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Abstract

The min–max edge crossing problem (MMECP) is a challenging and impor-

tant problem arising in integrated-circuit design, information visualization,

and software engineering. Drawing edges as straight lines in accordance with

the hierarchical graph drawing standard, the goal is to reduce the maxi-

mum number of edge crossings in graphs. In this study, we propose a fast

path relinking (FPR) method based on dynamic-programming local search

to tackle the MMECP, where an efficient neighborhood reduction mechanism

is employed to evaluate only the so-called critical vertices instead of all the

vertices. Moreover, the proposed FPR can simultaneously manage a num-

ber of neighborhood moves at each search iteration, which is significantly

different from all the previous approaches based on one neighborhood in the

literature. Extensive computational experiments on MMECP instances show

that our proposed FPR approach is relatively competitive compared to the

best-performing heuristics and the optimization Gurobi solver. In particular,

our algorithm improved the best-known solutions for 104 of the 301 publicly

available benchmark instances. Additional experiments were conducted to
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elucidate the key elements and search parameters of the proposed FPR. Fur-

thermore, we made the source code of the algorithm publicly available to

facilitate its use in real applications and future research.

Keywords: Metaheuristics; min–max edge crossing; graph drawing;

dynamic programming; path relinking.

1. Introduction

The rise of big data has created a demand for effective data visualization

techniques to analyze and present complex networks and knowledge-based

systems. Graphs have now become a widely adopted model for representing

this information, and are considered as a standard approach for facilitating

data analysis and presentation. The crossing minimization problem in graphs

has attracted considerable attention owing to its applicability and complexity.

Particularly, the problem in layered graphs received considerable attention

after the seminal work of Sugiyama et al. (1981). The authors developed a

framework suggesting that any directed acyclic graph can be transformed into

a layered structure, and many of the methods developed for layered graphs

are relevant to more general graphs. The crossing minimization problem

basically entails ordering the vertices in each layer (where they are arranged)

to minimize the total number of intersections or crossings between edges in

a graph layout.

Research on the problem in bipartite graphs has been ongoing for over

40 years, beginning with the introduction of the relative degree algorithm in

Carpano’s work in 1980 (Carpano, 1980). Initially, simple ordering princi-

ples were used as the basis for heuristics to quickly find solutions of accept-

able quality, as both academics and practitioners sought practical solutions.

However, recent advances in optimization have led to the development of

more complex methods in both exact and heuristic domains (Mart́ı, 1998;

Battista et al., 1998; Chimani et al., 2011; Peng et al., 2020a; Zehavi, 2022).
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Sugiyama’s method (1981) represents graphs with the layered standard,

and permits the application of crossing minimization algorithms to any given

graph to improve its readability. This method first assigns vertices to layers

(arranging nodes on parallel lines). Then, it orders the vertices in each

layer for edge-crossing minimization. Finally, the method assigns vertices

to specific locations within their respective layers to reduce the length and

curvature of long edges. This limits the overall length of edges, resulting in

a more compact and visually appealing graph representation.

In this research, we focus on an important application problem in VLSI

circuit design (Bhatt and Leighton, 1984). The presence of a large number of

wire crossings is an unfavorable aspect of the VLSI layout. More specifically,

when all crossing wires carry the same signal concurrently, the wires crossed

by many other wires are easily affected by crosstalk, which compromises the

circuit performance. In contrast, when a network has a low number of wire

crossings, it also requires fewer contact cuts, resulting in better signal quali-

ty. To ensure optimal performance, it is essential to minimize the number of

crossings for each edge, rather than solely focusing on reducing the overall

number of crossings. This application inspired a previous study (Stallmann,

2012) that proposed a heuristic method for minimizing the maximum num-

ber of intersections between edges. In addition, the graph drawing problem

has a wide variety of applications in a lot of fields, e.g., network managemen-

t (Kriegel et al., 2008), decision diagrams (Mateescu et al., 2008), bioinfor-

matics (Lemons et al., 2011), software engineering (Burch et al., 2012), and

database modeling (Hu et al., 2016).

Population-based metaheuristic methods (such as evolutionary or memet-

ic algorithms) typically handle a large number of high-quality individuals to

diversify the search process. Although these methods can generate high-

quality solutions to address various optimization problems, they are often

time-consuming, requiring intricate mechanisms to manage a large number

3



of individuals. On the other hand, one-solution-based search algorithms,

such as local search, have a simple structure but converge too fast, making it

easy to fall into local optima. To address these limitations, two-solution

meta-heuristic algorithms have gained attention in recent years, demon-

strating competitive performance in several classic combinatorial optimiza-

tion problems such as graph coloring (Moalic and Gondran, 2018), flexible

job shop scheduling (Ding et al., 2019), and satellite broadcast scheduling

(Peng et al., 2020b).

In this study, we explore a fast path-relinking (FPR) method based on two

solutions for the min–max edge crossing problem (MMECP). Path relinking

was originally proposed as a search strategy in the tabu search methodol-

ogy (Glover et al., 2021), and was adapted to the GRASP methodology by

Laguna and Mart́ı (1999) to solve a graph drawing problem. In their imple-

mentation, solutions generated via the greedy randomized adaptive search

procedure (GRASP) were relayed to an improvement system by employ-

ing path relinking from these solutions to the elite solutions identified so

far. Notably, the novelty of our proposal lies in the number of individuals

that achieve the crossover or relink, and thus it can be a guide to research

based on the two-individual method for permutation problems on graph-

s. Furthermore, in the traditional search procedure (such as classic local

search or tabu search), we usually select only one neighborhood move to op-

erate. In this study, taking into account the independence of moves between

layers, we propose a dynamic programming mechanism embedded into the

local search phase to accelerate the search process by selecting several neigh-

borhood moves simultaneously. We will show that the complete algorithm

achieves a reasonable trade-off between diversification and intensification, as

demonstrated in our extensive experiments.

The main contributions of this study include:

• A fast path-relinking method to tackle the graph drawing problem by
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managing only two individuals to achieve a better balance between

solution quality and search efficiency.

• A dynamic programming–based local search to simultaneously manage

several neighborhood moves in different layers at each iteration, which

is significantly different from all the previous approaches based on one

neighborhood in the literature.

• A neighborhood reduction strategy that only evaluates the critical ver-

tices instead of all the vertices in the neighborhood to enhance the

search process. We present a mathematical proposition to justify the

proposed neighborhood structure.

• Extensive experimentation on public benchmark instances to compare

the proposed method with the best-performing heuristics and the op-

timization solver, Gurobi. In particular, the FPR algorithm improved

the best-known solutions for 104 of the 301 benchmark problem in-

stances.

It should be noted that this study transcends the application of a solv-

ing method to a specific problem. The search strategies and optimization

methods in the proposed fast path relinking and dynamic-programming lo-

cal search are quite general and can provide new references for other graph

drawing and permutation problems.

The remainder of this paper is organized as follows. Section 2 presents

the MMECP problem and previous methods. Section 3 describes the F-

PR method. Section 4 presents the computational results and comparisons

with state-of-the-art algorithms in literature. The effectiveness of several im-

portant components of the proposed method is discussed in Section 5, and

concluding observations are summarized in Section 6.
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2. Problem Description and Previous Methods

Crossing minimization is a well-known problem in graph drawing, as it

takes place widely in various fields, such as VLSI circuit design (Bhatt and Leighton,

1984), information visualization (Herman et al., 2000), and software engi-

neering (Latoza and Myers, 2011). In this study, we focus on an impor-

tant variant, the min–max edge crossing problem (MMECP) proposed by

Stallmann (2012), which seeks to minimize the maximum number of edge

crossings in a hierarchical graph.

To describe the MMECP more precisely, we first denote a hierarchical

graph as G = (V ,E,L,K), where V , E, and K are, respectively, the set of

vertices, edges, and the number of layers. For a hierarchical graph, the vertex

set V is partitioned into mutually disjoint subsets, where each subset rep-

resents one layer. Edges only exist between two consecutive vertex subsets,

which also means that there are no edges that connect vertices in nonadjacent

layers. In addition, the function L(u) denotes the index of the layer where

each vertex u ∈ V resides by a mapping V → {1, . . . , K}. A configuration

(drawing) of G is defined as S = (ω1, ω2, ..., ωK). Each ωk denotes the permu-

tation of vertex set in the kth layer. Let ψ(v) be the function that describes

the position of vertex v from its residing layer such that if v = ωk[j], then

ψ(v) = j. Subsequently, an edge crossing is generated between edges (u, v)

and (p, q), where vertices u and p are located in layer k, and vertices v and

q are located in layer k + 1, precisely when the symbol cuvpq takes a value of

1, as shown below:

cuvpq =

1, if((ψ(u) < ψ(p)) ∧ (ψ(v) > ψ(q)) or (ψ(u) > ψ(p)) ∧ (ψ(v) < ψ(q)));

0, otherwise;

(1)

where vertices u, p ∈ Vk (i.e., the vertex set in kth layer) and v, q ∈ Vk+1

(i.e., the vertex set in (k + 1)th layer) for the layers k = 1, . . . , K − 1.
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In addition, we denote by C(e) the number of edges in E that cross with

edge e. Then, the objective of MMECP is to find a drawing S such that

f(S) = max{C(e) : e ∈ E} is minimized. Figure 1 shows two drawings

Fig. 1. Initial (top) and optimal (bottom) drawing of a Rome graph.

(i.e., solutions) of a five-layered graph for the MMECP (where the layers are

arranged as parallel vertical lines or columns and the nodes are located in

these columns). The maximum number of edge crossings in the first drawing

(top) in Figure 1 is equal to 3, since edges (3,9) and (4,6) have this maximum

number of crossings. The second drawing (bottom) in Figure 1 is optimized

from the first drawing by relocating nodes to suitable positions, resulting in

0 edge crossings. To emphasize the significance of MMECP, we present an

example in Figure 2 where the min-max objective is improved as the total

sum objective increases. Specifically, the maximum number of edge crossings

in the left drawing is 2, compared to 1 in the right drawing. In terms of the
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Fig. 2. Two drawings of a graph.

sum of edge crossings, the left drawing has 2, while the right drawing has 3.

As mentioned in the Introduction, the MMECP was first introduced by

Stallmann (2012), who proposed a heuristic called the maximum-crossings

edge (MCE) to solve this graph crossing problem. The MCE heuristic is

based on the shifting heuristic presented by Matuszewski et al. (1999), with

results generally superior to those of other heuristics based on the so-called

barycenter method.

Mart́ı et al. (2018) investigated the adaptation of the greedy randomized

adaptive search procedure (GRASP) and strategic oscillation (SO) methods

for solving this problem. In particular, the authors focused on the effect of

the balance between randomization and greediness by employing a multi-

start heuristic search method to solve this problem.

Pastore et al. (2020) proposed a tabu search method by implementing

two memory structures, short-term and long-term, in the search process.

The reported computational results demonstrated the excellent performance

of their proposed method, and also revealed that CPLEX can only solve

instances with small size and low density.

Recently, Wu et al. (2021) presented a variable depth neighborhood search

algorithm to address the MMECP. Their method takes advantage of an effi-

cient neighborhood search strategy based on a so-called ejection chain scheme

to produce superior outcomes.

8



Despite these recent research developments on this problem mentioned

above, the optimal solution has not yet been found for most instances of this

difficult NP-hard optimization problem. To obtain high-quality solutions in

the short computational times required by graph drawing systems, we have

to apply complex metaheuristics. Currently, this problem is a challenge to

test solving methodologies, which motivated this study to explore whether

path relinking implemented as a two-solution search method can compete

with these previous proposals within short time horizons.

