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Abstract 

A new algorithm for global optimization of costly nonlinear continuous problems is presented in this 
paper. The algorithm is based on the scatter search metaheuristic, which has recently proved to be 
efficient for solving combinatorial and nonlinear optimization problems. A kriging-based prediction 
method has been coupled to the main optimization routine in order to discard the evaluation of solutions 
that are not likely to provide high quality function values. This makes the algorithm suitable for the 
optimization of computationally costly problems, as is illustrated in its application to two benchmark 
problems and its comparison with other algorithms. 
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1. Introduction 
Many industrial and engineering problems can be formulated as optimization problems (Biegler and 
Grossmann 2004). These problems are often nonlinear and present dynamic behaviour due to their 
operating policies (i.e. batch or semi-batch operation) or to their inherent nonlinear dynamic nature (i.e. 
like in biotechnological processes, as reviewed by Banga et al. 2003). Further, in most real cases some 
specifications and/or constraints (which may also have nonlinear and/or dynamic nature) must be ensured. 
All these characteristics frequently result in non-convex problems, thus the use of global optimization 
methods becomes mandatory (Floudas et al. 2005). 
 
Another relevant feature of this kind of problem, which has been the subject of recent research, is the 
significant computation time required by each function evaluation. Indeed, due to the complexity of the 
mathematical models representing real processes, the simulation of a complex system can take from 
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minutes to hours in a standard workstation. Therefore, the use of some kind of surrogate model, which 
substitutes the original one with enough accuracy, may help to alleviate this problem. Surrogate models 
are cheaper to evaluate, so their use will result in reductions of the total computation times, making them 
affordable from the industrial point of view. The taxonomy of global optimization methods based on 
response surfaces by Jones (2001a) states the problem and presents different methodologies to solve it. 
The most promising techniques to date seem to be kriging (being the most popular implementation the 
EGO algorithm of Jones et al. 1998) and interpolation by radial basis functions (RBF’s; Gutmann 2001). 
 
In this contribution, we present a methodology for the global optimization of (possibly dynamic, non-
smooth) nonlinear problems with expensive evaluation. This methodology, and the associated software 
tool, SSKm (Scatter Search with Kriging for Matlab), is able to manage this class of problems by linking a 
scatter search method with a kriging interpolation. 
 
The metaheuristic known as scatter search (Laguna and Martí 2003) is an evolutionary method founded 
on the premise that systematic designs and methods for creating new solutions afford significant benefits 
beyond those derived from recourse to randomization.  This methodology has been successfully applied 
to a wide array of hard optimization problems. Our new procedure is an extension of a recent advanced 
design of this methodology (Egea et al. 2007) and treats the objective function as a black box, making the 
search algorithm context-independent. The kriging predictor implemented in SSKm avoids the evaluation 
of solution vectors that are likely to provide low quality function values, thus efficiently reducing the 
number of simulations needed to find the vicinity of the global solution. 
 
The paper is organised as follows: Sections 2 and 3 present brief views of the general scatter search and 
kriging methodology respectively. Section 4 presents our algorithm SSKm explaining in detail its features. 
In section 5 illustrative examples of the algorithm application are presented, one of them being a real 
application of operational design of a waste water treatment plant (WWTP) benchmark. The final section 
contains the conclusions of this study. 
 
 
2. Scatter Search 
Scatter search (SS) was first introduced in Glover (1977) as a heuristic for integer programming. SS 
consists of five elements that can be implemented in different degrees of sophistication. The basic design 
to implement SS is based on the “five-method template” (Laguna and Martí 2003): 
 
A Diversification Generation Method to generate a collection of diverse trial solutions within the search 

space. 
An Improvement Method to transform a trial solution into one or more enhanced trial solutions 
A Reference Set Update Method to build and maintain a reference set consisting of the b “best” solutions 

found (where the value of b is typically small e.g. no more than 20). Solutions gain membership to the 
reference set according to their quality or their diversity. 

A Subset Generation Method to operate on the reference set, to produce several subsets of its solutions as 
a basis for creating combined solutions. 

