
 

 

 

Psicológica (2014), 35, 405-422. 

Evaluating Cognitive Models at the Group Level 

David J. Weiss* 

California State University, Los Angeles, USA 

 
Cognitive models are usually conceptualized at the individual level, but are 
often analyzed at the group level. The level at which analysis can be carried 
out is dictated by the experimental design, which traditionally has been 
chosen for pragmatic reasons. Defining the model at the group level allows 
the incorporation of individual difference variables, which are of interest to 
many researchers, into the model structure. The nested groups design, with 
participants nested under the classificatory variables, is appropriate when the 
model is defined at the group level. That design is illustrated with a study 
testing a multiplicative model of anticipated compliance, in which medical 
patients were grouped according to the symptoms and prognoses associated 
with their diseases.  

 

 

Models of cognitive processes are commonplace within a subset of 
the behavioral research community. Almost always, the model describes 
individual cognition, but in most research traditions is tested using data 
averaged over respondents. A consequence of this practice is the difficulty 
of examining individual differences variables, which are often dear to the 
hearts of researchers. In this essay, I illustrate how the use of nested group 
designs can help to overcome this deficiency. 

When a fully crossed factorial design with independent groups is 
employed, a key question is whether the observed pattern of cell means 
reflects a single cognitive process shared by the population or is an artifact 
of the averaging. That is, whose cognition does the model describe? The 
question entails discussion of the issue of level of analysis, an issue deeply 
connected to experimental design. In this paper, that discussion is carried 
out in the context of two research traditions that examine how people make 
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judgments, with cognitive models at their core. Particular emphasis is given 
to the functional measurement tradition, because researchers employing that 
methodology have given serious consideration to the issue.  

 
The Heuristics and Biases Tradition 
Within the heuristics and biases literature that ultimately led to one of 

psychology’s proudest moments, the award of the 2002 Nobel Prize in 
Economic Sciences to Daniel Kahneman, there is a paradox. The theoretical 
models describe individual cognition, but the empirical tests are carried out 
at the group level. For example, in discussing risky choice, Kahneman and 
Tversky (1984) report percentages of participants who choose one option 
over another, but they theorize about an individual’s subjective state. It is 
not only researchers working in the heuristics and biases tradition who shift 
the level of analysis in this way. Their predecessors (e.g., Phillips and 
Edwards, 1966) and critics (e.g., Gigerenzer & Goldstein, 1996) do so as 
well. 

The reason for the paradox is undoubtedly that the critical parameter 
in a choice problem is a probability; how likely is the respondent to choose 
one object over another? Estimating probability of choice within individuals 
is challenging. Not only does the researcher require large numbers of trials 
in order to get stable estimates of response frequency, but also those trials 
ought to be independent. People have the annoying habit of remembering 
their previous responses, which wreaks havoc with the independence 
requirement. Accordingly, pragmatic researchers often elect to estimate 
individual probabilities via group proportions (Kahneman & Tversky, 
1982). The implicit assumption is that the average mind is a composite of 
homogeneous individual minds1. There are two ways in which this 
assumption might be wrong. Individuals might employ different models, or 
individuals might employ the same model but with idiosyncratic 
parameters.  

Although the problem is well appreciated at the level of theory 
(Narens & Luce, 1983), with infrequent exceptions (e. g., Edwards, 1955; 
Tversky, 1967), the assumption of homogeneity has largely gone untested. 
If the goal of the research is the practical one of predicting group behavior, 
then of course basing the prediction on the behavior exhibited by the sample 
                                                
1 Although I have not seen the composition spelled out, I suspect the researchers in this 
tradition do not envision participants developing a shared mental model of the sort that may 
arise when a team collaborates on a common task (Klimoski & Mohammed, 1995). Instead, 
I believe the view is that participants share a common endowment, what Titchener labeled 
the generalized normal adult human mind (Shanteau, 1999). 



Group cognitive models 407 

is sensible. But if the goal is to understand how people think about choices, 
then more individually focused examination may be in order.  

