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The research field of intuitive physics focuses on discrepancies between 
theoretical and intuitive physical knowledge. Consideration of these 
discrepancies can help in the teaching of elementary physics. However, 
evidence shows that theoretical and intuitive physical knowledge may also 
be congruent. Physics teaching could further benefit from understanding the 
reasons for this congruence. The present study explored these reasons by 
investigating the intuitive physics of the equilibrium of the lever and of the 
hydraulic pressures. It was found that the intuitive-physics law of the lever 
was multiplicative for all participants while the intuitive-physics law of the 
hydraulic pressures differed among participants. Since these laws are 
equally simple and the layman probably has had extensive experience with 
the lever and scarce or no experience with the hydraulic lift, these findings 
support the general hypothesis that physical laws and corresponding 
intuitive-physics laws are congruent when people have had experience with 
the respective phenomena. The results and theoretical considerations suggest 
two strategic principles for teaching elementary physics. 

 

 

The teaching of physics can largely benefit from findings of research 
in intuitive physics. Typically, this field of research studies the 
discrepancies between the physicist’s theoretical knowledge and the 
layman’s intuitive knowledge of the everyday physical world (Clement, 
1982; Lipmann & Bogen, 1923; McCloskey, 1983; Nersessian & Resnick, 
1989; Renn, Damerow, & McLaughlin, 2003; Shanon, 1976; Sherin, 2006; 
Smith & Casati, 1994; Taber, 2004). Clearly, awareness about such 
discrepancies can help teachers anticipate those aspects of physical 
explanations that could be more difficult for the student to understand. 
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Recent evidence increasingly shows, however, that theoretical and 
intuitive physical knowledge may also be congruent. That is, beginning 
with Anderson’s (1983a, 1983b) seminal work, studies using information 
integration methodology have found that intuitive-physics laws―the 
mathematical relations between the cognitive variables defining a person’s 
implicit knowledge of an everyday physical phenomenon―may be formally 
identical or may be formally dissimilar to the respective physical laws 
(Cocco & Masin, 2010; Corneli & Vicovaro, 2007; De Sá Teixeira, 
Oliveira, & Silva, 2013; De Sá Teixeira, Oliveira, & Viegas, 2008; Karpp & 
Anderson, 1997; Krist, Fieberg, & Wilkening, 1993; Léoni & Mullet, 1993; 
Léoni, Mullet, & Chasseigne, 2002; Masin & Rispoli, 2010; Mullet & 
Montcouquiol, 1988; Silverberg, 2003; Vicovaro, 2012; Wilkening, 1981; 
Wilkening & Huber, 2002; Wilkening & Martin, 2004). The following are 
one example of identity and one of dissimilarity of laws. 

 
IDENTITY OF LAWS 

For a linearly elastic spring with rest length L hanging vertically from 
a fixed support, Hooke’s law is about the spring elongation E caused by a 
load with weight W hung on the lower end of the spring. It states that 

 
                           E = k · L · W                                                            (1) 
 

with k constant. A physical test of this equation consists in measuring E for 
each factorial combination of fixed values of L and W and in plotting these 
measures against W separately for each L. The test supports the law if the 
resulting factorial curves are straight lines fanning out from the origin. 

Let λ and ω denote the subjective counterparts of L and W, 
respectively. For each factorial combination of fixed values of these 
variables, Cocco and Masin (2010) had participants look at the spring (and 
thus perceive λ), heft the load (and thus perceive ω), and then estimate the 
imagined elongation ε in subjective centimeters that would have occurred in 
the event that the load was hung on the lower end of the spring. Functional 
measurement theory shows that the means of these estimates made 
separately for each W are linear measures of the respective ω (Anderson, 
1982, p. 73). The curves obtained by plotting estimated ε against these 
linear measures of ω separately for each λ were straight lines fanning out 
from the origin. 
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 This obtained pattern of straight lines intersecting at the origin―the 
same as that obtained by the physical test of Hooke’s law mentioned 
above―supports the intuitive-physics law of elasticity 

 
                             ε = k' · λ · ω                                                           (2) 
 

with k' constant. This law is formally identical to Hooke’s law. 
 

