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ABSTRACT 
In this article we study the use of memory structures in both constructive and 
improvement methods. Typical tabu search applications employ short term memory 
structures to overcome local optimality. However, other memory structures, such as 
frequency-based constructions have often been ignored or implemented in naïve ways 
that disregard important elements of the original proposals. In this paper we describe the 
adaptation of these memory programming elements to the bandwidth coloring problem. 
We also propose constructive and improvement methods based on GRASP, a well-
known memory-less methodology, to compare and hybridize both designs. 

The bandwidth coloring problem consists of assigning a color to each vertex of a graph, 
so that the absolute value of the difference between the colors of adjacent vertices is at 
least the value of the weight of the associated edge.  This problem generalizes the 
classical vertex coloring problem and different heuristics have recently been proposed 
to obtain high quality solutions.  Comparison of our results with previously reported 
instances and existing heuristics indicate that the methods we propose are competitive 
and require short computational times. Our findings also disclose that memory appears 
to play a more important role during improvement phases of search than during 
constructive phases. 
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1. Introduction 
From a naive standpoint, virtually all heuristics other than complete randomization 
induce a pattern whose present state depends on the sequence of past states, and 
therefore incorporate an implicit form of “memory.”  However, such an implicit 
memory, as indicated in Glover and Laguna (1997), does not take a form normally 
viewed to be a memory structure.  By contrast, the explicit use of memory structures 
constitutes the core of a large number of intelligent solving methods. They include tabu 
search, scatter search and evolutionary path relinking among others.  These methods 
focus on exploiting a set of strategic memory designs. Tabu search (TS), the 
metaheuristic that launched this perspective, is the source of the term Adaptive Memory 
Programming (AMP) to describe methods that use advanced memory strategies (and 
hence learning, in a non-trivial sense) to guide a search. (See, e.g., Glover, 1996.) In 
linguistic terms, to define semantic hierarchies, we can say that AMP is the hyperonym 
of tabu search in a similar way that mathematical programming is the hyperonym of 
linear programming. 
 
Over time, various uses of memory strategies have also become incorporated into a 
variety of other metaheuristics.  For example, a number of “hybrid” genetic and 
evolutionary methods have arisen that embed some form of these memory strategies 
within them, and more recently several have appeared that have dropped the hybrid 
nomenclature (and in some cases reference to tabu search). Today it is not unusual for 
evolutionary methods to implement long term memory structures to record elite 
solutions found during the search for intensification or diversification purposes.  In this 
paper we study the inclusion of memory structures in combined construction-
improvement methods, comparing memory-based with memory-less designs. 
 
To set the stage for discussing the strategies we investigate, it is useful to briefly sketch 
some of the features of tabu search.  TS is a metaheuristic that guides a local search 
heuristic procedure to explore the solution space beyond local optimality.  Its use of 
adaptive memory and associated strategies for exploiting such memory, creates a 
flexible search behavior and offers a means to learn improved trajectories through the 
solution space.  The structure of a neighborhood in tabu search goes beyond that 
typically employed in local search by embracing the types of moves used in 
constructive and destructive processes (where the foundations for such moves are 
accordingly called constructive and destructive neighborhoods).  As described in Glover 
(1996), adaptive memory in these settings involves an attribute-based focus and closely 
depends on the elements of recency, frequency and influence.  In this paper we explore 
the adaptation of frequency memory structures in the context of constructive and local 
search methods. 
 
We can implement memory structures within a constructive process to favor (or avoid) 
the inclusion of certain elements in a solution previously identified as attractive (or 
unattractive).  Such expanded uses of the neighborhood concept reinforce a fundamental 
perspective of TS, which is to define neighborhoods in dynamic ways that can include 
serial or simultaneous consideration of multiple types of moves.  Constructive 
neighborhoods have been proposed from the very beginning of the methodology, as 
documented in Glover and Laguna (1997); however, they have rarely been applied in 
TS implementations (Duarte and Martí, 2007).  In this paper we explore the adaptation 
of memory structures, in both constructive and improvement methods, to a hard 
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combinatorial optimization problem: the bandwidth coloring problem.  We compare this 
memory-based design with a memory-less design based on the GRASP methodology.   
We will see that within the constructive phase both approaches, memory-based and 
memory-less, can be effective, and hence advantages derived from the use of memory-
based strategies appear to rest primarily in the improvement phase. (as discussed in the 
Conclusion.) Independent of this finding, our methods achieve a performance ranking 
that shows them to be competitive with leading methods recently proposed to solve the 
bandwidth coloring problem. 
 
A simple first approach to measuring the global impact of a methodology could be to 
perform a search over the Internet.  We have used Google, a well-known search engine, 
and made the query “metaheuristics”, obtaining 165,000 entries.  We have then refined 
the search with the query “GRASP”, obtaining 10,700 entries.  Alternatively, if we 
refine the search with the query “memory” we obtain 33,900 entries (the same as if we 
search for “tabu search”).  Note that the number of entries found may change due to 
multiple factors (such as the search engine, the specific term that we are searching for or 
even the country or the day).  It is clear that we cannot examine all these entries in 
practice, but at first sight we realized that most of the “memory” entries focus on local 
search based methods and pay limited attention to the construction process. On the other 
hand, the “GRASP” papers linked to the associated entries mainly describe a 
construction process and usually resort to a standard local search method without 
considering possible hybridizations or refinements (like the inclusion of short-term 
memory structures).  The objective of this paper is to illustrate that memory-based 
constructions can be as effective as memory-less constructions (that typically appear in 
GRASP), and, on the other hand, that the addition of simple memory structures to local 
search methods (short-term components) can improve their performance (even in 
limited running times) and therefore, we can conclude that hybrid GRASP procedures, 
in which simple memory structures are added to the typical designs, may be a good 
choice when designing a solving method. 
 
