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Newton's cradle, a device consisting of a chain of steel balls suspended in 
alignment, has been used extensively in physics teaching to demonstrate the 
principles of conservation of momentum and kinetic energy in elastic 
collisions. The apparent simplicity of the device allows one to test 
commonly hold views regarding the intuitive understanding of physics by 
lay people. We present and discuss the results of two experiments wherein 
the extension of the chain, the height of release (experiment 1) and the 
material of the balls (experiment 2) were systematically varied in graphical 
depictions of the Newton’s cradle. Participants had to estimate the height 
that the last ball in the chain would reach if a collision took place. The 
outcomes revealed a sophisticated cognitive model wherein the magnitude 
of the displacement of the target ball increased in direct proportion with the 
acceleration of the launcher and in inverse proportion with the number of 
balls in the chain. The results closely mimicked the predicted behavior of a 
Newton’s cradle if the collisions were not perfectly elastic. This 
isomorphism shows that judgments of physical events are not detached from 
the environment, as one seldom sees a perfectly elastic collision, and it 
speaks unfavorably to the hypothesis that, in such tasks, people rely on 
simple heuristics. 

 

 

In the 172nd episode of the popular TV show Mythbusters (Auty, 
Dallow, & Williams, 2011), Adam and Jamie set forth to ascertain if it was 
possible to build a working Newton’s cradle using construction wrecking 
balls. In the course of the show, they built a version of the device composed 
of five 907kg balls (concrete and steel rebar-filled buoys). Although its 
efficiency was far from expected, to date this is the largest cradle ever built. 
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Newton’s cradle refers to a device where a series of balls (with the 
same size and mass; usually steel balls) are suspended so as to be 
horizontally aligned (see Figure 1, top). When a ball in one end of the chain 
is held at a certain height and released, so as to collide with the remaining 
balls, the ball at the opposing end is kicked off at about the same final 
velocity of the colliding one reaching about the same dropping height. 
During this event, the intermediate balls are kept sensibly at the same 
position, apparently unaffected by the collision (see Figure 1, bottom). If 
more than one ball is held and dropped, the same number of balls leave the 
chain at the opposing end – the reason why the cradle is also known as 
counting device. 

Newton’s cradles have been sold as an executive toy and are 
frequently used in physics classrooms as a demonstration of the 
conservation of momentum and kinetic energy principles. One common, but 
mistaken, explanation states that the standard behavior of the cradle is the 
only outcome that conserves both momentum and kinetic energy, and that 
would be why the device works as it does. In fact, a series of other 
theoretical outcomes that also conserve momentum and kinetic energy are 
conceivable, although seldom observed empirically (cf. Gauld, 2006). 
Descriptively, the device is the hallmark of the so called perfectly elastic 
collisions – given an encounter between two bodies, an elastic collision is 
said to take place when the ratio of relative speeds after and before the 
impact – coefficient of restitution –, equals 1. Elasticity is here, and in the 
remaining of this paper, used as a surrogate for the coefficient of restitution, 
and it varies between 0 – a perfectly plastic collision – and 1 – a perfectly 
elastic collision (the case portrayed by the Newton’s cradle). 

The aim of this paper was to determine the cognitive internal model 
that people use when asked to make predictions regarding the outcome of 
versions of the Newton’s cradle. In doing so, we sought to elucidate the 
intuitive understanding of collisions held by laypeople and to ascertain if 
and which grasping of elasticity is implicitly assumed in naïve judgments. 
Although several studies have focused the sensitivity to variations of 
elasticity in perceiving dynamic events, it is still to be known if human 
observers internally model this parameter and, if so, how it is used to assess 
real world events. Before presenting and discussing the obtained results, we 
will briefly review previous studies on the perception and understanding of 
dynamic events. 
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Figure 1. Top: Example of a Newton’s cradle. Bottom: Description of 
the typical behavior of the device. 
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Perceiving dynamic events 
Much of our understanding on how people perceive dynamic events is 