DISSIMILARITY OF LAWS 
For an object of weight W and volume V freely immersed in a fluid of 

density D, Archimedes’ law of buoyancy states that the object floats when 
the ratio of the immersed volume to the total volume of the object is 

 

                            
DV
WR
⋅

=  .                                                             (3) 

 
Let ω, ν, and δ denote the subjective counterparts of W, V, and D, 

respectively. For each factorial combination of fixed values of these three 
variables, Masin and Rispoli (2010) had participants heft the object while 
looking at it (and thus perceive ω and ν), visually inspect the viscosity of a 
fluid (and thus perceive δ), and then estimate the ratio ρ of the immersed 
volume to the total volume of the object that would occur in the event that 
the object was dropped in the fluid. The pattern of factorial curves resulting 
from plotting these estimates against ω separately for each ν was in 
agreement with a multiplicative relation between these variables, while the 
pattern resulting from plotting these estimates against ω separately for each 
δ was in agreement with an additive relation between these variables, 
supporting the intuitive-physics law of buoyancy 

 

                              δ
ν
ω −=ρ .                                                             (4) 

 
In a study of the mastery of the relations between mass, volume, and 

density, Léoni & Mullet (1993) and Léoni et al. (2002) also found that 
participants integrated density additively. The law expressed by Equation 4 
is dissimilar from Archimedes’ laws of buoyancy. 
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HYPOTHESIS 
The following study explored the reasons why theoretical and 

intuitive physical knowledge may be congruent, as in the case of Hooke’s 
law and the respective intuitive-physics law. Knowing these reasons may 
further help teachers ameliorate their physical explanations. 

Archimedes’ law is more complex than Hooke’s law. Since 
Archimedes’ law and the corresponding intuitive-physics law are dissimilar, 
simplicity of laws could be one possible reason for the identity of a physical 
law with an intuitive-physics law. 

People have most probably had extensive experience with buoyancy 
of objects in water. However, people may have had less or no experience 
with buoyancy of objects in fluids with density higher than that of water. 
The participants’ use of information about fluid density as encoded in 
Expression 4 rather than as in Equation 3 agrees with this possibility. 

One may then hypothesize that another condition for the identity of 
physical laws with intuitive-physics laws is the extent of experience that 
people have with the respective physical phenomena. In agreement with this 
hypothesis, Fischbein (1987) has argued in general that experience 
determines intuitive knowledge and Millar and King (1993) and Liégeois, 
Chasseigne, Papin, and Mullet (2003) have suggested in particular that lack 
of experience may be responsible for the often observed lack of 
understanding of the concept of potential difference in simple electric 
circuits. 

Considering that the hydraulic lift involves machinery less likely for 
the layman to encounter in everyday life, it seems probable that the layman 
has had extensive experience with the equilibrium of moments in the lever 
and not with the equilibrium of pressures in the hydraulic lift. These 
equilibriums are governed by equally simple multiplication laws. Being 
governed by laws of equal simplicity, these phenomena should thus allow 
testing whether the formal identity of physical laws with the respective 
intuitive-physics laws depends on people’s experience with the phenomena. 
Using information integration methodology, the following experiments 
provided the test of this hypothesis by determining the intuitive-physics 
laws of the lever and of the hydraulic lift. 

 
THE EQUILIBRIUM OF THE LEVER 

Consider a lever consisting of a horizontal beam with a fulcrum 
located at its center. For a load of weight W1 placed on the beam on the left 
at a distance D1 from the fulcrum, and a load of weight W2 placed on the 



The teaching of physics 445 

beam on the right at a distance D2 from the fulcrum, Archimedes’ law of the 
lever says that the beam remains horizontal when 

 
                         D1 · W1 = D2 · W2                                                       (5) 
 

(Heiberg, 1881). One may hypothesize that the relations between the 
relevant variables involved in the adults’ implicit knowledge of the 
equilibrium of the lever mimic those in Archimedes’ law. That is, one may 
hypothesize that 

 
                          δ1· ω1 = δ2 · ω2                                                          (6) 
 

with δ1, δ2, ω1, and ω2 the subjective counterparts of D1, D2, W1, and W2, 
respectively. 