A Solution Combination Method to transform a given subset of solutions produced by the Subset 
Generation Method into one or more combined solution vectors. 

 
Figure 1 illustrates the main steps of the SS algorithm. The circles represent solutions and the darker 
circles represent improved solutions resulting from the application of the Improvement Method The 
algorithm starts (SS Initialization) with the creation of an initial set of solutions P generated with the 
Diversification Generation Method, and then extracts from it the reference set (Refset). The initial 
reference set is built according to the Reference Set Update Method, which takes the b/2 best solutions (as 
regards their quality in the problem solving) and the b/2 distinct and maximally diverse solutions from P 
to compose the Refset. Once the Refset has been built, its solutions are ordered according to quality. In 
this step, the Subset Generation Method creates sets of solutions in the Refset to be combined. In its 
simplest form, the Subset Generation Method generates all pairs of reference solutions. The sets of 
solutions in Refset are selected one at a time and the Solution Combination Method is applied to generate 
some trial solutions from each of those sets. These trial solutions are subjected to the Improvement 
Method. The Reference Set Update Method is applied once again to update the new Refset with the best 
solutions from the current Refset and the set of trial (possibly improved) solutions. 
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The SS Main Loop terminates after all the generated subsets are subjected to the Combination Method 
and none of the improved trial solutions are admitted to enter the Refset under the rules of the Reference 
Set Update Method. However, in advanced SS designs as this one shown in Figure 1, the Refset 
rebuilding is applied at this point keeping the best b/2 solutions in the Refset and selecting the other b/2 
from P. 
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Figure 1: Schematic representation of the SS design where the shaded circles represent solutions that have 
been subjected to the Improvement Method 

 
 
Of the five methods in SS methodology, only four are strictly required. The Improvement Method is 
usually needed if high quality outcomes are desired, but a SS procedure can be implemented without it as 
it occurs in some problems where the Improvement Method can not provide high quality solutions due to 
the problem’s nature or when the computation budget is limited to a small number of function 
evaluations. 
 
An advanced design of the SS methodology has recently been presented in Egea et al. (2007). Several 
strategies to surmount the problems arising in optimization problems from the biotechnological industry 
are implemented showing the flexibility of SS to be modified according to the difficulties of the problems 
to be solved. The algorithm presented in this paper is an extension of the method mentioned above, 
incorporating a kriging-based prediction mechanism. All these features are detailed in Section 4. 
 
 
3. Kriging 
The term kriging originates from geostatistics and the method was named and formalized by a French 
mathematician (Matheron 1963). Kriging can be defined as a probabilistic interpolation method to create 
cheap-to-evaluate surrogate models from scattered observations minimizing the expected squared 
prediction error subject to being unbiased and being linear in the observations (Jones 2001a). Many 
examples of  kriging implementations that illustrate its superiority over other interpolation methods can 
be found in the literature (see for example Cox and John 1997, Jones et al. 1998, Sasena et al. 2002). 
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Consider a real function f to be interpolated. Assume that f is a sample path of a second-order Gaussian 
random process denoted by F. Kriging computes the best linear unbiased predictor of F(x) using the 
observations of F on a set of points S={x1,…,xn}. Denote by FS the vector of observations (F(x1),…, 
F(xn))T. The Kriging predictor is a linear combination of the observations, which may be written as 
 

S
T FxxF )()(ˆ λ=  (1) 

 
with λ(x) a vector of coefficients λ1,…, λn. These coefficients are chosen to obtain the smallest variance 
of prediction error among all unbiased predictors. This leads to a constrained minimization problem, 
which can be solved by a Lagrangian formulation (Matheron 1969). The vector λ(x) can be computed as 
the solution of the system of linear equations 
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where K is the covariance matrix of the random vector FS, A is a matrix of known functions a1,…,aq 
(usually polynomials of low degree) evaluated at the points of S, k(x) is the covariance vector between 
F(x) and FS, a(x) is the vector of a1,…,aq evaluated at x, µ(x)is a vector of Lagrangian multipliers and 0 is 
a matrix of zeros. 
 
