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_____________ 

The algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find 
global optima for pure and mixed integer nonlinear problems with many constraints and 
variables, where all problem functions are differentiable with respect to the continuous variables. 
It uses OptQuest, a commercial implementation of scatter search developed by OptTek Systems, 
Inc., to provide starting points for any gradient-based local NLP solver.  This solver seeks a local 
solution from a subset of these points, holding discrete variables fixed.  The procedure is 
motivated by our desire to combine the superior accuracy and feasibility-seeking behavior of 
gradient-based local NLP solvers with the global optimization abilities of OptQuest.  
Computational results include 155 smooth NLP and MINLP problems due to Floudas et al., most 
with both linear and nonlinear constraints, coded in the GAMS modeling language. Some are 
quite large for global optimization, with over 100 variables and 100 constraints.  Global solutions 
to almost all problems are found in a small number of local solver calls, often one or two.  

(Global Optimization; Multistart Heuristic; Mixed Integer Nonlinear programming; Scatter 
Search; Gradient Methods) 
______________________________________________________________________________ 
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1. Introduction 
This paper describes OQNLP, a multistart heuristic algorithm designed to find global optima of 

smooth constrained nonlinear programs (NLPs) and mixed integer nonlinear programs 

(MINLPs).  It uses the OptQuest Callable Library (OCL) implementation of Scatter Search 

[Laguna and Marti, 2000] to generate trial points, which are candidate starting points for a local 

NLP solver.  These are filtered to provide a smaller subset from which the solver attempts to find 

a local optimum. Our GAMS implementation can use any GAMS NLP solver, and the stand-

alone version uses the generalized reduced gradient NLP solver LSGRG2 [Smith and Lasdon, 

1992].  

The most general problem this algorithm can solve has the form 

 minimize f(x,y) (1) 

subject to the nonlinear constraints 

 guy)G(x,gl ≤≤  (2) 

the linear constraints 

 uyAxAl ≤+≤ 21  (3) 

 YySx ∈∈ ,  (4) 

where x is an n-dimensional vector of continuous decision variables, y is a p-dimensional vector 

of discrete decision variables, and the vectors gl, gu, l, and u contain upper and lower bounds for 

the nonlinear and linear constraints respectively.  The matrices  and  are  by n and  

by p respectively, and contain the coefficients of any linear constraints.  The set S is defined by 

simple bounds on x, and we assume that it is closed and bounded, i.e., that each component of x 

has a finite upper and lower bound.  This is required by the OptQuest scatter search procedure.  

The set Y is assumed to be finite, and is often the set of all p-dimensional binary or integer 

vectors y which satisfy finite bounds.  The objective function f and the -dimensional vector of 

constraint functions G are assumed to have continuous first partial derivatives at all points in 

.  This is necessary so that a gradient-based local NLP solver can be applied to the relaxed 

NLP sub-problems formed from (1) - (4) by allowing the y variables to be continuous. 
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2. Multi-start algorithms for global optimization 
In this section, which reviews past work on multi-start algorithms, we focus on unconstrained 

problems where there are no discrete variables, since to the best of our knowledge multi-start 

algorithms have been investigated theoretically only in this context.  These problems have the 

form of (1)-(4) with no y variables and no constraints except the bounds  in (4).ε Sx∈

All global minima of f are assumed to occur in the interior of S.  By multi-start we mean any 

algorithm that attempts to find a global solution by starting a local NLP solver, denoted by L, 

from multiple starting points in S.  The most basic multi-start method generates uniformly 

distributed points in S, and starts L from each of these.  This converges to a global solution with 

probability one as the number of points approaches infinity--in fact, the best of the starting points 

converges as well.  However, this procedure is very inefficient because the same local solution is 

located many times.  A convergent procedure that largely overcomes this difficulty is called 

multi-level single linkage (MLSL) [Rinnooy Kan and Timmer, 1987].  MLSL uses a simple rule 

to exclude some potential starting points.  A uniformly distributed sample of N points in S is 

generated, and the objective, f, is evaluated at each point.  The points are sorted according to 

their f values, and the qN best points are retained, where q is an algorithm parameter between 0 

and 1.  L is started from each point of this reduced sample, except if there is another sample point 

within a certain critical distance that has a lower f value.  L is also not started from sample points 

that are too near the boundary of S, or too close to a previously discovered local minimum.  

Then, N additional uniformly distributed points are generated, and the procedure is applied to the 

union of these points and those retained from previous iterations.  The critical distance referred 

to above decreases each time a new set of sample points is added.  The authors show that, if the 

sampling continues indefinitely, each local minimum of f will be located, but the total number of 

local searches is finite with probability one.  They also develop Bayesian stopping rules, which 

incorporate assumptions about the costs and potential benefits of further function evaluations, to 

determine when to stop the procedure. 

When the critical distance decreases, a point from which L was previously not started may 

become a starting point in the next cycle.  Hence all sample points generated must be saved.  

This also makes the choice of the sample size, N, important, since too small a sample leads to 

many revised decisions, while too large a sample will cause L to be started many times.  Random 

Linkage (RL) multi-start algorithms introduced by [Locatelli and Schoen, 1999] retain the good 
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convergence properties of MLSL, and do not require that past starting decisions be revised.  

Uniformly distributed points are generated one at a time, and L is started from each point with a 

probability given by a nondecreasing function )(dφ , where d is the distance from the current 

sample point to the closest of the previous sample points with a better function value.  

Assumptions on this function that give RL methods the same theoretical properties as MLSL are 

derived in the above reference.   