The following evidence suggests that the relations between the 
variables involved in the intuitive-physics law of the equilibrium of the 
lever could be more complex than those expressed in Equation 6. Surber 
and Gzesh (1984) and Wilkening and Anderson (1982) empirically tested 
Equation 6 on adults using a balance scale with a relatively short beam 
equipped with pegs or hooks that allowed placing loads at different 
distances from the fulcrum. Their design may be described as follows. For 
each combination of fixed values of D2 and of W2 (right of fulcrum) the 
participants selected the physical distance D1 at which a load of fixed 
weight W1 (left of fulcrum) had to be placed so that the beam would remain 
horizontal. 

Equation 6 predicts that participants may have selected D1 such that 
 

                             2
1

2 ω⋅
ω
δ

=δ1   .                                                         (7) 

 
With ω1 fixed, Equation 7 predicts that curves relating δ1 to δ2 

separately for each value of ω2 are straight lines fanning out from the origin. 
Since δ1 and δ2 tend to 0 when D1 and D2 tend to zero, respectively, this 
prediction is supported if the curves relating D1 to D2 separately for each 
value of ω2 intersect at the origin. Contrary to this prediction, Surber and 
Gzesh (1984, p. 262) and Wilkening and Anderson (1982, p. 230) found 
that the intercept of the curves relating D1 to D2 varied with ω2.  
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Wilkening & Anderson (1982) suggested that this disagreement of 
empirical data with Equation 7 could be due to the participants using a 
multiplication rule combined with an addition rule. Such a composite rule 
may be expressed by the equation 

 

                      
ω

)ω+(  )  (1 + ω  
1

2222
1

δ⋅−⋅δ⋅
=δ

cc
                             (8) 

 
with c a weight factor representing a compromise between the addition and 
multiplication rules or the relative proportion with which participants 
alternatively used these rules. Using the balance-scale task with children, 
Ferretti, Butterfield, Cahn, and Kerkman (1985) found data indicating that 
participants might have independently used both of these rules. 

Wilkening and Anderson (1991, p. 56) argued that end effects may 
have biased Surber and Gzesh’s (1984) and Wilkening and Anderson’s 
(1982) results. Indeed, when one end of a fixed distance from the fulcrum 
was close to one end of the beam, participants could not select distances far 
beyond the other end of the beam with the consequence that participants’ 
responses were probably biased. A similar argument applies to fixed 
distances close to the center of the beam. 

The following experiment attempted to test Equations 7 and 8. The 
weights W1 and W2 were varied factorially and D1 was used as the 
dependent variable with D2 fixed. End effects were minimized using a scale 
beam that allowed a wide variation of D1. Differently from previous studies, 
no pegs or hooks on the beam were used since these objects would have 
been extra features that the participants could have used to estimate a 
weighted mean torque with the weights of this mean varying with D1 
(Palmieri, 2008). 

The test was based on the following assumptions. 
 (i) Judgments of subjective distance in subjective centimeters are 

related linearly to subjective distance and to physical distance. This 
assumption is supported by empirical data (Baird, 1970, pp. 42–43; Masin, 
2008, 2012; Stevens & Galanter, 1957). 

(ii) The study used equidistant values for W1 and W2. It is plausible 
that these values yielded practically equidistant values of subjective weight 
since the relation of subjective weight to physical weight has been found to 
be linear for objects with size as that of the objects used in this experiment 
(Stevens & Rubin, 1970) and since the range of weight values used in the 
present study was small. 



The teaching of physics 447 

For fixed values of δ2 and ω1, Equation 7 predicts that direct estimates 
of δ1 plotted against ω2 yield curves that intersect at the origin. On the other 
hand, Equation 8 predicts that the intercept of these curves varies with ω1. 