 
The Functional Measurement Tradition 
Functional measurement researchers also evaluate cognitive models, 

usually presented in algebraic form. The title chosen by Anderson (1978) 
for one of his summarizing papers, “Progress in Cognitive Algebra”2, 
conveys the optimism as simple algebraic models were found to provide 
good quantitative accounts of a variety of cognitive processes. The simplest 
of these models, the additive model and the multiplicative model, were 
found to describe a host of judgmental phenomena in domains as diverse as 
psychophysics (Anderson, 1970) and social psychology (Anderson, 1971).  

Among functional measurement researchers, data analysis has usually 
been carried out at the level of the individual subject. The model is viewed 
as localized within the individual. With factorial designs generating the 
stimulus combinations to be judged, analysis of variance has been the 
primary tool for model evaluation (Weiss, 2006). Each model makes 
predictions about the significance and nonsignificance of specific sources. 
Single-Subject designs have the potential to provide very powerful tests of 
the model, because differences between people do not contribute to the error 
term.  

When data are analyzed individually, the models for the various 
respondents may be revealed to differ from one another. That poses the 
challenge of making sense of the discrepancies. If there are identifiable 
commonalities among subsets of respondents, post-hoc clustering (Bonds-
Raacke, 2006; Hofmans & Mullet, 2013) can provide convenient 
description. However, without additional information about the 
respondents, there may be insufficient leverage to clarify the factors leading 
people to employ different models. Post-hoc analysis can be suggestive, but 
is often low-powered because chance outcomes are uncontrolled. In general, 
such analyses do not provide the reassurance afforded by statistically testing 
a prior hypothesis. 

 Within the functional measurement tradition, group analyses were 
occasionally carried out, usually in situations where it was not 
                                                
2 Anderson (1971, 1981) also refers to the approach as information integration 
methodology. I prefer the original term, which highlights the associated goals. Algebraic 
models of cognitive processes are also key elements in other research streams, such as 
conjoint measurement (Luce & Tukey, 1964) and multi-attribute utility measurement (von 
Winterfeldt & Edwards, 1986), that have generally placed less emphasis on statistical 
aspects of model testing. 



 D.J. Weiss 408 

experimentally feasible to present each individual with the multiple 
replications needed to provide sufficient analytic power for single subjects. 
Three kinds of group design have been used. 

 Most commonly, group analyses have employed fully-crossed 
repeated measures designs. Each of a relatively small number of subjects 
goes through one (or rarely, several) replication of the factorial design, with 
the analysis following standard guidelines. Interaction with subjects serves 
as the error term for each substantive source. For additive models, standard 
computer ANOVA programs can carry out model evaluation. Multiplicative 
models are more complex to analyze, because the contrast coefficients 
needed to compute deviations from bilinearity, that is, what remains of the 
interaction after extracting its linear x linear component, are based on 
subjective values (Anderson & Shanteau, 1970). In the repeated-measures 
design, error terms also need to incorporate these coefficients3. 

 Kaplan (1971; Kaplan & Kemmerick, 1974) introduced a variant in 
which subgroups of participants responded to different subsets of the 
experimental design. This approach yields designs in which subjects are 
nested under experimental factors, a structural relationship to be discussed 
below. 

The third kind of group design, the independent groups design, was 
generally avoided until its feasibility was demonstrated by Howe (1991). 
The independent groups design has some advantages by virtue of requiring 
only one response from each person. First, it takes much less time per 
participant. For respondents other than students, a brief commitment can 
render recruitment feasible. Second, there need be no concern that the 
respondent can envision the factorial design and attempt to impose 
consistency on the set of responses. Third, the experiment can include 
extremely vivid, highly memorable stimuli without regard for the risk of 
people remembering their previous responses. On the negative side, though, 
there is a danger that between-Subject variability will limit the statistical 
power needed to evaluate a model.  