both historically and conceptually rooted in the pioneer studies lead by 
Michotte (1963) on the perception of causality. Michotte envisioned and 
conducted a series of experiments which aimed at showing that causality 
was a directly perceivable quality, in contrast with the views held by Hume 
(1748/1955). In order to do so, participants were shown simple dynamic 
events and inquired about their impressions. One of the most studied of 
such events both by Michotte and following researchers (cf. e.g., 
Wagemans, Lier, & Scholl, 2006; White, 2009) was coined launching 
effect: two static objects are initially shown some distance apart; at a certain 
moment, one of the objects (motor object) starts moving towards the other 
and, upon making contact, it stops its motion while the other object starts 
moving in the same direction. Given a certain gamut of ideal spatial-
temporal conditions, human observers spontaneously report a vivid and 
irresistible impression that the kinematics of the objects share a causal 
bound – that is, that the motion of the second object was caused by the first 
one due to a collision or launching action (cf. e.g., Scholl & Tremoulet, 
2000; Schlottmann, 2000). Even though Michotte was convinced that causal 
perception was dissociated from intuitive reasoning of Newtonian 
mechanics, later researchers came to stress the close coupling between the 
two (Dittrich & Lea, 1994; Rips, 2011; Runeson, 1983; Weir, 1978; White 
& Milne, 1997). One of the arguments rose by Michotte for this dissociation 
came from the outcomes found in his experiments 39 and 40: if the 
launched object travels at a faster speed than the motor object, the launching 
impression was lessened instead of strengthened. The stronger impressions 
of causality were found when the launched object travelled at about 1/4 of 
the speed of the motor object. As Michotte remarks, “there is no parallelism 
between the causal impression and the degree of physical force. Instead the 
impression is rather better and more stable when the efficacy of the ‘cause’ 
– as shown in the speed of the projectile – is less!” (Michotte, 1963, p. 
109).” 

Importantly, as first stressed by Runeson (1983), varying the ratio of 
velocities of two objects involved in a collision might trigger some other 
perceptual mechanisms, in the sense that, and under Newtonian physics, it 
provides information regarding the mass of the objects. Runeson thus 
suggested that, in accordance with Gibson’s ecological theory of perception 
(Gibson, 1986), the relative ratio of velocities of both objects before and 
after a collision specified the perception of their relative masses – this 
prediction stems directly from the Newtonian equations of motion. 
Moreover, it can be shown that elasticity factors out when one rearranges 
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the equations, with the ensuing prediction that elasticity should not 
influence peoples’ perception of relative mass (that is, which object is 
heavier). This proposal embodies a wider view which came to be known as 
the principle of kinematic specification of dynamics (KSD): when a certain 
kinematic pattern relates unambiguously to a set of dynamic properties, it is 
those underlying factors that are perceived – the kinematics are thus said to 
be an invariant (see also Runeson & Frykholm, 1983). This framework 
fuelled a series of experiments led both by followers of Runeson’s ideas 
(e.g. Runeson & Vedeler, 1993; Runeson, 1995; Runeson et al, 2000) and 
his critics (e.g., Gilden & Proffit, 1989; Proffitt & Gilden, 1989; Gilden, 
1991; Gilden & Proffitt, 1994), which held that simple heuristic reasoning, 
not KSD, accounted for the perception of relative mass given collision 
events (see also Hecht, 1996). Regarding the effect of elasticity, Todd and 
Warren (1982) showed that with decreases in the coefficient of restitution, 
the accuracy of participants to identify the heavier object was proportionally 
reduced, a result which was taken as a serious rebuttal of the KSD principle 
(but see Sanford, Mansighka, & Griffiths, 2013). Further evidence that 
people are sensitive to the implied elasticity in dynamic events was reported 
by Twardy and Bingham (2002), who showed that naturalness ratings 
decreased when elasticity was increased beyond its natural bounds (see also, 
Warren, Kim, & Husney, 1987). 

 
Overview of the present study 
The main motivation for the experiments to be reported here was to 

assess the degree to which the sensitivity to elasticity was due to an internal 
model of the expected behavior of collisions. In order to do so, we relied on 
an Intuitive Physics task (see, e.g., McCloskey, 1983; McCloskey, 
Washburn, & Felch, 1983; DiSessa, 1982) where people had to make 
judgments concerning the expected outcome of versions of the Newton’s 
cradle given a static depiction of its initial conditions (but see Kaiser, 
Proffitt, & Anderson, 1985, and Kaiser, Proffitt, Whelan, & Hecht, 1992, on 
the effects of presenting dynamic information on intuitive physics 
judgments). Furthermore, we made use of the Information Integration 
Theory and Functional Measurement framework (IIT/FM; Anderson, 1981, 
1982), previously shown to be highly effective in revealing algebraic 
cognitive models in this sort of tasks (see, e.g., Anderson, 1983; Anderson 
& Wilkening, 1991; Anderson & Schlottmann, 1993; Masin, 2007; Cocco 
& Masin, 2010; Masin & Rispoli, 2010; Vicovaro, 2012). 

The main advantage of this approach is that, given an appropriate 
physical modelization of the stimuli, specific predictions can be derived 
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which bond the possible interpretation of people’s intuitive judgments. In 
the next paragraphs we develop and discuss such predictions. 