3. Path relinking method

Path relinking (PR) is a technique proposed to essentially combine inten-

sification and diversification in the search process (Glover et al., 2021). This

method finds new solutions by following paths that connect high-quality so-

lutions in the search space, starting from one solution and moving towards

another one. To this end, elements or attributes in the final solution are

added to the initial solution to obtain an intermediate solution in the path.

Laguna and Mart́ı (1999) adapted PR to GRASP, opening its application

to any other method. In this adaptation, relinking involves creating a path

between two GRASP solutions.

3.1. General scheme

The proposed FPR algorithm is a hybrid method that integrates iterated

local search and path relinking. It utilizes a dynamic-programming local

search to intensify the search within a certain region of the solution space

and then applies an adaptive perturbation mechanism and relinking operator

to transition to a new search region upon reaching a local optimum.

Specifically, FPR consists of three major components: the InitialSolution

phase to produce a random initial solution, the local search based on dynamic

programming (DPLS) to optimize the current solution, and the Relinking
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operator to generate a combined solution (sometimes referred to as offspring

in the literature on evolutionary methods).

Algorithm 1: The fast path-relinking method for MMECP
1: Input: Graph G; Large number of iterations li;

2: Output: The best solution Sbest found so far

3: S1, S2 ← InitialSolution(G), Sbest ← SaveBest(S1, S2)

4: while the maximum computing time Tmax is not reached do

5: Sp
1 ← S1, S

p
2 ← S2

6: Sc
1 ← Relinking(S1, S2), Sc

2 ← Relinking(S2, Sbest)

7: Sc
1 ← DPLS(Sc

1, li), S
c
2 ← DPLS(Sc

2, li)

8: Sbest ← SaveBest(Sc
1, S

c
2, Sbest)

9: if Sc
1 is close to Sc

2 or ( Sc
1 and Sc

2 are close to Sp
1 and Sp

2 , respectively) then

10: S1 ← Sbest, S2 ← InitialSolution(G)

11: else

12: S1 ← Sc
1, S2 ← Sc

2

13: end if

14: end while

15: return Sbest

A pictorial representation of one cycle of the algorithmic framework is

given in Fig. 3, followed by a formal description of the algorithm in Algorithm

1. Starting from two initial solutions S1 and S2 generated by the procedure

InitialSolution, with the best solution of S1 and S2 saved as Sbest (line 3 in

Algorithm 1), the algorithm then alternates between two main procedures,

DPLS and Relinking, until a pre-specified value Tmax on the computing

time has elapsed. In each generation of the iterative procedure, Sp
1 and Sp

2

first save the values of two individuals to later evaluate whether the search

process can continue to improve the incumbent solutions.

Subsequently, two offspring solutions Sc
1 and S

c
2 are generated by the dedi-

cated Relinking procedure. More precisely, the first Relinking part connects

the two incumbent solutions S1 and S2 to generate a new solution Sc
1, where-

as the second Relinking part connects S2 and the best found solution Sbest

(line 6). Next, FPR applies DPLS with a large number of iterations (li)

to attempt to improve the two generated solutions Sc
1 and Sc

2 (line 7). The

10



best solution in the current iteration Sbest is updated if Sc
1 or Sc

2 is better

than Sbest (line 8). As soon as Sc
1 is ‘close’ to Sc

2 (i.e., the maximum crossing

Fig. 3. Diagram of FPR.

value of Sc
1 is equal to that of Sc

2) or Sc
1 and Sc

2 are close to the previous-

ly saved solutions Sp
1 and Sp

2 , respectively, both S1 and S2 are replaced by

the best found solution Sbest and a new random initial solution generated by

InitialSolution, respectively, to ensure the intensification and diversification

of the search (lines 9−10). Note that comparing the structures of two solu-

tions to define their similarity is ideal but time-consuming. Therefore, here

we adopt an approximate approach based on the objective function values

to assess the similarity of solutions. In some special cases, specifically when

there are two different solutions with the same objective function values, the
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reconstruction process will also replace them (line 10). Finally, the best so-

lution, Sbest, is returned (line 15). The components of the proposed FPR

method for the MMECP are described in the following subsections.

3.2. Solution space and evaluation function

Since the MMECP is a permutation problem, any m-layer permutation

of n vertices is a feasible solution. Thus, the search space to be explored

using the proposed method can be defined as follows:

Ω = {(ω1, ω2, . . . , ωK) : |ωi| = ni, 1 ≤ i ≤ K}, (2)

where ωi and |ωi| denote the permutation and the number of vertices in

layer i, respectively. Thus, the size of the search space is equal to
K∏
i=1

ni!,

where ni denotes the number of vertices in layer i. Given the min–max

objective function, there are many solutions with the same objective value.

As is well documented in heuristic-optimization literature, the objective value

hardly represents the significant difference between different solutions with

the same value (i.e., the maximum number of edge crossings); therefore, it is

not a good indicator to guide the search. To distinguish solutions with the

same objective value, Pastore et al. (2020) employed a δ-evaluation function

based on a complex calculation expression. Because their strategy produced

a very effective technique of exploring the search space, we now propose an

alternative expression based on a relatively simple function to evaluate the

solution S:

h(S) = f(S) ∗ |V |+mcn(S), (3)

where f(S) denotes the objective value, i.e., the maximum crossing number

of the edges for solution S in the graph, and mcn(S) denotes the number of

maximum-crossing edges (i.e., the edges with the maximum crossing num-

ber) for solution S in the graph. Therefore, we can distinguish numerous
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similar valued solutions, i.e., those with the same objective function but d-

ifferent solution structures, by combining the number of maximum crossing

edges with the original objective values (i.e., the maximum number of edge

crossings) as the evaluation function in Formula 3.

3.3. Initial solution process

In this study, the proposed FPR algorithm produces an initial solution

by randomly generating a permutation of the vertices in each layer. This

random solution is then improved by the dynamic programming–based local

search.

3.4. Dynamic programming–based local search phase

The local search procedure based on dynamic programming expedites

the search process by selecting several neighborhood moves simultaneously

at each iteration.

This procedure is presented in Algorithm 2, which can be described as

follows: It first initializes variables, i.e., the best found solution S∗, the pre-

vious solution Sp, the perturbation strength ζ, and the number of iterations

θ (lines 1–4). Next, the dynamic programming–based local search mechanis-

m and the adaptive perturbation mechanism iteratively alternate until the

stopping criterion is met (i.e., the maximum number of iterations θ reach-

es the maximum threshold Θ) (lines 5–23). Specifically, several iterations

are first performed to improve the current solution S by selecting a set of

neighborhood moves according to the dynamic-programming mechanism un-

til there are no better neighboring solutions (lines 6–11). At each iteration,

the algorithm first constructs the critical-edge set Ec(S), the critical-vertex

set Vc(S), and the critical vertex–based neighborhood move set Mc(S) for

the incumbent solution S according to Equations (5–7). Then, the algorithm

improves the current solution based on the chosen neighborhood move set

NMS in different layers according to the dynamic-programming mechanism
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described in Equations (8–11). Afterwards, the algorithm attempts to evalu-

ate the search state to update the best solution S∗, the number of iterations

θ, and the perturbation strength ζ. If the search escapes the previous local

optimum, the algorithm decreases the perturbation strength (lines 16–17).

Otherwise, the algorithm increases the perturbation strength (lines 18–20).

After determining the perturbation strength, the algorithm uses the pertur-

bation operator to generate a new solution in a distinct region of the search

space while preserving the previous solution using the symbol Sp (lines 21–

22). Finally, the algorithm returns the best solution S∗ as the final output

(line 24). The specifics of the dynamic programming–based local search are

provided in the following subsections.

3.4.1. Neighborhood move set

The approach proposed by Mart́ı et al. (2018) for moving between solu-

tions in the search space of MMECP involves considering nearby positions

of the barycenter of the selected vertex, whereas the tabu search method de-

veloped by Pastore et al. (2020) evaluates non-tabu vertices in the layer that

have an edge with a crossing count exceeding or equal to a predefined thresh-

old. In addition, the recent best-performing method proposed by Wu et al.

(2021) employed a variable depth neighborhood search algorithm based on

swap moves. Our FPR method employs only the insertion move based on

critical vertices, which are the endpoints of the maximum crossing edges and

the edges crossing them. Specifically, the Insert(v, u) move can be defined

by removing vertex v from its current position in the solution S and insert-

ing it at the previous position of vertex u if it precedes v, or in the posterior

position of u if v precedes u. The neighborhood move creates a total of nk -

1 (1 ≤ k ≤ K) possible candidate positions (i.e., solutions) for each vertex.

Figure 4 presents an example in which the Insert(v1,1, v1,2) move re-inserts

vertex v1,1 below v1,2.
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Algorithm 2: The dynamic programming–based local search procedure
Input: Current solution S; Maximum number of iterations (Θ)

Output: Best found solution (S∗) in current procedure

1 S∗ ← S;

2 Sp ← S ;

3 ζ ← ζmin /* ζ records the perturbation strength */ ;

4 θ ← 0 /* θ denotes the number of iterations */ ;

5 while The maximum number of iterations Θ is not reached, i.e., θ < Θ do

// Dynamical programming based local search procedure

6 repeat

7 S
′ ← S ;

8 [Ec(S), Vc(S),Mc(S)] ← ConstructNeighborhoodTriple(S) /* Equations (5–7)*/;

9 NMS(S) ← DynamicProgrammingSelectMoveSet(S,Mc(S)) /* Equations (8–10)*/ ;

10 S ← S ⊕ NMS(S) /* Equation 11*/ ;

11 until The generated solution S is not better than the saved solution S
′
(i.e., h(S) >= h(S

′
));

// Update the best solution S∗ found in current local search phase,

re-initialize perturbation strength if the new best solution is found

12 if S is better than S∗ then

13 S∗ ← S ;

14 ζ ← ζmin ;

15 end

// Dynamically determine the perturbation strength ζ

16 if S is better than Sp then

// Search escaped from the previous local optimum, decrement perturbation

strength

17 ζ ← Max(ζ/2, ζmin) ;

18 else if S is not better than Sp and ζ < ζmax then

// Search returned to the previous local optimum, increment perturbation

strength

19 ζ ← Min(ζ ∗ 2, ζmax) ;

20 end

21 Sp ← S, θ ← θ + 1;

// Adaptive Perturbation Procedure

22 S ← AdaptivePerturbation(S∗, ζ) ;

23 end

24 return S∗
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To explore the solution space more efficiently, we propose a neighborhood

reduction strategy that evaluates only the so-called critical vertices, defined

as follows. Specifically, we first compute the set of edges with the maximum

crossing number Em, denoted by

Em = {(io, jo) ∈ E : C(io, jo) = max
(i,j)∈E

{C(i, j)}. (4)

Candidate list strategies have been extensively used in local search meth-

ods, such as tabu search, to reduce the size of the neighborhood (Glover et

al., 2021). It is usually more efficient to define a large neighborhood and

then reduce it to explore only the most promising solutions, as opposed to

directly defining a small neighborhood.