Recently, Fylstra et al. have implemented a version of MLSL that can solve constrained 

problems - see www.solver.com.  Limited to problems with no discrete variables y, it uses the  

exact penalty function, defined as 

1L

  (5) ))(()(),(
1

1 ∑
=

+=
m

i
ii xgviolwxfwxP

where the  are nonnegative penalty weights, iw 21 mmm += , and the vector g has been extended 

to include the linear constraints (4).  The function  is equal to the absolute amount by 

which the ith constraint is violated at the point x.  It is well known (see [Nash and Sofer, 1996]) 

that if  is a local optimum of (1)-(4),  is a corresponding optimal multiplier vector, the 

second order sufficiency conditions are satisfied at , and 

))(( xgviol i

*x *u

),( ** ux

  (6) )( *
ii uabsw >

then  is a local unconstrained minimum of .  If (1)-(4) has several local minima, and each 

 is larger than the maximum of all absolute multipliers for constraint i over all these optima, 

then  has a local minimum at each of these local constrained minima.  Even though  is not a 

differentiable function of x, MLSL can be applied to it, and when a randomly generated trial 

point satisfies the MLSL criterion to be a starting point, any local solver for the smooth NLP 

problem can be started from that point.  The local solver need not make any reference to the 

exact penalty function , whose only role is to provide function values to MLSL.  We will use 

 in the same way in our OQNLP algorithm.  We are not aware of any theoretical investigations 

of this extended MLSL procedure, so it must currently be regarded as a heuristic.   
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3. The OQNLP Algorithm 
3.1 The Global Phase - Scatter Search 

Scatter Search (ScS) is a population based meta-heuristic algorithm devised to intelligently 

perform a search on the problem domain [Glover, 1998].  It operates on a set of solutions called 

the reference set or population.  Elements of the population are maintained and updated from 

iteration to iteration.  Scatter Search differs from other population-based evolutionary heuristics 

like Genetic Algorithms (GAs) mainly in its emphasis on generating new elements of the 

population mostly by deterministic combinations of previous members of the population as 

opposed to the more extensive use of randomization.  ScS was founded on strategies that were 

proposed as augmentations to GAs more than a decade after their debut in Scatter Search.  It 

embodies principles and strategies that are still not emulated by other evolutionary methods and 

prove to be advantageous for solving a variety of complex optimization problems.  For the most 

recent and complete description of ScS, see [Laguna and Marti, 2003] 

A summary of the OptQuest [Laguna and Marti, 2002] and [Laguna and Marti, 2000] 

implementation of ScS follows.  The problem to be solved has the form (1)-(4) but, to simplify 

the explanation, we assume there are no y variables. 

3.1.1 Steps of Scatter Search 

1. Initialize: size of reference set = b, initial point =x0, input upper and lower bounds on 

variables and constraint functions, and the coefficients of any linear constraints.  Create an initial 

set of three points, : all variables equal their lower bounds, all variables set to their upper 

bounds, and all variables equal the mid-point between their bounds.  If an initial point has been 

determined, add it to R0. 

SR ⊂0

2. Given R0, use a diversification generation method to augment it with additional points, 

creating an initial diverse reference set,  of cardinality b.  Optionally, map the elements of 

R into points that satisfy the linear constraints. 

SR ⊂

3. Evaluate the objective f and the nonlinear constraint functions G at each point in R, and 

evaluate a penalty function POQ, equal to the objective plus a penalty weight times the maximum 

percentage violation of the nonlinear constraints (the max of 100 times the absolute violation 

divided by 1 plus the absolute constraint value). POQ is used as the quality measure of a 

population point.   
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While (stopping criteria are not satisfied) 

While (some distinct pair of points in R has not been processed) 

4. Select a new pair of points in R 

5. Use a solution combination method to produce a small number of trial solutions from this pair 

of points.  Optionally, map each trial point into the closest point that satisfies the linear 

constraints and variable bounds. 

6. At each (mapped) trial solution, evaluate the objective f and nonlinear constraint functions G, 

and form the penalty function, POQ . 

Endwhile 

7. Update the reference set. 

8. If the reference set has changed, return to step 4.  Otherwise, restart the procedure by selecting 

a subset (typically the best half) of the best points in the reference set to be retained as the set R0, 

and return to step 2. 

Endwhile 

3.1.2 Description of the Scatter Search Steps  

Step 1 generates the starting points to create the initial reference set R0.  The 3 points always 

appearing in this set are the vectors x for which all element are set to the upper bounds, to the 

lower bound, and to the midpoints of the bounds.  If there is an initial point recommended to the 

problem, it is also added to R0 as a fourth point. 

Step 2 generates the remaining points to the initial reference set R.  The diversification 

generation method begins by generating nr>b randomly generated points in S, using a stratified 

sampling procedure described in [Laguna and Marti, 2000].  It then creates the reference set, R, 

by adding to R0 the random point farthest from its nearest neighbor in R0, and repeating this 

process until R0 has cardinality b.  If the problem has linear constraints and the points selected 

are infeasible for these linear constraints, they are first projected onto the convex polyhedron 

defined by the linear constraints and then added to R0.  This is done by finding the point in this 

polyhedron that is closest (using the L1 norm) to the infeasible point by solving a linear program. 

The result of this step is a diverse reference set that satisfies the linear constraints of the problem. 

The initial population resulting from this procedure for a reference set of size b = 10 is shown 

in Figure 1, which uses data from a 2 variable unconstrained problem due to [Dixon and Szegö, 

1975] called the six-hump camelback function.  The objective to be minimized is 
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11.24),( yyxyxxxyxF +−++−=  (7) 

This is the problem EX8_2_5 from a large set of problems described in [Floudas, et al., 1999].  