 
Modeling the physical behavior of the Newton’s cradle 
A physical model that fully captures the behavior of the Newton’s 

cradle is still a matter of contention (see Gauld, 2006, for a revision of 
several proposed models). One formulation, the independent collision 
model, is typically used for virtual animations as it provides a reasonably 
fair description of the device’s observable behavior (Gauld, 2006), albeit at 
the cost of a simplifying assumption – that the balls in the chain have at 
least an infinitesimal separation. Despite the shortcomings of this 
assumption and the model itself for a satisfying explanation in physical 
terms, it provides an appropriate formulation at the descriptive level. We 
will thus adopt it as the normative standard in the present paper. Moreover, 
its mathematical description is relatively straightforward and, being based 
on the Newtonian equations of motion, epistemologically closer to the 
existing discussion in the literature regarding the perception and naïve 
understanding of collisions. Finally, its general logic has an intuitive appeal 
which, for our level of analysis, makes it appropriate for enquiries regarding 
the naïve reasoning of humans. 

The first step in modeling the device’s behavior consists in specifying 
the final velocity of the striking ball. As the balls in a Newton’s cradle 
behave as pendulums, the velocity at which a ball that is raised and then 
dropped from a certain height (henceforth referred to as launcher) collides 
with the chain (VLauncher) corresponds to its velocity at the equilibrium 
position, given by the following equation (cf. Alonso & Finn, 1992): 

(1) ( )( )  2      1 -  cos LauncherV g l α= × × ×  

The parameter g refers to the earth’s gravity pull (≈ 980.6 cm-s²), l to 
the length of the string holding the ball and α to the angle from which it is 
dropped. The velocities after collision of both the launcher (UA) and the first 
ball in the chain (UB), given the velocity of the launcher before the collision 
(VA = VLauncher) can be determined by the following (cf. Alonso & Finn, 
1992): 

(2)      
2

 -A A
A

V e VU + ×
=  

(3)       
2

A A
B

V e VU + ×
=  
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In these equations, e refers to elasticity or coefficient of restitution – 
the ratio of relative speeds after and before a collision – varying between 1, 
a perfectly elastic collision, and 0, a perfectly plastic collision. Equations 2 
and 3 can be used iteratively with the final velocity of the second ball after 
the first collision, UB, used in place of the initial velocity, VA, as the new 
“launcher” in the second collision. The same reasoning applies to 
subsequent collisions eventually reaching the velocity at which the final ball 
leaves the chain and how high it will travel. 

Notice that given a cradle with K balls, there will be N = K – 1 
collisions. Rearranging equation 3 and accounting for the iteration, it can be 
shown that the following relation holds: 

(4)      N
Last ball LauncherU V ε= ×  

with ε = (1 + e)/2. That is, the velocity at which the final ball leaves the 
chain (ULast ball) depends on the velocity at which the first ball strikes it 
(VLauncher) and a parameter dependent on the number and elasticity of 
collisions. Given a perfectly elastic collision (e = 1), then ULast ball = VLauncher, 
the standard behavior of the Newton’s cradle. Figure 2 depicts the relation 
expressed in equation 4 for different chain lengths, launcher’s drop heights 
and coefficients of restitution (elasticity). 

Several points are worth noticing. When elasticity equals one (the 
standard behavior of the Newton’s cradle), the velocity at which the 
“launcher” strikes the chain determines alone the velocity at which the last 
ball exits, irrespective of the number of balls in the chain. In that case ULast 

ball = VLauncher. With decreases in elasticity, there is a proportional effect of 
the number of balls in the chain. The lines corresponding to different chain 
lengths in figure 2 (left column) can be seen to lie below the line 
corresponding to e = 1, conforming to a linear-fan pattern. Finally, with 
decreases in the elasticity parameter, a non-linear (quadratic) relation 
between the velocity of the last ball and chain length emerges (see right 
column in Figure 2). 

Importantly, these trends possess specific statistical markers which, 
given the inherent variability of human judgments, can be used to assess the 
degree to which a mental model of this device is isomorphic to the 
normative model. Thus, given an elasticity parameter less than one, (a) both 
launcher’s velocity and chain’s length, taken as factors, should have a main 
effect and (b) a significant interaction with (c) significant linear-linear and 
linear-quadratic components. 
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Figure 2. Last ball’s exiting velocity (in cm/s) as a function of 
launcher’s drop height (angle in degrees) and chain’s length for 
elasticity values of 0, 0.35, 0.7 and 1 according to the physical 
independent collision model. 
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EXPERIMENT 1 
Cognitive algebra of the Newton’s cradle 
Given the discussion of the adopted normative model, specific 

scenarios in an intuitive physics task can be outlined. If participants are 
shown instances of the Newton’s cradle with systematic variations of the 
launcher’s drop height and chain’s length and asked to indicate how high 
they would expect the last ball in the chain to reach, the results can be 
directly confronted with the normative model. A null effect of chain’s 
length in the subjective ratings – non integration result – would signal 
either that people expect perfectly elastic collisions or that they are relying 
on a simple heuristic considering only launcher’s impact velocity. 
Alternatively, if both launcher’s drop height and chain length have an effect 
on subjective ratings, but no interaction – parallelism pattern –, they might 
possess a mental model with a loose notion of elasticity, albeit distinct from 
the normative formulation. Finally, if chain’s length, launcher’s drop height 
and an interaction between both (with a significant linear-linear component) 
is found – linear-fan pattern –, a case can be made that people do possess a 
mental model analogue to the normative model and, under certain 
circumstances, an implicit value of elasticity can be estimated. Moreover, 
the power operation in equation 4 predicts that a linear-quadratic 
component of the interaction would tend to be significant for lower values 
of elasticity. This first experiment aims at establishing which of those 
scenarios hold. 