Definition 1 (Critical-edge set Ec). The critical edges include the

maximum crossing edges and the edges crossing these in the graph. These

edges are called critical edges because they determine the value of the objec-

tive function in the graph, which can be written as

Ec = Em ∪ {(io, jo) ∈ E : ciojoi1j1 = 1 or ci1j1iojo = 1; (i1, j1) ∈ Em}. (5)

Definition 2 (Critical-vertex set Vc). We call the vertex incident with

the critical edges the critical vertex, which is given as follows:

Vc = {io ∈ V : (io, j) ∈ Ec; j ∈ V }. (6)

To efficiently explore the solution space, we propose a neighborhood reduc-

tion strategy based on the critical vertices according to the following propo-

sition:

Proposition 1. If an insertion move based on any two vertices (e.g., Insert(u, v))

can improve the current solution (e.g., S) in terms of the evaluative function

(h(S)) or objective value (f(S)), then at least one of these two vertices (u

and v) is a critical vertex.
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Proof. 1. Without loss of generality, we assume that a basic insertion

move based on two vertices can improve the current solution by reduc-

ing the crossing number of at least one maximum crossing edge (e.g.,

(p1, q1)). Here, we call these two vertices for the insertion move as

insertion vertices. Then, there exists at least an edge (e.g., (p2, q2))

previously crossing with edge (p1, q1) that becomes non-crossing after

the insertion move, thereby reducing the crossing value. In other words,

cp1q1p2q2 = 1 becomes cp1q1p2q2 = 0 after the insertion move.

2. The relative positions of vertices p1 and p2 (or vertices q1 and q2) in

the same layer have to change since the previous crossing edge (p2, q2)

becomes non-crossing to (p1, q1) after the insertion move. In other

words, the formula (ψ(p1)− ψ(p2)) ∗ (ψ
′
(p1)− ψ

′
(p2)) < 0 or (ψ(q1)−

ψ(q2)) ∗ (ψ
′
(q1) − ψ

′
(q2)) < 0 holds, where the function ψ

′
(v) denotes

the new position of vertex v after the insertion move. Then, at least

one of vertices p1 and p2 (or vertices q1 and q2) is an insertion vertex.

3. Owing to the maximum crossing edge (p1, q1), all these four vertices

(i.e., p1, q1, p2, and q2) are critical vertices according to Definition

2. Thus, at least one of the critical vertices is an insertion vertex

according to the second point of this proof above, which also means

that, at least one of insertion vertices is a critical vertex. Clearly, the

original proposition is true.

Definition 3 (Critical vertex–based neighborhood moveMc). The

proposed critical vertex–based neighborhood move considers only the first

better solutions with respect to the current solution after moving the critical

vertices upwards (or downwards) to the near position by satisfying the first
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improvement rule, which can be expressed as follows:

Mc(u) = {Insert(u, v) : h(S ′
) < h(S); S

′
= S ⊕ Insert(u, v);

u ∈ Vc(S), v = arg min
L(v)=L(u)

(|ψ(u)− ψ(v)|)}.
(7)

Here, Vc(S) denotes all the critical vertices of solution S, and ψ(u) and

ψ(u) represent the positions of vertices u and v, respectively. The operator

⊕ represents the application of the move operator to the current solution,

resulting in a new solution. For instance, S ⊕ Insert(u, v) implies that a

vertex u is selected and inserted at the position of vertex v in solution S.

Clearly, at most, one neighborhood move should be chosen for each criti-

cal vertex (e.g., Mc(u)), while there exist several critical vertex–based neigh-

borhood moves for one solution (e.g., Mc(S)). It is worth noting that the

neighborhood moves on vertices in the first layer will not affect the neighbor-

hood moves on vertices in nonadjacent layers (e.g., the third layer). Thus,

there exist some independent neighborhood moves in different layers, which

means that we can select a set of these independent moves to execute in

one iteration to shorten the improvement process, which can be presented as

follows:

Definition 4 (Neighborhood move set NMS in different layers).

NMS = {Mc(ux) : x ∈ {1, . . . , K};∀1 ≤ i < j ≤ K, |L(ui)− L(uj)| > 1},
(8)

where vertices u1, u2, . . . , ux (x ≤ K) are critical vertices located in different

layers.

To identify a good set of moves in different layers in one iteration for

MMECP, we apply a dynamic-programming mechanism inspired by the dy-

nasearch method for the single scheduling problem (Congram et al., 2002).

We first denote δ(i) as the minimum incremental (or changing) value of the

evaluation function (i.e., h(S)) after one neighborhood move for all critical
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vertices in layer i or 0 if all the moves in layer i cannot improve the current

solution. The symbol δ(i) can be defined according to the following equation:

δ(i) = min
∀u∈Vc,L(u)=i

{(h(S ⊕Mc(u))− h(S)), 0}. (9)

Let us evaluate the example in Figure 4, where 15 vertices are located in five

Fig. 4. An example with multiple moves (i.e., Insert(v1,1, v1,2),

Insert(v3,2, v3,3), and Insert(v5,2, v5,3)).

layers. The objective function of the current solution is equal to 1 because

there are eight edges with one crossing. As shown in Figure 4, δ (1) takes

the value of -2, which denotes the minimum incremental value of h based on

the move Insert(v1,1, v1,2) in the first layer, since the number of maximum

crossing edges can decrease the value in two units. Similarly, δ (3) takes the

value of -4, which denotes the minimum incremental value of the evaluation

function based on the move Insert(v3,2, v3,3) in layer 3, since the number of

maximum crossing edges can decrease the value of 4.

Evidently, the δ value evaluates only the best neighborhood move within

a layer. To evaluate the move gain based on neighborhood moves among
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different layers, we define ∆(i) as the minimum incremental (or changing)

value of the evaluation function (i.e., h(S)) based on the multiple moves

between layers 1 and i.

As presented in Figure 4, ∆(3) denotes the minimum incremental evaluation-

function value (i.e., -6) after applying multiple moves (i.e., Insert(v1,1, v1,2),

Insert(v3,2, v3,3)) from layer 1 to layer 3, since the evaluation function (i.e.,

h(S)) increases -6 or decreases 6, which means that six previous crossing edges

(i.e., (v1,1, v2,2), (v1,2, v2,1),(v2,1, v3,3), (v2,3, v3,2),(v3,2, v4,3), and (v3,3, v4,2)) be-

come non-crossing after performing the multiple moves from layer 1 to layer

3.

For the border case, ∆(1) denotes the minimum incremental value of

the evaluation function after conducting the neighborhood move in the first

layer, which is clearly equal to δ(1). As shown in Figure 4, ∆(1) is equal

to -2 since the value of the evaluation function would decrease 2 when the

move Insert(v1,1, v1,2) is performed in the first layer. The symbol ∆(K) (e.g.,

∆(5) in Figure 4) denotes the incremental value of the evaluation function of

the best multiple moves for all the layers. Since the neighborhood moves in

nonadjacent layers are independent, we can calculate ∆(i) using the following

equation:

∆(i) = min{∆(i− 1),∆(i− 2) + δ(i)}, (10)

which implies that the best incremental value of the evaluation function from

layer 1 to layer i is equal to either that from layer 1 to layer i−1, or that from

layer 1 to layer i−2 plus the minimum incremental evaluation-function value

δ(i) in layer i. In the border case, ∆(0) is equal to zero. The time complexity

for computing the move gain δ(i) of a layer is O(n2
i ∗m2), where ni denotes

the number of vertices in the ith layer, and m denotes the average degree

of one vertex in graph, since the neighborhood moves should be evaluated

based on two vertices in the same layer. Thus, the time complexity required

20



to compute the move gain ∆(K) of multiple layers is O(
K∑
i=1

n2
i ∗m2) because

the ∆ value must traverse all the layers.

Let us review the complete process presented in Figure 4. First, we can

obtain the values of δ in five layers, where δ(1) to δ(5) are equal to -2, -2, -4,

-4, and -2, respectively. According to Equation 10, we can then easily obtain

the value of ∆(5) equal to -8, which means that we can choose vertices v1,1,

v3,2, and v5,2 to move downwards together after the neighborhood evaluation;

the number of maximum crossing edges can decrease the value of 8. However,

if we applied the traditional evaluation strategy reported in the literature,

we would typically select the best neighborhood move to operate. There are

two best neighborhood moves (i.e., Insert(v3,2, v3,3) and Insert(v4,2, v4,3)); in

this case, it is difficult to justify which one is better. In particular, the search

falls into the local-optimum trap if we select the latter neighborhood move

to insert vertex v4,2 to v4,3 downwards. Hence, this example demonstrates

the proposed dynamic-programming mechanism as well as the advantage of

the proposed strategy in neighborhood search procedure.

Therefore, based on the proposed dynamic-programming mechanism, we

can select the set of multiple neighborhood moves after each neighborhood

evaluation. Finally, the evaluation value of the new solution after the neigh-

borhood moves can be expressed as follows:

h(S ⊕NMS(S)) = h(S) + ∆(K). (11)

Note that the evaluation value of the new solution after the moves is recal-

culated if the number of maximum crossing edges (i.e., mcn) decreases to

0.

3.5. Adaptive perturbation mechanism

The approach used in this study involves an adaptive perturbation mech-

anism that adjusts the intensity of perturbations according to the state of
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Algorithm 3: Adaptive perturbation procedure
Input: Current solution S, perturbation strength ζ depending on the state of search in

Algorithm 2

Output: New solution Sc obtained from perturbation

1 Sc ← S ;

// Destruction part

2 for i ∈ {1, . . . , ζ} do
3 Randomly choose a vertex ui of solution Sc, delete it from the incumbent solution Sc;

4 end

// Reconstruction part

5 for i ∈ {1, . . . , ζ} do
6 Randomly re-insert the removed vertex ui into the incumbent solution Sc ;

7 end

8 return Sc

the search. This allows the proposed algorithm to escape local optima and

explore new regions of the solution space.

As presented in Algorithm 2, the adaptive method determines the per-

turbation strength ζ, which here is equal to the number of chosen vertices.

If the current solution S is better than the previous solution Sp, the pertur-

bation strength is decreased by decreasing the value of ζ/2. Meanwhile, if

the current solution S is not better than the previous solution Sp, the per-

turbation strength is increased by increasing the value of ζ*2. In particular,

we re-initialize the perturbation strength to the minimum strength ζmin if a

new best solution is found. In general, the perturbation procedure presented

in Algorithm 3 comprises two parts—i.e., the destruction part (lines 2–4)

and reconstruction part (lines 5–7)—by randomly removing selected vertices

from the current solution and reinserting them into the incumbent solution.

Overall, the strength of the adaptive perturbation phase is determined by the

parameter ζ, which means that a higher value of ζ results in a more powerful

perturbation.
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3.6. The relinking operator

The relinking operator is applied to obtain a high-quality solution by

exploring the trajectories connecting two such solutions, namely, the initial

solution and the guiding solution. The objective is to find a promising solu-

tion from a sequence of newly generated solutions.

Algorithm 4: Relinking operator
Input: Initial solution SI , Guiding solution SG

Output: The offspring solution SO

1 Sr ← SI , SO ← SI ;

2 for k ∈ 1, . . . ,K do

3 Randomly choose a layer that has never been selected to relink, the number of which can be

denoted by i;

4 Select the permutation ωG
i of the vertices of layer i in the guiding solution SG;

5 Replace the permutation ωr
i of the vertices of layer i in the intermediate solution Sr with

the previously chosen permutation ωG
i , (i.e., Sr ← {ωr

1 , . . . , ω
G
i , . . . , ωr

K});
6 Sr′ ← Sr;

7 S
′ ← DPLS(Sr′ , si);

8 if h(S
′
) < h(SO) then

9 SO ← S
′
;

10 end

11 end

12 return SO

Our relinking operator is similar to the operator introduced in Napoletano et al.

(2019), as each move generated by the relinking operator involves replacing

an entire layer of the current solution with a layer of the guiding solution.