Knowing the kriging coefficients, the predicted value of f given fS = (f(x1,…,f(xn))T can be written as 
 

S
T fxxf )()(ˆ λ=  (3) 

 
The selection of a suitable covariance function is crucial for the success and accuracy of the kriging 
prediction. For this purpose, it is usual to choose a parameterized covariance model and to estimate its 
parameters based on the observations. 
 
The use of a stationary, isotropic covariance model with one parameter to adjust regularity makes it 
possible to model a large class of functions (Vazquez 2005). Here we use the Matérn covariance, with the 
following parameterization (Yaglom 1986, Stein 1999) 
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where h is the Euclidean distance between two points,  Kυ is the modified Bessel function of the second 
kind, υ controls the regularity, σ2 is the variance and ρ represents the range of the covariance. 
 
One of the advantages of kriging is that the variance of the prediction error at x can be computed even 
without any evaluation of f. This is one of the strongest points of this method compared to others: kriging 
provides a statistical framework that gives an idea of the uncertainty associated to each prediction. This 
also helps us to know which points are worth evaluating in different applications of the method (for 
example, in global optimization). 
 
Figure 2 shows the kriging prediction of the sine function in the interval [-10 10]. The solid line is the real 
function whereas the dotted line is the kriging prediction based on the observations (dark circles). For a 
point xi kriging provides a normal distribution function (dashed line). The mean of the distribution is the 
kriging prediction and the variance is also provided in the calculation process. With this distribution we 
can not only know which is the prediction in every point provided some observations but also the 
uncertainty associated to this prediction and thus the probability of finding a value lower than a threshold 
when evaluating the real function. 
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Figure 2: Kriging prediction for the function y = sin(x) from a set of sampling points. 

The Gaussian distribution for point xi provided by kriging is shown. 
 
In Figure 3, a 2-dimensional function, the six-hump camel-back function, is presented. The real function 
f(x1, x2) = 4x1

2 - 2.1x1
4 + x1

6/3 + x1x2 - 4x2
2 + 4x2

4 within the interval [-5 5] is plotted in Figure 3a. Figures 
3b, 3c and 3d plot the kriging prediction of the function in the same interval using n0 = 20, 50 and 100 
observations (i.e. real function evaluations) uniformly distributed in the same interval respectively. It can 
be observed that the larger number of observations, the higher accuracy in the prediction. 
 

Figure 3a: Six-hump camel-back function Figure 3b: Kriging prediction for n0 = 20 
 
 

Figure 3c: Kriging prediction for n0 = 50 Figure 3d: Kriging prediction for n0 = 100 
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4. SSKm Algorithm 
In this section we present the SSKm algorithm (Scatter Search with Kriging for Matlab) which is a Matlab 
implementation of our proposed methodology for global optimization of computationally expensive 
problems. The algorithm is a scatter search implementation based on the one presented in Egea et al. 
(2007) extended to include a kriging predictor in order to increase the efficiency of the search. Thus, it 
combines the power of scatter search for exploring different parts of the search space in order to locate 
the global optimum, with the prediction of kriging to avoid the evaluation of solutions which are not 
likely to provide good objective function values in terms of quality. 
 
There are a number of reasons that justify the combination of these two techniques. On the one hand, both 
of them have proved to be efficient in their respective fields (i.e. global optimization in the case of scatter 
search, and prediction in the case of kriging). On the other hand, kriging needs a careful selection of the 
points in which the prediction will be done, in order to avoid investing computational effort in calculating 
the kriging coefficients for points that will not be of interest. Scatter search operates on a set of solution 
vectors that evolve during the search process (new solutions replace old ones in the Refset). These 
solutions have by construction good objective function values, thus they are good candidates for the 
kriging prediction. 
 
The scatter search algorithm proposed in this paper extends several of the innovative mechanisms 
presented in Egea et al. (2007), such as: 

 Variable bounds with different orders of magnitude can be pointed out to generate solutions in 
all the orders of magnitude (in the initialization or rebuilding). This log-normalization may also 
help the prediction phase with kriging allowing a smoother correlation among variables. 