METHOD 
Participants. Eighty psychology students of the University of 

Coimbra (7 males; 73 females) volunteered for the experiment in exchange 
for partial course credits. Their ages ranged from 18 to 30 years (M = 20.36; 
SD = 2.52). All of them had normal or corrected to normal vision and were 
unaware of the purposes of the task. No participant had formal education in 
physics besides the obligatory curricula in basic education. 

 
Stimuli. Schematic line drawings were used as stimuli. These 

depicted a side view of a Newton’s cradle (see Figure 3). The drawings 
varied in the number of balls in the chain, from 2 to 5. All balls had a 
diameter onscreen of 1.6 cm and were shown attached to a string with 5 cm 
length. In each drawing, one ball, at one or the other end of the chain, was 
shown raised at a height of 70º, 45º or 20º – launcher. At the opposing end 
of the chain, a curved scale encompassing the allowed trajectory for the last 
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ball was shown with the anchors 0, at the resting position, and 20, at an 
angle of 90º. 

 
Procedure and design. Each participant was shown the entire set of 

drawings, one at a time and in a random order. For each drawing, the 
participant had to rate, from 0 (ball at the resting position) to 20 (ball 
reaching a height of 90º), the height that she/he would expect the last ball to 
reach if the launcher was dropped from the shown position. They were 
instructed to imagine, as vividly as possible, a physical device 
corresponding to the shown depiction and what would happen if the raised 
ball was dropped. No information was given regarding the material of the 
balls. The rating was provided by inputting the desired number with the 
keyboard and confirming each response with the enter key. Prior to the 
experimental task, the participant was allowed to perform a few practice 
trials encompassing the possible instances of launcher’s drop height and 
chain length. The experiment thus obeyed a full factorial repeated measures 
design given by 3 (launcher’s drop height) × 4 (chain length) × 2 (direction) 
with 2 repetitions. 

 

 
Figure 3. Stimulus set used in experiment 1 (only the left-to-right 
implied motions are shown here). 
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RESULTS 
The obtained ratings were averaged across replications and direction 

and subjected to a repeated-measures factorial ANOVA. Whenever the 
sphericity assumption was not met, the Greenhouse-Geisser correction for 
the degrees of freedom was used. 

Both chain’s length, F(1.35, 106.6) = 91.73, p < .001, η²p = .54, and 
launcher’s drop height, F(1.22, 96.46) = 227.13, p < .001, η²p = .74, had a 
significant effect on mean ratings. Ratings increased with increases in drop 
height and decreased with increasing number of balls in the chain. The 
effect of launcher’s drop height was found to be modulated by chain length, 
F(3.9, 308.24) = 40.3, p < .001, η²p = .34. Furthermore, both the linear-
linear, F(1, 79) = 83.93, p < .001, η²p = .52, and the linear-quadratic, F(1, 
79) = 65.06, p < .001, η²p = .45, components of the interaction were found 
to be significant. These outcomes seem to fulfill all the statistical signs of 
the normative model and thus suggest that people might have a mental 
model analogue to the physical behavior of collisions (see Figure 4). 

 
 
 

 
 
Figure 4. Mean ratings obtained in experiment 1 as a function of 
launcher’s drop height (angle in degrees; abscissa in left panel, line 
parameter in right panel) and chain’s length (number of balls; abscissa 
in right panel, line parameter in left panel). 
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In equation 4, the last ball’s velocity depends on a multiplication 
between launcher’s velocity, proportional to its dropping angle (equation 1) 
and an elasticity factor dependent on the number of collisions (and 
henceforth, chain’s length). In accordance with the linear-fan theorem 
(Anderson, 1982), the statistical analysis seems to support a similar algebra 
in the subjective ratings. The observation of null residuals left behind after 
fitting a multiplicative model to the empirical data (using Calstat; Weiss, 
2006) further supports that a multiplicative pattern seems to be the case. 
That is, the internal estimate of the height that the target ball would reach 
had a collision took place (ρ) given information about the release height of 
the launcher (ϕ) and the number of balls in the chain (ψ), seems to follow 
the rule given by: 

(5) ρij  =  ϕiψ j  

Moreover, in accordance with the linear-fan theorem (Anderson, 
1982), the response scale seems to be linearly related with the internal 
estimates: 