 
2. The Case Problem 
Let G=(V,E) be a graph with a vertex set V (|V| = n) and an edge set E (|E |= m) with a 
strictly positive integer weight dij associated to each edge (i, j) ∈ E.  A k-coloring c of G 
labels each vertex i∈V with an integer c(i) ∈ {1, 2, …, k} (called color) in such a way 
that |c(i) - c(j)| ≥ dij for all (i, j) ∈ E.  The bandwidth coloring problem (BCP) consists of 
finding a k coloring with the smallest value of k. In mathematical terms: 
 

(BCP) Minimize k 

s.t.:  |c(i) - c(j)| ≥ dij ∀(i, j) ∈ E 

c(i) ∈ {1, 2, …, k} ∀i ∈ E 

 
The classical vertex coloring problem (VCP) is a particular case of the BCP in which 
dij=1 for all (i, j) ∈ E.  The BCP is therefore NP-hard since it generalizes the VCP 
(Garey and Johnson 1979).  The bandwidth coloring problem, as well as other 
generalizations of the classical vertex coloring problem (such as the multi-coloring or 
the T-coloring problem), allows complex real problems to be modeled, like for example 
the assignment of frequencies to different cells in a mobile network (Malaguti and Toth 



AMP for the Bandwidth Coloring Problem / 4 

2008).  Specifically, the allocation of frequencies to transmitters to avoid interferences 
above a given threshold triggered the interest on these variants of the coloring problem.  
In this paper we restrict our attention to the BCP. The classical coloring problem has 
been extensively studied during the last two decades and a large number of papers are 
devoted to it.  However, the BCP has received much less attention, mostly dating from 
the Computational Symposium on Graph Coloring and its Generalizations in 2002. 
 
Phan and Skiena (2002) proposed a context-independent method instantiated for 
coloring problems. Their method, called Discropt, is a black-box solver for problems 
where variables take an integer value within a range.  Prestwich (2002) extended the 
FCNS algorithm originally proposed for VCP to the BCP.  The method basically 
combines a local search with a constraint propagation algorithm.  He introduced the 
domain as the number of possible colors for a vertex.  The constructive method 
considers the domain cardinality as the measure to sort the vertices for selection in the 
coloring process.  The computational results show that this method is able to obtain the 
best solutions in short computational times. 
 
The simplest heuristic methods for the VCP are the sequential coloring approaches. 
First, the vertices are sorted, and the top vertex is labeled (colored) with number one.  
The remaining vertices are considered in order, and each vertex is labeled with the first 
color for which it has no adjacent vertices already labeled with this color. Several 
different schemes have been used for the initial ordering.  The Largest First (LF) 
approach of Welsh and Powell (1967) sorts the vertices in decreasing degree.  Although 
these methods are easy to implement and fast, they often produce colorings which are 
far from optimal.  Lim et al. (2005) proposed a multi-start method for the BCP in which 
the initial solution is obtained with a greedy method, SEQ, which basically adapts the 
LF approach.  Given an ordering of vertices, their greedy algorithm sequentially assigns 
the smallest color to each vertex verifying the bandwidth constraints ( |c(i) - c(j)| ≥ dij 
for all (i, j)∈E).  At each iteration, the method first generates a sequence of nodes and 
then produces a solution of the BCP with the greedy algorithm.  Then, it tries to 
improve this solution by reducing the number of colors used by one unit below the 
number of colors in the best solution known so far.  The authors applied their method to 
geometric graphs (Geom) and obtained similar results to the method by Prestwich 
(2002). 
 
Malaguti and Toth (2008) proposed a combination of evolutionary and tabu search 
methodologies.  As in the method by Lim et al. (2005) the algorithm first constructs an 
initial solution with a sequential method and then tries to improve it by reducing the 
number of colors used in the constructed solution by one unit. The sequential method is 
an adaptation of the well-known DSATUR algorithm (Brèlaz, 1979) for the VCP in 
which vertices are selected at each stage based on its score or saturation degree — the 
number of distinctly colored adjacent vertices.  A vertex with the maximum saturation 
degree is selected and labeled with the first legal color. The authors introduced a new 
score s(i) of vertex i as the sum of the maximum distances between i and each adjacent 
color. 
 

𝑠𝑠(𝑖𝑖) = �max  �𝑑𝑑𝑖𝑖𝑖𝑖 ∶  𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) , 𝑐𝑐(𝑗𝑗) = ℎ�
𝑘𝑘

ℎ=1
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where N(i) is the set of vertices adjacent to i and k is the maximum color currently used.  
This score reflects the urgency to color a vertex.  Therefore vertices with high score are 
colored first.  The improvement method applies a tabu search algorithm, T1, to the 
constructed solution in which those vertices with maximum color k are uncolored.  The 
method tries to color the uncolored vertices with an integer in {1, 2, ..., k-1}, thus 
improving it. If the method succeeds, k is decreased to k-1 and the process is iterated.  
The short-term memory structure prevents a vertex from taking the same color it took in 
the previous iterations. 
 
