
Adaptive Memory Programming:
An Empirical Study with the Bandwidth Coloring Problem

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa
Universitat de València, Spain
rafael.marti@uv.es

FRANCISCO GORTAZAR
Departamento de Ciencias de la Computación
Universidad Rey Juan Carlos, Spain
francisco.gortazar@urjc.es

ABRAHAM DUARTE
Departamento de Ciencias de la Computación
Universidad Rey Juan Carlos, Spain
abraham.duarte@urjc.es

Version: May 7, 2009

ABSTRACT
In this article we study the use of memory structures in both constructive and
improvement methods. Typical tabu search applications employ short term memory
structures to overcome local optimality. However, other memory structures, such as
frequency-based constructions have often been ignored or implemented in naïve ways
that disregard important elements of the original proposals. In this paper we describe the
adaptation of these memory programming elements to the bandwidth coloring problem.
We also propose constructive and improvement methods based on GRASP, a well-
known memory-less methodology, to compare and hybridize both designs.

The bandwidth coloring problem consists of assigning a color to each vertex of a graph,
so that the absolute value of the difference between the colors of adjacent vertices is at
least the value of the weight of the associated edge. This problem generalizes the
classical vertex coloring problem and different heuristics have recently been proposed
to obtain high quality solutions. Comparison of our results with previously reported
instances and existing heuristics indicate that the methods we propose are competitive
and require short computational times. Our findings also disclose that memory appears
to play a more important role during improvement phases of search than during
constructive phases.

Key Words: Graph coloring, Tabu Search, GRASP.

mailto:rafael.marti@uv.es�
mailto:francisco.gortazar@urjc.es�
mailto:abraham.duarte@urjc.es�

AMP for the Bandwidth Coloring Problem / 2

1. Introduction
From a naive standpoint, virtually all heuristics other than complete randomization
induce a pattern whose present state depends on the sequence of past states, and
therefore incorporate an implicit form of “memory.” However, such an implicit
memory, as indicated in Glover and Laguna (1997), does not take a form normally
viewed to be a memory structure. By contrast, the explicit use of memory structures
constitutes the core of a large number of intelligent solving methods. They include tabu
search, scatter search and evolutionary path relinking among others. These methods
focus on exploiting a set of strategic memory designs. Tabu search (TS), the
metaheuristic that launched this perspective, is the source of the term Adaptive Memory
Programming (AMP) to describe methods that use advanced memory strategies (and
hence learning, in a non-trivial sense) to guide a search. (See, e.g., Glover, 1996.) In
linguistic terms, to define semantic hierarchies, we can say that AMP is the hyperonym
of tabu search in a similar way that mathematical programming is the hyperonym of
linear programming.

Over time, various uses of memory strategies have also become incorporated into a
variety of other metaheuristics. For example, a number of “hybrid” genetic and
evolutionary methods have arisen that embed some form of these memory strategies
within them, and more recently several have appeared that have dropped the hybrid
nomenclature (and in some cases reference to tabu search). Today it is not unusual for
evolutionary methods to implement long term memory structures to record elite
solutions found during the search for intensification or diversification purposes. In this
paper we study the inclusion of memory structures in combined construction-
improvement methods, comparing memory-based with memory-less designs.

To set the stage for discussing the strategies we investigate, it is useful to briefly sketch
some of the features of tabu search. TS is a metaheuristic that guides a local search
heuristic procedure to explore the solution space beyond local optimality. Its use of
adaptive memory and associated strategies for exploiting such memory, creates a
flexible search behavior and offers a means to learn improved trajectories through the
solution space. The structure of a neighborhood in tabu search goes beyond that
typically employed in local search by embracing the types of moves used in
constructive and destructive processes (where the foundations for such moves are
accordingly called constructive and destructive neighborhoods). As described in Glover
(1996), adaptive memory in these settings involves an attribute-based focus and closely
depends on the elements of recency, frequency and influence. In this paper we explore
the adaptation of frequency memory structures in the context of constructive and local
search methods.

We can implement memory structures within a constructive process to favor (or avoid)
the inclusion of certain elements in a solution previously identified as attractive (or
unattractive). Such expanded uses of the neighborhood concept reinforce a fundamental
perspective of TS, which is to define neighborhoods in dynamic ways that can include
serial or simultaneous consideration of multiple types of moves. Constructive
neighborhoods have been proposed from the very beginning of the methodology, as
documented in Glover and Laguna (1997); however, they have rarely been applied in
TS implementations (Duarte and Martí, 2007). In this paper we explore the adaptation
of memory structures, in both constructive and improvement methods, to a hard

AMP for the Bandwidth Coloring Problem / 3

combinatorial optimization problem: the bandwidth coloring problem. We compare this
memory-based design with a memory-less design based on the GRASP methodology.
We will see that within the constructive phase both approaches, memory-based and
memory-less, can be effective, and hence advantages derived from the use of memory-
based strategies appear to rest primarily in the improvement phase. (as discussed in the
Conclusion.) Independent of this finding, our methods achieve a performance ranking
that shows them to be competitive with leading methods recently proposed to solve the
bandwidth coloring problem.

A simple first approach to measuring the global impact of a methodology could be to
perform a search over the Internet. We have used Google, a well-known search engine,
and made the query “metaheuristics”, obtaining 165,000 entries. We have then refined
the search with the query “GRASP”, obtaining 10,700 entries. Alternatively, if we
refine the search with the query “memory” we obtain 33,900 entries (the same as if we
search for “tabu search”). Note that the number of entries found may change due to
multiple factors (such as the search engine, the specific term that we are searching for or
even the country or the day). It is clear that we cannot examine all these entries in
practice, but at first sight we realized that most of the “memory” entries focus on local
search based methods and pay limited attention to the construction process. On the other
hand, the “GRASP” papers linked to the associated entries mainly describe a
construction process and usually resort to a standard local search method without
considering possible hybridizations or refinements (like the inclusion of short-term
memory structures). The objective of this paper is to illustrate that memory-based
constructions can be as effective as memory-less constructions (that typically appear in
GRASP), and, on the other hand, that the addition of simple memory structures to local
search methods (short-term components) can improve their performance (even in
limited running times) and therefore, we can conclude that hybrid GRASP procedures,
in which simple memory structures are added to the typical designs, may be a good
choice when designing a solving method.