Problems from this set are used as test problems for OQNLP, and will be discussed in detail 

later.  The problem has upper bounds of 10.0 and lower bounds of –10.0 on both variables, and 

has 6 local minima, all lying well within these bounds (see Figure 2 for their location), plus a 

stationary point at the origin that is neither a local minimum nor a maximum.  The initial set R0 

is the three points (0,0), (10,10), (-10,-10), where (0,0) is user-supplied and the other two are the 

vectors of upper and lower bounds respectively. 
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Figure 1:  Initial Population for the Six-Hump Camelback Function 
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Figure 2:  Locally Optimal Solutions for the Six-Hump Camelback Function 

 

Step 3 ranks the points in the reference set based on their quality, measured by a penalty 

function POQ which is equal to the objective plus a penalty weight times the maximum 

percentage violation of the violated nonlinear constraints.  The penalty function POQ is not the 

same as the exact penalty function  described in (5), and is not exact.  It is used because 

Lagrange multiplier information is assumed not to be available.  Multipliers may not even exist if 

the problem is non-smooth or has discrete variables, and OptQuest is designed to solve such 

problems as well. 

1P

Steps 4 and 5 create new trial solutions by selecting 2 “parent” points from the reference set 

and performing the solution combination method on them.  (If the option to always satisfy linear 

constraints is selected, the trial solutions are projected onto the linear constraints.) To illustrate 

how the combination method currently implemented in OptQuest works, Figure 3 demonstrates 

the generation of new trial points from the 3 best points of the initial population for the six-hump 

camel back function. 
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Figure 3:  Trial Points for Six-Hump Camelback Function 
 

The three points shown as diamonds and labeled x1, x2, x3 (x1 is the origin) have the lowest 

objective values in the initial population.  The two lines in the figure are determined by the pairs 

of points (x1, x2) and (x1, x3).  Focusing on the line (x1, x2), let 

d = (x2-x1)/2 

v1 = x1-d 

v2 = x1 

 v3 = x1+d   

v4 = x2 

v5 = x2+d. 

Thus v3 is at the midpoint of this line, and v1 and v5 extend it beyond x1 and x2.  These points 

are shown as black or white squares in the figure.  The points v1 and v2 can be used to define a 

hyper-rectangle whose  vertices are the set n2
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 },...,1,)2()1(|),...,,{( 21 nivorvzzzzV iiin === .  

Thus the four pairs of points (vi, v(i+1)) for i = 1,..,4 define 4 rectangles, three of which are 

shown on the line determined by x1 and x2.  OptQuest generates one randomly distributed trial 

point in each rectangle, and these points are shown as triangles.  Three more trial points are 

generated in the same way starting with the points (x1, x3).  These points lie “close” to the lines, 

but are not on them. 

If there are discrete variables, the above process produces trial points whose values for these 

variables are not in the finite set of allowed values.  These components are rounded to an 

allowable value using generalized rounding processes, i.e., processes where the rounding of each 

successive variable depends on the outcomes of previous roundings.  For each discrete variable 

xi, Optquest allows the definition of a lower bound (loi), an upper bound (upi), and a step value 

(sti).  The step is the distance between two consecutive allowed values (it is usually equal to 1).  

Then, if old_xi is the value to be rounded, the rounding process generates a first value new_xi 

according to: 

 

iiii
i

ii
i stincloxnew

st
loxold

inc ⋅+=⎥
⎦

⎥
⎢
⎣

⎢ −
+= _,

_
5.0  

 

If new_xi is lower than upi, then it is accepted as the rounded value.  Otherwise, we compute it 

again, decreasing inci by one unit, which gives an allowed value.  

The full set of 144 trial points generated from the initial population of this example is shown 

in Figure 4.   
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Figure 4:  Initial Population and 144 Trial Points for Six-Hump Camelback Problem 

 

The ten white diamond points are the members of the initial reference set, while the dark 

squares are the trial points, generated as described earlier.  These are well scattered over the 

region defined by the bounds. 

In Step 6 the objective f and non-linear constraints G are evaluated and the penalty function 

POQ is calculated.  OptQuest considers f and G to be black boxes, and it is the responsibility of 

the user to provide the evaluation and return the corresponding values.   

In step 7, after all trial points have been evaluated, the reference set is updated by replacing 

the population which generated the trial points by the best b points of the union of the trial points 

and the initial reference set, where best is determined by the OptQuest penalty function POQ.  

This is an aggressive update, emphasizing solution quality over diversity. This updated reference 

set, used to generate trial points from iteration 155 onward, is shown in Figure 5.  The ten 

population points cluster in the region about the origin where the six local optima are located, so 

the next set of 144 trial points will lie within a slight expansion of this region. These trial points 
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thus have much better objective values than those generated by the initial population, as we 

illustrate later in section 6. 
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Figure 5:  Second Reference Set for Six-Hump Camelback Function 

 

When the diversity and quality of the reference are considered equally important, a different 

updating method is suggested in [Laguna and Marti, 2002].  In this variation, the reference set is 

split into 2 halves.  The first half is created and maintained the same way as described earlier, 

focusing on the quality of the points.  The other half contains diverse points.  If a solution does 

not qualify to enter the first half of the reference set based on its quality, a test is performed to 

determine whether it fits the diversity criterion.  That is, if the new point’s minimum distance to 

any point in the second half of the reference set is larger than that of any points’ already in the 

set, the new point will replace it.  With this method the dynamic preservation of diversity is 

assured for the reference set. 
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If the updated reference set is unchanged, step 8 forces a return to Step 4 where a new diverse 

reference set is created.  When this occurs, a number (typically b/2) of the best points from the 

current population are retained and newly generated points replace the rest. 