The operator introduced in Napoletano et al. (2019) greedily selects the best

layer, while the proposed operator in this study randomly selects it, intro-

ducing randomness and diversification to the search.

Algorithm 4 outlines the steps involved in the relinking procedure pro-

posed. Specifically, we first let SI be the initiating solution, and SG be the

guiding solution. The proposed operator then iteratively produces interme-

diate solutions between SI and SG using a sequence of layer-based operations
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(lines 3–5). More precisely, we iteratively replace the permutation of one ran-

domly chosen layer in an intermediate solution with the permutation of the

corresponding layer in the guiding solution. To obtain a local optimum after

obtaining an intermediate solution (as described in Algorithm 1), a weak

local optimization method can be used (e.g., DPLS with a small number of

iterations, si, as outlined in lines 6–7). It is worth noting that this approach

differs from the strong local optimization method (e.g., DPLS with a large

number of iterations, li) used in Algorithm 1. The reason is that the weak

one tends to find a promising solution area with a moderate computational

effort, whereas the strong one aims to obtain better local optima. Note that

the intermediate solution Sr should not be modified inside DPLS in line 7;

accordingly, we must use an intermediate symbol Sr′ to connote its value in

line 6. Then, in the next iteration of the cycle, the statement in line 5 is

executed on the previous Sr. Subsequently, we refresh the offspring solution

if the obtained local optimum is better than the saved current offspring solu-

tion SO (lines 8–10). After K iterations, the method terminates and returns

the offspring solution SO (line 12).

4. Computational Results

The performance of the proposed FPR was evaluated through a series

of computational experiments, which are reported in this section. The ex-

periments were designed to comprehensively assess the effectiveness of the

proposed method.

4.1. Benchmark instances and experimental protocols

Consistent with earlier studies (Stallmann, 2012; Mart́ı et al., 2018; Pastore et al.,

2020; Wu et al., 2021), four instance sets were used in the experiments. The

total number of vertices, arcs, layers and instances in each set are present-

ed in Table 1. All these instances were created using Stallmann’s generator
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(Stallmann, 2012).

Table 1: Attribute of instances in Rome, North, Connect, and Uniform.

Instance set Vertices Arcs Layers Number

Rome [12, 102] [12, 115] [5, 19] 88

North [30, 533] [29, 603] [2, 39] 58

Connect 1000 [2000, 5000] [25, 100] 95

Uniform [60, 1000] [587, 9958] [3, 50] 60

The FPR algorithm was implemented in C++ on a PC running Windows

10 with an Intel Core i5-8300H CPU (2.30GHz) and 8GB RAM. Several

reference heuristics and an optimization solver were used to evaluate the

performance of FPR through comparisons, as shown below.

• Maximum crossing edge (MCE) heuristic proposed by Stallmann (2012).

• Strategic oscillation (SO) proposed by Mart́ı et al. (2018).

• Tabu search (TS) proposed by Pastore et al. (2020).

• Variable depth neighborhood search (VDNS) proposed by Wu et al.

(2021)

• The optimization Gurobi solver based on mathematical programming

formulation.

As noted by Wu et al. (2021), the above methods were implemented (or

re-implemented) on a PC with a 2.9GHz Intel Core i7 CPU. For a fair com-

parison, we assumed a linear relationship between CPU speed and frequen-

cy, as has been done in related studies (Peng et al., 2020a; Sun et al., 2022;

Goudet et al., 2022; Wei and Hao, 2023). Thus, the CPU speed tested on

our computer was slower than that in the previous study by Wu et al. (2021)

owing to the smaller CPU frequency. Furthermore, we conducted 10 separate

iterations of FPR on each problem instance, with a maximum time limit of
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60 seconds per iteration, which is in line with the CPU times utilized by

the current best-performing methods, specifically VDNS, MCE, and TS, as

previously mentioned. Because the executable file of the SO does not imple-

ment multiple runs, we set the time limit of a single run to 600 seconds. For

Gurobi, the time limit was set to 15 minutes. To facilitate future research

and real applications, we made the benchmark instances and the source code

of the proposed FPR method publicly available on the github repository 1.

4.2. Parameter tuning

Table 2: Parameter setting in FPR.

Parameter Description Candidate values Final value

si DPLS with a small number of iterations to select

promising solutions in relinking operator

(5, 10, 20) 20

li DPLS with a large number of iterations to improve

the incumbent solution

(20, 40, 60) 40

ζmin Minimal perturbation strength (1, 2, 4) 2

ζmax Maximal perturbation strength (K,K ∗ 3, |V |/3) K ∗ 3

Table 2 presents the parameter setting for FPR. The parameters si,

li, ζmin, and ζmax were set using Iterated F-race (IRACE) (Birattari et al.,

2010). Tuning was performed on 12 representative training instances from the

four instance sets (i.e., Rome, North, Connected, and Uniform). IRACE

needs a restricted range of input values for each parameter, chosen from the

“Candidate values” column in Table 2. The candidate values of parameters

to be selected were established from empirical judgments and extensive ex-

perimental tests. IRACE was allocated a total time budget of 100 runs of

FPR, and each run was assigned a time limit of 60 seconds per instance. The

optimal parameter settings recommended by IRACE are presented in Table

2 and are denoted by the Final value.

1https://github.com/283224262/MMECP
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4.3. Comparisons with the state-of-the-art algorithms

In the experiments with the proposed FPR algorithm, we employed 301

benchmark instances including four sets (i.e., Rome, North, Connected, and

Uniform). Each instance was tested ten times using the four algorithms

(MCE, TS, VDNS, and FPR) with a time limit of 60 seconds per run. The

SO algorithm was run once on each instance for a total of 600 seconds.

Similarly, Gurobi was run once on each instance, with a maximum time limit

of 15 minutes. The results of four previous heuristics (i.e., MCE, SO, TS,

and VDNS) and Gurobi were obtained from Wu et al. (2021); we ran the

proposed FPR with the same run settings in line with the previous studies.

Table 3 reports the summary results of our FPR and the reference algo-

rithms on all four instance sets. We first use fbest and favg to denote the best

and average objective-function values of each compared algorithm for each

test instance, respectively, which also correspond to the first two columns

presented in Tables A1 to A11. In Table 3, the first columns Fbest and Favg

present the average values of fbest and favg, respectively, for each algorith-

m on the instance set. Column #Min reports the number of instances for

which the minimum objective value among all the algorithms can be ob-

tained. Column DEV provides the average value of dev for each instance

set.

We can observe from Table 3 that the FPR method achieves the best

results among the compared algorithms in each instance set. Only Gurobi

can match the results of our FPR, but with significantly longer run times.

More precisely, compared with the best-performing algorithm VDNS, FPR

can obtain the best solutions for 283 out of 301 instances, whereas VDNS

can obtain best results for only 152 instances. In addition, FPR finds better

results than VDNS in terms of Fbest (68.53 vs. 69.73 ) and Favg (69.68 vs.

71.50). The non-parametric Friedman test (p− value < 2.2e-16) shows that

FPR and other reference algorithms are fundamentally different in terms of
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best results for all benchmark instances.

Table 3: Performance of FPR in comparison with the reference algorithms

(i.e., MCE, SO, TS, VDNS, and Gurobi) on all the benchmark instances.

Algorithm Fbest Favg #Min DEV p-value

Rome: small-size (12 ≤ |V | ≤ 102)

Gurobi 0.94 – 88 – NA

MCE 1.18 1.44 68 0.21 7.744e-6

SO 1.01 – 82 – 1.43e-2

TS 1.77 2.03 34 0.19 2.005e-13

VDNS 1.27 1.91 60 0.53 1.213e-7

FPR 0.94 0.98 88 0.05

North: medium-size (30 ≤ |V | ≤ 533)

Gurobi 2.86 – 50 – 5.78e-2

MCE 2.55 2.68 37 0.14 9.617e-5

SO 3.12 – 43 – 1.08e-4

TS 3.62 3.95 21 0.23 1.181e-9

VDNS 2.26 2.87 40 0.47 1.75e-3

FPR 1.95 2.05 54 0.08

Connected: large-size (|V | = 1000)

MCE 108.92 112.9 1 2.4 <2.2e-16

SO 125.72 – 0 – < 2.2e-16

TS 113.78 115.56 0 0.93 <2.2e-16

VDNS 82.31 85.42 44 2.13 9.367e-6

FPR 81.31 83.9 88 1.73

Uniform: (60 ≤ |V | ≤ 1000)

MCE 230.2 232.39 0 1.36 9.486e-15

SO 232.38 – 0 – 9.486e-15

TS 225.73 228.06 0 1.3 9.486e-15

VDNS 215.47 217.88 7 1.67 3.335e-13

FPR 211.8 213.31 60 1.14

#Total (301 instances)

MCE 81.10 82.89 107 1.12 < 2.2e-16

SO 86.90 – 125 – < 2.2e-16

TS 82.12 83.29 55 0.65 < 2.2e-16

VDNS 69.73 71.50 152 1.23 < 2.2e-16

FPR 68.53 69.68 283 0.8

From the remaining tables (i.e., Tables A7 to A11), for both the medium-

size (North) and small-size (Rome) instance sets, our FPR performs slightly

better than the best-performing algorithm, VDNS, because both algorithms
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can obtain optimal solutions for most instances in North and Rome. Overall,

the proposed FPR can improve the best results for 104 of the total 301

instances.

In addition, we summarize the best and average performances of the

compared methods in Figure 5, where the x-axis indicates 11 instance sets

presented from Tables A1 to A11, and the y-axis denotes the gap in percent-

age relative to the best-known result for each instance. The gap is defined as

Gap(f) = (f − fBK) ∗ 100/fBK , where fBK denotes the updated best-known

objective value, and f represents the objective value of the current solution

obtained by the compared algorithms. Clearly, we can see from Figure 5 that

in most cases, the FPR algorithm can capture the best results for both fbest

and favg metrics. In summary, the experimental results reported above clear-

ly show that the proposed FPR algorithm is highly competitive compared to

state-of-the-art methods.

5. Analysis and Discussions

5.1. Effectiveness of the dynamic programming–based local search mechanism

In Section 3.4, we proposed a dynamic-programming mechanism to select

multiple neighborhood moves simultaneously after each neighborhood evalu-

ation. To evaluate the effectiveness of this dynamic-programming technique,

we ran computational experiments to compare the performance of the FPR

algorithm integrated with this mechanism to that of its variant without the

dynamic-programming mechanism (FPRNDP) on all instances. More pre-

cisely, the variant FPRNDP selects only the best neighborhood move instead

of a set of neighborhood moves each time in the neighborhood search phase,

while keeping other FPR components unaltered.

The computational results are presented in Table 4. Column #Best re-

ports the number of instances from which the best objective value among
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Fig. 5. Best and average performance of the compared algorithms tested on

each instance set reported in Tables A1-A11, with each set corresponding to

a table.
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Table 4: Performance of FPR in comparison with the variant without dy-

namic programming mechanism (i.e., FPRNDP) on all the benchmark in-

stances.