EXPERIMENT 1 

METHOD 
Participants and stimuli 
Eight university students in non-physical sciences participated 

individually for pay. A white wooden beam measuring 241 cm (width) × 7 
cm (height) × 0.5 cm (depth) was displayed throughout the experiment. The 
beam was held on the participant’s frontal parallel plane by a vertical rod 
fixed on a stand. This rod was a wooden parallelepiped with a base 4 cm × 4 
cm and height 60 cm. The beam had a 0.7 cm circular hole in its center. On 
the vertical axis of the rod facing the participant, a cylindrical pivot with a 
diameter as that of this hole was mounted centrally at 4 cm from the top of 
the rod. The pivot was passed through the hole in the beam allowing the 
beam to rotate. A device on the rod, invisible to the participant, could hold 
the beam in a horizontal position. 

The participant’s head was about 165 cm in front of the center of the 
beam while the participant sat at a table located between the participant and 
the beam. This table had a top surface made of Formica laminate. It was 
holding a 13-cm tall, 1.5-kg tripod carrying a laser pointer that constantly 
projected a 0.1-cm (width) × 7 cm (height) vertical red line on the beam. By 
both hands, the participant could smoothly move this vertical line along the 
beam by easily sliding the tripod on the table. 

On the right of the center of the beam, a 0.03-cm (width) × 7 cm 
(height) vertical black line was drawn on the beam 10 cm from this center. 
A tape meter invisible to the participant was stuck along the top edge of the 
beam to measure distances of the red laser line from the center of the beam. 

The beam was placed 80 cm from a parallel gray wall and was 
illuminated by a neon light on the ceiling located 130 cm right above the 
center of the beam. At the participant’s location the illumination level was 
about 1 klx. 

Four opaque gray bottles weighing 100, 200, 300, or 400 g were used 
as additional stimuli. All had the same shape and a capacity of 125 ml. Each 
had a circular plastic ring on top which allowed insertion of the index 
finger. 
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Procedure 
At the beginning of the experiment the participant was shown that the 

beam rotated around the pivot of the rod. Subsequently the beam was set 
horizontally and kept in this position for the entire duration of the 
experiment. 

On each trial, the participant hefted each of two stimulus bottles 
presented successively for about 0.5–1 sec. One experimenter presented 
these bottles to the participant with an interval between the presentations of 
about 5–10 sec. Stimulus bottles were hidden from view when they were 
not presented to the participant for hefting. The participant hefted each 
bottle by inserting the index finger in the ring on top of the bottle. 

On each trial, the participant was asked to imagine one stimulus bottle 
hanging at the point of the lower edge of the beam coinciding with the 
lower end of the vertical black line (on the right) and then to position the 
vertical red line so that its lower end coincided with the point of the lower 
edge of the beam where the other stimulus bottle should be hung (on the 
left) to keep the beam horizontal. 

When the participant had terminated positioning the red line on the 
beam, the participant was asked to leave the red line standing in that 
position for the rest of the trial and to estimate its distance from the center 
of the beam in centimeters and fractions thereof. For this estimation, the 
part with the first 10 cm cut from a meter tape was displayed horizontally 
on the table in front of the participant at a distance of about 50 cm. After the 
participant made this estimation, on the meter tape stuck on the top edge of 
the beam the experimenter read the physical distance of the red line from 
the center of the beam with precision to the nearest millimeter. 

The weight of the bottle to be imagined hanging on the left was 100, 
200, or 300 g and that of the bottle to be imagined hanging on the right was 
100, 200, 300, or 400 g for a total of 12 combinations of weights. On each 
trial, the bottle to be imagined hanging on the right was presented either 
first or second and the initial position of the red line was either the left end 
or the center of the beam. The four combinations of these orders were used 
twice for each combination of weights. The resulting 96 combinations were 
presented randomly, one for each trial. 

At the end of the experiment a questionnaire was submitted to each 
participant to assess their knowledge of Archimedes’ law and whether they 
had made mental numerical calculations during the experiment. 
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RESULTS AND DISCUSSION 
Figure 1 shows mean estimates of δ1 in subjective centimeters plotted 

against W2 separately for each W1 of 100, 200, or 300 g, represented by 
crosses, open circles, and filled circles, respectively. The results for the 
physical measures D1 of the distance of the red laser line from the center of 
the beam are omitted since they are qualitatively similar to those for δ1. 