 

3.2 The Local Phase – Gradient Based NLP Solvers 

There are many papers and texts discussing gradient-based NLP solvers, e.g., [Nash and Sofer, 

1996], [Nocedal and Wright, 1999], [Edgar, Himmelblau, and Lasdon, 2001].  These solve 

problems of the form (1)-(4), but with no discrete (y) variables.  They require a starting point as 

input, and use values and gradients of the problem functions to generate a sequence of points 

which, under fairly general smoothness and regularity conditions, converges to a local optimum.  

The main classes of algorithms in widespread use today are Successive Quadratic Programming 

(SQP) and Generalized Reduced Gradient (GRG)-see [Edgar, Himmelblau, and Lasdon, 2001, 

Chapter 8.]  The algorithm implemented in the widely used MINOS solver [Murtagh and 

Saunders, 1982] is similar to SQP.  If there are nonlinear constraints, SQP and MINOS generate 

a sequence of points that usually violate the nonlinear constraints, with the violations decreasing 

to within a specified feasibility tolerance as the sequence converges to a local optimum.  GRG 

algorithms have a simplex-like phase 1-phase 2 structure.  Phase 1 begins with the given starting 

point and, if it is not feasible, attempts to find a feasible point by minimizing the sum of 

constraint violations.  If this effort terminates with some constraints violated, the problem is 

assumed to be infeasible.  However, this local optimum of the phase 1 objective may not be 

global, so a feasible point may exist.  If a feasible point is found, phase 2 uses it as its starting 

point, and proceeds to minimize the true objective.  Both phases consist of a sequence of line 

searches, each of which produces a feasible point with an objective value not worse (and usually 

better) than its predecessor.  

Several good commercially available implementations of GRG and SQP solvers exist: see 

[Nash, 1998] for a review.  As with any numerical analysis software, a local NLP solver can fail 

to find a local solution from a specified starting point.  The problem may be too badly 

conditioned, badly scaled, or too large for the solver, causing it to terminate at a point (feasible 

or infeasible) which is not locally optimal. While the reliability of the best current NLP solvers is 

quite high, these difficulties occurred in our computational testing, and we discuss this in more 

detail later.  
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Let L be a local NLP solver capable of solving (1)-(4), and assume that L converges to a local 

optimum for any starting point .  Let  be the locally optimal solution found by L 

starting from , and let , i = 1,2,...,nloc be all the local optima of the problem.  The basin of 

attraction of the ith local optimum relative to L, denoted by B( ), is the set of all starting points 

in S from which the sequence of points generated by L converges to .  Formally:  

Sx ∈0 )( 0xL

0x *
ix

*
ix

*
ix

 B( ) =   *
ix })(,|{ *

000 ixxLSxx =∈

One measure of difficulty of a global optimization problem with unique global solution is 

the volume of B( ) divided by the volume of the rectangle, S, the relative volume of B( ).  

The problem is trivial if this relative volume is 1, as it is for convex programs, and problem 

difficulty increases as this relative volume approaches zero.  

*
1x

*
1x *

1x

3.3 Comparing Heuristic Search Methods and Gradient Based NLP Solvers 

For smooth problems, the relative advantages of a heuristic search method like Scatter Search 

over a gradient-based NLP solver are its ability to locate an approximation to a good local 

solution (often the global optimum), and the fact that it can handle discrete variables. Gradient-

based NLP solvers converge to the “nearest” local solution, and have no facilities for discrete 

variables, unless they are imbedded in a rounding heuristic or branch-and-bound method. 

Relative disadvantages of heuristic search methods are their limited accuracy, and their weak 

abilities to deal with equality constraints (more generally, narrow feasible regions). They find it 

difficult to satisfy many nonlinear constraints to high accuracy, but this is a strength of gradient-

based NLP solvers. Search methods also require an excessive number of iterations to find 

approximations to local or global optima accurate to more than 2 or 3 significant figures, while 

gradient-based solvers usually achieve 4 to 8-digit accuracy rapidly. 

The motivation for combining search and gradient-based solvers in a multi-start procedure is 

to achieve the advantages of both while avoiding the disadvantages of either.  Surprisingly, we 

have been unable to locate any published efforts in this direction, besides the Frontline extended 

MLSL method discussed in Section 2. 

3.4 The OQNLP Algorithm 

A pseudo-code description of the simplest OQNLP algorithm follows: 
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INITIALIZATION 

Read_Problem_Parameters (n, p, , , bounds, starting point); 1m 2m

Setup_OQNLP and OptQuest_Parameters and Options(problem size, stage 1 and 2 iteration 

limits, population size, accuracy, names and types of variables and constraints, bounds on 

variables and constraints); 

Initialize_OptQuest_Population; 

Stage 1 iterations = Stage 2 iterations = 0; 

 

STAGE 1: INITIAL OPTQUEST ITERATIONS AND FIRST L CALL 
 

WHILE (Stage 1 iterations < Stage 1 iteration limit)  

DO { 

 Get (trial solution from OptQuest); 

 Evaluate (objective and nonlinear constraint values at trial solution,); 

 Put (trial solution , objective and constraint values to OptQuest database);  

 Stage 1 iterations = Stage 1 iterations + 1; 

        } ENDDO 

Get_Best_Point_from_OptQuest_database (starting point); 

Call_L (starting point, local solution); 

Threshold = default value; 