 These group designs all conceptualize the cognitive model at the 
level of the individual subject. Everyone is presumed to employ the same 
model. The group analyses are an experimental necessity to allow model 
testing and parameter estimation. A group is assembled by the researcher as 
an approximation to a random subset of the population of interest. The 
model and the parameters extracted are seen as those of a typical member of 
                                                
3 There were some glitches along the way (Graesser & Anderson, 1974), but after a few 
years a correct analysis was derived and incorporated into a computer program, POLYLIN 
(Weiss & Shanteau, 1982). 
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the population from which the participants were drawn. This is the usual 
way psychologists regard data based upon averages (Weiss & Edwards, 
2005).  

 
Individual Differences 
But of course, many researchers have a great deal of interest in 

individual characteristics. Classificatory variables such as gender, ethnicity, 
health status, and age form the bases for well-defined areas of inquiry. 
Investigators employing regression-based analytic approaches routinely 
present models featuring demographic variables. Although there are 
exceptions, generally cognitive modelers have ignored individual 
differences predictable from grouping characteristics. Perhaps one reason 
cognitive models have not become more popular is that mainstream 
psychologists do not see how the formalism can be applied to their primary 
concerns. 

 
Nested Designs 
The problem for the modeler is that the interesting grouping variables 

are not subject to experimental control; one cannot assign gender, ethnicity, 
and the like for the sake of the study. Rather the researcher must recruit 
people with specified characteristics, a process that is not only inconvenient 
but also loses the inferential rewards of random selection. A partial solution 
to the problem is to include manipulated variables in a design in which 
participants are nested under the grouping variables. The key property of 
these designs is that each participant appears in only one level of the 
substantive factor under which the “Subjects” factor is nested4. 
Accordingly, one cannot estimate the interaction between a nested source 
and the source under which it is nested. Figure 1 shows the relationship in 
its simplest form. 

Using a nested design to explore the role of a grouping variable 
produces complexities in three domains: the theoretical, wherein the locus 
of the model must be clarified; the statistical, in which novel estimation 
procedures are required, and the experimental, because the grouping itself 
may be imprecise. These issues will be easier to envision in the context of 

                                                
4 Designs in which subjects constitute the nested factor are sometimes called “mixed” or 
“split-plot”. As the computations for all nested designs follow the same rules, there is little 
reason to introduce a separate label (Weiss, 2006). An expository discussion of nested 
designs is presented in Chapter 11 of that text. 
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an application, so an experiment reported by Rundall and Weiss (1998) will 
be used as an exemplar. 

 

 
Figure 1. Top panel shows a crossed relationship between factors A and 
S (Subjects), in which all subjects responds to all levels of factor A. 
That relationship exemplifies the standard repeated measures design. 
The bottom panel shows a nesting relationship, in which Factor S is 
nested under Factor A. Note that the levels of the nested factor have 
subscripts that differ from column to column.   
 
 
 

 Rundall and Weiss (1998) asked 180 outpatients, each of whom had 
one of nine chronic diseases, to project their compliance in taking 
hypothetical prescribed medications specifically formulated for their 
diseases. Compliance is a critical problem in the treatment of long-lasting 
illnesses (Gerber & Nehemkis, 1986). Each of the five medications was 
described as likely to produce a particular side effect. The diseases used in 
the study were chosen to vary in symptom severity and disease prognosis, 
as specified by a medical manual, according to a 3 x 3 factorial design. 
With each medication rated twice, the design was a 3 (symptoms) x 3 
(prognosis) x 5 (side effects) by 20 (patients) x 2 (replications). The 
“Patients” (i.e., subjects) factor was crossed with side effects and nested 
under symptoms and prognosis. That is, each patient projected compliance 
across all five of the side effects, but was limited (by actual medical 
condition) to only one combination of symptoms and prognosis. The nesting 
structure is shown in Table 1. 
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Table 1. Disease factorial design. 
 