 Combinations are based on hyper-rectangles around the solutions to be combined. 
 The Refset update method takes into account a Euclidean distance to avoid duplication and 

clustering inside it. This Euclidean distance allows the method to replace other solutions in 
Refset different from the worst one as long as the distance is not violated. 

 A strategy based on orthogonality is used together with the classical one of maximum diversity 
in the Refset rebuilding. 

 No improvement method has been implemented since the purpose of the algorithm is to reduce 
as much as possible the number of function evaluations to locate the global optimum. 

 
A pseudo code of our algorithm is presented in Table 1. 
 
1. Generate diverse solutions 
2.  Form the first Refset and sort it by quality 
3. Compute the best observation, fbest 
4. Set variables estimation = 1, next_iter = 0 
5. while not termination criterion 
6.  while uncombined pair of solutions in the Refset 
7.   Generate solutions by combinations of pairs of solutions in the Refset 
8.   while not next_iter 
9.    if estimation 
10.     Estimate covariance parameters 
11.    Compute kriging prediction over generated solutions 
12.    Compute for each solution the probability of outperforming  fbest 
13.    if max(probabilites) > prob_min 
14.     Evaluate solution with the maximum probability 
15.     Add solution to observations 
16.     Update fbest 
17.     If diff(estimation, real value) < tol 
18.      estimate = 0 
19.     else 
20.      estimate = 1 
21.     do Refset replacement 
22.     Update uncombined pairs in the Refset 
23.     Delete evaluated solution from xc

24.     Check termination criterion 
25.    else 
26.     next_iter = 1 
27.   next_iter = 0 
28.   Sort Refset 
29.  Regenerate Refset and update the uncombined pairs in it 

Table 1. SSKm pseudo-code 
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4.1 Initialization 
SSKm starts by generating an initial set of solution vectors, P, to be evaluated, using a latin hypercube 
sampling. Users can choose the size of P having also the possibility of using their user-initial solution 
vectors (with their objective function values, if they are known, to avoid computing them). The balance 
between the size of P and the computational cost of the evaluation of this set is an open question. A large 
set may lead to good prior information and an accurate kriging surface but involves a high computation 
time for evaluating the initial set, whereas a small set is cheaper to evaluate but may not help the 
algorithm in the first iterations due to the lack of accuracy of the surface. For our algorithm we 
recommend a number of solution vectors in P, np, ten times higher than the size of the problem (i.e. the 
number of decision variables, n). 
 
Once every solution in P is evaluated, we apply the Refset Update Method for the first time to form the 
initial Refset by selecting the b/2 best solutions of P in terms of quality (b being the total number of 
solutions in Refset whose most typical value is 10). The other b/2 solutions are added to the Refset from 
the solutions remaining in P by maximizing their Euclidean distance with respect to the members already 
included in the Refset. That is, for each candidate solution x in P and each solution z in Refset, we 
calculate the Euclidean distance d(x,z) and then select the solution that maximizes dmin(x), where  
 

{ }),(min)(min zxdxd
z RefSet∈

=  (5) 

 
This criterion is applied in a sequential fashion.  At each step we add to Refset the solution that 
maximizes dmin(x), remove it from P, and then re-calculate the Euclidean distances.  Therefore, we add 
one solution at each step until the Refset has been completed (for b/2 steps). 
 