Algorithm Fbest Favg #Best DEV p-value

Rome: small-size (12 ≤ |V | ≤ 102)

FPRNDP 0.95 0.99 87 0.05 3.17e-1

FPR 0.94 0.98 88 0.05

North: medium-size (30 ≤ |V | ≤ 533)

FPRNDP 2.08 2.25 50 0.14 4.68e-3

FPR 1.95 2.05 58 0.08

Connected: large-size (|V | = 1000)

FPRNDP 81.42 84.11 55 1.84 9.82e-3

FPR 81.31 83.9 75 1.73

Uniform: (60 ≤ |V | ≤ 1000)

FPRNDP 212.02 214.96 43 1.16 3.53e-1

FPR 211.8 213.31 48 1.14

#Total (301 instances)

FPRNDP 68.64 69.96 235 0.89 5.94e-4

FPR 68.53 69.68 269 0.8

all the algorithms can be obtained. One can observe that FPR clearly out-

performs FPRNDP in terms of both the best and average results (i.e., 68.53

vs. 68.64 and 69.68 vs. 69.96, respectively). In addition, FPR can obtain

better results than FPRNDP for a greater number of instances (i.e., 269 vs.

235). Although the p-values from the non-parametric Friedman test on cer-

tain instance sets (i.e., Rome and Uniform) do not permit the rejection of

the null hypothesis, the p-value for the entire dataset indicates a significant

difference between FPR and FPRNDP.

Furthermore, we conducted another experiment to analyze the ratio of the

number of neighborhood moves with different sizes, as illustrated in Figure

6. Here, the x-axis denotes the number of layers for test instances, and

the y-axis indicates the ratio of moves with different sizes. As shown in

Figure 6, two, three, and four moves shown in the legend denote, respectively,

two, three, and four neighborhood moves chosen to operate each time after
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Fig. 6. The ratio of the number of neighborhood moves with different sizes.

neighborhood evaluation. In addition, ≥ 5 moves implies that more than

four neighborhood moves are chosen each time. We can observe from Figure

6 that although the use of two moves or more is not as frequent for small

cases (e.g., the use ratio of two moves is less than 10% for the instances with

three layers), they greatly enhance the search procedure, as verified in the

previous experiment (Tables A1–A11 and Table 2). Moreover, for the cases

with a larger number of layers (more than 40 layers), two or more moves

account for approximately (or more than) half of the rate. In other words,

with the increase in the size of instances (i.e., the increase in the number

of layers), the ratio of use of two moves or more noticeably increased. All

the experimental results presented here demonstrate the importance of the

proposed dynamic-programming strategy for selecting multiple neighborhood

moves concurrently.
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5.2. Importance of two-individual–based path-relinking framework

To study the impact of the proposed fast path-relinking framework based

on two individuals, we compared the proposed full-featured FPR algorithm

with a traditional path-relinking mechanism that manages multiple solutions

(MPR) and an iterative dynamic programming–based local search managing

one solution (IDPLS).

The MPR variant of the algorithm is initialized using the InitialSolution

procedure proposed in Section 3.3 and manages p individuals. It alternates

between the dynamic programming–based local search, the relinking oper-

ator, and the updating mechanism. The updating mechanism replaces the

worst individual in the set with the new offspring individual obtained if the

latter is of better quality, depending on the evaluation function presented

in Equation 3. The dynamic programming–based local search phase and

relinking operator are the same as those in the FPR algorithm. We empir-

ically set the size of p to 5. For the IDPLS, we iteratively ran the dynamic

programming–based local search until the time limit was reached.

Table 5 summarizes the computational results obtained in terms of the

best and average objective values for FPR, IDPLS, and MPR, indicating

that FPR yielded the best results (i.e., 68.53, 69.68, and 261) with regard

to all indicators (i.e., Fbest, Favg, and #Best, respectively) for all benchmark

instances.

Furthermore, the gap in the algorithm performance between IDPLS and

FPR gradually increased as the size of the instances increased. Specifically,

the value of IDPLS in terms of #Best is close to that of FPR (85 vs. 88) for

the small-size instance set (Rome), while the #Best value of IDPLS gradually

deteriorated in comparison with that of FPR (49 vs. 56 and 29 vs. 78) for the

medium-size (North) and large-size (Connected) instance sets, respectively.

The experimental results confirm that IDPLS yields a strong intensity of

search for small-sized instances but easily falls into premature convergence for
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Table 5: Comparison between FPR and the reference algorithms (i.e., ID-

PLS and MPR) on the all the benchmark instances.

Algorithm Fbest Favg #Best DEV p-value

Rome: small-size (12 ≤ |V | ≤ 102)

IDPLS 0.98 1.00 85 0.03 8.33e-1

MPR 0.94 0.98 88 0.05 NA

FPR 0.94 0.98 88 0.05

North: medium-size (30 ≤ |V | ≤ 533)

IDPLS 2.09 2.21 49 0.12 4.68e-3

MPR 1.93 2.00 57 0.08 5.63e-1

FPR 1.95 2.05 56 0.08

Connected: large-size (|V | = 1000)

IDPLS 83.09 84.59 29 1.54 1.088e-10

MPR 82.14 84.26 46 1.51 8.176e-5

FPR 81.31 83.9 78 1.73

Uniform: (60 ≤ |V | ≤ 1000)

IDPLS 212.13 213.01 36 0.93 2.74e-1

MPR 212.28 213.82 29 0.96 7.66e-3

FPR 211.8 213.31 39 1.14

#Total (301 instances)

IDPLS 69.20 69.88 199 0.74 7.098e-11

MPR 68.89 69.89 220 0.76 4.899e-6

FPR 68.53 69.68 261 0.8

medium and large instances. When combined with two distinct frameworks,

the FPR algorithm can outperform MPR integrated with multiple distinct

frameworks. MPR and FPR reach the same performance on the Rome set,

and MPR even performs slightly better than FPR on the North set. However,

for all the benchmark instances, the FPR algorithm completely outperforms

MPR (i.e., 68.53 vs. 68.89, 69.68 vs. 69.89, and 261 vs. 220) in terms of each

indicator (i.e., Fbest, Favg, and #Best). In addition, the p-values from the

non-parametric Friedman test on some instance sets (i.e., Rome, North, and

Uniform) do not permit the rejection of the null hypothesis, but the p-value

for the entire dataset clearly indicates a significant difference between FPR

and MPR (IDPLS).

All these outcomes confirm that FPR achieves a good trade-off between

search intensification and diversification, which clearly contributes to obtain-
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ing high-quality results.

6. Conclusion

We presented a fast path-relinking approach based on a dynamic programming–

based local search to solve the min–max edge crossing problem (MMECP) in

graphs. The novel and salient features of our algorithm include the use of a

critical vertex–based neighborhood structure for neighborhood reduction, a

dynamic programming–based local search strategy for solution improvemen-

t, and a two-individual–based path-relinking framework for search efficien-

cy. Extensive computational experiments on publicly available benchmark

instances unequivocally demonstrate that the FPR method is a highly com-

petitive approach compared to the best-performing heuristics and the Gurobi

solver. Furthermore, we conducted an in-depth analysis of the experimental

results to demonstrate the effectiveness of the novel features integrated into

the proposed FPR algorithm.

The main advantages of our proposed FPR method are summarized as fol-

lows: First, the fast path-relinking approach is a powerful search framework

that achieves a good balance between solution quality and computational effi-

ciency. Second, it employs a critical vertex–based neighborhood structure for

neighborhood reduction. Third, the proposed local optimization procedure

uses a dynamic-programming mechanism to select multiple move operators

in different layers to enhance the search process.

Nonetheless, several areas require attention in future research. First,

while the dynamic-programming mechanism employed in the local-search

phase is effective for solving the MMECP, it would be valuable to explore its

performance in solving other variants of graph drawing problems, such as arc

crossing minimization in graphs (Mart́ı, 2001). Second, the two-individual–

based path-relinking search framework proposed in this study could serve

as a benchmark for other population-based algorithms, including memetic
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algorithms and artificial-bee-colony algorithms. Finally, since the fast path-

relinking search scheme presented here is both simple and versatile, it would

be interesting to apply it to other challenging combinatorial optimization

problems, such as the job-shop scheduling and graph coloring problems.
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Ding, J., Lü, Z., Li, C.-M., Shen, L., Xu, L., Glover, F., 2019. A two-

individual based evolutionary algorithm for the flexible job shop scheduling

problem. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 33. pp. 2262–2271.

Glover, F., Campos, V., Mart́ı, R., 2021. Tabu search tutorial. a graph draw-

ing application. TOP 29, 319–350.

Goudet, O., Grelier, C., Hao, J.-K., 2022. A deep learning guided memetic

framework for graph coloring problems. Knowledge-Based Systems 258,

109986.
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Appendix- computational results

The detailed computational results are given in the tables in the appendix.

For Tables A1–A11, columns fbest and favg list the best and average objec-

tive values of each compared algorithm for each test instance, respectively.

Column dev records the mean absolute deviation for each instance. The last

row of each table gives the average result AV G for each indicator (i.e., fbest,

favg, and dev) in the current table. Note that both Gurobi and SO methods

run only once but for longer times; thus, we report only the best result in

their turns. From Table A1 to Table A2, one can observe that our FPR al-

gorithm outperforms the other best-performing methods for all the instances

in the Uniform set. Specifically, the FPR improves or matches the previous

best results in terms of the best objective value (fbest) and average result

(favg), compared to the other best-performing algorithms, for all instances

in the Uniform set. From Table A3 to Table A6 for the second instance set

Connected, we can observe that the FPR obtains better results in terms of

both fbest and favg for most instances in this dataset.
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Table A1: Computational results on Uniform I.

MCE SO TS VDNS FPRInstance
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

noug3-001 265 266.8 1.14 270 265 266.2 0.63 255 257.7 2.16 251 252.9 1.2

noug3-002 266 268.6 1.43 262 262 263.4 0.84 252 255 1.41 245 246.4 1.65

noug3-003 262 263.9 1.2 266 262 263.6 1.78 253 255 1.94 244 247.6 1.84

noug3-004 270 271 0.47 271 266 269.7 1.64 259 262.3 3.3 253 254.7 0.82

noug3-005 257 259.9 1.52 262 258 259.8 1.14 246 251.7 2.5 243 244.1 0.88

noug3-006 262 263.2 0.79 262 258 260.6 0.97 249 251.7 3.06 244 246.5 1.18

noug3-007 267 268 0.47 272 264 266 1.33 256 256.8 1.55 250 251.6 1.17

noug3-008 263 265.7 1.25 269 262 265.1 1.66 254 256.8 2.44 247 250 1.41

noug3-009 265 266.1 0.99 269 263 264.7 1.34 255 257.5 1.65 248 250.6 1.26

noug3-010 263 265.2 1.32 270 261 263.3 1.25 254 255.9 1.66 249 250.1 0.74

noug4-001 240 241.7 1.16 234 231 239.8 3.36 230 231.3 1.25 228 228.1 0.32

noug4-002 234 235.3 0.82 236 228 233.4 2.55 224 225.4 1.07 224 224.2 0.42

noug4-003 238 240.3 1.49 229 228 233.4 2.12 222 223.3 0.67 222 222.3 0.48

noug4-004 268 269.1 1.37 242 244 247.6 2.17 239 240.1 0.99 238 238.5 0.53

noug4-005 238 242.1 2.6 229 229 232.3 2.63 221 223.6 1.84 221 221.8 1.03

noug4-006 241 245.6 3.31 237 230 234.5 2.51 226 227.6 0.7 225 225.8 1.23

noug4-007 246 248.3 1.57 245 239 242.2 2.39 228 230.1 1.91 228 228 0

noug4-008 250 253.2 2.3 255 250 252.1 1.2 243 245.3 2.36 242 242.6 0.84

noug4-009 245 248.4 1.96 240 238 242.7 2.75 230 230.4 0.52 230 230.1 0.32

noug4-010 244 246.3 1.83 244 230 235.1 3.35 224 227.6 1.65 224 224.9 1.45

noug5-001 256 257.5 1.08 257 246 251.4 2.27 240 241.9 1.1 237 238.7 0.82

noug5-002 259 262.9 3.63 255 248 252.8 2.49 241 244.9 3.75 240 241 0.67

noug5-003 248 251.7 1.89 252 248 249.9 1.1 239 243.4 1.78 236 236.4 0.84

noug5-004 257 259.3 1.7 256 257 258.8 1.03 242 245.3 2.5 242 244.2 1.75

noug5-005 251 254 1.41 248 238 242.7 2.11 227 231.4 2.76 223 226.3 2.41

noug5-006 246 249.7 1.89 245 242 243.7 1.25 230 232.3 1.64 229 229.9 1.2

noug5-007 254 257.2 1.48 253 248 249.3 0.95 241 243.2 1.14 231 234.5 2.88

noug5-008 254 256.3 1.16 261 254 256.4 1.43 245 248.9 2.33 243 244.5 1.35

noug5-009 248 249.4 1.65 257 248 252.1 2.42 241 242.1 0.74 238 239.1 0.88

noug5-010 254 256.2 0.92 248 249 251.2 1.81 234 240.8 2.57 233 234.6 1.96

AVG 253.7 256.1 1.53 253.2 248.2 251.46 1.82 240 242.64 1.83 236.93 238.33 1.12
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Table A2: Computational results on Uniform II.