 
 
 
 
 The anticipation was that compliance would be greater for patients 

with more severe symptoms and with more dire prognoses, while 
troublesome side effects would interfere with pill-taking (Weiss, 1989) for 
everyone. A multiplicative model was hypothesized to describe 
quantitatively the manner in which the subjective impact of these variables 
combined to yield the projected compliance judgments: 

 
                  R(i, j, k) = S(i) x P(j)  x  SE(k) + Co                                                (1) 
 

In Equation 1, R(i, j, k) is the response. S(i) is the subjective value of the i-
th level of symptoms. P(j) is the subjective value corresponding to the j-th 
level of prognosis. SE(k) is the subjective value of the k-th level of side 
effect. Co is an additive constant providing an arbitrary zero point for the 
interval scale response. 

The functional measurement school, like other cognitive modelers 
(e.g., Luce, 2010) regards a model as descriptive of the judgmental process, 
but does not claim to portray a participant’s thoughts. People usually do not 
explicitly carry out the arithmetic suggested by the model equation when 
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making judgments or choices. When I compare offered pieces of cake with 
the intention of choosing the largest, I do not use geometry. My judgments 
are holistic, even though they might be well described by a Euclidean 
equation I learned in school. In experimental settings, the usual instructions 
request intuitive responses and attempt to inhibit calculation. Accordingly, 
we attribute to our formal models an “as-if” character. The quarterback 
aims the football as if he were using calculus to derive arcs and forces 
(Weiss, 2006; see also Pennings, 2003). The model is “paramorphic” 
(Hoffman’s (1960) term conveying functional similarity) to the way in 
which the person integrates the subjective values of the components.  

 
Locus of the Model 
The model proposes that an individual’s compliance is influenced by 

disease factors. That phrasing makes it sound like the model addresses an 
individual’s cognitive process, but is misleading. Because no individual 
subject has all of the diseases, the model for compliance cannot be tested at 
the level of the individual, and therefore ought not to be defined at the level 
of the individual. The grouping variables themselves are model parameters. 
The model can be evaluated only at the overall group level. It is not a 
shared cognitive model, in the sense that medical anthropologists exploring 
cultural consensus examine beliefs shared by members of ethnic groups 
(Chavez, Hubbell, McMullin, Martinez, & Mishra, 1995). Rather, the model 
is descriptive of the cognitive behavior of the group as a whole, of a “group 
mind”. In this case, the larger group to whom one might generalize consists 
of patients with the symptoms and prognoses specified in the factorial 
structure. This perspective allows specification of how aspects of personal 
history, encapsulated in this medical example as symptom severity and 
prognosis, affect the responses made by members of the sub-groups defined 
by the experimental design.  

 
Statistical Issues 
Because nesting eliminates estimation of interaction between a nested 

source and the source under which it is nested, the usual rule for repeated 
measures designs, wherein interaction with subjects generates the error term 
for each substantive source, leads to shared error terms. The composition of 
these error terms becomes increasingly complex as the number of nested 
sources increases, but packaged ANOVA programs have made the 
computations routine.  

 In testing an additive model, no additional complications arise with 
the use of nested designs. However, the test of a multiplicative model is a 
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different story. The difficult case arises when we explore a how a pair (or 
trio, etc.) of factors, at least one of which is nested under the Subjects 
factor, combines subjectively to influence responses. The derivation of error 
terms for polynomial components within a nested design, independent of 
the subjective spacing issue, is sufficiently complex that a well-known 
advanced text (Kirk, 1982) gives an incorrect formulation. A correct 
solution has been given by Myers (1979, p. 456). If the Subject factor is 
nested under Factor A (symptoms or prognosis in our example) and crossed 
with Factor B (side effects in our example), the mean square for S x 
lin(A)/B is the appropriate error term for all terms of the form p(A) x q(B), 
such as lin(A) x lin(B) or lin(A) x quad(B).  

