Moreover, since our task has a strong reading component, it would be 
feasible that the number word format is more familiar in the context of an 
arithmetic word problem (e.g., Manuel had three marbles and someone gave 
him five more) than in simple arithmetic tasks (e.g., three + five). 

The aim of this research was to analyze whether calculation processes 
are modulated by format when operands are presented in the context of an 
arithmetic word problem. In other words, we aim at exploring whether 
format effects also occur after the potential visual familiarity of Arabic 
digits format is removed. These effects were analyzed in terms of speed and 
accuracy. Although some studies have explored the influence of format in 
strategy choice (retrieval vs. strategies) by asking participants the strategies 
they used for, other authors suggest that the validity and accuracy of self-
reports should be considered with caution (Kirk & Ashcraft 2001; 
Thevenot, Castel, Fanget, & Fayol, 2010). Moreover, recently Fayol and 
Thevenot (2012) have suggested that using some strategies can achieve 
such a degree of automaticity that a conscious access can be difficult, and 
often confused with memory retrieval. Assuming the theoretical interest that 
analyzing format effects on strategy choice may have, our aim was to study 
how format affects performance on calculation processes regardless of 
strategy choice. However, our study added to previous research by 
considering a component that plays an important role in arithmetic word 
problem solving and calculation, namely, arithmetic fluency. In this sense, 
we know that less skilled individuals are also less effective in arithmetic 
facts retrieval, calculation strategies and, in addition, they also show a 
larger problem size effect than their counterparts (e.g., Hecht, 1999; 
Jackson & Coney, 2007b; LeFevre, Bisanz, et al, 1996; LeFevre et al, 1996; 
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Thevenot et al, 2007). Thus, in order to fully understand format effects on 
arithmetic word problem solving, our sample included participants with 
different levels of competence in arithmetic fluency.  

In light of these considerations, we designed arithmetic word 
problems with two types of operands or format, Arabic digits and number 
words, within two problem-size categories (large vs. small). According to 
Campbell et al.´s model the effect of format on arithmetic word problem 
solving would be validated by an interaction between format and problem 
size. Response times and error rate would be higher for stimuli presented as 
number words than for those presented as Arabic digits. And these 
differences would be more evident for large-size problems than for small-
size problems. In addition to format and problem size, two variables were 
introduced in our design: operation (addition vs. subtraction) and 
participants´ proficiency in arithmetic fluency (high vs. low). Regarding the 
variable operation, most of the previous studies have used addition and 
multiplication to analyze format effects. To the best of our knowledge, only 
one study has used subtractions (Campbell & Alberts, 2009). The authors 
found longer response times for large size problems relative to small ones, 
when stimuli were presented as number words. This cognitive cost was 
similar for both, addition and subtraction operations. Accordingly, we 
would expect similar format effects for both operations in the context of 
arithmetic word problems. As regards proficiency in arithmetic fluency, we 
are not aware of any previous studies analyzing the influence of format 
according to this variable. However, since less skilled individuals are less 
proficient in calculation, a larger format effect would be expected for this 
group of participants. 

METHOD 
Participants. Sixty-seven undergraduate students from the University 

of Salamanca participated for course credit. The mean age of the students 
was 22.3 years (SD = 2.1), and they were ranked as a function of their score 
on an arithmetic fluency test. In order to maximize the chances to obtain 
two heterogeneous groups in arithmetic fluency, participants whose scores 
were nearest the median (i.e., above the 35th percentile and below the 65th 
percentile) were eliminated. The median score of the whole population was 
18, and the low-skill group comprised 25 participants (19 females and 6 
males) whose mean score on the arithmetic fluency test was 12.08 (SD = 
2.27; range of 8–15), whereas the high-skill group comprised 25 
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participants (15 females and 9 males) whose mean score was 23.24 (SD = 
1.88; range of 20–26) [t(48) = 16.53, p < .0001]. 