4.2 Subset Generation and Solution Combination Methods 
After the initialization, the Refset is sorted according to the quality of its solutions (i.e. the best solution is 
the first) and we apply the Subset Generation Method which, in our implementation, consists of selecting 
all pairs of solutions (not yet combined) in the Refset to combine them. The number of solutions created 
from each pair of solutions in the Refset depends on their position in the sorted Refset. These 
combinations are of the following three types, assuming that x' and x" are the solutions to be combined 
and that x' is superior in quality to x": 
 

 Type 1: c1 = x' – d1 
 Type 2: c2 = x' + d2 
 Type 3: c3 = x'' + d3 

 
where di = ri.·(x" - x')/2 with i = 1, 2, 3 or 4 depending on the number of solutions generated (see below); 
ri is a vector of dimension n with all its components being uniformly distributed random numbers in the 
interval [0 1]. The notation above indicates that the vectors are multiplied component by component, thus 
it is not a scalar product. The vector di has the following form: 
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Note that if both solutions, x’ and x", belong to the first b/2 elements of the sorted Refset, then 4 vectors 
are generated: one of type 1, one of type 3 and two of type 2 (where the second solution of type 2 is 
generated using d4 ≠ d2). If only x' belongs to the first b/2 elements of the sorted Refset, then 3 vectors are 
generated: one of each type.  Finally, if neither x" nor x' belong to the first b/2 elements of the sorted 
Refset, then 2 vectors are generated: one of type 2 and another one of type 1 or 3 (randomly chosen). 
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These vectors generated by combination of the Refset members will be named xc, c=1, 2,… nc, where nc is 
the total number of vectors generated by combination.  The parameter nc may change every iteration 
depending on the number of combinations made among Refset members given that the method avoids 
doing combinations with pairs of solutions already combined. 
 
4.3 Refset Update Method 
In a classical evolutionary algorithm every solution obtained from combination is evaluated. In our 
algorithm only some of them verifying certain conditions (see section 4.6) are evaluated. After the 
evaluation of the selected vectors xc, the Refset Update Method checks whether the replacement of any of 
the Refset members can be performed. The evaluated vector is compared with all solution vectors in 
Refset. If xc outperforms any of the solutions in the Refset in terms of quality, the replacement is carried 
out as long as a minimum diversity is accomplished (i.e. the method avoids vector duplication in the 
Refset by computing Euclidean distances among all solution vectors and excluding to enter the Refset 
solutions that violate a user-defined distance-threshold). In the case where the candidate vector to enter 
the Refset is better in terms of quality than more than one vector in Refset and it complies with the 
Euclidean distance to avoid duplications in every case, the replaced solution vector will be the worst in 
terms of quality. 
 
4.4 Refset Regeneration 
When all possible new combinations have been done and none of the generated vectors in xc can replace 
any of the vectors in the Refset, the SS procedure can either stop or continue by regenerating the Refset. 
The latter strategy is used in our algorithm. The worst g vectors in Refset (in terms of quality) are deleted. 
New diverse vectors are generated using the same strategy as in the initialization (i.e. latin hypercube 
sampling) and the Refset is refilled according to the diversity criterion of maximizing Euclidean distances 
performed in the first Refset formation. Normally g is equal to b/2 but in aggressive implementations it 
can be set to b-1 (i.e. all the solution vectors in the Refset except the best one are deleted). 
 
The strategy for regenerating the Refset introduced in Egea et al. (2007) has been implemented in SSKm, 
because the standard diversity criterion based on Euclidean distances described in subsection 4.1 does not 
ensure that the search will be performed along the "different dimensions" of the space. In our new 
strategy the vectors refilling the Refset are chosen to maximize the number of relative directions defined 
by them and the existing vectors in the Refset. 
 
After deleting the g worst solutions, the Refset is (b-g)×n dimensional. Let j=b-g be the number of 
existing vectors in the current Refset.  We introduce the new matrix M(j-1)×n containing the vectors that 
define the segments formed by the best vector in Refset and the rest of vectors in it. The (k-1)-th row of M 
is x1-xk, being x1 the best element not deleted in Refset in terms of quality, and xk (k = 2,…,j) the rest of 
the elements in it (note that the Refset is sorted according to quality). For every diverse vector created 
with the Diversification Generator Method, xv with v ∈ [1, 2,...,np] in the regeneration phase, a vector Qv 
of scalar products is also defined 
 

Tvv MxxQ ⋅−= )( 1  (7) 
 
where x1 is again the best not deleted element in Refset and MT is the transpose matrix of M. For every xv 
the maximum value of its vector Qv is computed as msp(xv). The solution s will join the Refset in the 
regeneration phase if 
 

{ }( ) min ( ) 1,2,...,v
pmsp s msp x v n⎡ ⎤= ∀ ∈⎣ ⎦  (8) 

 
At this stage, the value of j is increased one unit and the process continues until j = b. The application of 
this strategy results in a maximum diversity in search directions on the regenerated Refset. 
 