The FUNCTIONAL MEASUREMENT5 computer program employs 
Myers’s approach when a multiplicative model is specified for a nested 
design. Table 2 shows an excerpt from the Rundall and Weiss (1998) 
analysis of variance. The interaction term (shown in the first row) is 
decomposed to evaluate the hypothesis. The Side Effects and Prognosis 
factors were deemed to combine multiplicatively, because the bilinear 
(linear x linear) component of the interaction was significant and the other 
components were not. Note the use of the common error terms for the 
lin(SE) x lin(P) and lin(SE) x quad(P) terms, and for the quad(SE) x lin(P) 
and quad(SE) x quad(P) terms, etc. The sharing is called for when cycling 
through the levels of the nested source, Prognosis.  

The solution proposed by Kirk (1982, p. 521) yields smaller error 
terms, and thus larger F-ratios, than that of Myers (1979). The Myers 
method is preferable because it provides an orthogonal decomposition. The 
sum of the sums of squares of the individual component error terms is equal 
to the sum of squares of the error term for the overall interaction. In a 
nonorthogonal decomposition, some of the variance in the data gets lost. 

An alternative to the multilinear analysis has been used by other 
investigators. Tversky and Russo (1969) proposed evaluating 
multiplicativity by logarithmically transforming responses prior to carrying 
an additivity analysis. Inspired by the slide rule, this technique provides a 
plausible view of the pattern of the cell means, although the concomitant 
adjustment of the error variance may not be acceptable to some researchers. 
While the generality of the approach may be questioned, as responses with 
negative signs cannot be transformed, its use has persisted (Stevenson, 
Busemeyer, & Naylor, 1990), perhaps because the analysis may be carried 

                                                
5 FUNCTIONAL MEASUREMENT is included in the CALSTAT package of programs 
that accompanies Weiss’s (2006) text. 
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out with standard ANOVA packages; no estimation of coefficients is 
required. 
 
 
Table 2.  Analysis of Variance for Side Effects (5 levels) x Prognosis     
(3 levels) interaction. 

 
 
 
 

However, when the additive constant, Co, differs across individuals, 
the transformational approach breaks down for group data. This can be 
illustrated by considering a group analysis of artificial data from two 
“Subjects” who are following the multiplicative model perfectly, but have 
different parameters. The “score” in each cell is the product of the 
individual’s row “subjective value” and column “subjective value”, plus the 
additive constant. First we compare the two analytic methods when Co = 0. 

The bilinearity test shows all of the interaction to be contained within 
the Linear x Linear component, as it should be, with F = 1.16. The column 
and row F-ratios are 1.59 and 1.20 respectively. The transformation 
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approach yields appropriate results as well. The logarithmically transformed 
responses yield an interaction F of 0, as they should for perfect data, with 
column and row F-ratios of 43.75 and 2.32. 

 
Table 3.  Artificial multiplicative data with Co = 0 

 
 
 
 Thus, both methods report perfect multiplicativity for perfectly 

multiplicative data. However, a different result obtains when a varying 
additive constant enters the fray: 

The bilinearity test yields exactly the same result as was obtained 
previously. All of the interaction is contained within the Linear x Linear 
component, with F = 1.16, while the column and row F-ratios are again 1.59 
and 1.20. On the other hand, the test of the additivity of logged responses 
yields an interaction of 2.53, with column and row F-ratios of 46.41 and 
2.32.  

The conclusion is that when Co varies, the bilinearity test still 
responds appropriately, in that it reports perfect multiplicativity when it 
should do so because all (in this illustration, both) subjects are multiplying, 
while the additivity test of transformed responses does not. With real 
subjects, the values of Co are not predictable; the values may depend on 
idiosyncratic uses of the response instrument. It would seem safer to rely 
upon an evaluative method that is not disrupted by such differences.  
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Table 4.  Artificial multiplicative data with varying Co values 

 
 
 
Experimental Issues 
Grouping people according to natural labels is inevitably hazardous. 

The researcher is usually forced to accept group membership as reported; if 
reports are inaccurate, the group assignment is incorrect. Even more 
fundamental, perhaps, is the problem of category breadth. Do two people 
with a particular disease experience the same symptoms? Inevitably people 
whose subjective values may be quite disparate are going to be placed 
within the same group by an experimenter who is not omniscient. The 
statistical power to test the model is reduced by this variability. 