2. The Case Problem
Let G=(V,E) be a graph with a vertex set V (|V| = n) and an edge set E (|E |= m) with a
strictly positive integer weight dij associated to each edge (i, j) ∈ E. A k-coloring c of G
labels each vertex i∈V with an integer c(i) ∈ {1, 2, …, k} (called color) in such a way
that |c(i) - c(j)| ≥ dij for all (i, j) ∈ E. The bandwidth coloring problem (BCP) consists of
finding a k coloring with the smallest value of k. In mathematical terms:

(BCP) Minimize k

s.t.: |c(i) - c(j)| ≥ dij ∀(i, j) ∈ E

c(i) ∈ {1, 2, …, k} ∀i ∈ E

The classical vertex coloring problem (VCP) is a particular case of the BCP in which
dij=1 for all (i, j) ∈ E. The BCP is therefore NP-hard since it generalizes the VCP
(Garey and Johnson 1979). The bandwidth coloring problem, as well as other
generalizations of the classical vertex coloring problem (such as the multi-coloring or
the T-coloring problem), allows complex real problems to be modeled, like for example
the assignment of frequencies to different cells in a mobile network (Malaguti and Toth

AMP for the Bandwidth Coloring Problem / 4

2008). Specifically, the allocation of frequencies to transmitters to avoid interferences
above a given threshold triggered the interest on these variants of the coloring problem.
In this paper we restrict our attention to the BCP. The classical coloring problem has
been extensively studied during the last two decades and a large number of papers are
devoted to it. However, the BCP has received much less attention, mostly dating from
the Computational Symposium on Graph Coloring and its Generalizations in 2002.

Phan and Skiena (2002) proposed a context-independent method instantiated for
coloring problems. Their method, called Discropt, is a black-box solver for problems
where variables take an integer value within a range. Prestwich (2002) extended the
FCNS algorithm originally proposed for VCP to the BCP. The method basically
combines a local search with a constraint propagation algorithm. He introduced the
domain as the number of possible colors for a vertex. The constructive method
considers the domain cardinality as the measure to sort the vertices for selection in the
coloring process. The computational results show that this method is able to obtain the
best solutions in short computational times.

The simplest heuristic methods for the VCP are the sequential coloring approaches.
First, the vertices are sorted, and the top vertex is labeled (colored) with number one.
The remaining vertices are considered in order, and each vertex is labeled with the first
color for which it has no adjacent vertices already labeled with this color. Several
different schemes have been used for the initial ordering. The Largest First (LF)
approach of Welsh and Powell (1967) sorts the vertices in decreasing degree. Although
these methods are easy to implement and fast, they often produce colorings which are
far from optimal. Lim et al. (2005) proposed a multi-start method for the BCP in which
the initial solution is obtained with a greedy method, SEQ, which basically adapts the
LF approach. Given an ordering of vertices, their greedy algorithm sequentially assigns
the smallest color to each vertex verifying the bandwidth constraints (|c(i) - c(j)| ≥ dij
for all (i, j)∈E). At each iteration, the method first generates a sequence of nodes and
then produces a solution of the BCP with the greedy algorithm. Then, it tries to
improve this solution by reducing the number of colors used by one unit below the
number of colors in the best solution known so far. The authors applied their method to
geometric graphs (Geom) and obtained similar results to the method by Prestwich
(2002).

Malaguti and Toth (2008) proposed a combination of evolutionary and tabu search
methodologies. As in the method by Lim et al. (2005) the algorithm first constructs an
initial solution with a sequential method and then tries to improve it by reducing the
number of colors used in the constructed solution by one unit. The sequential method is
an adaptation of the well-known DSATUR algorithm (Brèlaz, 1979) for the VCP in
which vertices are selected at each stage based on its score or saturation degree — the
number of distinctly colored adjacent vertices. A vertex with the maximum saturation
degree is selected and labeled with the first legal color. The authors introduced a new
score s(i) of vertex i as the sum of the maximum distances between i and each adjacent
color.

𝑠𝑠(𝑖𝑖) = �max �𝑑𝑑𝑖𝑖𝑖𝑖 ∶ 𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) , 𝑐𝑐(𝑗𝑗) = ℎ�
𝑘𝑘

ℎ=1

AMP for the Bandwidth Coloring Problem / 5

where N(i) is the set of vertices adjacent to i and k is the maximum color currently used.
This score reflects the urgency to color a vertex. Therefore vertices with high score are
colored first. The improvement method applies a tabu search algorithm, T1, to the
constructed solution in which those vertices with maximum color k are uncolored. The
method tries to color the uncolored vertices with an integer in {1, 2, ..., k-1}, thus
improving it. If the method succeeds, k is decreased to k-1 and the process is iterated.
The short-term memory structure prevents a vertex from taking the same color it took in
the previous iterations.

The construction (DSATUR) and tabu search (T1) procedures are embedded in an
evolutionary algorithm for improved outcomes. The population is created by
successively applying the greedy sequential method. A crossover operator combines
randomly selected solutions and the tabu search method is applied to improve the
offspring. The improved solution replaces the worst parent in the population. This
hybrid method obtains the best known solutions for this problem; however its running
times are extremely time-consuming, several orders of magnitude larger than the other
methods based on the combination of construction and improvement algorithms (that
can be estimated in several hours of CPU time). We will then consider in our
computational comparison the propagation method by Prestwich (2002), FCNS, the
constructive with improvement method by Lim et al. (2005), Multistart, and the
construction with tabu search by Malaguti and Toth (2008), DSATUR+T1.