 
4.5 Covariance parameter estimation and kriging prediction 
After the initial sampling at the initialization (see Section 4.1), the kriging covariance parameters are 
estimated for the first time so that when the Solution Combination Method is applied, the kriging 
prediction provide information to proceed to the evaluation (or not) of the solutions in xc.  
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Assuming that the mean of F(x) is zero for the sake of simplicity, this parameter estimation can be done 
calculating the maximum-likelihood estimate of the vector of covariance parameters, φ, by minimizing 
the negative log-likelihood (Vechia 1998) that can be expressed as: 
 

s
T

s
o fKfKnl 1)(

2
1)(detlog

2
12log

2
)( −++= φφπφ  (9) 

 
with no being the number of observations, fs the observations and K(φ) the covariance evaluated with the 
set of parameters φ.  In the general case where the mean of F(x) is not zero, the covariance parameters can 
be estimated using other methods, as for example using Restricted Maximum Likelihood (Stein 1999). 
For the parameter estimation of the covariance parameters the Nelder and Mead method fminsearch 
implemented in the Matlab Optimization Toolbox was used. 
 
With the covariance parameters estimated the kriging prediction will be then performed over the set of 
created solutions xc. The predictor provides the value of the prediction (mean) and the uncertainty 
associated to it (variance). With these two values and assuming a Gaussian distribution, it is possible to 
calculate the probability for the point x to have a function value lower than the best observation 
registered. For each vector in xc that probability is calculated. If the maximum of those probabilities is 
higher than a value prob_min fixed by the user, the point having such probability is evaluated and added 
to the observations. 
 
Once the new evaluation has been done, the value of the best observation is updated and the parameters 
are only re-estimated if the value of the prediction and the real function value of the new observation 
differ in a percentage fixed also by the user. The process is repeated with the rest of the vectors remaining 
in xc up to the point where the maximum probability of improving the best observation is lower than 
prob_min. At that point we break the loop and start a new iteration with new combinations among the 
new pairs on the Refset not yet combined. 
 
The algorithm, based on the SS and the Kriging methodologies as described in the subsections above, has 
been implemented in Matlab. The method stops when any of the following conditions is accomplished. 
 

1. Maximum number of function evaluations achieved, 
2. Maximum computation time achieved, or 
3. Specified function value defined by the user achieved. 

 
 
5. Experimentation 
In this section some illustrative examples of the application of our algorithm are shown.  Specifically we 
consider two well-known benchmark problems to test the efficiency of our SSKm solution method: The 
six-hump camel-back function introduced in Section 3 and the proportional-integral controller tuning of a 
waste water treatment.  For the sake of comparison, we apply two traditional optimization algorithms, one 
deterministic, Direct (Jones 2001b), and one stochastic, Differential Evolution (DE, Storn and Price 
1997).  In the second example we consider a third method in the comparison: another surrogate-based 
method that uses radial basis function interpolation, rbfSolve, implemented in the Tomlab optimization 
toolbox for Matlab (Holmström and Edvall 2004). All the experiments were carried out on a PC Pentium-
IV 3.06 GHz using Matlab 6.5, Release 13, under Windows XP Pro. 
 
5.1 Six hump camel-back function 
The first example is the optimization of the six hump camel function already presented in Section 3. This 
function has several local minima and two global optima. For solving this problem we have applied our 
algorithm in the search space defined by the bounds [-3, -2] and [3, 2] by using an initial sampling of 20 
diverse points and calculating 80 extra points for a total number of 100 points. A total number of 100 
function evaluations were also fixed for both algorithms. 
 