Figure 1a shows the mean results for eight participants. All 
participants produced the same pattern of curves. Figure 1b exemplifies the 
results for one participant. Comparison of Figures 1a and 1b shows that the 
unit of subjective centimeter varied considerably among participants. 
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Figure 1. Mean estimate of perceived distance δ1 in subjective 
centimeters of a weight W1 of 100 g (+), 200 g (○), or 300 g (●) required 
to be placed on the left of the fulcrum to keep a beam horizontal when a 
weight W2 would be placed at a fixed distance on the right of the 
fulcrum. Left: mean results for 8 participants. Right: example of mean 
results for 1 participant. 
 
 
 

In Figure 2, the solid lines show the value of D1 as a function of W2 
calculated by Equation 5. For each participant, this calculated value of D1 
was smaller than the physical distance corresponding to the respective mean 
estimate of δ1. Given the equation R = m · δ1 + n with m and n constants, 
each R of each participant was transformed using this equation with the 
same values of m and n for each participant such that these values 
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minimized the root mean square deviation of the mean transformed 
estimates of δ1 from the respective values of D1 calculated by Equation 5. 
Figure 2 shows these mean transformed estimates of δ1 plotted against W2 
for m = 0.33 and n = 4.8 (rmsd = 1.84). The linear trend of W2 was 
significant with the quadratic and cubic trends not significant, F(1,7) = 89.5, 
p<.001, F(1,7) = 0.4, F(1,7) = 4.7, respectively. 

Since the mean transformed estimates of δ1 were close to the 
respective value of D1 calculated by Equation 5, the results in Figure 2 show 
that mean estimates of δ1 closely agreed with Archimedes’ law up to a 
linear transformation. The close convergence of the respective factorial 
curves toward the origin supports the hypothesis that Archimedes’ law 
(Equation 5) and the intuitive-physics law of the equilibrium of the lever 
(Equation 6) are formally identical. 
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Figure 2. Mean linearly transformed estimates of perceived distance δ1 
that minimized deviation from corresponding physical distance D1 
predicted by Archimedes’ law (solid lines). 
 
 

Replies to the questionnaire submitted at the end of the experiment 
showed that participants reported knowing the inverse relation of distance 
to weight necessary for the beam to remain in horizontal equilibrium and 
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that they reported making no mental numerical calculation in complying 
with the instructions. 

EXPERIMENT 2 
Young adults have had extensive experience with levers throughout 

their lives. In agreement with this experience, the above results indicate that 
Archimedes’ law and the intuitive-physics law of the equilibrium of the 
lever are formally identical. 

Archimedes’ law of the lever and the law of the equilibrium of the 
hydraulic pressures are multiplicative and equally simple. The following 
experiment explored whether the physical and intuitive-physics laws of the 
equilibrium of the hydraulic pressures are formally identical. Since 
hydraulic pressures occur in mechanisms that may be rarely encountered in 
everyday life, finding formal identity of the physical with the intuitive-
physics law for the equilibrium of the hydraulic pressures would indicate 
that people’s experience of this phenomenon is not relevant for the identity 
of these laws while finding dissimilarity of the physical with the intuitive-
physics law would indicate that this experience is relevant for the identity of 
these laws. 

Figure 3 shows two of the stimuli used in Experiment 2. Each 
stimulus depicts two connected cylinders. These cylinders were simulations 
of glass cylinders containing water covered with a lid. The lids were 
positioned horizontally at the same level and were described to the 
participants as being of negligible weight and acting as pistons. 

For a given stimulus, consider a load of weight W1 resting on the left 
lid of area A1 and a load of weight W2 resting on the right lid of area A2. The 
law of the equilibrium of the hydraulic pressures asserts that the two lids 
remain at the same level when 

 

                                     
2

2

1

1
A
W

A
W

=                                                       (9) 

 
(Pascal, 1663). 