3. Constructive Methods
In this section we propose two different approaches to construct good solutions for the
BCP. In the first one (Section 3.1), we develop three constructive methods based on the
GRASP methodology. They do not implement any memory strategy but, conversely,
they are based on an independent random sampling of the solution space. In our second
approach (Section 3.2), we propose two methods based on memory structures and they
are guided by deterministic strategies. Previous constructive heuristics for the
Bandwidth Coloring Problem are the SEQ (Lim et al. 2005) and DSATUR (Malaguti
and Toth 2008). We will compare our proposals with the aforementioned methods in
our computational experiments in Section 5.

Generally speaking, in each iteration a constructive method adds an element to the
partial solution under construction until all the elements have been added and the
solution is completed. It is based on an evaluation function to measure the
attractiveness of the elements to be added. A greedy constructive method selects the
best evaluated element at each iteration. Alternatively, a randomized constructive
method combines the evaluation with random selections in such a way that the
constructive method can be applied several times, obtaining different solutions. The
GRASP methodology specifies a way to combine the evaluation and randomization
elements in the construction process. On the other hand, memory-based constructive
methods modify the evaluation function to incorporate the information recorded during
past constructions to guide the process. They usually do not consider randomization but
on the contrary are based on strategic and deterministic designs. In Duarte and Martí
(2007) different tabu search and GRASP constructions are proposed in the context of
the maximum diversity problem. Their experimental study shows that tabu search
constructions compare favorably with GRASP constructions for that problem.

AMP for the Bandwidth Coloring Problem / 6

3.1 GRASP Constructive Methods
GRASP, Greedy Randomized Adaptive Search Procedure, is a multi-start or iterative
process in which each iteration consists of two phases: construction and local search.
The construction phase builds a feasible solution, whose neighborhood is explored until
a local optimum is found after the application of the local search phase (Resende and
Ribeiro, 2003). At each iteration of the construction phase, GRASP maintains a set of
candidate elements CL that can be feasibly added to the partial solution under
construction. Every candidate element i is evaluated according to a greedy function,
eval(i), in order to select the next element to be added to the construction. A restricted
candidate list (RCL) is created with the best elements in CL. This is the greedy aspect of
the method. The element to be added to the partial solution is randomly selected from
those in the RCL. This is the probabilistic aspect of the heuristic. Once the selected
element is added to the partial solution, the candidate list CL is updated and its elements
evaluated. This is the adaptive aspect of the heuristic. Figure 1 shows the pseudo-code
of this GRASP construction, in which C is the set of colored vertices (initially empty)
and U the set of uncolored vertices (initially equal to V).

1. Initially C = ∅, U=V and k=1.
2. Select a vertex i randomly from U.
3. Assign the color 1 to i (c(i)=1). C = {i}, U = U - {i}
WHILE (U ≠ ∅)

4. CL = U
 5. Compute eval(i) for all i in CL
 6. Construct RCL= { i ∈ CL / eval(i) ≤ eth }
 7. Select a vertex i* randomly in RCL
 8. Let h be the first (minimum) legal color for i*
 9. Label vertex i* with color h: c(i*)=h
 10. If (h = k+1) do k=k+1.
 11. U = U - {j}, C = C ∪ {u}
ENDWHILE

Figure 1. Constructive method C1

In the GRASP construction above, the parameter eth represents a threshold on the
quality of the elements. Specifically, the elements in CL with an evaluation lower than
eth are admitted, to becoming part of RCL. This search parameter is computed as a
percentage α of the rank of eval in CL:

𝑒𝑒𝑒𝑒ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) + 𝛼𝛼 (𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) − 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖))

Note that if α is equal to 0, then eth takes the minimum value in CL and the GRASP is
a greedy construction. On the other hand, if α is equal to 1, then RCL=CL and the
GRASP construction is equivalent to a random method. As recommended in Resende
et al. (2009), α is randomly selected in [0, 1] for each GRASP construction. Note that
in Step 8 of the algorithm in Figure 1, h is the first (minimum) color for the selected
vertex i* satisfying the distance constraints with its adjacent colored vertices. In
mathematical terms, h is computed as:

ℎ = min �𝑐𝑐 ∈ ℤ ∶ |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖∗) ∩ 𝐶𝐶 �

AMP for the Bandwidth Coloring Problem / 7

In the above adaptation of the GRASP construction to the bandwidth coloring problem,
we consider two different approaches C1 and C2. Both follow the algorithm shown in
Figure 1 but differ in the way they compute the evaluation function. The evaluation in
C1 is given by the minimum admissible color (considering the distance constraints with
the already colored vertices) while in C2 it is based on the score introduced by Malaguti
and Toth (2008):

C1: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) = min �𝑐𝑐 ∈ ℤ ∶ |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶�
C2: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) = 1

𝑠𝑠(𝑖𝑖)

C1 and C2 are basically randomized sequential constructions in which we first choose a
vertex (in a greedy randomized fashion) and then assign an appropriate color. We now
propose a different approach that first completes a color before introducing a new one.
In the GRASP algorithm C3 outlined in Figure 2 the candidate list CL (Step 4) is
formed with the uncolored vertices that can be colored with color k. If there is no
vertex that can be colored with k, we make k=k+1 in Step 5 and perform a new iteration;
otherwise, the method proceeds in a similar way to the previous methods computing the
restricted candidate list. However, the evaluation is now computed as the number of
uncolored adjacent nodes (in the first iteration it is simply the adjacent nodes:
eval(i)=|N(i)|). This method adapts the GRASP construction for the VCP proposed by
Laguna and Martí (2001).