Table 2 shows the values of the two global optima as well as the closest points to them achieved by each 
algorithm. Figure 4 presents the contour plots of the function and the 80 last points evaluated by each 
algorithm (represented as triangles). 
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 Solution vector Function value 
Global minimum #1 [-0.0898   0.7126] -1.0316 

C  losest point of Direct [0.0000    0.7407] -0.9905 
Closest point of DE [-0.0960   0.6695] -1.0168 

Closest po t of SSKm [-0.0798 3] -1.0312 in    0.712
   

Global minimum #2 [0.0898   -0.7126] -1.0316 
C  losest point of Direct [0.0000   -0.7407] -0.9905 

Closest point of DE [0.0881    0.5453] -0.7569 
Closest point of SSKm [0.0856   .7084] -1.0314 -0

 
 Table 2. Solutions for the optimization of the six hump camel function in 100 function evaluations 

 global minima 
hen they exist. This is a very interesting characteristic for robust optimization purposes. 

 

 
Table 2 and Figure 4 demonstrate the superiority of SSKm over the other two algorithms because it not 
only achieves the best function values but also locates most of the evaluations in the vicinity of both 
global minima, whereas the other methods present a bigger dispersion on their evaluations. This shows 
the power of SSKm not only for locating one global minimum but also for locating several
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  Figure 4.  Contour plot of the six hump camel function with the evaluations done by: top left: Direct, top right: DE, bottom: SSKm

 

iled in the following website: http://www.ensic.u-

 
5.2 PI tuning of a costly waste water treatment plant 
The next example of SSKm application is a challenging design problem consisting of the Proportional-
Integral (PI) controller tuning of a computationally costly waste water treatment (WWT) plant. This 
model is formed by more than 150 ODE’s and is deta
nancy.fr/COSTWWTP/Benchmark/Benchmark1.htm  
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The model is costly because every function evaluation (or simulation) takes more than 2 minutes in a P-
IV 3 GHz processor. This means that an optimization procedure can take days. For this reason, the use of 
surrogate model-based optimization algorithms is important for this problem. The plant, depicted in 
Figure 5, consists of five bioreactors (named ASU in the figure, which stands for Activated Sludge Unit) 
in which aqueous pollutants will be degraded by the actions of a microbial population (activated sludge). 
There are different parts in the plant. First there is an anoxic section (with lack of oxygen) in which 
denitrification takes place. Nitrates are reduced to gaseous nitrogen. The following part is an aerated area 
in which oxygen is introduced to help the microorganisms degrade the organic and nitrogenated 
compounds. Apart from oxidizing organic matter, nitrification takes part in this part of the plant. Since 
nitrates are being created, a recycling stream is necessary in the anoxic zone for the denitrification 
reaction. At the end of the plant there is clarifier in which the activated sludge is separated from the 
“clean” water. Part of this sludge is recirculated to the plant and the rest is thrown for disposal. 
 
The control strategy consists of 2 PI controllers to control the nitrogen level in the second reactor by 
manipulating the internal recycle from the fifth to the first reactor, and the oxygen level in the fifth reactor 
by manipulating its aeration factor. Perturbations are introduced by means of different weather conditions. 
Different scenarios are considered (e.g. dry, rainy and stormy weather, see Copp 2001 for details) to 
choose the controller parameters that optimize the plant performance. 
 
The objective function of this problem is a weighted sum of the Integral Squared Error (ISE) of both 
controllers for rainy weather although the study can be generalized to any kind of weather conditions (or 
their combinations) by introducing input data for such conditions available in the benchmark. Since this 
can be considered as a costly problem, it is a good candidate to be solved by a surrogate model-based 
method like SSKm. 
 

 
Figure 5. WWT plant layout 

 
The problem dimension is four: the gain and the integral time of each controller. The bounds were 
selected taking into account the nominal values for the parameters given by the benchmark authors. The 
objective function was normalized so that its value using the parameters provided by default is 1. We 
want to demonstrate that using optimization techniques we can find better values in shorter times than 
using traditional PI tuning techniques, especially if we use surrogate model-based methods. 
 