The construction (DSATUR) and tabu search (T1) procedures are embedded in an 
evolutionary algorithm for improved outcomes. The population is created by 
successively applying the greedy sequential method. A crossover operator combines 
randomly selected solutions and the tabu search method is applied to improve the 
offspring.  The improved solution replaces the worst parent in the population.  This 
hybrid method obtains the best known solutions for this problem; however its running 
times are extremely time-consuming, several orders of magnitude larger than the other 
methods based on the combination of construction and improvement algorithms (that 
can be estimated in several hours of CPU time). We will then consider in our 
computational comparison the propagation method by Prestwich (2002), FCNS, the 
constructive with improvement method by Lim et al. (2005), Multistart, and the 
construction with tabu search by Malaguti and Toth (2008), DSATUR+T1. 
 
 
3. Constructive Methods 
In this section we propose two different approaches to construct good solutions for the 
BCP.  In the first one (Section 3.1), we develop three constructive methods based on the 
GRASP methodology.  They do not implement any memory strategy but, conversely, 
they are based on an independent random sampling of the solution space.  In our second 
approach (Section 3.2), we propose two methods based on memory structures and they 
are guided by deterministic strategies.  Previous constructive heuristics for the 
Bandwidth Coloring Problem are the SEQ (Lim et al. 2005) and DSATUR (Malaguti 
and Toth 2008).  We will compare our proposals with the aforementioned methods in 
our computational experiments in Section 5. 
 
Generally speaking, in each iteration a constructive method adds an element to the 
partial solution under construction until all the elements have been added and the 
solution is completed.  It is based on an evaluation function to measure the 
attractiveness of the elements to be added.  A greedy constructive method selects the 
best evaluated element at each iteration.  Alternatively, a randomized constructive 
method combines the evaluation with random selections in such a way that the 
constructive method can be applied several times, obtaining different solutions.  The 
GRASP methodology specifies a way to combine the evaluation and randomization 
elements in the construction process. On the other hand, memory-based constructive 
methods modify the evaluation function to incorporate the information recorded during 
past constructions to guide the process.  They usually do not consider randomization but 
on the contrary are based on strategic and deterministic designs.  In Duarte and Martí 
(2007) different tabu search and GRASP constructions are proposed in the context of 
the maximum diversity problem.  Their experimental study shows that tabu search 
constructions compare favorably with GRASP constructions for that problem. 
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3.1 GRASP Constructive Methods 
GRASP, Greedy Randomized Adaptive Search Procedure, is a multi-start or iterative 
process in which each iteration consists of two phases: construction and local search.  
The construction phase builds a feasible solution, whose neighborhood is explored until 
a local optimum is found after the application of the local search phase (Resende and 
Ribeiro, 2003). At each iteration of the construction phase, GRASP maintains a set of 
candidate elements CL that can be feasibly added to the partial solution under 
construction.  Every candidate element i is evaluated according to a greedy function, 
eval(i), in order to select the next element to be added to the construction.  A restricted 
candidate list (RCL) is created with the best elements in CL. This is the greedy aspect of 
the method.  The element to be added to the partial solution is randomly selected from 
those in the RCL.  This is the probabilistic aspect of the heuristic.  Once the selected 
element is added to the partial solution, the candidate list CL is updated and its elements 
evaluated.  This is the adaptive aspect of the heuristic.  Figure 1 shows the pseudo-code 
of this GRASP construction, in which C is the set of colored vertices (initially empty) 
and U the set of uncolored vertices (initially equal to V). 
 

 
1. Initially C = ∅, U=V and k=1. 
2. Select a vertex i randomly from U. 
3. Assign the color 1 to i (c(i)=1). C = {i}, U = U - {i} 
WHILE  (U ≠ ∅) 

4. CL = U  
 5. Compute eval(i) for all i in CL 
 6. Construct RCL= { i ∈ CL / eval(i) ≤ eth } 
 7. Select a vertex i* randomly in RCL 
 8. Let h be the first (minimum) legal color for i* 
 9. Label vertex i* with color h: c(i*)=h 
 10. If ( h  = k+1) do k=k+1. 
 11. U = U - {j}, C = C ∪ {u} 
ENDWHILE 

Figure 1. Constructive method C1 
 
In the GRASP construction above, the parameter eth represents a threshold on the 
quality of the elements.  Specifically, the elements in CL with an evaluation lower than 
eth are admitted, to becoming part of RCL.  This search parameter is computed as a 
percentage α of the rank of eval in CL: 
 

𝑒𝑒𝑒𝑒ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) +  𝛼𝛼 ( 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) − 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) ) 
 
Note that if α is equal to 0, then eth takes the minimum value in CL and the GRASP is 
a greedy construction.  On the other hand, if α is equal to 1, then RCL=CL and the 
GRASP construction is equivalent to a random method.  As recommended in Resende 
et al. (2009), α  is randomly selected in [0, 1] for each GRASP construction.  Note that 
in Step 8 of the algorithm in Figure 1, h is the first (minimum) color for the selected 
vertex i* satisfying the distance constraints with its adjacent colored vertices. In 
mathematical terms, h is computed as: 
 

ℎ = min  �𝑐𝑐 ∈ ℤ ∶  |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖   ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖∗) ∩ 𝐶𝐶 � 
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In the above adaptation of the GRASP construction to the bandwidth coloring problem, 
we consider two different approaches C1 and C2.  Both follow the algorithm shown in 
Figure 1 but differ in the way they compute the evaluation function.  The evaluation in 
C1 is given by the minimum admissible color (considering the distance constraints with 
the already colored vertices) while in C2 it is based on the score introduced by Malaguti 
and Toth (2008): 
 