 
Materials  
Arithmetic fluency. As a preliminary test, participants completed an 

arithmetic fluency test (adapted from the Thurstone’s Primary Mental 
Abilities Test), which consists of 50 addition problems involving two or 
three single digits (e.g., 9 + 6; 7 + 5 + 8) or double digits (e.g., 43 + 72; 67 
+ 58 + 45) presented vertically. All participants were instructed to solve the 
problems as fast and accurately as possible. The total arithmetic score was 
the number of problems correctly solved in 1 min. 

Experimental stimuli. Each experimental trial consisted of an 
elementary word problem without the usual question. All the word 
problems belonged to Change 1 (addition) and Change 2 (subtraction) 
according to the classification scheme for one-step addition and subtraction 
word problems of Riley, Greeno, and Heller (1983). The problems were 
always of the form “Pedro had X marbles and then gave/removed him Y”, 
and they differed in the name of the protagonists, the nature of the objects, 
and the size of the numbers. The operands used in the word problems 
consisted of 56 pairs of numbers corresponding to all possible pairings of 
the digits 2 through 9 when ties (e.g., 3 + 3) are excluded. For subtractions, 
each number of the pair became the subtrahend. To enable testing of the 
problem size effect, problems composed from pairs with a product ≤ 25 
were classified as small, whereas those with a product ≥ 25 were classified 
as large. 

 
Procedure. Participants received four blocks of 56 trials with 

operation (i.e., addition or subtraction) and format (i.e., digits or words) 
alternating across blocks. Block order was counterbalanced, and problem 
order in each block was randomized with the constrain that the same 
operands or result did not appear in succession. Participants were informed 
of the characteristics of the stimuli and that they should respond to each 
stimulus to the question "How many objects have the character at the end". 
The stimuli were presented using SuperLab software, which ran on 
computers with 15-inch monitors. Word problems were presented word by 
word (Geneva 36-point font), at a fixed pace, using rapid serial visual 
presentation (RSVP). Each word was exposed for 300 ms, and there was a 
50-ms interval between words. Each trial began with the participants 
pressing the space bar when a 1,000-ms ready signal (“***”) appeared in 
the centre of the screen. The words of the word problem then appeared one 
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at a time in the centre of the screen. The last word was the second number 
of the corresponding operation, and it remained on the screen until the 
participant responded. The participants were instructed to solve the word 
problem correctly as quickly as possible. A microphone connected to a 
voice-activated relay and interfaced with the computer registered the 
latency of the responses. Response timing began when the second number 
of the operation appeared and stopped when the microphone detected the 
verbal response. To familiarize participants with the procedure, they 
performed five practice trials prior to each block. 

RESULTS 
Mean response times (RT) and percentage of errors (see Table 1) 

were analysed in a 2 (skill level: high, low) x 2 (problem size: small, large) 
x 2 (operation: addition, subtraction) x 2 (format: digits, words) analysis of 
variance (ANOVA) with the first factor as a between-subject measure and 
the last three factors as repeated measures. 

 
Response times 
A total of 9.1% of RTs were excluded because they were incorrect 

responses, microphone failure, or outliers deviating more than 3 standard 
deviations from the participant’s mean, with no significant differences 
between conditions respect to the last two aspects. All main effects were 
significant. Mean RT was slower in low-skilled (2115 ms) than in high-
skilled (1186 ms) participants [F(1, 48) = 183.29, p < .0001, η2

p = .79], 
slower for subtraction (1841 ms) than for addition (1460 ms) [F(1, 48) = 
100.16, p < .0001, η2

p = .68], slower with large (1967 ms) than with small 
(1335 ms) problems [F(1, 48) = 230.69, p < .0001, η2

p = .83], and slower for 
words (1750 ms) than for digits (1552 ms) stimuli [F(1, 48) = 97.21, p < 
.0001, η2

p = .67]. The skill level factor interacted with the other factors, such 
that the operation effect was larger in low-skilled (+568 ms) than in high-
skilled (+194 ms) participants [F(1, 48) = 24.21, p < .0001, η2

p = .33], the 
size effect was larger in low-skilled (+976 ms) than in high-skilled (+287 
ms), and the format effect was larger in low-skilled (+266 ms) than in high-
skilled (+129 ms) [F(1, 48) = 11.76, p < .001, η2

p = .20]. The operation by 
size interaction was significant [F(1, 48) = 30.73, p < .0001, η2