(6) 0 1 ij ijR c c ρ= +  

Although these outcomes suggest that people’s judgments 
qualitatively mimic the expected output of the physical model, there is one 
important quantitative disparity: namely, the mean ratings are not smaller 
than the theoretical ratings that would be obtained given a perfectly elastic 
collision (e = 1). Graphically, that would lead to the line parameters lying 
below the e = 1 reference line, which is not the case (see Figure 4). 
Notwithstanding, such a quantitative comparison requires a ratio level 
measurement, with the lines converging to zero, a condition not warranted 
with subjective ratings – the linear-fan theorem entails, in general, an 
interval measure (as implied by equation 6). It is, however, possible to 
derive ratio measurements given a multiplicative integration rule, as shown 
algebraically by Masin (2004), by obtaining an empirical estimate of the 
invariant c0 parameter in equation 6. This quantity, sensitive to the 
experimental procedure and the way people use the response scale, can then 
be subtracted from the raw data so as to obtain ratio-level measures of the 
internal estimate: 

(7) 0 1 ij ijR c c ρ− =  

This procedure was applied to the collected data, which revealed that 
c0 amounted to about 5 (that is, participants provided ratings that were on 
average 5 points above the internal estimate – this has probably to do with a 
proneness to adjust the answers so as to cover the entire range of the scale). 
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Figure 5 depicts the ratio level measures (according to equation 7) of 
participant’s responses (data markers) as a function of launcher’s final 
velocity (converted to cm/s according to equation 1; abscissa in left panel 
and line parameter in right panel) and chain’s length (line parameter in left 
panel and abscissa in right panel). A least-squares procedure was used to fit 
the normative model to the empirical ratings with elasticity as the only free 
parameter (g and l parameters in equation 1 were fixed at 980.6 cm-s² and 5 
cm, respectively). It can be seen that there is a remarkable correspondence 
between the empirical data and the physical model (lines in figure 5). The 
elasticity parameter converged to the value of 0.488, with a normalized 
Root Mean Square Error of .016.  

 
 

 
 
Figure 5. Ratio measures of participant’s responses, converted to cm/s, 
as a function of launcher’s final velocity and chain’s length. The lines 
depict the least-squares fit of the physical model with elasticity as a free 
parameter (e = 0.488; nRMSE = .016). 
 
 
 

Ratio level ratings were determined (as described in Masin, 2004) on 
an individual basis. Two participants (2.5%) ignored the variations in chain 
length and based their responses on the launcher’s drop height alone – 
which might reflect the assumption of a perfectly elastic collision model, or 
previous experience with the device. Thirteen participants (16%) gave 
responses that conformed to a parallelism pattern (with launchers dropped 
from a higher point leading to higher ratings and more balls in the chain 
reducing the ratings), evidence of an additive cognitive model disparate 
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from the physical formulation. Finally, the remaining participants (81.25%) 
provided ratings that conformed to the physical model (with e < 1). The 
individual least squares estimation of elasticity for these participants 
averaged to 0.3 (SD = .26). The difference between participants’ ratio 
ratings and the best least-squares individual solutions (residuals) were 
subjected to an ANOVA which revealed a null effect of chain’s length (F < 
1), launcher’s drop height (F < 1) and the interaction term (F < 1). It can 
thus be said that the physical model fully captures the regularities in the 
participants’ responses, supporting an isomorphic cognitive model for 
collision events. 

DISCUSSION 
People’s judgments regarding the expected behavior of the Newton’s 

cradle seems to mimic, to a remarkable degree, the physical behavior that 
would be expected assuming an elasticity value less than 1. Moreover, 
resting upon the possibility of deriving ratio level measurements of people’s 
judgments, as offered by the IIT/FM framework, it was possible to estimate 
the mean implicit value of elasticity assumed – about 0.3. 

It is important to notice that the Newton’s cradle is commonly taken 
as the hallmark of perfectly elastic collisions, thus with elasticity near 1, 
used frequently in classrooms as a pedagogic demonstration of some 
physics principles (but see Gauld, 2006). In their intuitive judgments, 
people seem to expect a much lower elasticity value. Importantly, this 
seems to be a default value assumed by observers, as the depictions were 
devoid of any information that could be used to infer the coefficient of 
restitution. On the one hand, being schematic depictions, the stimuli 
provided no information about the balls’ materials. On the other hand, no 
collision was ever actually observed – the judgments relied alone on 
peoples’ expectations. In the world, with no other information, elasticity can 
only be ascertained a posteriori, based upon the ratio of relative velocities 
of the objects before and after a collision. Our data thus suggests that an 
internal mental model of collisions instantiates such events with an implicit 
elasticity anchored at a default value of about 0.3. 

Use of a curved scale (which was meant to help participants tracking 
the allowed trajectory of the target ball) is at odds with common practice 
and might be suspected of inducing a non-linearity in the response. This 
possibility is fairly ruled out not just by strict compliance of the observed 
patterns with the linear-fan theorem (both graphically and statistically), as 
by the fact that an important percentage of participants (18.75%) actually 
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deviated from the normative model to provide parallel patterns – parallelism 
having a core role in the validation of response scales as linear (Anderson, 
1982, p. 15). 