C1: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) = min  �𝑐𝑐 ∈ ℤ ∶  |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖   ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶� 
C2:  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) = 1

𝑠𝑠(𝑖𝑖)
 

 
C1 and C2 are basically randomized sequential constructions in which we first choose a 
vertex (in a greedy randomized fashion) and then assign an appropriate color.  We now 
propose a different approach that first completes a color before introducing a new one.  
In the GRASP algorithm C3 outlined in Figure 2 the candidate list CL (Step 4) is 
formed with the uncolored vertices that can be colored with color k.  If there is no 
vertex that can be colored with k, we make k=k+1 in Step 5 and perform a new iteration; 
otherwise, the method proceeds in a similar way to the previous methods computing the 
restricted candidate list.  However, the evaluation is now computed as the number of 
uncolored adjacent nodes (in the first iteration it is simply the adjacent nodes: 
eval(i)=|N(i)|).  This method adapts the GRASP construction for the VCP proposed by 
Laguna and Martí (2001). 
 

 
1. Initially C = ∅, U=V and k=1. 
2. Select a vertex i randomly from U. 
3. Assign the color 1 to i (c(i)=1). C = {i}, U = U - {i} 
WHILE  (U ≠ ∅) 

4. 𝐶𝐶𝐶𝐶 = 𝑈𝑈 ∩ �𝑖𝑖 ∈ 𝑉𝑉 ∶  |𝑘𝑘 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖   ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶�   
IF ( CL = ∅ )  
 5. k = k +1 
ELSE 

  6. Compute 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) = |𝑁𝑁(𝑖𝑖) ∩ 𝑈𝑈|   for all i in CL 
  7. Construct RCL= { i ∈ CL / eval(i) ≤ eth } 
  8. Select a vertex j randomly in RCL 
  9. Label vertex j with color k: c(j)=k 
  10. U = U - {j}, C = C ∪ {u} 
ENDWHILE 

Figure 2. Constructive method C3 
 
In Section 5 we will compare the three constructive methods C1, C2 and C3 with each 
other and with the memory-based methods proposed in the following subsection. 
 
3.2 Memory-Based Constructive Methods 
In this subsection we consider a search framework given by the use of memory among 
constructions.  Instead of performing an independent sampling of the solution space, 
constructive methods based on memory structures perform a guided selection in this 
space (a seminal reference can be found in Fleurent and Glover 1999).  Specifically, in 
tabu search constructions, the inclusion or exclusion of certain elements or groups of 
elements can be identified as attractive for intensification or diversification purposes.  In 
this section we focus our attention on constructive and destructive neighborhoods in 
which an element is added to or dropped from the partial solution under construction.  
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In this context, we consider the inclusion of frequency memory to modify the 
evaluations of a greedy function. 
 
To record relevant information common to different constructions in the BCP, it must 
be noted that the color c(i) assigned to a vertex i is not a relevant information by itself 
since different colorings can represent the same BCP solution. Consider, for example a 
bipartite graph with all the edge weights equal to 1 in which all the vertices in the first 
partition are colored with color 1 and all the vertices in the second partition are colored 
with color 2.  Now consider another coloring of the same graph in which we switch the 
colors between partitions (i.e., all the vertices in the first partition are colored with color 
2 and all the vertices in the second partition are colored with color 1). These two 
colorings do not have any vertices with the same color; however as solutions of the BCP 
they can be considered the same. We therefore will focus on the relative colorings 
between adjacent vertices, instead of the color of each single vertex. 
 
We record in freq[i][j] the number of times (i.e., the number of previous constructions) 
in which vertices i and j have been colored with similar colors (i.e., colors with close 
numbers).  Bandwidth constraints force c(i) and c(j) to verify |c(i)-c(j)| ≥ dij and, in 
some cases, these constraints can be accomplished with equality: |c(i)-c(j)| = dij.  The 
importance of these binding constraints is well document in the mathematical 
programming literature.  We extend this situation to relatively close colors and say that i 
and j are binding vertices in a solution if the absolute difference of their colors is close 
to the associated edge weight. In mathematical terms: 

𝐼𝐼𝐼𝐼  |𝑐𝑐(𝑖𝑖) − 𝑐𝑐(𝑗𝑗)| − 𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑_𝑡𝑡ℎ    𝑡𝑡ℎ𝑒𝑒𝑒𝑒   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗] = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗] + 1 
 
where bind_th is a search parameter (a threshold value) to measure the distance between 
adjacent colors with respect to the edge weight. We will study different values for this 
parameter in our computational experiments. 