IF (local solution feasible) THEN   { 

 Insert local solution in linked list; 

 Penalty weights = max(positive lower limit, absolute multiplier values from L call); 

 threshold =  value of local solution;  } 1P

Penalty weights = max(positive lower limit, absolute multiplier values from L call) 

STAGE 2: MAIN ITERATIVE LOOP 

 

WHILE (Stage 2 iterations < Stage 2 iteration limit)  

DO { 

 Get (trial solution from OptQuest); 

 Evaluate (objective and nonlinear constraint values at trial solution,); 
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 Put (trial solution, objective and constraint values to OptQuest database); 

Calculate_ Penalty_ Function (trial solution, Penalty weights, ); 1P

 IF (distance and merit filter criteria are satisfied) THEN { 

  Replace threshold with current  value; 1P

  Call_L (trial solution, local solution); 

  IF (local solution feasible) THEN { 

   Insert local solution in linked list; 

 Penalty weights = max(positive lower limit, absolute multiplier values from L 

call);           } 

          } 

ELSE IF (  > threshold for waitcycle consecutive iterations) {increase threshold} 1P

Stage 2 iterations = Stage 2 iterations + 1;  

} ENDDO 

 

After initialization, there are two main stages.  In the “initial OptQuest iterations” stage, the 

objective and constraint values at all trial points generated by the initial OptQuest population 

(including the population points themselves) are evaluated, and these values are returned to 

OptQuest, which computes its penalty function, POQ, at each point.  The point with the best POQ 

value is selected, and L is started from this point.  If there are any discrete variables, y, they are 

fixed at their current values during the L solution process. Figure 4 shows a graph of these trial 

points for a two variable unconstrained problem.  In general, they are scattered within the 

rectangle defined by the bounds on the variables, so choosing the best corresponds to performing 

a coarse search over this rectangle.  If the best point falls inside the basin of attraction of the 

global optimum relative to L (as it often does), then if the subsequent L call is successful, it will 

find a global optimum. This call also determines optimal Lagrange multiplier values, , for the 

constraints.  These are used to determine initial values for the penalty weights, , satisfying (6), 

which are used in the exact penalty function, , defined in (5). All local optima found are stored 

in a linked list, along with the associated Lagrange multipliers and objective values.  Whenever a 

new local optimum is found, the penalty weights are updated so that (6) is satisfied over all 

known local optima. 

*u

iw

1P

16 



 

The main iterative loop of stage 2 obtains trial points from OptQuest, and starts L from the 

subset of these points determined by two filters.  The distance filter helps insure that these 

starting points are diverse, in the sense that they are not too close to any previously found local 

solution.  Its goal is to prevent L from starting more than once within the basin of attraction of 

any local optimum, so it plays the same role as the rule in the MLSL algorithm of Section 2, 

which does not start at a point if it is within a critical distance of a better point. When the final 

point found by L is feasible, it is stored in a linked list, ordered by its objective value, as is the 

Euclidean distance between it and the starting point that led to it.  If a local solution is located 

more than once, the maximum of these distances, maxdist, is updated and stored.  For each trial 

point, t, if the distance between t and any local solution already found is less than 

distfactor*maxdist, L is not started from the point, and we obtain the next trial solution from 

OptQuest.  

This distance filter implicitly assumes that the attraction basins are spherical, with radii at 

least maxdist. The default value of distfactor is 0.75, and it can be set to any positive value. As 

distfactor approaches zero, the filtering effect vanishes, as would be appropriate if there were 

many closely spaced local solutions.  As it increases, the filtering effect increases until eventually 

L is never started in stage 2.   

The merit filter helps insure that the L starting points have high quality, by not starting from 

candidate points whose exact penalty function value  in (5) is greater than a threshold. This 

threshold is set initially to the  value of the best candidate point found in the first stage of the 

algorithm.  If trial points are rejected by this test for more than waitcycle consecutive iterations, 

the threshold is increased by the updating rule: 

1P

1P

 threshold  threshold +threshfactor*(1.0+abs(threshold)) 

where the default value of threshfactor is 0.2 and that for waitcycle is 20.  The additive 1.0 term 

is included so that threshold increases by at least threshfactor when its current value is near zero. 

When a trial point is accepted by the merit filter, threshold is decreased by setting it to the  

value of that point. 

1P

The combined effect of these 2 filters is that L is started at only a few percent of the OptQuest 

trial points, yet global optimal solutions are found for a very high percentage of the test 

problems.  Some insight is gained by examining Figure 6, which shows the stationary point at the 
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origin and the 6 local minima of the 2 variable six-hump camelback function defined in (7) as 

dark squares, labeled with their objective value.  The ten points from which OQNLP starts the 

local solver are shown as nine white diamonds, plus the origin. The local minima occur in pairs 

with equal objective value, located symmetrically about the origin.  There were 144 trial points 

generated in the “initial OptQuest iterations” stage, and these, plus the 10 points in the initial 

population, are shown in Figure 4.  The best of these 154 points is the population point (0,0), so 

this becomes the first starting point for the local solver.  This happens to be a stationary point of 

F, so it satisfies the optimality test (that the norm of the gradient of the objective be less than the 

optimality tolerance), and the local solver terminates there. The next local solver start is at 

iteration 201, and this locates the global optimum at (.0898, -.7127), which is located two times. 