That some participants seemed to follow a disparate model might 
signal the existence of individual differences in the formulation of the 
mental models or the employment of different strategies to comply with the 
task. Be the case as it may, this outcome suggests that the activation of a 
mental model analogue to the normative formulation might depend on some 
other factors. 

EXPERIMENT 2 
Cognitive algebra of Newton’s cradle with different materials 
Experiment 1 provided evidence that humans possess a mental model 

of collision events isomorphic to a physical formulation. This conclusion 
was supported both qualitatively (by inspecting the graphical patterns and 
statistical signs) and quantitatively (by successfully fitting the physical 
model to the collected responses). Moreover, it was possible to estimate an 
implicit elasticity value, which averaged at about 0.3. Given these 
outcomes, one can ask if this implicit elasticity parameter is sensitive to the 
same factors that modulate the physical coefficient of restitution. One such 
factor is the materials of the objects involved in the collision. It is important 
to notice at this point that the coefficient of restitution (or elasticity, as used 
throughout this paper) is a property of collisions, not objects. This means 
that, although objects with different materials result in different elasticity 
values (everything else being equal), a specific coefficient of restitution 
cannot be unambiguously given to a specific material. For instance, the 
shape and geometry of objects made with the same material influences the 
elasticity of the collision (consider, to provide a widespread example, the 
different outcomes that would be obtained with a Newton’s cradle made 
with steel balls or with steel bells). In this experiment we sought to 
determine the degree to which the cognitive model of collisions was 
changed when shown a Newton’s cradle with balls made of steel, wood and 
rock. These materials were chosen because, overall, they would result in 
different behaviors determined by fairly distinct elasticity values (the 
software Interactive Physics models the behavior of these materials by 
assuming elasticity values of 0.95, 0.5 and 0.2 to steel, wood and rock, 
respectively, although these values should be taken as a heuristic 
generalization). Moreover, these specific materials are relatively 
straightforward to represent pictorially, by simply varying the texture of the 
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balls. We hypothesized that people, when shown these variations of the 
Newton’s cradle, would adjust their ratings to conform to different implicit 
values of elasticity. 

METHOD 
Participants. 33 students (32 females; 1 male) of the University of 

Coimbra volunteered for the experiment in exchange for partial course 
credits. Their ages ranged from 18 to 30 years (M = 19.48; SD = 3.09). All 
participants had normal or corrected to normal vision and were unaware of 
the purposes of the task. No participant had formal education in physics 
besides the basic obligatory curricula. Furthermore, no participant declared 
being familiar with the Newton’s cradle. 

 
Stimuli. Pictorial colored representations of a three-dimensional 

realistic Newton’s cradle were used as stimuli. Because merely 
manipulating the textures of the spheres in the previous setting was found to 
induce ambiguities in stimuli’s interpretation (with naïve observers 
reporting that textured balls resembled planets in a toy planetarium) the 
choice was made to use overall realistic depictions instead of schematic 
drawings. All pictures were created and rendered with the Poser software 
(see Figure 6 for examples). The depictions showed the device with 2 to 5 
balls in the chain and either the leftmost or rightmost ball raised to a height 
of 20º, 45º or 70º. The length onscreen of the strings holding the balls was 
about 8 cm. The balls were textured to suggest either steel, wood or rock 
balls. 

 
 
 

 
Figure 6. Grayscale examples of the stimuli used in experiment 2. 
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Procedure and design. The procedure was in all respects alike the 
one employed in experiment 1 with the following exceptions. A linear 
visual analogue scale, shown at the bottom of the screen, was used instead 
of the curved scale used in experiment 1. The scale was anchored at the 
extreme values with a pictogram of a ball at rest, at the left end, and a ball 
rose to a height of 90º, at the right end. Participants were instructed to 
provide the ratings by clicking with the mouse cursor on the location of the 
scale that corresponded to the imagined height that the last ball in the chain 
would reach had the launcher been dropped, taking as reference the 
positions depicted at the extreme values. Each participant repeated the task 
three times, one for each depicted material. The order at which each 
material was shown was counterbalanced by a Latin squares design. The 
experiment thus obeyed a full factorial repeated measures design given by 3 
(material [blocked]) × 3 (Launcher’s drop height) × 4 (chain’s length) × 2 
(direction of implied motion) with each trial being presented twice per 
participant. 