MCE SO TS VDNS FPRInstance
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

noug6-001 266 267.8 0.92 273 266 268.2 1.23 257 260.7 1.95 253 254.8 1.03

noug6-002 267 269.7 1.25 270 264 266.8 1.23 255 256.7 1.7 250 251.2 1.03

noug6-003 267 268.5 0.97 268 264 266.6 1.58 257 258.2 0.63 249 251.2 0.92

noug6-004 268 271.1 1.2 275 266 269.3 1.7 259 263.2 2.57 255 256.1 1.37

noug6-005 269 271.7 2.58 274 269 270.5 1.27 260 262.7 1.64 255 256.9 1.1

noug6-006 265 267.7 1.77 268 265 265.6 0.7 254 257.6 2.37 250 250.9 0.99

noug6-007 271 272.7 1.06 276 267 268.6 0.7 259 262.3 2.67 253 254.5 1.58

noug6-008 266 267.2 0.63 269 264 265.9 1.37 256 258.8 2.62 251 252.5 1.35

noug6-009 269 270.5 0.85 274 267 268.9 1.29 259 261.2 1.62 253 254.8 1.55

noug6-010 266 267.7 1.06 274 264 265.5 0.85 255 258.1 1.73 251 251.5 1.08

noug7-001 174 177 1.33 175 171 173.6 0.97 154 157.3 1.7 153 154.6 1.43

noug7-002 173 175.1 0.88 180 170 170 0 156 157.7 1.06 152 153.9 0.99

noug7-003 178 179.4 1.26 183 173 173 0 158 158.9 0.74 152 154.4 1.35

noug7-004 178 178.9 0.99 180 171 171 0 159 159.8 0.92 154 155.2 0.79

noug7-005 175 176.8 1.14 182 171 171 0 158 159.3 1.06 154 154.8 0.92

noug7-006 180 181.8 1.14 183 174 174 0 160 162.3 1.7 156 158.1 1.37

noug7-007 172 174.2 1.32 180 168 172.4 1.58 156 157.5 0.85 151 152.7 1.25

noug7-008 175 177.6 1.43 181 170 173.8 1.87 156 158.4 1.26 153 154.4 1.17

noug7-009 175 177.3 0.95 182 173 174.8 0.63 157 159.5 1.43 153 154.9 1.2

noug7-010 177 178.6 1.26 180 173 173.9 0.32 156 158.6 1.35 155 155.5 0.85

noug8-001 176 177.1 0.99 181 173 173 0 158 158.9 1.1 153 155.3 1.49

noug8-002 173 174.6 1.07 181 169 171.7 2.11 157 158 0.82 153 154.5 1.18

noug8-003 177 179.5 1.18 184 174 174.9 0.32 159 160 0.94 154 155.8 1.23

noug8-004 176 179.2 1.62 181 175 175 0 158 160.5 1.84 155 157 1.15

noug8-005 177 179.3 1.34 181 174 174 0 160 161.3 1.34 155 157.1 1.37

noug8-006 179 181.7 1.7 183 173 175.6 2.22 162 163.5 1.43 158 159.2 0.92

noug8-007 175 176 0.67 181 170 171.9 1.52 156 158.1 1.37 152 154.1 1.1

noug8-008 181 182.5 0.97 184 176 176 0 162 164.4 1.43 158 160.2 1.23

noug8-009 177 179 1.33 182 173 173 0 158 160.4 1.43 155 156.6 0.97

noug8-010 179 180.1 0.88 182 171 171 0 157 159.8 1.87 154 156.1 1.2

AVG 206.7 208.68 1.19 211.57 203.27 204.65 0.78 190.93 193.12 1.5 186.67 188.29 1.17
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Table A3: Computational results on Connected I.

MCE SO TS VDNS FPRInstance
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

c1000 2000 25 2 1 37 38.6 0.7 67 38 38 0 30 30.9 0.74 29 30.3 0.48

c1000 2000 25 2 2 35 36.5 0.97 66 39 39 0 29 29.7 0.82 27 29.2 0.32

c1000 2000 25 2 3 35 36.1 0.88 65 35 35 0 29 29.9 0.74 29 30.2 0.52

c1000 2000 25 4 1 44 48.7 2.58 93 58 58 0 37 39.2 1.23 37 40.6 0.63

c1000 2000 25 4 2 55 60.7 3.02 97 52 52 0 41 44.2 2.1 43 44.6 0.7

c1000 2000 25 4 3 47 51.6 2.67 92 56 56 0 41 44.2 1.99 44 46.8 0.88

c1000 2000 25 8 1 84 89.4 4.27 159 126 126 0 77 82.3 3.56 82 90.4 0

c1000 2000 25 8 2 79 81.4 3.2 159 120 120 0 77 83.2 3.97 84 87.7 0

c1000 2000 25 8 3 89 97.1 3.75 163 119 119 0 82 87 2.87 83 88.6 0

c1000 2000 50 2 1 19 19.3 0.48 31 22 22 0 15 15.8 0.63 15 15.5 0.67

c1000 2000 50 2 2 19 19.9 0.57 32 22 22 0 16 16.8 0.42 16 16.3 1.23

c1000 2000 50 2 3 19 19.1 0.32 31 21 21 0 15 15.8 0.42 15 15.7 1.03

c1000 2000 50 4 1 22 24.5 1.35 45 32 32 0 21 22.5 0.97 21 22.9 2.17

c1000 2000 50 4 2 26 28.5 1.72 42 33 33 0 24 25.1 1.2 24 24.9 1.26

c1000 2000 50 4 3 25 25.4 0.52 41 28 28 0 21 22.3 0.95 21 22.3 2.1

c1000 2000 50 8 1 55 57 1.89 77 84 84 0 52 57 3.59 52 56.4 5.72

c1000 2000 50 8 2 55 58.9 2.6 78 85 85 0 54 56.9 1.65 54 56.3 3.33

c1000 2000 50 8 3 59 64.6 4.3 93 91 91 0 56 61.7 3.06 58 63.3 2.32

c1000 2000 100 2 1 10 10.4 0.52 14 15 15 0 9 9.1 0.32 8 8.7 0.53

c1000 2000 100 2 2 10 10.8 0.42 14 15 15 0 9 9 0 9 9.1 0.48

c1000 2000 100 2 3 10 10.4 0.7 14 15 15 0 8 8.9 0.32 8 8.6 0.48

c1000 2000 100 4 1 13 16.4 1.78 20 19 20.9 0.99 13 13.9 1.29 13 13.2 0.99

c1000 2000 100 4 2 15 15.5 0.71 19 19 20 0.94 13 13.7 0.48 13 13.4 0.99

c1000 2000 100 4 3 13 13.9 0.57 19 18 19.3 0.95 13 13.9 0.57 11 12.1 1.16

c1000 2000 100 8 1 45 47.5 1.43 46 52 60 4.32 41 41.7 0.95 41 41 3.44

c1000 2000 100 8 2 39 41.9 1.45 42 46 49.7 1.89 35 36.3 1.57 34 34 1.34

c1000 2000 100 8 3 39 44.2 1.87 42 49 52.4 2.17 32 34 1.56 32 32 2.83

AVG 36.96 39.57 1.68 61.52 48.48 49.2 0.42 32 35 1.41 33.44 35.34 1.32

Table A4: Computational results on Connected II.

MCE SO TS VDNS FPRInstance
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

c1000 3000 25 2 1 88 90.3 1.16 105 66 66 0 60 61.3 1.25 59 59.7 0

c1000 3000 25 2 2 88 89.4 0.97 105 65 65 0 58 59.1 1.1 57 58.9 0.52

c1000 3000 25 2 3 88 89.7 1.16 107 68 68 0 58 60 0.94 57 59.4 0.52

c1000 3000 25 4 1 120 125.3 4.08 175 106 106 0 86 90.9 3.28 87 92.2 0

c1000 3000 25 4 2 129 136.9 4.93 179 132 132 0 98 102.6 2.72 94 103.1 0.52

c1000 3000 25 4 3 113 116.1 2.13 156 123 123 0 88 90.4 2.59 91 94.5 0.63

c1000 3000 25 8 1 218 229.1 5.92 327 281 317.9 12.97 185 193.1 4.82 183 191 0.32

c1000 3000 25 8 2 232 237.6 3.44 309 273 274.2 2.53 177 179.2 1.62 178 181.7 1.32

c1000 3000 50 2 1 44 45.1 0.57 49 36 39.7 2.16 30 30.7 0.95 29 30.7 0.32

c1000 3000 50 2 2 45 45.8 0.42 51 36 36 0 30 31.5 0.71 30 31.3 0.82

c1000 3000 50 2 3 44 44.8 0.42 51 41 41 0 30 30.2 0.42 29 30 1.37

c1000 3000 50 4 1 59 61.5 1.78 81 56 56 0 45 48.1 1.52 44 47.2 1.17

c1000 3000 50 4 2 67 69.4 1.71 81 66 66 0 53 56.8 2.53 52 55.2 3.88

c1000 3000 50 4 3 59 61.5 1.58 77 68 68 0 47 48.8 1.14 47 49.6 4.43

c1000 3000 50 8 2 127 134.9 5.22 154 154 170.2 7.83 102 107.4 3.06 102 106.2 2.72

c1000 3000 50 8 3 157 172.9 8.92 193 203 203 0 135 138.8 3.43 131 137.2 5.52

c1000 3000 100 2 1 23 23.3 0.48 24 24 24 0 17 17 0 17 17 2.75

c1000 3000 100 2 2 24 24.2 0.42 24 24 24.8 0.42 18 18 0 17 17.6 0.95

c1000 3000 100 2 3 23 23.5 0.53 23 23 24.2 0.63 16 16.8 0.42 16 16.6 0.67

c1000 3000 100 4 1 36 42.2 2.57 41 41 45.7 2.41 35 35.4 0.7 35 35 0.47

c1000 3000 100 4 2 35 39.2 2.04 41 40 42.2 1.32 30 31.7 1.25 30 30.4 1.4

c1000 3000 100 4 3 34 37.3 2.36 37 36 37.6 1.35 29 29 0 27 28.2 2.82

c1000 3000 100 8 1 100 106.2 3.99 97 116 121.6 4.2 81 86.2 2.39 80 80.9 1.43

c1000 3000 100 8 2 89 91.4 1.26 80 94 97.2 1.69 73 74.8 2.35 61 62.2 2.39

c1000 3000 100 8 3 95 102.3 4.85 92 98 108.6 4.77 73 79.5 3.95 73 73.1 4.61

AVG 85.48 89.6 2.52 106.36 90.8 94.32 1.69 66.16 68.69 1.73 65.04 67.56 1.66
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Table A5: Computational results on Connected III.