The other global optimum at (-.0898, .7127) is found first at iteration 268, and is located 6 times. 
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Figure 6:  Local Optima and 10 L Starting Points for 6 hump camelback function
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Figure 7:  Objective and Threshold Values for Six-Hump Camelback Function  

for Iterations 155 to 407 

 

The limit on total OQNLP iterations in this run was 1000. L was started at only 9 of the 846 

OptQuest trial points generated in the main iterative loop of stage 2. All but 2 of the starting 

points are in the basin of attraction of one of the two global optima.  This is mainly due to the 

merit filter. In particular, the threshold values are always less than 1.6071, so no starts are ever 

made in the basin of attraction of the two local optima with this objective value.  The merit filter 

alone rejected 498 points, the distance filter alone 57, and both rejected 281. 

Figure7 illustrates the dynamics of the merit filtering process for iterations 155 to 407 of this 

problem, displaying the objective values for the trial points as white diamonds, and the threshold 

values as dark lines.  All objective values greater than 2.0 are set to 2.0. 

The initial threshold value is zero, and it is raised twice to a level of 0.44 at iteration 201, 

where the trial point objective value of  -0.29 falls below it. L is then started and locates the 

global optimum at (.0898, -.7127), and the threshold is reset to –0.29.  This cycle then repeats. 

Nine of the ten L starts are made in the 252 iterations shown in the graph. In this span, there are 

12 points where the merit filter allows a start and the threshold is decreased, but L is not started 

at three of these because the distance filter rejects them.  
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Figure 8 shows the same information for iterations 408 to 1000.  There is only one L start in 

this span.  This is not due to a lack of high quality trial points: there are more good points than 

previously, many with values near or equal to –1.0310 (the global minimum is –1.0316), and the 

merit threshold is usually –1.0310 as well. Every time this threshold is raised, the merit filter 

accepts one of the next trial points, but 51 of the 52 accepted points are too near one of the 2 

global optima, and they are rejected by the distance filter. 

This simple example illustrates a number of important points: 

1.  Setting the bounds on the continuous or discrete variables to be too large in magnitude is 

likely to slow the OQNLP algorithm (or any search algorithm) and may lead to a poorer final 

solution.  In the above example, if the variable bounds had been [-2,2] rather than [10,10], the 

trial points generated by the initial population would have had much lower objective values.  

OptQuest can overcome this when the initial population is updated. 

2.  L found a highly accurate approximation to the global solution of this unconstrained problem 

at its second call.  OptQuest alone would have taken many more iterations to achieve this 

accuracy.  

3.  The best trial point generated by the initial population may not have as good an objective 

value as those generated from the second or succeeding ones, especially if the variable bounds 

are too large.  Using the best “first generation” point as the initial L starting point may not lead to 

as good a local solution as if some “second generation” points had been considered.  For this 

reason our base case computational results use a first stage of 200 OptQuest trial points, which in 

this example would include all 144 first generation points and 56 from the second generation.  
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Figure 8:  Objective and Threshold Values for Six-Hump Camelback Function:   

iterations 408 to 1000 

3.5 Filtering Logic for Problems with Discrete Variables 

The filtering logic described above must be extended when there are discrete variables (the y 

variables in the problem statement (1)-(4)).  There are 2 distinct modes: (1) Optquest is aware of 

both the x and y variables and all problem constraints and (2) Optquest is aware only of the y 

variables and the constraints involving y only.  Tests thus far do not show conclusively that one 

of these is preferred, so both modes are described and comparisons thus far are presented later. 

In mode one, when a trial point (xt, yt) provided by OptQuest passes the two filtering tests and 

is passed to the local solver L, xt acts as a starting point and is changed by L, but the yt values are 

fixed and are not changed.  Each new set of yt values defines a different NLP for L to solve, say 

NLP(yt), with its own set of local minima in x space, so both filters must be made specific to 

NLP(yt). For the distance filter, it is irrelevant if xt is close to any local minima (in x space) 

previously found which correspond to problems NLP(y) with y different from yt.  Hence the 

distance filter is based on the distance from xt to local minima of NLP(yt) only. Similarly, the 

tests and threshold values in the merit filter must be specific to the problem NLP(yt) currently 

being solved. However, the weights w in the exact penalty function (x,y,w) used in the merit 

filter are based on the maximum absolute multipliers over all local optima for all vectors y

1P

t, 

21 



 

because these weights are large enough to ensure that  this function is exact for all problems 

NLP(y).  

Therefore, in stage 2 of the algorithm, the exact penalty function, (x1P t,yt,w), is calculated at 

each trial point (xt,yt), and L is started at (xt,yt) if  is smaller than the current threshold for 

NLP(y

1P

t). This threshold is initialized to plus infinity, so if the values yt have not occurred in a 

previous stage 2 trial point, L will be called at this point.  This leads to many more local solver 

calls in problems with discrete variables, as we show later in the computational results sections. 

In mode two, Optquest presents candidate y vectors only to L, which are fixed while L finds 

corresponding (locally) optimal x values.  The starting values for x can be chosen to minimize 

computational effort.  We are experimenting with an option which obtains all possible trial 

points for the current population, sorts them in terms of their distance from each other, and calls 

L in that sorted order, starting each call of L from the previous optimum.  It is expected that y’s 

which are close to one another will have x’s with that property, so the previous optimum will be 

a good starting point. 

In mode two, there is no stage 1, and L must be called at each y vector that has not been 

produced previously. As a result, the local solver call where the best value is found typically 

comes later than with mode 1.  On the other hand, OptQuest’s effort is reduced since it processes 

a much smaller problem, and the information returned to it by the local solver (the optimal 

objective value over the continuous variables) is of much higher quality than in the base case (the 

penalized objective value at OptQuest’s trial point). 