 
1. Initially C = ∅, U=V and k=1. 
2. Select a vertex i randomly from U. 
3. Assign the color 1 to i (c(i)=1). C = {i}, U = U - {i} 
WHILE  (U ≠ ∅) 
 4. Compute eval_m(i) for all i in U 
 5. Select the vertex i* with minimum eval_m value in U 
 6. Let h be the first (minimum) legal color for i* 
 7. Label vertex i* with color h: c(i*)=h 
 8. If ( h  = k+1) do k=k+1. 
 9. U = U - {j}, C = C ∪ {u} 
 10. Update freq[i][j] for all i, j. 
ENDWHILE 

Figure 3. Constructive method M1 
 
M1 is basically a memory based sequential construction in which we first choose a 
vertex (in a greedy randomized fashion) and then assign an appropriate color.  We 
modify the evaluation of the attractiveness of each non-colored vertex in the current 
construction according to the following quantities to favor the selection of new 
structures, which were not generated in previous iterations: 
 

M1: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑚𝑚(𝑖𝑖) = min  �𝑐𝑐 ∈ ℤ ∶  |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛽𝛽 ∙ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗]   ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶� 
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The parameter β controls the distance between colors that we impose on those vertices 
which frequently have received close colors.  Figure 3 shows a pseudo-code of M1, 
which can be viewed as the memory-based versions of the C1 method described in the 
previous subsection. 
 
In our second memory-based constructive method, M2, we add memory structures to 
the method C3 in which a color is completed before introducing a new one.  
Specifically, we modify the definition of candidate list CL to incorporate the frequency 
information recorded in previous iterations: 

𝐶𝐶𝐶𝐶 = 𝑈𝑈 ∩ �𝑖𝑖 ∈ 𝑉𝑉 ∶  |𝑘𝑘 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗]     ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶�  . 

In this way we only can assign a color to those vertices in which this assignment does 
not lead to a solution structure already generated (according to the freq-information).  
The ranking of the candidate vertices in CL is made, as in C3, according to the number 
of uncoloured adjacent; however, instead of randomly select one vertex in a restricted 
candidate list, here we select the best one. Figure 4 shows a pseudo-code of this method. 

 
1. Initially C = ∅, U=V and k=1. 
2. Select a vertex i randomly from U. 
3. Assign the color 1 to i (c(i)=1). C = {i}, U = U - {i} 
WHILE  (U ≠ ∅) 

4. 𝐶𝐶𝐶𝐶 = 𝑈𝑈 ∩ �𝑖𝑖 ∈ 𝑉𝑉 ∶  |𝑘𝑘 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗]   ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶�   
IF ( CL = ∅ )  
 5. k = k +1 
ELSE 

  6. Compute 𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎(𝑖𝑖) = |𝑁𝑁(𝑖𝑖) ∩ 𝑈𝑈|   for all i in CL 
  7. Select the vertex j with the lowest eval-value in CL 
  9. Label vertex j with color k: c(j)=k 
  10. U = U - {j}, C = C ∪ {u} 
ENDWHILE 

Figure 4. Constructive method M2 
 
 
4. Improvement Methods 
In this section we explore two different types of improvement methods: local search and 
short-term tabu search.  The first ones are typically embedded in GRASP algorithms so 
they naturally can coupled the GRASP constructions proposed in Section 3.1. 
Symmetrically, the short term tabu search can be implemented as a post-processing to 
the memory-based constructive methods described in Section 3.2.  Other types of 
combinations between constructions and improvements are also tested in our 
computational experiment described in Section 5. 
 
4.1 Local Search Methods 
A classical local search method in graph coloring problems consists of reducing by one 
unit the number of colors in a given solution, trying to obtain a better feasible solution.  
Our first local search method, LS1, uncolors all the vertices with maximum color, say 
kmax, and re-colors them with a color in [1, kmax-1].  The method selects the best 
available color for these vertices minimizing the violation of the bandwidth constraints. 
In mathematical terms, given a vertex i with c(i)=kmax, the method assigns c(i)=cbest 
where cbest minimizes  
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𝐹𝐹(𝑐𝑐) = � 𝑚𝑚𝑚𝑚𝑚𝑚�𝑑𝑑𝑖𝑖𝑖𝑖 − |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| , 0�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

 

 
Once all these vertices have been re-colored, LS1 performs further iterations selecting 
their adjacent vertices in which the associated edge weight is larger than the absolute 
difference of colors (those causing unfeasibility).  The method then re-colors these 
vertices in a similar way as in the previous iteration (i.e., assigning them a color in [1, 
kmax-1] minimizing the expression F(c)).  LS1 continues in this way until all the 
vertices have a proper color (i.e., we obtain a feasible solution) or it reaches a maximum 
number of iterations.  In the former case we reduce the number of colors by one unit 
again and perform a new global iteration; otherwise the method stops. 
 
Glover and Laguna (1997) introduced the compound moves, often called variable depth 
methods, constructed from a series of simpler components.  One of the well-known 
pioneering contributions to such moves was the work by Lin and Kernighan (1973).  
Within the class of variable depth procedures, a special subclass called ejection chain 
procedures has recently proved useful. An ejection chain is an embedded neighborhood 
construction that compounds the neighborhoods of simple moves to create more 
complex and powerful moves.  It is initiated by selecting a set of elements to undergo a 
change of state (e.g. to occupy new positions or receive new values).  The result of this 
change leads to identifying a collection of other sets, with the property that the elements 
of at least one must be “ejected from” their current states.  State-change steps and 
ejection steps typically alternate, and the options for each depend on the cumulative 
effect of previous steps (usually, but not necessarily, being influenced by the 
immediately preceding step).  In some cases, a cascading sequence of operations may be 
triggered, representing a domino effect. 
 
Our second local search method for the BCP, LS2, implements an ejection chain to 
reduce the number of colors in a solution by one unit.  Let kmax be the number of the 
maximum color in a solution.  The method first identifies the set of nodes, C(kmax, 0) 
colored with this color, 
 

𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 0) = {𝑖𝑖 ∈ 𝑉𝑉 ∶  𝑐𝑐(𝑖𝑖) = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘}. 
 