RESULTS 
The obtained ratings were averaged across replications and direction 

and subjected to a full factorial repeated measures ANOVA. Main effects of 
material, F(2, 64) = 15.57, p < .001, η²p = .33, launcher’s drop height, 
F(1.2, 38.67) = 133.79, p < .001, η²p = .8, and chain’s length, F(1.37, 44.1) 
= 144.63, p < .001, η²p = .82, were found. A significant interaction between 
launcher’s drop height and chain’s length was also found, F(3.04, 97.18) = 
19.88, p < .001, η²p = .38, with significant linear-linear, F(1, 32) = 36.3, p < 
.001, η²p = .53, and linear-quadratic components, F(1, 32) = 28.6, p < .001, 
η²p = .47. Finally, material was found to interact with launcher’s drop 
height, F(2.23, 71.37) = 6.99, p = .001, η²p = .18. These outcomes suggest 
that the same overall pattern found in experiment 1, closely mimicking the 
physical model, was replicated here. To further ascertain if such was the 
case for each material condition, separate ANOVAs were performed over 
the ratings obtained in the steel, wood and rock instances. Launcher’s drop 
height had a significant effect in the steel, F(1.18, 37.76) = 78.85, p < .001, 
η²p = .71, wood, F(1.29, 41.56) = 113.39, p < .001, η²p = .78, and rock 
conditions, F(1.18, 37.72) = 91.98, p < .001, η²p = .74. Likewise, chain’s 
length had an effect in all the material conditions: Steel, F(1.82, 58.27) = 
96.07, p < .001, η²p = .75; Wood, F(1.49, 47.73) = 81.29, p < .001, η²p = 
.72; Rock, F(1.57, 50.27) = 96.17, p < .001, η²p = .75. Finally, for all 
materials, the interaction term and both the linear-linear and linear-
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quadratic components were also significant: Steel, F(3.88, 124.23) = 10.6, p 
< .001, η²p = .25, bilinear, F(1, 32) = 30.32, p < .001, η²p = .49, linear-
quadratic, F(1, 32) = 8.26, p < .001, η²p = .2; Wood, F(4.15, 137.78) = 
13.95, p < .001, η²p = .3, bilinear, F(1, 32) = 32.57, p < .001, η²p = .5, 
linear-quadratic, F(1, 32) = 20.24, p < .001, η²p = .39; Rock, F(3.15, 
100.89) = 7.76, p < .001, η²p = .2, bilinear, F(1, 32) = 14.37, p = .001, η²p = 
.31, linear-quadratic, F(1, 32) = 17.61, p < .001, η²p = .35. 

As in experiment 1, the ratings obtained for each material condition 
were analyzed with Calstat (Weiss, 2006) to test the fit of a multiplicative 
model (as entailed by equation 4), which revealed that for all materials the 
residuals were not significant (F < 1 in all conditions).  

Taken together, these results once again support an isomorphism 
between the observers’ cognitive model and the physical behavior. As a 
multiplicative model analogue to the one expressed in equation 4 is 
supported, it is legitimate to derive ratio measures from the raw ratings 
(equations 5-7). Figure 7 depicts the ratio ratings obtained at the group level 
(data markers) for the steel (panels A and B), wood (panels C and D) and 
rock (panels E and F) conditions together with the best least-squares fit of 
the physical model. It can be seen that the physical model only roughly 
captures the structure of the empirical data. Even so, the best least-squares 
solutions converged to estimates of elasticity of 0.26 for steel (normalized 
RMSE = .03), 0.3 for wood (normalized RMSE = .04) and 0.03 for rock 
(normalized RMSE = .03). 

The procedure used to estimate the implicit elasticity value for the 
group data was repeated for each participant. In all conditions some 
participants provided responses that conformed to a parallelism pattern, thus 
deviating from the physical model. Importantly, these trends were neither 
related to specific individuals nor with the specific orders of presentation of 
the different materials (except for one participant who systematically 
responded according to an additive model). That is, any participant was as 
likely to provide responses that conformed to a parallelism pattern in any 
condition and irrespective of it being the first, middle or last block he/she 
was subjected to. Therefore, 82% of the participants in the steel condition, 
85% in the wood condition and 85% in the rock condition responded as if 
closely following a model analogue to the physical formulation. For these 
participants, the individual best least-squares solution was found and the 
residuals subjected to repeated measures ANOVAs. Significant residuals 
from the launcher’s drop height were found in the steel, F(1.43, 42.9) = 
7.64, p = .004, and wood conditions, F(2, 54) = 3.16, p = .05, but not in the 
rock  condition,  F(2, 54) = 1.81,  p = .18. The  residuals  from  the   chain’s 
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Figure 7. Mean ratio measures derived from the ratings in experiment 
2 (data markers) as a function of launcher’s drop height (abscissa in 
the left panels; line parameter in the right panels) and chain’s length 
(abscissa in the right panels; line parameter in the left panels) for the 
steel (panels A and B), wood (panels C and D) and rock (panels E and 
F) conditions. The lines depict the best least-squares solution for each 
material. 
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length were not significant in all conditions: Steel, F(1.39, 41.95) = 1.69,    
p = .2; Wood, F(1.4, 37.88) < 1; Rock, F(1.56, 42.16) = 1.77, p = .19. There 
were no interactions in the residuals. Overall, the results of the residuals test 
suggest that the physical model fails to account for the effect of the 
launcher’s drop height and only when steel or wood balls are shown. 
Importantly, the effect of chain’s length, directly linked with the implicit 
elasticity, seems to be fully captured by the physical model, which makes 
legitimate that an estimate of its value is derived. The mean elasticity value 
was found to be about 0.33 (SD = .35) for the steel, 0.39 (SD = .34) for the 
wood and 0.14 (SD = .42) for the rock condition. Moreover, these values 
were found to result in a significant difference, F(1.59, 50.94) = 5, p =. 016, 
η²p = .14, mainly due to the rock’s elasticity which was found to be 
significantly lower than both the steel’s and wood’s estimate. 