1. Initially C = ∅, U=V and k=1.
2. Select a vertex i randomly from U.
3. Assign the color 1 to i (c(i)=1). C = {i}, U = U - {i}
WHILE (U ≠ ∅)

4. 𝐶𝐶𝐶𝐶 = 𝑈𝑈 ∩ �𝑖𝑖 ∈ 𝑉𝑉 ∶ |𝑘𝑘 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶�
IF (CL = ∅)
 5. k = k +1
ELSE

 6. Compute 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) = |𝑁𝑁(𝑖𝑖) ∩ 𝑈𝑈| for all i in CL
 7. Construct RCL= { i ∈ CL / eval(i) ≤ eth }
 8. Select a vertex j randomly in RCL
 9. Label vertex j with color k: c(j)=k
 10. U = U - {j}, C = C ∪ {u}
ENDWHILE

Figure 2. Constructive method C3

In Section 5 we will compare the three constructive methods C1, C2 and C3 with each
other and with the memory-based methods proposed in the following subsection.

3.2 Memory-Based Constructive Methods
In this subsection we consider a search framework given by the use of memory among
constructions. Instead of performing an independent sampling of the solution space,
constructive methods based on memory structures perform a guided selection in this
space (a seminal reference can be found in Fleurent and Glover 1999). Specifically, in
tabu search constructions, the inclusion or exclusion of certain elements or groups of
elements can be identified as attractive for intensification or diversification purposes. In
this section we focus our attention on constructive and destructive neighborhoods in
which an element is added to or dropped from the partial solution under construction.

AMP for the Bandwidth Coloring Problem / 8

In this context, we consider the inclusion of frequency memory to modify the
evaluations of a greedy function.

To record relevant information common to different constructions in the BCP, it must
be noted that the color c(i) assigned to a vertex i is not a relevant information by itself
since different colorings can represent the same BCP solution. Consider, for example a
bipartite graph with all the edge weights equal to 1 in which all the vertices in the first
partition are colored with color 1 and all the vertices in the second partition are colored
with color 2. Now consider another coloring of the same graph in which we switch the
colors between partitions (i.e., all the vertices in the first partition are colored with color
2 and all the vertices in the second partition are colored with color 1). These two
colorings do not have any vertices with the same color; however as solutions of the BCP
they can be considered the same. We therefore will focus on the relative colorings
between adjacent vertices, instead of the color of each single vertex.

We record in freq[i][j] the number of times (i.e., the number of previous constructions)
in which vertices i and j have been colored with similar colors (i.e., colors with close
numbers). Bandwidth constraints force c(i) and c(j) to verify |c(i)-c(j)| ≥ dij and, in
some cases, these constraints can be accomplished with equality: |c(i)-c(j)| = dij. The
importance of these binding constraints is well document in the mathematical
programming literature. We extend this situation to relatively close colors and say that i
and j are binding vertices in a solution if the absolute difference of their colors is close
to the associated edge weight. In mathematical terms:

𝐼𝐼𝐼𝐼 |𝑐𝑐(𝑖𝑖) − 𝑐𝑐(𝑗𝑗)| − 𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑_𝑡𝑡ℎ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗] = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗] + 1

where bind_th is a search parameter (a threshold value) to measure the distance between
adjacent colors with respect to the edge weight. We will study different values for this
parameter in our computational experiments.

1. Initially C = ∅, U=V and k=1.
2. Select a vertex i randomly from U.
3. Assign the color 1 to i (c(i)=1). C = {i}, U = U - {i}
WHILE (U ≠ ∅)
 4. Compute eval_m(i) for all i in U
 5. Select the vertex i* with minimum eval_m value in U
 6. Let h be the first (minimum) legal color for i*
 7. Label vertex i* with color h: c(i*)=h
 8. If (h = k+1) do k=k+1.
 9. U = U - {j}, C = C ∪ {u}
 10. Update freq[i][j] for all i, j.
ENDWHILE

Figure 3. Constructive method M1

M1 is basically a memory based sequential construction in which we first choose a
vertex (in a greedy randomized fashion) and then assign an appropriate color. We
modify the evaluation of the attractiveness of each non-colored vertex in the current
construction according to the following quantities to favor the selection of new
structures, which were not generated in previous iterations:

M1: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑚𝑚(𝑖𝑖) = min �𝑐𝑐 ∈ ℤ ∶ |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛽𝛽 ∙ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗] ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶�

AMP for the Bandwidth Coloring Problem / 9

The parameter β controls the distance between colors that we impose on those vertices
which frequently have received close colors. Figure 3 shows a pseudo-code of M1,
which can be viewed as the memory-based versions of the C1 method described in the
previous subsection.

In our second memory-based constructive method, M2, we add memory structures to
the method C3 in which a color is completed before introducing a new one.
Specifically, we modify the definition of candidate list CL to incorporate the frequency
information recorded in previous iterations:

𝐶𝐶𝐶𝐶 = 𝑈𝑈 ∩ �𝑖𝑖 ∈ 𝑉𝑉 ∶ |𝑘𝑘 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗] ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶� .

In this way we only can assign a color to those vertices in which this assignment does
not lead to a solution structure already generated (according to the freq-information).
The ranking of the candidate vertices in CL is made, as in C3, according to the number
of uncoloured adjacent; however, instead of randomly select one vertex in a restricted
candidate list, here we select the best one. Figure 4 shows a pseudo-code of this method.