Then it computes the set of vertices, C(kmax, 1), with binding constraints with the 
vertices in C(kmax, 0).  In other words, those vertices that “force” the vertices in 
C(kmax, 0) to take the kmax color: 
 

𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑥𝑥, 1) = �𝑖𝑖 ∈ 𝑉𝑉 ∶  |𝑐𝑐(𝑖𝑖) − 𝑐𝑐(𝑗𝑗)| = 𝑑𝑑𝑖𝑖𝑖𝑖   , 𝑗𝑗 ∈ 𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 0)�.  
 

The rationale behind this is that we should modify the color of the vertices in C(kmax,1) 
to reduce the color of the vertices in C(kmax, 0).  We could say that they are one step 
apart. We proceed likewise to compute the vertices C(kmax, 2) that force the vertices in 
C(kmax, 1) to have their color: 
 

𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 2) = �𝑖𝑖 ∈ 𝑉𝑉 ∶  |𝑐𝑐(𝑖𝑖) − 𝑐𝑐(𝑗𝑗)| = 𝑑𝑑𝑖𝑖𝑖𝑖   , 𝑗𝑗 ∈ 𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 1)�.  
 

Vertices in C(kmax, 2) are two steps apart from vertices in C(kmax, 0).  Likewise we 
compute C(kmax, k) for k=0, 1, 2,.., depth, where depth is a search parameter of the 
ejection chain.  We then proceed to modify the color of the vertices in these sets from 
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k=0 to depth.  We assign a new color h to vertex i∈C(kmax, k) considering that the 
vertices in C(kmax, k+1) have a dummy color (with value 0) and computing 
 

ℎ = min  �𝑐𝑐 ∈ ℤ ∶  |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖   ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) �,  
 

which enables us to reduce the color of the vertices in C(kmax, k). In the final step the 
method colors the vertices in C(kmax, depth). If it succeeds, we finally obtain a feasible 
solution with kmax-1 colors and perform a new complete iteration to further reduce the 
number of colors. In some cases we do not need to examine the entire C sets (from 0 to 
depth) because after examining some of them we obtain a feasible solution. In this event 
we stop at that point and resort to a new global iteration.  Similarly, if a vertex 
i∈C(kmax, k) re-colored during the ejection chain, also belongs to another C set 
(i∈C(kmax, k+p) for some p) we stop the ejection chain process to avoid cycling.  It is 
worth mentioning that if we set a conservative value of depth (close to 10) the method 
always stops because of these last two situations and therefore we do not need to adjust 
this parameter. Thus the ejection chain works in practice as a reactive mechanism 
terminated by its internal logic. 
 
4.2 Tabu Search Methods 
Malaguti and Toth (2007) recently proposed a short term tabu search, T1, for the BCP 
based on partial solutions (in which not all the vertices are colored).  In any global 
iteration, T1 tries to obtain a solution with kmax colors.  Given a constructed solution, 
the method first un-colors the vertices with a color k > kmax; then it performs 
successive steps to color these vertices.  At any local iteration the method randomly 
selects an uncolored vertex i and colors it with a color h∈ [1, kmax].  Then, it un-colors 
all its adjacent vertices j violating the bandwidth constraint (i.e., c(j)=0 for all j in N(i): 
|c(i)-c(j)| ≤ dij).  Color h is selected to minimize the sum of edge weights incident with 
uncolored vertices.  The tabu status indicates that uncolored vertices cannot take the 
same color they had for a certain number of consecutive iterations. When all the vertices 
are colored, T1 reduces kmax by one unit and performs a new global iteration. 
 
Now we will propose a tabu search improvement method, T2, based on LS2, the 
ejection chain local search procedure.  Specifically, we compute C(kmax, k) for k=0, 
2,.., depth, (where depth is the parameter of the ejection chain) but introducing a short-
term memory design in which the identity of a vertex whose color has been changed is 
the attribute used to impose a tabu restriction.  Specifically, after a move is executed, 
the colors of the vertices involved in the move are not allowed to change until the tabu 
tenure expires.  We employ a one-dimensional array tabu(i) initially set to zero, to store 
the iteration number when vertex i loses its tabu status.  That is, if vertex i changes 
colors at iteration iter, then tabu(i)=iter+tenure, where tenure is the number of 
iterations that vertex i is not allowed to change colors. 
 
Note that although we can use the same tenure value for all vertices involved in the 
move, an interesting variant is to use a different tenure value for different types of 
vertices.  In such a design, the tenure value for vertex i∈C(kmax, k) could be different 
from the tenure value for vertex j∈C(kmax, k+1), because they have different roles in 
the computation of the kmax value of the current solution.  We have not implemented 
this variant since preliminary experiments indicate that it significantly increases the 
complexity in order to calibrate the additional search parameter. 
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5. Computational Experiments 
This section describes the computational experiments that we have performed to first 
test the efficiency of our different procedures and then compare them with a number of 
methods from the literature.  We have implemented the methods in Java SE 6 and all the 
experiments were conducted on a Pentium 4 computer at 3 GHz with 2 GB of RAM.   
 