p = .39], 
reflecting a larger size effect for subtraction (+804 ms) than for addition 
(+461 ms), and this was larger in low-skilled than in high-skilled 
participants [F(1, 48) = 6.68, p < .02, η2

p = .13]. There was also a significant 



Effects of numerical surface form 273 

interaction between format and size [F(1, 48) = 14.57, p < .0001, η2
p = .24], 

due to greater word-format costs for large (+262 ms) than for small (+133 
ms) problems. And this interaction was modulated by the skill level [F(1, 
48) = 5.63, p < .03, η2

p = .11], due to the greater word-format cost for large 
problems was more pronounced in low-skilled participants. Despite the 
operation by format was not significant (F < 1), the three-way interaction of 
operation, format, and size reached the significance F(1, 48) = 4.51, p < .04, 
η2

p = .09], because the greater word-format cost for large problems was 
larger for subtraction. Lastly, the four-way interaction approached the 
standard levels of significance [F(1, 48) = 3.47, p = .07, η2

p = .07]. 
However, given our interest in how the format effect is modulated by size 
and operation as a function of skill level, RTs were analysed separately for 
each skill level using a 2 (problem size: small, large) x 2 (operation: 
addition, subtraction) x 2 (format: digits, words) repeated measures 
ANOVA. Taking into account the most interesting interactions, for high-
skilled participants only the format by size interaction approached the 
significance [F(1, 24) = 3.93, p = .059, η2

p = .14], whereas for low-skilled 
participants both the format by size [F(1, 24) = 11.04, p < .003, η2

p = .32] 
and the format by size by operation [F(1, 24) = 4.97, p < .04, η2

p = .17] 
interactions reached the significance, reflecting greater word-format costs 
for large than for small problems, being this effect larger for subtraction 
than for addition. 

 
 

Table 1. Mean (and standard error) response times and percentage of 
errors as a function of skill level, operation, problem size, and format. 

 
 
 
Errors 
There were 7.6% of incorrect responses. The ANOVA indicated that 

low-skilled participants made more errors than high skilled participants 
(9.7% vs. 5.5%) [F(1, 48) = 9.81, p < .003, η2

p = .17]; there were more 
errors for subtraction than for addition (9.5% vs. 5.7) [F(1, 48) = 23.51, p < 
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.0001, η2
p = .33]; and more errors for large than small problems (12.2% vs. 

3%) [F(1, 48) = 92.96, p < .0001, η2
p = .66]. The size by skill level 

interaction was significant [F(1, 48) = 7.19, p < .005, η2
p = .13], due to a 

larger problem size effect in low-skilled than in high-skilled participants. 
Furthermore, the size by operation interaction was significant [F(1, 48) = 
4.47, p < .04, η2

p = .09], reflecting a larger problem size effect for 
subtraction than for addition. The only significant effect related to the 
format condition was the size by format interaction due to greater word-
format costs for subtraction relative to addition operation. Campbell and 
colleagues (Campbell et al., 2004; Campbell & Alberts, 2009) also found no 
effects of format on errors. According to these authors, format effects on 
RT, errors, or both would depend on participants’ emphasis on speed versus 
accuracy. 

DISCUSSION 
The present study aimed at exploring format effects in calculation 

when operands are presented within the context of arithmetic word 
problems. Results showed better performance when stimuli were presented 
as Arabic digits as opposed to those displayed as number words. This effect 
was more evident for large problems respect to small ones. This result 
replicates the interaction between format and size that has been found in 
previous studies. Furthermore, the interaction was more evident for 
subtraction than for addition. Findings also revealed that less-skilled 
participants showed larger effects.  