1. Initially C = ∅, U=V and k=1.
2. Select a vertex i randomly from U.
3. Assign the color 1 to i (c(i)=1). C = {i}, U = U - {i}
WHILE (U ≠ ∅)

4. 𝐶𝐶𝐶𝐶 = 𝑈𝑈 ∩ �𝑖𝑖 ∈ 𝑉𝑉 ∶ |𝑘𝑘 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖][𝑗𝑗] ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) ∩ 𝐶𝐶�
IF (CL = ∅)
 5. k = k +1
ELSE

 6. Compute 𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎(𝑖𝑖) = |𝑁𝑁(𝑖𝑖) ∩ 𝑈𝑈| for all i in CL
 7. Select the vertex j with the lowest eval-value in CL
 9. Label vertex j with color k: c(j)=k
 10. U = U - {j}, C = C ∪ {u}
ENDWHILE

Figure 4. Constructive method M2

4. Improvement Methods
In this section we explore two different types of improvement methods: local search and
short-term tabu search. The first ones are typically embedded in GRASP algorithms so
they naturally can coupled the GRASP constructions proposed in Section 3.1.
Symmetrically, the short term tabu search can be implemented as a post-processing to
the memory-based constructive methods described in Section 3.2. Other types of
combinations between constructions and improvements are also tested in our
computational experiment described in Section 5.

4.1 Local Search Methods
A classical local search method in graph coloring problems consists of reducing by one
unit the number of colors in a given solution, trying to obtain a better feasible solution.
Our first local search method, LS1, uncolors all the vertices with maximum color, say
kmax, and re-colors them with a color in [1, kmax-1]. The method selects the best
available color for these vertices minimizing the violation of the bandwidth constraints.
In mathematical terms, given a vertex i with c(i)=kmax, the method assigns c(i)=cbest
where cbest minimizes

AMP for the Bandwidth Coloring Problem / 10

𝐹𝐹(𝑐𝑐) = � 𝑚𝑚𝑚𝑚𝑚𝑚�𝑑𝑑𝑖𝑖𝑖𝑖 − |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| , 0�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

Once all these vertices have been re-colored, LS1 performs further iterations selecting
their adjacent vertices in which the associated edge weight is larger than the absolute
difference of colors (those causing unfeasibility). The method then re-colors these
vertices in a similar way as in the previous iteration (i.e., assigning them a color in [1,
kmax-1] minimizing the expression F(c)). LS1 continues in this way until all the
vertices have a proper color (i.e., we obtain a feasible solution) or it reaches a maximum
number of iterations. In the former case we reduce the number of colors by one unit
again and perform a new global iteration; otherwise the method stops.

Glover and Laguna (1997) introduced the compound moves, often called variable depth
methods, constructed from a series of simpler components. One of the well-known
pioneering contributions to such moves was the work by Lin and Kernighan (1973).
Within the class of variable depth procedures, a special subclass called ejection chain
procedures has recently proved useful. An ejection chain is an embedded neighborhood
construction that compounds the neighborhoods of simple moves to create more
complex and powerful moves. It is initiated by selecting a set of elements to undergo a
change of state (e.g. to occupy new positions or receive new values). The result of this
change leads to identifying a collection of other sets, with the property that the elements
of at least one must be “ejected from” their current states. State-change steps and
ejection steps typically alternate, and the options for each depend on the cumulative
effect of previous steps (usually, but not necessarily, being influenced by the
immediately preceding step). In some cases, a cascading sequence of operations may be
triggered, representing a domino effect.

Our second local search method for the BCP, LS2, implements an ejection chain to
reduce the number of colors in a solution by one unit. Let kmax be the number of the
maximum color in a solution. The method first identifies the set of nodes, C(kmax, 0)
colored with this color,

𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 0) = {𝑖𝑖 ∈ 𝑉𝑉 ∶ 𝑐𝑐(𝑖𝑖) = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘}.

Then it computes the set of vertices, C(kmax, 1), with binding constraints with the
vertices in C(kmax, 0). In other words, those vertices that “force” the vertices in
C(kmax, 0) to take the kmax color:

𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑥𝑥, 1) = �𝑖𝑖 ∈ 𝑉𝑉 ∶ |𝑐𝑐(𝑖𝑖) − 𝑐𝑐(𝑗𝑗)| = 𝑑𝑑𝑖𝑖𝑖𝑖 , 𝑗𝑗 ∈ 𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 0)�.

The rationale behind this is that we should modify the color of the vertices in C(kmax,1)
to reduce the color of the vertices in C(kmax, 0). We could say that they are one step
apart. We proceed likewise to compute the vertices C(kmax, 2) that force the vertices in
C(kmax, 1) to have their color:

𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 2) = �𝑖𝑖 ∈ 𝑉𝑉 ∶ |𝑐𝑐(𝑖𝑖) − 𝑐𝑐(𝑗𝑗)| = 𝑑𝑑𝑖𝑖𝑖𝑖 , 𝑗𝑗 ∈ 𝐶𝐶(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 1)�.

Vertices in C(kmax, 2) are two steps apart from vertices in C(kmax, 0). Likewise we
compute C(kmax, k) for k=0, 1, 2,.., depth, where depth is a search parameter of the
ejection chain. We then proceed to modify the color of the vertices in these sets from

AMP for the Bandwidth Coloring Problem / 11

k=0 to depth. We assign a new color h to vertex i∈C(kmax, k) considering that the
vertices in C(kmax, k+1) have a dummy color (with value 0) and computing

ℎ = min �𝑐𝑐 ∈ ℤ ∶ |𝑐𝑐 − 𝑐𝑐(𝑗𝑗)| ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 ∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖) �,

which enables us to reduce the color of the vertices in C(kmax, k). In the final step the
method colors the vertices in C(kmax, depth). If it succeeds, we finally obtain a feasible
solution with kmax-1 colors and perform a new complete iteration to further reduce the
number of colors. In some cases we do not need to examine the entire C sets (from 0 to
depth) because after examining some of them we obtain a feasible solution. In this event
we stop at that point and resort to a new global iteration. Similarly, if a vertex
i∈C(kmax, k) re-colored during the ejection chain, also belongs to another C set
(i∈C(kmax, k+p) for some p) we stop the ejection chain process to avoid cycling. It is
worth mentioning that if we set a conservative value of depth (close to 10) the method
always stops because of these last two situations and therefore we do not need to adjust
this parameter. Thus the ejection chain works in practice as a reactive mechanism
terminated by its internal logic.