The hypothesis that people implicitly know this law is expressed by 
the equation 
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with ω1, ω2 , α1, and α2, the subjective counterparts of W1, W2, A1, and A2, 
respectively. In the following experiment, α2 was the dependent variable 
with α1 fixed and with ω1 and ω2 varied factorially. Equation 10 implies that 

 

                                       
ω
ω

αα
1

12
2⋅= .                                            (11) 

 
With α1 fixed, this equation predicts that curves relating α2 to ω 2 

separately for each value of ω1 are straight lines fanning out from the origin. 
Since ω 2 tends to 0 when W2 tends to zero, this prediction is supported if 
the curves relating α2 to W2 for each value of ω1 intersect at the origin. 
Accordingly, the following experiment tested whether direct estimates of α2 
plotted against W2 yielded curves intersecting at the origin. 

 
 
 

   
 
Figure 3. Examples of the stimuli used in Experiment 2. 

 

METHOD 
Participants and stimuli 
Ten university students in non-physical sciences participated 

individually. None of them had participated in Experiment 1. 
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Stimuli were created by computer graphics software (Autodesk 3ds 
Max). As shown in Figure 3, they were the orthographic projection of 
cylinders viewed from above at an angle of 45 degrees. Stimuli looked like 
two gray glass cylinders each containing a column of blue water connected 
through a horizontal cylinder, with each column of water covered with a 
variegated light brown lid. Stimuli were displayed on a black 380-mm 
(width) × 210-mm (height) frontoparallel monitor screen (Philips Brilliance 
190B). Viewing distance was about 1.2 m. 

The height of the vertical cylinders was 95 mm and that of the 
respective column of water was 83 mm. The horizontal cylinder had a 
diameter of 9 mm and a length of 80 mm. The lids were 1 mm thick with a 
diameter equal to that of the respective column of water. The lids were 
placed horizontally on the water surface. 

The internal diameter of the left cylinder was 45 mm and that of the 
right cylinder could be varied by the participant from 6.5 to 198 mm in 
discrete steps, with a difference between internal and external diameters of 
3 mm. This variation was carried out using two keys, one to increase and 
one to decrease the size of the right cylinder. This size increased only 
horizontally with the height of lid from the base of the cylinder kept 
constant. The relation between the internal diameter of the right cylinder, y, 
and the number of these steps, x, counted from 1 to 50 from the minimum 
internal diameter of the right cylinder was defined by the polynomial            
y = 6.205 + 0.0089 · x + 0.23 · x2 – 0.00307 · x3. 

The stimuli appeared in the middle of the screen with a gap of 23 mm 
between the left cylinder and the left side of the screen and a gap of 50 mm 
between the largest possible right cylinder and the right side of the screen. 

Four loads were used as additional stimuli. They were the bottles with 
a ring on top for lifting previously used for Experiment 1. Their weight was 
50, 100, 150, or 200 g. 

 
Procedure 
Preliminarily, the participants were asked to imagine that the lids 

were made of rigid material of negligible weight, acting as pistons perfectly 
adhering to the internal surface of the glass cylinders. Using an animation, 
they were shown that an imaginary weight resting on one lid was causing 
this lid to descend and the other lid to ascend. 

The instructions for each trial were the following. The participant was 
asked to lift each of two loads presented successively using the index finger 
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of their preferred hand. This hand was kept hidden behind a screen so as to 
prevent the participant from seeing the load.  

The participant was asked to imagine the first load lifted to be resting 
on top of the lid of the left cylinder and the second load lifted to be resting 
on top of the lid of the right cylinder. While doing this, they were also asked 
to select a right cylinder with its lid having the area that would make the left 
and right lids remain at the same equal level as that shown in the stimulus. 
Analysis of individual data subsequently showed that no participant selected 
the smallest or largest possible areas of the right lid except for two 
participants, each of whom only selected the smallest possible area only 
once. 

After the area of the right lid had been selected, the participant was 
asked to estimate the area of the right lid by mentally counting how many 
left lids, including possible fractions, were necessary to completely cover 
the right lid. 