DISCUSSION 
The outcomes of experiment 2 replicated to a certain extent the results 

found in experiment 1. In general, people’s judgments were remarkably 
isomorphic to Newtonian mechanics. Notwithstanding, the fits of the 
physical model were not as good as in experiment 1. This seems to be 
mostly due to the effect of launcher’s impact velocity, which was not fully 
captured by equation 1, and not to the implicitly assumed elasticity value, as 
instantiated in equation 4. It might be that the pictorial three-dimensional 
cues present in the stimuli of experiment 2 lead to some difficulties in 
interpreting unambiguously the implied size and/or distance of the device 
(thus impacting on the l parameter in equation 1). This issue could be 
clarified by presenting real devices to the participants. 

Regarding the estimated values of elasticity, the results of experiment 
2 are somewhat mixed. On the one hand, varying the material of the balls 
lead to some differences in the implicit elasticity in the expected direction – 
namely, rock balls resulted in a significantly lower elasticity. On the other 
hand, the found elasticity values were not as widespread as expected and 
clustered around a value of about 0.28. These outcomes strength the 
hypothesis that a value of about 0.3 might be a strong anchor in regards to 
the expected elasticity of collisions. 

Lastly, a surprisingly stable percentage of participants (about 15%) 
made judgments that deviated from the Newtonian mechanics. Importantly, 
these deviations did not seem to reflect systematic individual differences, as 
the same participant was as likely to provide judgments conforming to a 
parallelism pattern or to the normative linear-fan pattern. Also, these 
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deviations do not seem to depend on prior experience with the task, as 
parallelism was equally likely to occur with any material, irrespective of the 
presentation order. Instead, these outcomes suggest that participants often 
resorted   to  varying  strategies  in   construing  their  representation  of  the 
stimuli and the task (for a similar argument see, e.g., Schlottmann & 
Wilkening, 2011). Interestingly, that being the case, the ensuing conclusion 
is that even though humans do possess a mental model analogue to 
Newtonian mechanics, they do not necessarily use it and can favor different 
response strategies, depending on the circumstances. In fact, there is some 
evidence (see, e.g., Anderson, 1996) that an additive model, as implied by 
the parallelism pattern, might be ontologically simpler and, under some 
circumstances, good enough and easier to employ for some judgments. 

GENERAL DISCUSSION AND CONCLUSION 
This paper presented the results of two experiments on the intuitive 

physics of collision events, using depictions of the Newton’s cradle. 
Participants had to estimate how high the last ball in the chain would reach 
given variations in the launcher’s drop height and the number of balls. The 
results were compatible with a mental model which strikingly mimics the 
outcomes that would be expected with a real device given an elasticity value 
of less than one. By taking advantage of the logic of IIT/FM, it was 
furthermore possible to estimate the elasticity parameter implicit in people’s 
judgments. This value was found to be about 0.3. Although it was shown to 
be sensitive to variations in the implied material of the balls, the internal 
elasticity inputted by the participants was shown to be anchored around that 
value. From an ecological point of view, an elasticity value within this 
range could be expected, since perfectly elastic collisions are seldom 
observed and near perfectly plastic collisions are much more frequent. A 
default value of 0.3 could thus have been internalized in order to reflect 
knowledge on the natural statistics of our ecological environment. Lower 
elasticity values in our environment are thus more likely and our internal 
estimates seem to reflect knowledge of that probability distribution. These 
ideas are in line with the arguments raised by Sanford, Mansinghka and 
Griffiths (2013). 

As a final remark, our findings explain much of the appeal of 
Newton’s cradle, either seen as a toy or a classroom demonstration: the near 
perfectly elastic behavior of the device would certainly be, as it is, awe-
inspiring to a being who expects, based on a prior estimation, a low 
elasticity collision. That the intriguing behavior of the Newton’s cradle 
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reflects but a misestimation of one single parameter rather than an 
inappropriate cognitive model has profound implications to conceptions of 
the layman physics and perspectives on the teaching of physics. 
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