An important option involves the return of information from the local solver to OptQuest, 

which is absent in the above procedure, i.e., local solutions found by the local solver are not 

returned to OptQuest.  Such solutions are generally of very high quality, and might aid the search 

process if they were incorporated into the OptQuest population, because at least a subset would 

likely be retained there.  However, this should be done so as to preserve the diversity of the 

population.   

 

4. Computational Results 
The algorithm described in the previous section has been implemented as a callable C-language 

function.  In this form, the user supplies a C function that evaluates the objective and constraint 

functions, an optional routine that evaluates their first partial derivatives (finite difference 
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approximations are used otherwise), and a calling program that supplies problem size, bounds, an 

initial point, and invokes the algorithm.  Algorithm parameters and options all are set initially to 

default values, and any changes are specified in an options file..  The local NLP solver is the 

LSGRG2 implementation of [Smith and Lasdon, 1992].  We have also developed an interface 

between our C implementation and the GAMS algebraic modeling language (see 

www.gams.com), using C library routines provided by GAMS Development Corporation.  The 

user function routine is replaced by one that calls the GAMS interpreter, and a special derivative 

routine accesses and evaluates expressions developed by GAMS for first derivatives of all 

nonlinear problem functions.  GAMS identifies all linear terms in each function, and supplies 

their coefficients separately, thus identifying all linear constraints. This enables us to invoke the 

OptQuest option which maps each trial point into a point which satisfies the linear constraints.  

The derivative information supplied by GAMS significantly enhances the performance of the 

local solver since only non-constant derivatives are re-evaluated, and these are always available 

to full machine precision.  As mentioned earlier, this GAMS version can call any GAMS NLP 

solver. 

For our computational experiments we used the large set of global optimization test problems 

coded in GAMS from [Floudas et al., 1999].  Table 1 shows the characteristics of 142 individual 

and 2 groups of problems.   
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Table 1:  Floudas Test Problem Set Characteristics 
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Problem Type
EX2_1_x 14 24 0 10 0 concave QP (min)
EX3_1_x 4 8 0 4 6 quadratic obj and constraints
EX4_1_x 9 2 0 0 2 obj or constraints polynomial
EX5_2_x 2 32 0 8 11 bilinear-pooling
EX5_3_x 2 62 0 19 34 distillation column sequencing
EX5_4_x 3 27 0 13 6 heat exchanger network
EX6_1_x 4 12 0 3 6 Gibbs free energy min
EX6_2_x 10 9 0 3 0 Gibbs free energy min
EX7_2_x 4 8 0 3 12 generalized geometric prog
EX7_3_x 6 17 0 10 11 robust stability analysis
EX8_1_x 8 6 0 0 5 small unconstrained, constrained
EX8_2_x 5 55 0 6 75 batch plant design-uncertainty
EX8_3_x 14 141 0 43 65 reactor network synthesis
EX8_4_x 8 62 0 0 40 constrained least squares
EX8_5_x 6 6 0 2 2 min tangent plane distance
EX8_6_1 N 3N 0 0 0 Lennard-Jones energy min
EX8_6_2 N 3N 0 0 0 Morse energy min
EX9_1_x 10 29 6 27 5 bilevel LP
EX9_2_x 9 16 3 11 6 bilevel QP
EX12_2_x 6 11 8 9 4 MINLP
EX14_1_x 9 10 0 4 17 infinity norm solution of equations
EX14_2_x 9 7 0 1 10 infinity norm solution of equations

Total: 142 + 2N
 

 

Most problems arise from chemical engineering, but some are from other sources.  Most are 

small, but a few have over 100 variables and comparable numbers of constraints, and 13 have 

both continuous and discrete variables.  Almost all of the problems without discrete variables 

have local solutions distinct from the global solution, and the majority of problems have 

constraints.  Sometimes all constraints are linear, as with the concave quadratic programs of 

series EX2_1_x, but many problems have nonlinear constraints, and these are often the source of 

the non-convexities.  The best-known objective value and (in most cases) the corresponding 
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variable values are provided in [Floudas, et al., 1999].  The symbol N in the rows for the series 

EX8_6_1 and EX8_6_2 is the number of particles in a cluster whose equilibrium configuration is 

sought via potential energy minimization.  Each particle has 3 coordinates, so there are 3N 

variables. 

4.1 Continuous Variables-The Base Case 

This section describes results obtained when OQNLP is applied to 128 of the problems in the 

Floudas et. al. test set with no discrete variables.  A few problems for which no GAMS NLP 

solver can find a feasible solution in 800 solver calls are omitted. Computations were performed 

on a DELL OptiPlex PC with a 1.2 Ghz Pentium IV processor and 261 Mbytes of RAM, running 

under Windows 2000. 

The options and main algorithm parameters used are shown in Table 2 (see Section 3.4 for 

definitions). The filter parameter values (waitcycle, threshfactor, distfactor) correspond to fairly 

tight filters, and these must be loosened to solve some problems. The OptQuest “use linear 

constraints” option, which projects trial points onto the linear constraints, is not used because it 

is very time consuming for larger problems.  SNOPT, an SQP implementation, was used for the 

largest problems because many calls to the GRG solvers CONOPT and LSGRG2 terminate 

infeasible on these problems.  The 8_3_x problems include many “pooling” constraints, which 

have bilinear terms.  In almost all these terminations, the GRG solvers find a local minimum of 

the phase 1 objective.  SNOPT has no phase 1, and never terminates infeasible.  
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Table 2:  Base case OQNLP and OptQuestGRG Parameters and Options Used 

 
Total iterations = 1000 

Stage 1 iterations = 200 

Waitcycle = 20   

Threshfactor = 0.2 

Distfactor = 0.75 

Use linear constraints = no 

OptQuest search type = boundary 

Boundary search parameter = 0.5 

NLP solver = LSGRG2 except 

SNOPT for  110 to 141 range 

 
 

Table 3 shows outcomes and average effort statistics for 128 of the Floudas et. al. collection 

of test problems with continuous variables only, sorted into 6 groups by number of variables. 