Confounding is another potential issue with naturally occurring 
groups. Consider two of the asymptomatic diseases used by Rundall and 
Weiss (1998), inactive tuberculosis and hypertension. According to the 
factorial structure, these diseases vary in prognosis, and so differences 
between compliance estimates for the pair are attributed to the impact of 
that element. While the disease characteristics are accounted for by the 
experimental design, the patients who have the diseases differ in some 
important ways that the design does not capture. Inactive tuberculosis is a 
disease of the young; most patients are under 25. Hypertension, on the other 
hand, seldom appears before middle age. Older patients are especially 
predisposed to problems with medication compliance (Richardson, 1986). 
Tuberculosis patients are almost exclusively economically disadvantaged 
immigrants, while hypertension does not discriminate on the basis of wealth 
- but it is more likely to strike African Americans than member of other 
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racial groups. Might social variables also play a role in compliance (Castro 
et al., 1986)? Similarly, iron deficiency anemia is primarily a disease of 
women, while chronic obstructive pulmonary disease is largely a male 
concern. Might gender play a role in compliance (Connelly, Davenport, & 
Nurnberger, 1982)? Particular side effects, such as weight gain, might be 
seen as more burdensome by one gender rather than another. 

 The researcher may attempt to control known or suspected 
confounding by including additional factors in the design, but the increased 
complexity threatens to make the study infeasible. Rundall and Weiss 
(1998) did not have an easy time finding diseases that could be partitioned 
factorially according to symptoms and prognosis; additional constraints 
would have made a factorial structure impossible to achieve. 

 With the specialized requirements of a factorial design, recruiting 
appropriate participants can be a challenge. Additional factors increasingly 
restrict the number of people who qualify for a particular subgroup. 
Inevitably, some cells are easier to fill than others. For example, because 
hypertension is very common, Rundall and Weiss (1998) had no trouble 
finding patients with that disease. Inactive tuberculosis, on the other hand, 
is relatively rare, and access to patients through the normal channel of 
physician referrals proved fruitless. An additional issue is that some groups, 
such as patients with sexually transmitted diseases, may feel stigmatized, 
and the potential recruit may not be comfortable participating in the 
research specifically as a member of that group.  

 There are two ways to treat the problem of unequal availability. 
Rundall and Weiss (1998) produced equal cell sizes by recruiting as many 
subjects in all cells as the number attainable for the group that was most 
difficult to recruit. Equality of cell sizes kept the statistical analysis 
relatively straightforward. The alternative approach is to allow group sizes 
within the study to mirror proportions within the population. Proportional 
designs are appealing because they can allow increased generalizability 
when small subgroups that might otherwise be ignored are included in the 
research. Proportional designs yield orthogonal decomposition of variance. 
For an additive model, the consequent statistical complexity is not too great; 
for a multiplicative model, the analytic procedures for proportional designs 
have not yet been worked out. 

 
Comparison of Design Types 
Single-Subject analysis has been the primary vehicle for determining 

whether an algebraic model describes a set of judgments. Participants can 
be well trained, and the researcher can thereby feel confident that the 
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judgments are informed. Single-Subject data is generally characterized by 
low variability, which provides the analytic power needed to evaluate the 
model. Additionally, since there is no necessary reason for different 
individuals to employ the same model, the individual approach is seen as 
the appropriate way to describe behavior.  

If inter-individual consistency happens to occur, all the better as it 
allows a simple description across people (Weiss & Anderson, 1969); but 
such consistency is not crucial to the success of the inquiry with regard to 
clarifying the cognitive process. The risk in merely assuming that everyone 
follows the same model was underscored by Shanteau and Anderson 
(1969), who found that an additive model of preference judgments fit group 
data quite well, but did not fit the individual data for 5 of 20 participants. 
Furthermore, a group analysis of just the minority who showed interactions 
did not yield a significant interaction. This tells us that the deviations from 
the model were idiosyncratic. 