Since the context of the task reduces the visual familiarity of the 
Arabic format, then, how to explain these effects? A prior issue to be 
considered is how operands and sign were presented. In contrast to previous 
studies, where both, operands and sign, used to appear simultaneously, in 
the present study operands and sign were sequentially presented. In this 
sense, format effects would be associated to the processing of the second 
operand since the experimental condition allows enough time for the first 
operand to be processed regardless of format. Therefore, our sequential 
presentation would reduce the potential format effects, however, this was 
not true. Campbell (1999) already manipulated the presentation of operands, 
simultaneous vs. sequential presentation (right operand presented 800 ms 
after the left operand). His design also reduced the visual familiarity of the 
Arabic format. Campbell’s results showed that the interaction between 
format and size was similar for both conditions.  
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The most likely explanation for this result might be that numbers´ 
semantic processing (i.e., magnitude) involves processes that are format-
specific. Despite some studies suggest that processing Arabic digits and 
number words can follow a non-semantic route that avoids accessing 
conceptual codes (e.g., Herrera & Massif, 2012), a different group of 
studies claim that Arabic digits and number words are differentially 
processed when the task requires some kind of semantic elaboration (e.g., 
Campbell, 1994; Campbell & Clark, 1992; Damian, 2004; Dehaene et al, 
1993). In other words, accessing the numerical magnitude is more efficient 
with Arabic digits than with number words. For example, Damian (2004) 
found that when participants had to judge whether a number between one 
and nine was larger or smaller than five response times for numbers in 
Arabic digits format were faster than for numbers presented as number 
words. Likewise, Campbell et al. (Campbell, 1994; Campbell & Clark, 
1992; Campbell, Kanz, & Xue, 1999) found that the word format led to 
errors numerically far from the correct answer relative to digit format. 
According to the interpretation by the authors, miscalculations with number 
words seem to be less fixed by the semantic distance, suggesting that the 
word format activates a weaker magnitude representation than the digit 
format. This explanation, coupled with the fact that magnitude 
discrimination becomes more difficult when increasing the numerical size 
(see Dehaene, 1992, 2001), would allow to interpret the above mentioned 
interaction between format and problem size in terms of a weaker 
magnitude activation by number words. Given that the representation of 
numerical magnitude may be activated in the context of an arithmetic word 
problem (Orrantia & Múñez, 2013), the effects of format on calculation that 
have been found in the present study could be explained by a weakest 
contribution of magnitude information in the word format. 

That interpretation would also explain the findings regarding the 
variables operation and level of competence. The difference between 
formats for large problems regarding small problems was more evident for 
subtraction problems. This result might be explained in terms of magnitude 
processing since subtraction requires further magnitude manipulation than 
addition (Dehaene, Piazza, Pinel, & Cohen 2003). Although some 
subtraction facts (especially with small operands) can be solved by memory 
retrieval, many are solved by calculation procedures (Campbell & Xue, 
2001; LeFevre, DeStefano, Penner-Wilger, & Daley, 2006; Seyler, Kirk, & 
Ashcraft, 2003; but see Fayol & Thevenot, 2012). Those procedures are 
semantically mediated, that is, they require some kind of magnitude 
manipulation. In this sense, the expected format effects in calculation would 
be larger for subtraction than for addition since accessing the magnitude 
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representation is less effective in word format and, in addition, further 
magnitude manipulation is required for subtraction. However, our results 
were different from those found by Campbell and Alberts (2009), where the 
interaction between format and size produced similar results for both 
operations. One plausible explanation of such discrepancies relates to the 
experimental conditions of our study. Firstly, ours was a sequential 
presentation whereas Campbell and Alberts´ (2009) was simultaneous; and 
secondly, our presentation was blocked by format while Campbell and 
Alberts´ (2009) stimuli were not. As Damian (2004) notes, the differences 
between Arabic digits and number words may be obscure when stimuli are 
interspersed. And those differences may emerge when stimuli are blocked 
because participants can possibly adopt different response criteria for each 
condition. Especially, we would say, in a sequential presentation where 
participants have enough time to process the first operand before the second 
operand is displayed. 