We have employed the set GEOM with the instances reported in most of the previous 
BCP papers.  GEOM consists of 33 geometric graphs generated by Michael Trick (and 
available at http://mat.gsia.cmu.edu/COLOR02/). In these graphs, points are generated 
in a 10,000 by 10,000 grid and are connected by an edge if they are close enough 
together. Edge weights are inversely proportional to the distance between nodes.  This 
set contains three types of graphs. The GEOMn instances are sparse, the GEOMa and 
GEOMb instances are denser, where GEOMb requires fewer colors per node. 
 
In each experiment we compute for each instance and each method the relative percent 
deviation (Dev.) between the best solution value (Value) obtained with the method and 
the best known value (BestValue) for that instance.  Best known values were obtained 
in Malaguti and Toth (2007) with extremely long running times of their evolutionary 
method (with CPU times not reported in the paper but estimated in several hours). We 
report the average of Dev. and Value across the 33 instances considered in each 
particular experiment.  For each method, we also report the number of instances (#Best) 
for which the value of the solution obtained with this method is the best one in this 
particular experiment (although it does not necessarily match BestValue) and the 
average CPU in seconds (Time) that it consumes in each experiment. 
 

bind_th β Dev. #Best Time 
3 0.1 31.25 5 0.0012 
3 0.2 33.14 4 0.0013 
3 0.3 33.20 0 0.0015 
4 0.1 31.19 3 0.0012 
4 0.2 32.93 2 0.0014 
4 0.3 34.06 2 0.0015 
5 0.1 31.06 3 0.0017 
5 0.2 32.05 3 0.0014 
5 0.3 33.15 2 0.0015 

Table 1.  Preliminary experimentation for M1. 
 
The preliminary experimentation was performed on 10 representative problem instances 
with the goal of finding appropriate values for the key search parameters of M1 and C3.  
We tested values for bind_th in the range [3, 5], β in [0.1, 0.3] and α in [0, 1].  The 
results of running method M1 for 100 constructions are shown in Table 1.  They 
indicate that bind_th=5 and β=0.1 provide the best results for these methods.  Hence, 
we use these values to perform the rest of our experimentation. 
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α Dev. #Best Time 
0.0 30.98  4 0.004 
0.1 32.17  1 0.004 
0.2 31.40  1 0.004 
0.3 31.55  4 0.004 
0.4 31.69  3 0.004 
0.5 31.57  5 0.004 
0.6 30.22  5 0.004 
0.7 31.05  3 0.004 
0.8 31.48  2 0.004 
0.9 31.31  1 0.004 
1.0 32.03  3 0.004 
Table 2.  Preliminary experimentation for C3. 

 
Our second preliminary experiment tests different values for α in the GRASP 
construction C3.  Table 2 shows that there are no significant differences among the 
results obtained with the different α values.  Therefore, in the GRASP constructions C1, 
C2 and C3 we will employ the strategy recommended in Resende et al. (2009) 
consisting of randomly selecting an α value in each construction. 
 
In our first final experiment we compare the two previous constructive methods, SEQ 
(Lim et al. 2005) and DSATUR (Malaguti and Toth 2008), with our three memory-less 
variants, C1, C2 and C3, and with the two memory-based methods, M1 and M2.  We 
run each method to generate 100 solutions for each of the 33 problems.  Table 3 reports 
the statistics Dev. and #Best described above for these seven methods.  In addition, we 
calculate the Rank statistic — proposed by Ribeiro, et al. (2002) — associated with each 
method.  For each instance, the n_rank of a method M is defined as the number of 
methods that found a better solution than the one found by M.  In the event of ties, all 
the methods receive the same n_rank, equal to the number of methods strictly better 
than all of them.  The value of Rank is the sum of the n_rank values for all the instances 
in the experiment, thus, the lower the Rank the better the method. 
 
 
 Method Dev. #Best Rank Time 
Previous SEQ 56.55 7 205 0.000 
 DSATUR 47.75 2 174 0.077 

 C1 25.65 27 56 0.030 
Memory-less C2 49.18 1 182 0.075 
 C3 25.69 25 55 0.002 

Memory-based M1 26.25 22 64 0.046 
 M2 35.69 1 127 0.002 

Table 3. Constructive methods 
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Results in Table 3 clearly show that the new constructive methods outperform the 
previous ones.  In addition, all of them are extremely fast, and exhibit running times of 
much less than 1 second.  Moreover, methods C1, C3 and M1 give the best results from 
among the seven methods tested. 
 
 Method Dev. #Best Rank Time 
Memory-less LS1 13.92 3 60 0.3 
 LS2 14.51 1 71 0.9 

Memory-based T1 13.86 2 61 14 
 T2 13.83 3 63 25 

Table 4. Improvement methods 
 
Our second experiment is designed to isolate and compare the contribution of the 
improvement methods.  We therefore generate the initial solutions using a relatively 
simple constructive method, SEQ, and apply the different improvement methods to 
them.  Table 4 reports the results obtained with the four improvement methods 
described in Section 4: LS1, LS2, T1 and T2 when they were run for 100 constructions 
+ improvements.  After preliminary adjustment we set tenure=4 and maxIterations=50. 

 

 
Figure 5. Search profile 

 
Table 4 shows that memory-based methods perform slightly better than memory-less 
methods, although they consume more CPU time.  Comparing the results in this table 
with the results of the constructive methods in Table 3 we observe that the improvement 
methods reduce the average deviation by about 15% on average.  We complement the 
results shown in Table 4 with a comparison of the performance of the best improvement 
methods, LS1 and T2, over time.  These two methods were run for 500 seconds and the 
best solution found was reported every 10 seconds.  The results of this experiment are 
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shown in Figure 5.  It shows that LS1 is capable of obtaining good quality solutions 
from the very beginning of the search (i.e., within the first 100 seconds).  T2 requires 
350 seconds to improve upon the solutions found by LS1 but it then maintains its lead 
during the remaining execution time (although we do not depict in the diagram the last 
100 seconds for the sake of clarity, both methods present flat profiles in that part).  
 