The weight of the load to be imagined resting on the left lid was 50, 
100, 150, or 200 g and the weight of the load to be imagined resting on the 
right lid was 50, 100, or 150 g for a total of 12 combinations of weights. 
These combinations were presented in random order twice consecutively. 

At the end of the experiment a questionnaire was submitted to each 
participant to assess their knowledge of Pascal’s law and whether they had 
made mental numerical calculations during the experiment. 

RESULTS AND DISCUSSION 
Figure 4 shows the mean estimates of the area of the right lid, α2, 

plotted against W2 separately for each W1 of 50, 100, 150, or 200 g, 
represented by open circles, crosses, filled triangles, and filled squares, 
respectively. These group results show no clear structure in the pattern of 
factorial curves (hereafter called factorial pattern). On the other hand, 
analysis of individual data showed that there was a clear structure in the 
factorial patterns of seven participants and no clear structure in the factorial 
patterns of the remaining three. 

Figure 5 shows four types of individual factorial patterns. Each 
diagram is for one participant. Participant 5 (upper left) exhibited a factorial 
pattern equal to that also exhibited by three other participants. As predicted 
by Equation 11, these four participants produced results supporting an 
information integration operation of the form α2 = F(ω2/ω1) formally 
closely identical to that of the physical law for the equilibrium of the 
hydraulic pressures.  
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Figure 4. Group results of Experiment 2. Mean estimate of perceived 
area α2 of the right lid required to balance the hydraulic pressures 
when a weight W2 rests on the right lid and a weight of 50 g (○), 100 g 
(×), 150 g (▲), or 200 g (■) rests on the left lid. 
 

 
 
The other participants exhibited very different factorial patterns. 

Participants 2 (lower left), 3 (upper right), and 7 (lower right) exhibited 
factorial patterns supporting information integration operations of the form 
α2 = F[ω1 · (k – ω2)], α2 = F[ω1 + (k – ω2)], and somewhat approximately α2 
= F[(k – ω1) – |k' – ω2|], respectively, with k and k' constants. 

The mean factorial pattern resulting from the seven participants with 
structured factorial patterns practically matched the irregular factorial 
pattern shown in Figure 4, indicating that the group data resulted from a 
mixing of differently structured individual factorial patterns. 

Since seven participants produced structured factorial patterns 
probably generated by one single information integration operation, it 
seems plausible that the unstructured factorial patterns for the remaining 
three participants could have been due to them alternately using different 
information integration operations during the experiment. 
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Figure 5. Results for four individual participants in Experiment 2. 
Mean estimate of perceived area α2 of the right lid required to balance 
the hydraulic pressures when a weight W2 rests on the right lid and a 
weight of 50 g (○), 100 g (×), 150 g (▲), or 200 g (■) rests on the left lid. 
 

 
 
Replies to the questionnaire submitted at the end of the experiment 

showed that participants reported not remembering Pascal’s law. All 
reported making no mental numerical calculation in complying with the 
instructions. 
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GENERAL DISCUSSION 
The intuitive-physics law of the equilibrium of the lever was 

multiplicative for all participants while the intuitive-physics law of the 
equilibrium of the hydraulic pressures was multiplicative for some 
participants, was different from multiplicative for other participants, and did 
not come out in still other participants. Analogous results have been 
observed for the upward thrust exerted by fluids on objects (Mullet & 
Montcouquiol, 1988) and for the trajectory of spheres propelled 
horizontally off a cliff (Karpp & Anderson, 1997). Since the physical laws 
of the equilibrium of the lever and of the hydraulic pressures are both 
simple and multiplicative, the present results support the hypothesis that 
physical laws about everyday physical phenomena are formally identical to 
the respective intuitive-physics laws when these laws are simple and people 
have had experience with the phenomena. 

How can these results be explained? In a wide variety of judgment 
tasks in all psychological fields―for example, in social cognition or person 
perception―a substantial body of evidence shows that people use four main 
cognitive operations for the integration of information: adding, multiplying, 
and weighted or unweighted averaging (Anderson, 1991, 1996). Since these 
information integration operations are used generally, either alone or in 
combination, it is plausible that people use these operations in judgment 
tasks about physical phenomena (Anderson, 1983a). The formal identity of 
a physical law with the corresponding intuitive-physics law could mean that 
an information integration operation formally identical to the physical law 
had been associated with the corresponding physical phenomenon through 
this person’s experience with the phenomenon. 