MCE SO TS VDNS FPRInstance
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

c1000 4000 25 2 1 132 133.6 1.17 147 108 108 0 93 94.8 1.48 90 92.5 0.48

c1000 4000 25 2 2 135 136.7 1.34 147 100 100 0 93 94.7 1.16 91 92.1 0.97

c1000 4000 25 2 3 129 131.3 1.06 141 101 101 0 91 92.7 1.16 89 91.2 0.67

c1000 4000 25 4 1 220 226.2 4.05 256 196 197.6 1.84 149 157.1 5.07 154 159 0.32

c1000 4000 25 4 2 230 244.4 8.42 260 236 236 0 163 168.7 4.76 165 169.3 0.88

c1000 4000 25 4 3 208 218.8 5.03 243 205 205 0 148 157.6 5.6 147 160.9 0.52

c1000 4000 25 8 1 392 402.8 9.2 474 519 521.7 0.95 302 312.5 5.17 295 300 0

c1000 4000 25 8 2 367 375.3 4.72 434 438 439.7 2.11 263 270.6 3.72 264 267.7 0

c1000 4000 50 2 1 65 66.5 0.71 70 58 58 0 46 47.9 1.2 46 47.9 0

c1000 4000 50 2 2 66 66.7 0.82 70 60 60 0 48 48.7 0.48 47 48.1 1.51

c1000 4000 50 2 3 65 65.3 0.48 69 54 54 0 46 47.2 0.92 44 46.3 0.74

c1000 4000 50 4 1 107 112.4 3.06 116 97 97 0 75 77.3 1.34 76 78.1 1.48

c1000 4000 50 4 2 123 128.3 3.56 126 122 122 0 87 90.3 2.06 88 90.1 3.46

c1000 4000 50 4 3 118 126.8 3.82 124 103 103 0 91 93 1.41 90 92.3 3.97

c1000 4000 50 8 3 284 295 5.1 296 297 297 0 219 223.6 4.06 210 216.5 5.65

c1000 4000 100 2 1 34 34.7 0.67 33 33 33.6 0.52 25 26 0.47 25 25.3 4

c1000 4000 100 2 2 34 34.9 0.57 34 34 34.1 0.32 27 27.9 0.74 26 27.4 2.79

c1000 4000 100 2 3 33 33.6 0.52 33 32 32.8 0.42 26 26.1 0.32 25 25.7 1.6

c1000 4000 100 4 1 86 89.2 1.99 78 78 84.4 3.17 69 70.9 1.1 68 68.1 0.88

c1000 4000 100 4 2 64 66.3 1.34 63 60 63 1.41 46 47.2 1.03 46 47.1 1.16

c1000 4000 100 4 3 65 66.4 0.84 62 57 61.5 2.12 47 47.9 1.45 46 46.6 1.29

c1000 4000 100 8 1 178 181.2 2.74 168 177 192.3 7.69 139 146.6 5.91 139 139 2.28

c1000 4000 100 8 2 148 150.8 1.55 137 144 149.3 2.67 121 126 3.43 118 118 1.64

c1000 4000 100 8 3 164 166.5 2.12 145 165 168.7 2.06 136 141.1 3.9 130 130 4.48

AVG 143.63 148.07 2.7 155.25 144.75 146.65 1.05 106.25 109.85 2.41 104.96 107.47 1.7

Table A6: Computational results on Connected IV.

MCE SO TS VDNS FPRInstance
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

c1000 5000 25 2 1 172 174.8 1.48 187 138 139 1.33 130 132.5 1.78 126 127.5 0.42

c1000 5000 25 2 2 172 175 1.33 190 138 138 0 127 130.2 2.53 125 126.4 0.7

c1000 5000 25 2 3 172 173.1 0.88 183 139 139 0 129 131.1 1.45 124 126.4 0.53

c1000 5000 25 4 1 317 330.7 8.18 355 308 308.6 0.52 221 230.5 5.46 223 227.6 0

c1000 5000 25 4 2 367 382.1 6.76 360 340 340 0 248 259 5.79 247 260.8 1.52

c1000 5000 25 4 3 313 328.8 6.8 335 315 315 0 222 232.6 8.41 220 225.9 0.79

c1000 5000 25 8 1 569 580.5 6.24 602 684 684 0 432 441.8 9.64 416 425 1.43

c1000 5000 25 8 2 543 556.8 7.41 581 645 645 0 384 402.2 8.3 381 393 0.97

c1000 5000 50 2 2 84 85.1 0.74 88 78 78 0 65 66.1 0.88 63 64.6 1.43

c1000 5000 50 2 3 84 84.8 0.79 87 75 75 0 65 65.4 0.52 62 63.4 2.72

c1000 5000 50 4 1 173 176.3 2.16 172 159 159 0 119 122.5 2.64 116 120.8 5.63

c1000 5000 50 4 2 176 182.1 4.2 172 157 157 0 119 120.9 2.33 117 122.4 3.67

c1000 5000 50 4 3 189 192.9 1.66 176 175 175 0 128 133.2 3.88 126 130.9 6.5

c1000 5000 100 2 1 43 43.3 0.48 42 41 41.4 0.52 35 35.4 0.52 34 34.2 8.62

c1000 5000 100 2 2 44 44.8 0.92 44 42 42.7 0.48 36 37.4 0.7 35 35.6 0.97

c1000 5000 100 2 3 43 43.8 0.42 42 42 42.8 0.42 36 36.9 0.74 35 35.5 0.7

c1000 5000 100 4 1 118 120.2 2.25 109 110 118.2 3.99 95 99.2 4.1 95 95 2.86

c1000 5000 100 4 2 95 95.9 0.88 85 84 86.8 1.48 67 68.9 1.52 65 66.9 3.47

c1000 5000 100 4 3 91 92.8 1.14 87 86 87.8 1.14 67 70 2.45 66 66.8 3.31

AVG 198.16 203.36 2.88 205.11 197.68 198.54 0.52 143.42 148.2 3.35 140.84 144.67 2.43
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Table A7: Computational results on North I.

MCE SO TS VDNS FPRInstance Gurobi
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

north.30.29.7 0 0 0 0 0 0 0 0 0 0.4 0.7 0 0 0

north.30.29.11 0 0 0 0 0 0 0 0 0 1.9 0.88 0 0 0

north.30.29.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

north.30.33.5 0 0 0.5 0.53 0 0 0.9 0.32 0 2.4 1.35 0 0 0

north.30.33.19 1 1 1.4 0.52 1 1 1.4 0.52 1 2.1 0.57 1 1 0

north.30.34.20 6 8 8 0 6 7 7.5 0.53 6 6 0 6 6 0

north.30.35.4 1 1 1 0 1 1 1 0 1 1.8 0.79 1 1 0

north.30.35.14 1 1 1 0 1 2 2 0 1 1.9 0.57 1 1 0

north.30.35.18 1 2 3.9 0.74 1 2 2.3 0.48 1 2.1 0.52 1 1 0

north.30.37.9 2 2 2 0 2 2 2 0 2 2 0 2 2 0

north.30.37.10 2 2 2 0 2 2 2 0 2 2 0 2 2 0

north.30.39.17 1 2 2 0 1 2 2.9 0.32 2 3.2 1.23 1 1 0

north.30.40.13 2 2 2.8 0.63 2 3 3.6 0.52 3 5.1 0.88 2 2 0

north.30.40.21 0 0 0 0 0 0 0.1 0.32 0 1.3 1.7 0 0 0

north.30.41.3 3 3 3 0 3 3 3.4 0.52 3 3.8 0.42 3 3 0

north.30.43.1 1 1 1.1 0.32 1 3 3 0 2 2.5 0.71 1 1.1 0.18

north.30.44.15 1 2 2 0 2 3 3.8 0.42 1 1.6 0.52 1 1.5 0.5

north.30.45.2 1 2 2 0 1 3 3.6 0.52 2 2.4 0.7 1 1.1 0.18

north.30.45.8 1 2 2 0 1 3 3.6 0.52 2 3 0.47 1 1 0

north.30.55.16 1 2 2 0 2 4 4 0 2 2.8 0.42 1 1 0

north.30.62.6 1 2 2 0 3 6 6 0 1 1.9 0 2 2 0

north.40.39.1 0 0 0 0 0 0 0 0 0 0.4 0.52 0 0 0.56

north.40.39.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

north.40.39.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

north.40.39.12 0 3 3 0 0 0 0.5 0.53 0 0.6 0.52 0 0 0

north.40.46.6 0 1 1 0 0 2 2 0 1 2.1 0.57 0 0 0

north.40.47.3 0 1 1 0 0 2 2 0 2 2.5 0.53 0 0 0

north.40.48.5 0 1 1.1 0.32 0 2 2 0 1 2.4 0.84 0 0 0

north.40.49.2 0 1 1 0 1 2 2.7 0.48 2 2.1 0.32 0 0.2 0

north.40.49.4 0 0 0.1 0.32 0 2 2.5 0.53 2 2.2 0.42 0 0 0

north.40.49.14 1 1 1.4 0.52 1 3 3.1 0.32 1 1.9 0.32 1 1 0.32

north.40.54.8 0 0 0.4 0.52 0 2 2.9 0.32 2 3.2 0.79 0 0 0

north.40.56.13 1 2 2.4 0.52 2 4 4 0 1 2 0.67 1 1 0

north.40.60.16 0 1 1 0 0 2 2.7 0.48 1 1.5 0.53 0 0 0

north.40.72.10 4 4 4.2 0.42 4 6 6.1 0.32 4 4.2 0.42 4 4 0

north.40.73.7 1 2 2 0 4 5 5 0 2 2 0 2 2 0

north.40.131.15 24 8 8.8 0.63 20 14 14 0 8 9.2 0.79 9 9.7 0

AVG 1.54 1.62 1.79 0.16 1.68 2.51 2.77 0.21 1.59 2.34 0.53 1.19 1.23 0.05
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Table A8: Computational results on North II.