We have also considered the evolution of LS2 and T2 in order to see the effect of the 
memory structure.  Figure 6 depicts the search profile of both methods. This figure 
clearly shows that the addition of memory structures permits better solutions to be 
obtained (compared with the memory-less variant of the same method) from the very 
beginning of the search and, what is more important, the memory-less variant is unable 
to improve the other method at any point. 
 

 
Figure 6. Search profile 

 
In the next experiment we combine the best constructive methods with the best 
improvement methods.  Specifically we combine C1, C3 and M1 with LS1, LS2 and T2 
and run the 9 resulting methods for 1000 constructions + improvements.  Table 5 shows 
the results of this experiment. 
 
 Method Dev. #Best Rank Time 

 LS1 5.55 10 106 6 
C1 LS2 4.95 16 56 3 

 T2 4.89 17 53 3 
 LS1 6.27 12 149 3 

C3 LS2 4.08 29 25 2 
 T2 4.03 30 24 3 
 LS1 6.23 12 161 31 

M1 LS2 5.04 17 65 6 
 T2 5.25 16 92 6 

Table 5. Construction + Improvement methods 
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Table 5 shows that C3+T2 is the best combination of our constructive with 
improvement methods since it obtains 30 best solutions, out of 33 instances, and 4.03% 
deviation with respect to the best known solution.  All of them are very fast since they 
construct and improve 1000 solutions in a few seconds, with the exception of M1+LS1, 
which consumes about half a minute on average. 
 
We applied the Friedman test for paired samples to the best solutions obtained by each 
method.  This test computes, for each instance, the rank-value of each method according 
to solution quality (where rank 1 is assigned to the best method and rank 9 to the worst 
one). Then, it calculates the average rank values of each method across all the instances 
solved.  If the averages differ greatly, the associated p-value or significance will be 
small.  The resulting significance level of 0.000 obtained in this experiment clearly 
indicates that there are statistically significant differences among the nine methods 
tested.  Specifically, the rank values produced by this test are C3+T2 (3.18), C3+LS2 
(3.29), C1+T2 (4.71), M1+LS2 (4.76), C1+LS2 (4.83), M1+T2 (5.35), C1+LS1 (5.86), 
C3+LS1 (6.38) and M1+LS1 (6.64).  This confirms that among the procedures that we 
tested, C3+T2 is the best to obtain the highest quality solutions. 
 
In the final experiment we compare our best method with three previous methods 
identified as the best.  Specifically, we consider the following four methods: 
 
 AMP :  our best method, C3+T2 
 DSATUR+T1:  the constructive + improvement by Malaguti and Toth (2008) 
 FCNS:   the constraint propagation method by Prestwich (2002) 
 Multi-start: the constructive + improvement by Lim et al. (2005) 

 
We can see the results of this final experiment in Table 6.  It is clear that our methods 
are competitive with the state of the art methods for this problem.  We also applied a 
statistical test to the data used to generate Table 6. 
 

Method Dev. #Best Rank Time 
AMP 3.38 13 13 11.00 
DSATUR +T1 5.88 9 50 18.42 
FCNS  2.62 12 7 12.91 
Multi-start 5.04 13 34 3.83 

Table 6. Best Constructions + Improvement methods 
 
Considering the deviations from the best solution known, the FCNS appears to the best 
one.  On the other hand, considering the number of best solutions, our AMP is ranked 
first together with the Multi-start method.  The Friedman test obtains a significance 
level of 0.000 indicating that there are statistically significant differences among the 
four methods tested.  Specifically, the rank values produced by this test are FCNS 
(1.97), AMP (2.17), Multi-start (2.76) and DSATUR+T1 (3.11).  We can conclude that 
the four methods considered are able to obtain high quality solutions for the bandwidth 
coloring problem, where the FCNS appears to be the best, closely followed by our AMP 
method. 
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6. Conclusions 
The objective of our study has been to compare memory-based with memory-less 
designs.  We have developed heuristic procedures based on both the GRASP and the 
tabu search methodologies to provide high quality solutions to the bandwidth coloring 
problem.  Unlike local search methodologies, memory structures have not been 
extensively studied yet in the context of constructive methods.  In this paper we have 
proposed two constructive methods based on incorporating basic tabu search memory 
structures, and three memory-less constructions based on GRASP methodology.  These 
five procedures have been coupled with an improving phase.  We have also tested the 
inclusion of memory (short-term structures) in the improvement phase.  The final 
procedures, labeled as Adaptive Memory Programming methods, are able to compete 
with the state-of-the-art methods for the bandwidth coloring problem within short 
computational times. 
 
Our findings disclose the novel fact that memory appears to play a more important role 
during the improvement phase than during the constructive phase of search. This effect 
may be due to the fact that the repeated application of the constructive phase operates 
primarily as a diversification process, and that more advanced memory-based 
mechanisms, including statistical analysis as suggested in Glover and Laguna (1997), 
may be needed to provide advantages for a combined construction/improvement 
procedure. This issue provides an interesting area for future research. 
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