What is the learning process that leads to the formal identity of a 
physical law with an intuitive-physics law? When a person is experiencing a 
physical phenomenon, the person is probably making predictions about the 
quantitative relations among relevant variables of the phenomenon. For 
example, two persons playing on a seesaw need to predict their position on 
the seesaw while they consider distances from the fulcrum and the persons’ 
weights. To make a prediction, these persons activate different information 
integration operations. One of these operations (multiplication/division) 
leads to a correct prediction. Reaching a desired physical state of 
equilibrium of the seesaw reinforces the correct operation and inhibits 
inadequate operations. The extent of this reinforcement and of this 
inhibition determines the stability of the association of the correct 
information integration operation with the physical phenomenon.  
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The present results for the equilibrium of the hydraulic pressures 
agree with this interpretation. The finding of four different types of factorial 
patterns for the phenomenon of the hydraulic lift indicates that participants 
were activating different information integration operations in dealing with 
this phenomenon. Since participants had most probably little or no prior 
experience with the hydraulic lift, the association of the activated operations 
with the hydraulic lift had not been previously reinforced nor inhibited. 
Also, the finding of participants who exhibited unstructured factorial 
patterns suggests that these participants had no prior experience with the 
hydraulic lift and were presumably switching from one integration rule to 
another during the experiment. Clearly, further research is needed to assess 
the validity and generality of these conclusions. 

How extensive should people’s experience be with a physical 
phenomenon so that the correct information integration operation is stably 
associated with the phenomenon? Although a definite answer to this 
question seems presently impossible, there are indications that the process 
of association may be relatively fast. For example, when younger children 
are asked to judge the area of rectangles whose width and height are varied 
factorially, judged area plotted against width separately for each height 
yields parallel straight lines (Anderson & Cuneo, 1978; Lautrey, Mullet, & 
Pâques, 1989; Wilkening, 1979; Wolf & Algom, 1987). These results 
indicate that younger children solve this problem of intuitive geometry by 
arbitrarily applying an additive information integration 
operation―presumably due to the simplicity of the operation. Wolf (1995) 
obtained results indicating that the process of associating the correct 
(multiplicative) integration operation to a rectangle occurs rapidly. He had 
younger children rate the size of rectangular chocolate bars with the width 
and height of bars varied factorially. Before they rated this size, children 
either never handled the chocolate bars or handled them for ten minutes. 
The resulting factorial curves were parallel straight lines when the children 
never handled the bars, but diverged in agreement with the correct 
multiplicative integration operation after the children had handled the bars. 
Similarly, Chasseigne, Lafon, & Mullet (2002) and Lafratta (2007) found 
that one session of feedback suffices to change the structure of factorial 
patterns from additive to multiplicative. However, it is not known how long 
the learning process should be to have a stable effect such as that occurring 
for the equilibrium of the lever. 

The present results and theoretical considerations suggest two 
important strategic principles for teaching elementary physical science. 
Teaching would benefit if teachers were made aware of the variety of 
possible integration operations schoolchildren may use to predict functional 
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relations between relevant variables of the everyday physical phenomena. 
Knowing the types of the operations most frequently used may help 
anticipate typical presuppositions about these functional relations. 

 Equally, if not more important, is that schoolchildren should have the 
opportunity to interact with those physical phenomena whose laws they will 
have to study. For example, regarding Pascal’s law, they could preliminarily 
use real cylinders as those represented in Figure 3 with weights to be placed 
on the lids to obtain specific balance conditions. This experience would 
serve to associate the correct information integration operation to the 
physical phenomenon. This correct operation would subsequently become 
automatically activated―appearing as implicit intuitive knowledge―in 
schoolchildren’s reasoning carried out while the teacher explains the 
phenomenon and its implications. 
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