4.2 Tabu Search Methods
Malaguti and Toth (2007) recently proposed a short term tabu search, T1, for the BCP
based on partial solutions (in which not all the vertices are colored). In any global
iteration, T1 tries to obtain a solution with kmax colors. Given a constructed solution,
the method first un-colors the vertices with a color k > kmax; then it performs
successive steps to color these vertices. At any local iteration the method randomly
selects an uncolored vertex i and colors it with a color h∈ [1, kmax]. Then, it un-colors
all its adjacent vertices j violating the bandwidth constraint (i.e., c(j)=0 for all j in N(i):
|c(i)-c(j)| ≤ dij). Color h is selected to minimize the sum of edge weights incident with
uncolored vertices. The tabu status indicates that uncolored vertices cannot take the
same color they had for a certain number of consecutive iterations. When all the vertices
are colored, T1 reduces kmax by one unit and performs a new global iteration.

Now we will propose a tabu search improvement method, T2, based on LS2, the
ejection chain local search procedure. Specifically, we compute C(kmax, k) for k=0,
2,.., depth, (where depth is the parameter of the ejection chain) but introducing a short-
term memory design in which the identity of a vertex whose color has been changed is
the attribute used to impose a tabu restriction. Specifically, after a move is executed,
the colors of the vertices involved in the move are not allowed to change until the tabu
tenure expires. We employ a one-dimensional array tabu(i) initially set to zero, to store
the iteration number when vertex i loses its tabu status. That is, if vertex i changes
colors at iteration iter, then tabu(i)=iter+tenure, where tenure is the number of
iterations that vertex i is not allowed to change colors.

Note that although we can use the same tenure value for all vertices involved in the
move, an interesting variant is to use a different tenure value for different types of
vertices. In such a design, the tenure value for vertex i∈C(kmax, k) could be different
from the tenure value for vertex j∈C(kmax, k+1), because they have different roles in
the computation of the kmax value of the current solution. We have not implemented
this variant since preliminary experiments indicate that it significantly increases the
complexity in order to calibrate the additional search parameter.

AMP for the Bandwidth Coloring Problem / 12

5. Computational Experiments
This section describes the computational experiments that we have performed to first
test the efficiency of our different procedures and then compare them with a number of
methods from the literature. We have implemented the methods in Java SE 6 and all the
experiments were conducted on a Pentium 4 computer at 3 GHz with 2 GB of RAM.

We have employed the set GEOM with the instances reported in most of the previous
BCP papers. GEOM consists of 33 geometric graphs generated by Michael Trick (and
available at http://mat.gsia.cmu.edu/COLOR02/). In these graphs, points are generated
in a 10,000 by 10,000 grid and are connected by an edge if they are close enough
together. Edge weights are inversely proportional to the distance between nodes. This
set contains three types of graphs. The GEOMn instances are sparse, the GEOMa and
GEOMb instances are denser, where GEOMb requires fewer colors per node.

In each experiment we compute for each instance and each method the relative percent
deviation (Dev.) between the best solution value (Value) obtained with the method and
the best known value (BestValue) for that instance. Best known values were obtained
in Malaguti and Toth (2007) with extremely long running times of their evolutionary
method (with CPU times not reported in the paper but estimated in several hours). We
report the average of Dev. and Value across the 33 instances considered in each
particular experiment. For each method, we also report the number of instances (#Best)
for which the value of the solution obtained with this method is the best one in this
particular experiment (although it does not necessarily match BestValue) and the
average CPU in seconds (Time) that it consumes in each experiment.

bind_th β Dev. #Best Time
3 0.1 31.25 5 0.0012
3 0.2 33.14 4 0.0013
3 0.3 33.20 0 0.0015
4 0.1 31.19 3 0.0012
4 0.2 32.93 2 0.0014
4 0.3 34.06 2 0.0015
5 0.1 31.06 3 0.0017
5 0.2 32.05 3 0.0014
5 0.3 33.15 2 0.0015

Table 1. Preliminary experimentation for M1.

The preliminary experimentation was performed on 10 representative problem instances
with the goal of finding appropriate values for the key search parameters of M1 and C3.
We tested values for bind_th in the range [3, 5], β in [0.1, 0.3] and α in [0, 1]. The
results of running method M1 for 100 constructions are shown in Table 1. They
indicate that bind_th=5 and β=0.1 provide the best results for these methods. Hence,
we use these values to perform the rest of our experimentation.

AMP for the Bandwidth Coloring Problem / 13

α Dev. #Best Time
0.0 30.98 4 0.004
0.1 32.17 1 0.004
0.2 31.40 1 0.004
0.3 31.55 4 0.004
0.4 31.69 3 0.004
0.5 31.57 5 0.004
0.6 30.22 5 0.004
0.7 31.05 3 0.004
0.8 31.48 2 0.004
0.9 31.31 1 0.004
1.0 32.03 3 0.004
Table 2. Preliminary experimentation for C3.

Our second preliminary experiment tests different values for α in the GRASP
construction C3. Table 2 shows that there are no significant differences among the
results obtained with the different α values. Therefore, in the GRASP constructions C1,
C2 and C3 we will employ the strategy recommended in Resende et al. (2009)
consisting of randomly selecting an α value in each construction.