 On the other hand, single-Subject designs are subject to carry-over 
effects; presentation order affects judgments. As Grice (1966) demonstrated 
and Poulton (1973) reiterated, substantive inferences can be markedly 
different from otherwise identical experiments using within-Subject designs 
versus between-Subject designs. Careful procedure can minimize the impact 
of carry-over effects, but only an independent groups design eliminates the 
concern. Carry-over effects such as stimulus contrast and response 
anchoring are interesting in their own right, and are certainly worthy of 
systematic study (Asch, 1946; Birnbaum, Parducci, & Gifford, 1971; 
Kaplan, 1971), but if uncontrolled can cloud effects of central interest. In 
the evaluation of a model such as that given by Equation 1, one that 
specifies the response to be a function only of the factorial combination, 
carry-over effects can be a serious intrusion.  

 A different kind of carry-over effect arises when subjects make 
many judgments. Complete factorial designs, especially with repetitions, 
can be tedious to evaluate. It is easy to neglect the participant’s focus 
(Slovic, Lichtenstein, & Edwards, 1965). Boredom is a carry-over effect 
that has been generally overlooked by cognitive modelers. 

 The antidote to boredom presents carry-over risks of another kind. It 
would seem desirable to present stimuli capable of engaging the 
participant’s interest. A consequent difficulty may be that vivid, memorable 
stimuli themselves call attention to the focus of the study. Participants 
exposed to more than one condition may guess the researcher’s intention, 
and their personal theories may influence the responses in unaccountable 
ways.  
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For example, Harris & Weiss (1995) asked students to judge 
culpability in several ambiguous acquaintance rape situations. Pilot work 
showed it was not feasible to use scenarios in which the location of the 
protagonist couple’s initial encounter (a bar or a coffee shop) was varied, 
because the students easily saw what was being manipulated. Although 
instructions called for global impressions, the respondents could not avoid 
formulating hypotheses about location. Demand characteristics were clearly 
coloring the responses. Unaware of the virtues of the nested design, the 
researchers elected to bypass the problem by fixing the location. Nesting 
respondents under location would have allowed exploration of an 
interesting variable.   

 
Conclusion 
Each kind of design a researcher might employ has advantages and 

disadvantages. The single-S design and the repeated-measures design are 
economical and efficient. With practice, an individual’s use of the response 
scale is likely to stabilize. The negative feature is that repeated trials can 
lead to a variety of carry-over effects.  

The independent groups design calls for recruiting a large number of 
participants, who are likely to vary in motivation and understanding, and 
whose approaches to the judgmental task may be quite idiosyncratic. 
Participants may use the response instrument idiosyncratically as well 
(Birnbaum, 1999). Response variability reduces the power of the statistical 
evaluation. When variability is large, it may not be possible to reject any 
model. An independent groups design requires an easy-to-use response 
instrument, since there will be no opportunity to learn. 

Nested designs, in which each respondent sees only a specific subset 
of the stimulus combinations, afford the possibility of an intermediate 
position. In the functional measurement context, the nested design also 
deserves attention because of its potential value in exploring the kinds of 
demographic variables that are of wide interest. Nesting offers the 
researcher a principled way to investigate diversity among subjects. A 
nested group design might be applicable when personal characteristics, such 
as intelligence, experience, or wealth are embedded in a cognitive model. 
Or a nested design could be used to confirm characteristics suggested by a 
post-hoc cluster analysis of data collected using a single-S design.  

The substantive conclusion of the Rundall and Weiss (1998) study is 
that anticipated compliance depends multiplicatively on disease aspects and 
side effects. That conclusion could not have been drawn from an analysis 
conducted at the level of the individual, nor could it have been drawn using 
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an independent groups design. Nested group designs can provide a means to 
extend the advantage of the carefully specified, quantitative, model to 
empirical questions whose exploration has previously been guided by verbal 
models (Harris, 1976).  
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