MCE SO TS VDNS FPRInstance Gurobi
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

north.45.45.7 5 5 5.1 0.32 5 5 5.4 0.52 5 5.1 0.32 5 5 0

north.45.46.5 0 1 1 0 0 1 1.9 0.32 1 1.8 0.42 0 0 0

north.45.47.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

north.45.47.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

north.45.56.4 1 2 2 0 1 3 3 0 2 2 0 1 1 0

north.45.57.6 10 10 10 0 10 10 10 0 10 12.6 2.12 10 10 0

north.45.59.1 2 3 3.1 0.32 3 4 5.6 0.7 2 2.8 0.42 2 2 0

north.50.49.2 0 0 0 0 0 0 0 0 1 1.5 0.53 0 0 0

north.50.69.3 4 4 4.1 0.32 4 5 5.1 0.32 4 4.8 0.42 4 4 0

north.50.75.1 11 27 27 0 11 11 11.3 0.48 11 11 0 11 11 0

north.55.63.1 4 4 4 0 4 4 4.9 0.32 4 4 0 4 4 0.48

north.55.65.5 2 2 2 0 2 3 3.9 0.32 3 3.6 0.7 2 2.1 0.18

north.55.72.8 3 3 3 0 3 4 4 0 3 3 0 3 3 0.32

north.55.82.7 3 3 3.5 0.71 3 6 6 0 3 3 0 3 3 0.5

north.55.105.2 7 2 2 0 9 6 6.9 0.74 2 2.1 0.32 2 2.8 0.48

north.55.105.3 7 2 2 0 8 7 7 0 2 2.1 0.32 2 2.5 0.42

north.55.105.4 4 2 2 0 8 7 7.9 0.32 2 2.2 0.42 2 2.4 0.48

north.55.105.10 4 2 2 0 8 7 7.9 0.32 2 2.1 0.32 2 2.6 0

north.55.105.11 6 2 2 0 10 6 7.5 0.97 2 2.1 0.32 2 2.9 0.18

north.55.111.9 14 7 7.2 0.42 14 13 13 0 7 7.3 0.48 7 7.3 0

north.55.130.6 22 7 7.1 0.32 16 15 15 0 6 6.9 0.32 7 7.8 0

AVG 5.19 4.19 4.24 0.11 5.67 5.57 6.01 0.25 3.43 3.81 0.35 3.29 3.5 0.14

Table A9: Computational results on Rome I.

MCE SO TS VDNS FPRInstance Gurobi
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

rome.10.10.43 0 0 0.5 0.53 0 0 0 0 0 0.6 0.52 0 0 0

rome.10.10.54 0 0 0 0 0 0 0 0 0 0.7 0.48 0 0 0

rome.11.12.65 0 0 0 0 0 0 0 0 0 0.8 0.42 0 0 0

rome.11.17.88 1 1 1.5 0.53 1 1 1.8 0.42 2 3 0.67 1 1 0

rome.12.11.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rome.12.11.32 0 0 0 0 0 0 0 0 0 0.5 0.53 0 0 0

rome.12.13.81 0 0 0 0 0 0 0.3 0.48 1 1.3 0.48 0 0 0

rome.13.17.80 1 1 1 0 1 1 1 0 1 1.7 0.67 1 1 0

rome.13.19.87 2 2 2.4 0.52 2 2 2 0 3 3.6 0.52 2 2 0

rome.15.15.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rome.15.18.75 0 0 0.9 0.32 0 1 1 0 1 1.3 0.48 0 0 0

rome.15.24.83 1 1 1.7 0.48 1 3 3 0 1 1.7 0.48 1 1 0

rome.16.17.21 1 1 1 0 1 1 1 0 1 1.5 0.53 1 1 0

rome.18.26.86 1 1 1.4 0.52 1 2 2.5 0.53 2 2.4 0.52 1 1.1 0.18

rome.20.21.5 1 1 1 0 1 1 1 0 1 1.5 0.71 1 1 0

rome.20.25.9 1 1 1 0 1 2 2 0 1 1.9 0.32 1 1 0

rome.20.26.78 1 2 2 0 1 2 2 0 2 2.2 0.42 1 1.2 0.32

rome.21.21.15 0 0 0 0 0 0 0.8 0.42 0 1.2 0.63 0 0 0

rome.21.24.40 0 1 1 0 0 1 1 0 1 1.4 0.52 0 0 0

rome.21.24.44 0 1 1 0 0 1 1.8 0.42 1 1.3 0.48 0 0 0

rome.21.24.46 1 1 1 0 1 1 1 0 1 2 0.47 1 1 0

rome.21.24.79 1 1 1 0 1 1 1 0 1 1.8 0.63 1 1 0

rome.21.26.11 1 1 1 0 1 2 2 0 1 2.2 0.63 1 1 0

rome.21.26.24 1 1 1 0 1 1 1.2 0.42 2 2.1 0.32 1 1 0

rome.21.27.20 1 1 1.5 0.53 1 2 2 0 2 2.6 0.84 1 1 0

rome.21.33.41 1 1 1.9 0.32 2 3 3.7 0.48 2 2 0 1 1 0

rome.21.36.25 2 2 2.6 0.52 2 3 3.9 0.32 2 2 0 2 2 0

AVG 0.67 0.78 0.98 0.16 0.7 1.15 1.33 0.13 1.07 1.6 0.45 0.67 0.68 0.02
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Table A10: Computational results on Rome II.

MCE SO TS VDNS FPRInstance Gurobi
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

rome.22.23.28 0 0 0 0 0 0 0 0 0 0.8 0.92 0 0 0

rome.22.24.55 1 1 1 0 1 1 1 0 1 1.5 0.71 1 1 0

rome.22.26.73 1 1 1.8 0.42 1 2 2 0 2 2.3 0.48 1 1 0

rome.22.27.52 1 1 1.8 0.42 1 2 2 0 1 2.3 0.67 1 1 0

rome.22.30.14 1 1 1.9 0.32 1 2 2.8 0.42 1 2.1 0.57 1 1 0

rome.22.31.34 1 1 1.1 0.32 1 3 3 0 2 2.8 0.63 1 1 0

rome.23.24.63 1 1 1 0 1 1 1 0 1 1.3 0.48 1 1 0

rome.23.24.76 0 1 1 0 0 0 0.3 0.48 1 1.5 0.53 0 0 0

rome.23.25.70 1 1 1 0 1 1 1 0 1 1.2 0.42 1 1 0

rome.23.26.19 1 2 2 0 1 2 2 0 1 1.7 0.67 1 1 0

rome.23.30.82 1 2 2 0 1 2 2.1 0.32 2 2.3 0.48 1 1 0

rome.24.25.47 1 1 1 0 1 1 1 0 1 1.1 0.32 1 1 0

rome.24.28.27 2 2 2.1 0.32 2 2 2 0 2 2.6 0.52 2 2 0

rome.24.32.50 1 1 1.7 0.48 1 1 1.9 0.32 2 2.7 0.48 1 1 0

rome.24.33.7 1 2 2 0 1 3 3.1 0.32 1 2.7 0.95 1 1 0

rome.25.37.51 3 3 3.9 0.57 4 5 5 0 4 4.1 0.32 3 3 0

rome.26.30.2 0 1 1.6 0.52 0 1 1.4 0.52 0 2.2 0.92 0 0 0

rome.26.31.61 1 1 1.6 0.7 1 2 2 0 1 1.6 0.97 1 1.3 0.54

rome.26.38.57 2 2 2.3 0.48 2 4 4 0 2 2.6 0.52 2 2 0

rome.27.28.62 0 1 1 0 0 1 1 0 0 1.1 0.74 0 0 0

rome.27.37.68 1 3 3.8 0.42 2 3 3.5 0.53 1 2.4 0.7 1 1 0

rome.28.29.12 1 1 1 0 1 1 1.5 0.53 1 2.1 0.99 1 1 0

rome.28.31.1 1 1 1 0 1 2 2 0 1 1.6 1.07 1 1 0

rome.28.32.71 1 1 1.2 0.42 1 2 2 0 1 2.1 0.57 1 1 0

rome.28.34.29 1 1 1 0 1 2 2 0 1 2.1 0.74 1 1 0

rome.28.35.36 1 2 2 0 1 3 3.2 0.42 1 2.1 0.74 1 1 0

rome.28.38.4 2 3 3 0 2 3 3.1 0.32 2 2 0 2 2 0

rome.29.28.35 0 0 0.3 0.48 0 0 0.2 0.42 0 1.2 0.63 0 0 0

rome.29.30.31 1 1 1.1 0.32 1 1 1.2 0.42 1 1.9 0.57 1 1 0

rome.29.32.45 1 1 1.2 0.42 1 1 1.8 0.42 1 2.1 0.57 1 1 0

rome.29.40.69 2 2 3 0.67 2 3 3.8 0.42 2 2 0 2 2 0

AVG 1.03 1.35 1.63 0.23 1.1 1.84 2.03 0.19 1.23 2 0.61 1.03 1.04 0.02
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Table A11: Computational results on Rome III.

MCE SO TS VDNS FPRInstance Gurobi
fbest favg dev fbest fbest favg dev fbest favg dev fbest favg dev

rome.30.31.3 0 0 0.2 0.42 0 1 1 0 1 1.9 0.57 0 0 0

rome.30.31.53 0 1 1 0 0 1 1 0 1 1.1 0.32 0 0 0

rome.30.32.48 1 1 1.8 0.42 1 1 1.6 0.52 1 1.4 0.97 1 1 0

rome.30.33.60 1 1 1 0 1 2 2 0 1 1.8 0.63 1 1 0

rome.30.35.64 2 2 2.4 0.52 2 3 3 0 2 2 0 2 2 0

rome.30.35.74 0 1 1 0 0 1 1.8 0.42 1 1.8 0.42 0 0.4 0.48

rome.30.36.77 2 2 2 0 2 2 2.9 0.32 2 2.3 0.48 2 2 0

rome.30.36.84 1 2 2 0 1 2 2.6 0.52 2 2.9 0.57 1 1 0

rome.30.40.23 2 2 2 0 2 2 2.4 0.52 2 2.9 0.57 2 2 0

rome.30.40.59 1 1 1.9 0.32 2 3 3.9 0.32 1 1.9 0.32 1 1.3 0.42

rome.31.34.38 0 1 1 0 0 2 2 0 2 2.2 0.42 0 0.6 0.48

rome.31.36.18 2 2 2 0 2 2 2.7 0.48 2 2.7 0.48 2 2 0

rome.31.37.33 1 1 1.9 0.32 1 2 2.9 0.32 1 2 0.47 1 1 0

rome.31.40.49 2 3 3 0 2 3 3 0 2 2.2 0.42 2 2.1 0.18

rome.31.40.56 1 1 1.7 0.48 1 2 2.8 0.42 1 1.4 0.52 1 1 0

rome.32.37.13 1 1 1 0 1 1 1.8 0.42 1 1.9 0.57 1 1.1 0.18

rome.33.34.42 1 1 1.1 0.32 1 1 1 0 1 2.4 0.7 1 1 0

rome.33.37.30 1 1 1.6 0.52 1 2 2.4 0.52 2 3.5 1.18 1 1 0

rome.33.38.39 1 1 1.7 0.48 1 2 2 0 2 2.2 0.42 1 1 0

rome.33.42.66 1 1 1.6 0.52 1 2 2.9 0.32 1 1.5 0.53 1 1 0

rome.35.42.16 1 1 1.8 0.42 1 2 2.8 0.42 2 2.4 0.52 1 1 0

rome.35.42.67 2 2 2.3 0.48 2 3 3 0 2 3.7 1.16 2 2 0

rome.38.48.26 1 2 2 0 1 3 3 0 2 2 0 1 1 0

rome.40.42.8 1 1 1 0 1 2 2 0 2 2.2 0.42 1 1 0

rome.40.49.22 1 2 2 0 2 4 4 0 1 1.3 0.48 1 1 0

rome.41.45.72 1 2 2.3 0.67 1 2 2.9 0.32 2 2.7 0.82 1 1.4 0.48

rome.41.54.37 1 1 1.1 0.32 1 4 4 0 1 1 0 1 1 0

rome.43.58.6 2 2 2 0 2 4 4.3 0.48 2 2.2 0.42 2 2 0

rome.48.58.17 1 1 1.3 0.48 1 3 3.8 0.42 1 1.6 0.52 1 1.4 0.48

rome.49.62.58 1 1 1.9 0.57 2 4 4.3 0.48 1 1.6 0.52 1 1.4 0.64

AVG 1.1 1.37 1.65 0.24 1.2 2.27 2.66 0.24 1.5 2.09 0.51 1.1 1.19 0.11
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