In our first final experiment we compare the two previous constructive methods, SEQ
(Lim et al. 2005) and DSATUR (Malaguti and Toth 2008), with our three memory-less
variants, C1, C2 and C3, and with the two memory-based methods, M1 and M2. We
run each method to generate 100 solutions for each of the 33 problems. Table 3 reports
the statistics Dev. and #Best described above for these seven methods. In addition, we
calculate the Rank statistic — proposed by Ribeiro, et al. (2002) — associated with each
method. For each instance, the n_rank of a method M is defined as the number of
methods that found a better solution than the one found by M. In the event of ties, all
the methods receive the same n_rank, equal to the number of methods strictly better
than all of them. The value of Rank is the sum of the n_rank values for all the instances
in the experiment, thus, the lower the Rank the better the method.

 Method Dev. #Best Rank Time
Previous SEQ 56.55 7 205 0.000
 DSATUR 47.75 2 174 0.077

 C1 25.65 27 56 0.030
Memory-less C2 49.18 1 182 0.075
 C3 25.69 25 55 0.002

Memory-based M1 26.25 22 64 0.046
 M2 35.69 1 127 0.002

Table 3. Constructive methods

AMP for the Bandwidth Coloring Problem / 14

Results in Table 3 clearly show that the new constructive methods outperform the
previous ones. In addition, all of them are extremely fast, and exhibit running times of
much less than 1 second. Moreover, methods C1, C3 and M1 give the best results from
among the seven methods tested.

 Method Dev. #Best Rank Time
Memory-less LS1 13.92 3 60 0.3
 LS2 14.51 1 71 0.9

Memory-based T1 13.86 2 61 14
 T2 13.83 3 63 25

Table 4. Improvement methods

Our second experiment is designed to isolate and compare the contribution of the
improvement methods. We therefore generate the initial solutions using a relatively
simple constructive method, SEQ, and apply the different improvement methods to
them. Table 4 reports the results obtained with the four improvement methods
described in Section 4: LS1, LS2, T1 and T2 when they were run for 100 constructions
+ improvements. After preliminary adjustment we set tenure=4 and maxIterations=50.

Figure 5. Search profile

Table 4 shows that memory-based methods perform slightly better than memory-less
methods, although they consume more CPU time. Comparing the results in this table
with the results of the constructive methods in Table 3 we observe that the improvement
methods reduce the average deviation by about 15% on average. We complement the
results shown in Table 4 with a comparison of the performance of the best improvement
methods, LS1 and T2, over time. These two methods were run for 500 seconds and the
best solution found was reported every 10 seconds. The results of this experiment are

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390
10.00%

11.00%

12.00%

13.00%

14.00%

15.00%

16.00%

17.00%

18.00%

19.00%

20.00%

LS1
T2

Time (seconds)

A
ve

ra
g

e
 D

e
v.

AMP for the Bandwidth Coloring Problem / 15

shown in Figure 5. It shows that LS1 is capable of obtaining good quality solutions
from the very beginning of the search (i.e., within the first 100 seconds). T2 requires
350 seconds to improve upon the solutions found by LS1 but it then maintains its lead
during the remaining execution time (although we do not depict in the diagram the last
100 seconds for the sake of clarity, both methods present flat profiles in that part).

We have also considered the evolution of LS2 and T2 in order to see the effect of the
memory structure. Figure 6 depicts the search profile of both methods. This figure
clearly shows that the addition of memory structures permits better solutions to be
obtained (compared with the memory-less variant of the same method) from the very
beginning of the search and, what is more important, the memory-less variant is unable
to improve the other method at any point.

Figure 6. Search profile

In the next experiment we combine the best constructive methods with the best
improvement methods. Specifically we combine C1, C3 and M1 with LS1, LS2 and T2
and run the 9 resulting methods for 1000 constructions + improvements. Table 5 shows
the results of this experiment.

 Method Dev. #Best Rank Time

 LS1 5.55 10 106 6
C1 LS2 4.95 16 56 3

 T2 4.89 17 53 3
 LS1 6.27 12 149 3

C3 LS2 4.08 29 25 2
 T2 4.03 30 24 3
 LS1 6.23 12 161 31

M1 LS2 5.04 17 65 6
 T2 5.25 16 92 6

Table 5. Construction + Improvement methods

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
8.00%

8.50%

9.00%

9.50%

10.00%

10.50%

11.00%

11.50%

12.00%

12.50%

13.00%

LS2
T2

Time (seconds)

Av
er

ag
e

D
ev

.

AMP for the Bandwidth Coloring Problem / 16

Table 5 shows that C3+T2 is the best combination of our constructive with
improvement methods since it obtains 30 best solutions, out of 33 instances, and 4.03%
deviation with respect to the best known solution. All of them are very fast since they
construct and improve 1000 solutions in a few seconds, with the exception of M1+LS1,
which consumes about half a minute on average.

We applied the Friedman test for paired samples to the best solutions obtained by each
method. This test computes, for each instance, the rank-value of each method according
to solution quality (where rank 1 is assigned to the best method and rank 9 to the worst
one). Then, it calculates the average rank values of each method across all the instances
solved. If the averages differ greatly, the associated p-value or significance will be
small. The resulting significance level of 0.000 obtained in this experiment clearly
indicates that there are statistically significant differences among the nine methods
tested. Specifically, the rank values produced by this test are C3+T2 (3.18), C3+LS2
(3.29), C1+T2 (4.71), M1+LS2 (4.76), C1+LS2 (4.83), M1+T2 (5.35), C1+LS1 (5.86),
C3+LS1 (6.38) and M1+LS1 (6.64). This confirms that among the procedures that we
tested, C3+T2 is the best to obtain the highest quality solutions.

In the final experiment we compare our best method with three previous methods
identified as the best. Specifically, we consider the following four methods:

 AMP : our best method, C3+T2
 DSATUR+T1: the constructive + improvement by Malaguti and Toth (2008)
 FCNS: the constraint propagation method by Prestwich (2002)
 Multi-start: the constructive + improvement by Lim et al. (2005)

We can see the results of this final experiment in Table 6. It is clear that our methods
are competitive with the state of the art methods for this problem. We also applied a
statistical test to the data used to generate Table 6.