A maximum number of 400 function evaluations were fixed for all cases and the same initial point x0 was 
used (except for Direct, which does not accept user initial points). Since SSKm and rbfSolve use an initial 
sampling phase to build the initial surrogate surface and to avoid bias, the same set of 42 initial points (41 
points plus x0) was used for both methods. 
 
Convergence curves for the four methods are shown in Figure 6. It is clear that the two methods based on 
surrogate models achieve very good function values in a lower number of function evaluations than the 
other two. SSKm presents a slightly better convergence rate than rbfSolve. In the four cases 400 function 
evaluations (which translated in computation time means around 14 hours in our workstation) are enough 
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to improve the normalized value of 1 that results in the application of the parameters presented by default 
in the benchmark. These results show the successful application of optimization techniques for this 
problem and specially demonstrate that surrogate based-model algorithms outperform classical 
optimization algorithms for solving costly problems.  
 
In table 2 bounds of the problem, initial point used, default parameters provided in the benchmark and 
final results of the optimization algorithms are presented, as well as their respective function values. 
  
 

 x1 x2 x3 x4 Function 
value 

Lower bound 1.000·102 7.000·10-4 1.000·102 1.000·10-2 13.5234 
Upper bound 1.000·103 7.000·10-1 5.000·104 1.000·100 100.2156 

Nominal value 5.000·102 1.000·10-3 1.500·104 5.000·10-2 0.9985 
x0 7.506·102 5.069·10-1 2.783·104 9.323·10-2 35.9098 

Final result Direct 9.722·102 5.017·10-3 2.259·104 2.833·10-2 0.6523 
Final result DE 7.126·102 7.000·10-4 2.389·104 5.482·10-2 0.7077 

Final result rbfSolve 4.202·102 7.000·10-4 2.019·104 2.660·10-2 0.5313 
Final result SSKm 5.828·102 7.613·10-4 1.753·104 2.280·10-2 0.5314 

 
Table 3. Data and results for the WWT plant PI tuning problem 
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Figure 6. Convergence curves for the different optimization algorithms in the WWT plant PI Tuning 

 
 
Conclusions and future work 
In this paper a new global optimization algorithm for computationally costly problems has been 
presented. The algorithm is based on a synergistic approach combining the metaheuristic scatter search 
with the kriging interpolation technique. The evolutionary part of the algorithm provides efficient points 
for prediction and due to the statistical values provided by kriging, the method is able to filter low quality 
solutions. This allows a reduction in the number of function evaluations of the real model, making the 
algorithm suitable for solving computationally costly optimization problems. The capabilities and 
applicability of this new method have been illustrated with a challenging case study considering the 
integrated design and control of a waste water treatment plant. 
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Future research will be focused on the tuning of some parameters of the method, such as the minimum 
probability of improving the best observation demanded for evaluating a solution vector and the need of 
estimating the covariance parameters more or less often. The use of a dynamic Euclidean distance for 
avoiding duplication in Refset members may also be a key point of the algorithm. At present, a fixed 
distance is chosen by the user but a dynamic distance (larger at the beginning and smaller at the end of the 
optimization) may be more efficient, as well as its extension not only to Refset update phase but also to 
avoid function evaluation of solution vectors very close to others already evaluated. 
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Figure 1: Schematic representation of a basic SS design. Shaded circles represent solutions that have been subjected to the 

Improvement Method 
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Figure 2: Kriging prediction for the function y = sin(x) from a set of sampling points. The Gaussian distribution for point xi provided 

by kriging is shown. 
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Figure 3a: Six-hump camel-back function Figure 3b: Kriging prediction for no = 20 

Figure 3c: Kriging prediction for no = 50 Figure 3d: Kriging prediction for no = 100 
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Figures 4.  Contour plot of the six hump camel function with the evaluations done by: top left: Direct, top right: DE, bottom: SSKm 
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Figure 5. WWT plant layout 
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Figure 6. Convergence curves for the different optimization algorithms in the WWT plant PI Tuning 
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