The explanation in terms of accessing the numerical magnitude could 
also explain the results found according to participants´ level of 
competence. Results showed, for the very first time, that the interaction 
between format and size was more evident for less competent participants 
(η2

p = .32 vs. .14 for low-skilled and high -skilled participants respectively), 
and the format by size by operation interaction was only significant for low-
skill participants. As suggested by response time data, one possible 
interpretation is that this group of participants makes greater use of 
computational procedures against retrieval. In this sense, it would be 
feasible to consider that the interaction format by size affected, on the one 
hand, memory facts retrieval for most competent participants; and, on the 
other hand, the use of procedures that require greater semantic processing 
for less competent participants. However, as Fayol and Thevenot (2012) 
suggest, it is also possible that participants with higher level of competence 
also used procedures, but in a more efficient manner than their counterparts. 
According to these authors, individuals who are more competent in 
arithmetic fluency can get to use "compacted" procedures that can be 
quickly and automatically implemented. In this regard, we would assume 
that these procedures require less semantic processing than those under 
conscious control, which are possibly developed by less competent 
individuals. 

This explanation to interpret individual differences is also supported 
by studies showing that accessing the magnitude representation is directly 
related to individual differences in arithmetic, both in children (e.g., De 
Smedt, Verschaffel, & Ghesquière, 2009; Holloway & Ansari, 2009; 
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Vanbinst, Ghesquière, & De Smedt, 2012) and adults (e.g., Castronovo & 
Göbel, 2012; Lyons & Beilock, 2011; but see Sasanguie & Reynvoet, 
2014). Thus, higher arithmetic competence relates to higher proficiency in 
accessing the magnitude representation through symbolic quantities. This 
fact is reflected, among others, by the “numerical distance effect” (Moyer & 
Landauer, 1967). This effect relates to the fact that discrimination between 
two numbers is faster when the distance between them increases (e.g., 2-3 
vs. 2-8). Since two numbers that are numerically close have more overlap of 
the tuning curves compared to numbers that are numerically far apart, it is 
harder to discriminate them (Dehaene, 1997). The distance effect would 
reflect the activation of magnitude representation. A larger distance effect 
would indicate less accuracy in accessing numerical magnitude. In this 
context, Vanbinst et al. (2012) found that 9-year-old children with better 
access to the magnitude representation (i.e., a smaller numerical distance 
effect) performed faster during memory facts retrieval tasks and were more 
effective to implement calculation procedures. Castronovo and Göbel 
(2012) showed that adults with higher arithmetic fluency had a smaller 
numerical distance effect than those with lower fluency. In this sense, 
numerical magnitude processing skills would explain our findings respect to 
the variable level of competence. If accessing the numerical magnitude is 
less efficient with number words than with Arabic digits format, and 
subtraction requires further magnitude manipulation than addition, those 
with more difficulties in accessing numerical magnitude (i.e., less 
competent participants) would be more influenced by variables format and 
operation. However, this is a tentative hypothesis that needs further 
investigation since individual differences in accessing the magnitude 
representation were not directly measured in the present work. 

In summary, the present study explored the effects of numerical 
format on calculus in the context of arithmetic word problems. Our findings 
are consistent with others that suggest that the format in which numbers are 
presented affects the calculation mechanisms and not just the encoding 
processes. Format effects can be explained by different mechanisms. In this 
study we assume an interpretation based on accessing the representation of 
numerical magnitude through symbolic numbers. 
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RESUMEN 
Efectos del formato numérico en problemas aritméticos. Los adultos 
calculan más eficazmente cuando los operandos se presentan en formato 
arábigo (3 + 5) que cuando se presentan en formato palabras numéricas (tres 
+ cinco). Una explicación ofrecida es la mayor familiaridad visual de los 
dígitos relativo a las palabras numéricas. Sin embargo, la mayoría de los 
estudios se han limitado a operaciones simples de cálculo con sumas y 
multiplicaciones. En el presente trabajo analizamos hasta qué punto se 
produce el efecto del formato en el contexto de un problema aritmético, en 
el que la familiaridad visual se elimina (Manuel tenía 3 canicas y le dieron 
5). Participantes con diferente nivel de competencia en fluidez aritmética 
resolvieron problemas de suma y resta con los operandos en ambos 
formatos. Los resultados mostraron un efecto del formato, con mayor 
rapidez en formato dígitos que en palabras numéricas. Además los efectos 
fueron más evidentes en la operación de resta y en los participantes menos 
competentes en fluidez aritmética. Estos resultados fueron interpretados en 
función de una mayor eficacia del formato dígitos para acceder a la 
semántica del número. 
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