Method Dev. #Best Rank Time
AMP 3.38 13 13 11.00
DSATUR +T1 5.88 9 50 18.42
FCNS 2.62 12 7 12.91
Multi-start 5.04 13 34 3.83

Table 6. Best Constructions + Improvement methods

Considering the deviations from the best solution known, the FCNS appears to the best
one. On the other hand, considering the number of best solutions, our AMP is ranked
first together with the Multi-start method. The Friedman test obtains a significance
level of 0.000 indicating that there are statistically significant differences among the
four methods tested. Specifically, the rank values produced by this test are FCNS
(1.97), AMP (2.17), Multi-start (2.76) and DSATUR+T1 (3.11). We can conclude that
the four methods considered are able to obtain high quality solutions for the bandwidth
coloring problem, where the FCNS appears to be the best, closely followed by our AMP
method.

AMP for the Bandwidth Coloring Problem / 17

6. Conclusions
The objective of our study has been to compare memory-based with memory-less
designs. We have developed heuristic procedures based on both the GRASP and the
tabu search methodologies to provide high quality solutions to the bandwidth coloring
problem. Unlike local search methodologies, memory structures have not been
extensively studied yet in the context of constructive methods. In this paper we have
proposed two constructive methods based on incorporating basic tabu search memory
structures, and three memory-less constructions based on GRASP methodology. These
five procedures have been coupled with an improving phase. We have also tested the
inclusion of memory (short-term structures) in the improvement phase. The final
procedures, labeled as Adaptive Memory Programming methods, are able to compete
with the state-of-the-art methods for the bandwidth coloring problem within short
computational times.

Our findings disclose the novel fact that memory appears to play a more important role
during the improvement phase than during the constructive phase of search. This effect
may be due to the fact that the repeated application of the constructive phase operates
primarily as a diversification process, and that more advanced memory-based
mechanisms, including statistical analysis as suggested in Glover and Laguna (1997),
may be needed to provide advantages for a combined construction/improvement
procedure. This issue provides an interesting area for future research.

Acknowledgments
The authors want to thank Prof. Fred Glover for his help with the AMP descriptions.
This research has been partially supported by the Ministerio de Educación y Ciencia of
Spain (TIN2006-02696) and by the Comunidad de Madrid—Universidad Rey Juan
Carlos project (CCG08-URJC/TIC-3731).

References
Brélaz, D. (1979) “New Methods to Color Vertices of a Graph”, Communications of the

ACM 22(4), 251-256.

Duarte, A. and R. Martí (2007) “Tabu Search for the Maximum Diversity Problem”,
European Journal of Operational Research 178, 71-84.

Fleurent, C. And F. Glover (1999) “Improved constructive multistart strategies for the
quadratic assignment problem using adaptive memory”, INFORMS Journal on
Computing 11(2), 198-204.

Garey, M.R. and D.S. Johnson (1979) Computers and Intractability. A guide to the
theory of completeness, W. H. Freeman and Company, New York.

Glover, F. (1996) Tabu Search and Adaptive Memory Programming - Advances,
Applications and Challenges, in: Interfaces in Computer Science and Operations
Research, Barr, Helgason and Kennington (eds.) Kluwer Academic Publishers, 1-75.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers, Boston.

Laguna, M. and R. Martí (1999) “GRASP and Path Relinking for 2-Layer Straight Line
Crossing Minimization”, INFORMS Journal on Computing, vol. 11, no. 1, pp. 44-52.

AMP for the Bandwidth Coloring Problem / 18

Laguna, M. and R. Martí (2003) “Scatter Search: Methodology and Implementations in
C”, Kluwer Academic Publishers, Boston.

Lim, A., Y. Zhu, Q. Lou and B. Rodrigues (2005) "Heuristic Methods for Graph
Coloring Problems," The 20th Annual ACM Symposium on Applied Computing (SAC
2005, Santa Fe, New Mexico) March 13-17.

Lin, S. and B. Kernighan (1973), An effective heuristic algorithm for the traveling
salesman problem, Operations Research 21, 498-516.

Malaguti, E. and P. Toth (2008) “An evolutionary approach for bandwidth
multicoloring problems”, European Journal of Operational Research 189, 638-651.

Martí, R., M. Laguna, F. Glover and V. Campos (2001) “Reducing the Bandwidth of a
Sparse Matrix with Tabu Search”, European Journal of Operational Research, 135
(2), 211-220.

Phan, V. and S. Skiena (2002) “Coloring graphs with a general heuristic search engine”
Computational symposium on graph coloring and its generalizations, Ithaca, NY, 92-
99.

Prestwich, S. (2002) “Constrained bandwidth multicoloration neighborhoods”
Computational symposium on graph coloring and its generalizations, Ithaca, NY,
126-133.

Resende, M., R. Martí, M. Gallego and A. Duarte (2009) “GRASP and Path Relinking
for the Max-Min Diversity Problem”, to appear in Computers and Operations
Research.

Resende, M.G.C. and C.C. Ribeiro (2003) “Greedy Randomized Adaptive Search
Procedures”, in Handbook of Metaheuristic, Kluwer Academic Publishers, 219–249.

Ribeiro, C. C., E. Uchoa and R. F. Werneck (2002) “A Hybrid GRASP with
Perturbations for the Steiner Problem in Graphs,” INFORMS Journal on Computing
14, 228 – 246.

Welsh, D. J. A. and M. B. Powell (1967) “An Upper Bound for the Chromatic Number
of a Graph and its Application to Timetabling Problems,” Comput. J., 10, 85-86.