Geometric rather than arithmetic means are used to reduce the effects of outliers: function calls, 

iterations, and times for the larger problem sets typically include a few problems with values 

much larger than all others. Computational effort is measured by OptQuest iterations, solver 

calls, function calls (each function call evaluates the objective and all constraint functions), and 

computation time.  The three “to best” columns show the effort required to find the best OQNLP 

objective value.  Function calls are not available for the largest problems because the SNOPT 

interface does not yet make them available.  
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Table 3:  Results and Effort Statistics for 128 Continuous Variable Floudas Problems  
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1 to 4 32 2.5 1.7 206.3 1.1 7.5 1.9 263.9 2158.0 0.1 0.5 1 27 3 
4 to 7 31 5.5 5.7 214.4 1.3 5.8 1.9 381.5 4766.7 0.2 0.6 0 22 6 
8 to 12 21 9.4 8.1 238.2 1.5 13.2 3.0 575.6 19698.0 0.1 0.8 3 10 4 

13 to 20 18 15.9 11.7 303.5 2.4 7.4 2.6 968.2 5211.9 0.3 0.7 4 8 1 
22 to 78 13 37.9 27.6 259.6 2.1 14.1 3.1 1562.4 23077.9 0.6 2.5 1 5 3 

110 to 141 13 116.4 80.1 305.0 2.7 23.7 22.7 NA NA 6.6 64.1 0 7 2 
Total/avg 128   251.3 1.8 10.5 3.5 537.9 7190.9 0.4 1.7 9 80 19 

 
 

Since all problems have known solutions, we define “failures” as problems with a solution 

gap of more than 1%.  This gap is the percentage difference between the best feasible OQNLP 

objective value, fOQNLP, and the best-known feasible objective value, fbest, defined for 

minimization problems as:   

)(1
)(100

fbestabs
fbestfoqnlpgap

+
−

=  

and the negative of the above for maximization, so positive gaps indicate that the best known 

solution was not reached.  Nine of the 128 problems failed to achieve gaps smaller than 1%, with 

gaps ranging from 2.2% to 80%.  All these are solved with more iterations or by loosening the 

filters. Percentage gaps for almost all 119 “solved” problems are less than 1.e-4, and the largest 

gap among solved problems is 0.37%. 

Computational effort needed to achieve these results is quite low, and increases slowly with 

problem size, except for the geometric mean solution time for the largest problems.  The best 

OQNLP value is also found very early: in the first solver call in 80 of the 118 solved problems, 

and the second call in 19 more.  This shows that, for these test problems, stage one of OQNLP is 

very effective in finding a point in the basin of attraction of the global optimum.  The ratio of the 

“to best” effort to total effort is also small.  For iterations, since there are always 200 stage 1 

iterations, we subtract 200 before computing the ratio, giving 51.3/800 = 0.06.  The solver call 

ratio is 0.17 and the time ratio 0.23.  This implies that, for these problems, a criterion that stops 

OQNLP when the fractional change in the best feasible objective value found thus far is below a 
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small tolerance for some (reasonably large) number of successive iterations would rarely 

terminate the algorithm before the best solution was found.  The ratio of total solver calls to 

locals found, a measure of filter efficiency, varies from 3 to 5, and is nearly one for the largest 

problems.  

Table 5 shows results obtained in solving the 9 “failed” problems with looser filters and an 

OptQuest boundary search parameter of 1.  Seven of these 9, the 2_1_x series, are quadratic 

programs (QP’s) with concave objectives (to be minimized), so each has an optimal extreme 

point solution, and every extreme point is a local solution.  The base case and new parameter 

values are in Table 4 below. 

 
Table 4:  Base Case and Loosened Filter Parameter Values 

 
Parameter Base Case Value Looser Value 

Waitcycle 20 10 

Threshold_factor 0.2 1.0 

Distance_factor 0.75 0.1 

Boundary Search Parameter 0.5 1.0 

 
 

The looser merit filter increases its threshold every 10 iterations, replacing the old value by 

old value+1.0*(1+abs(old value)).  The looser distance filter rejects a trial solution if its distance 

from any previously found local solution is less than 0.1*maxdist, where maxdist is the largest 

distance traveled to reach that solution.  A search parameter of 1 causes more OptQuest trial 

points to have values on the boundary of the rectangle defined by the variable bounds, which 

helps solve the seven concave QP’s.   

Eight of the nine “unsolved” problems are solved with these new parameters, and the other, 

EX14_1_8, achieves a gap of 1.15%.  It is solved by using 1000 stage one iterations and 5000 

total, with all other parameters as in the base case.  
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Table 5:  Solving 9 “failed” problems with looser filters and boundary parameter=1 
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EX14_1_8 3 4 338 21 122 17 2 38141 1218680 0.49 2.25 1.15 
EX9_2_5 8 7 344 2 6 45 3 690 2832 0.21 0.6 0 
EX2_1_6 10 5 203 3 107 7 17 389 138749 0.2 1.38 0 
EX2_1_9 10 1 201 1 111 66 39 252 342345 0.16 1.45 0 

EX2_1_7_1 20 10 279 8 27 2 19 5051 60043 0.39 1.25 0 
EX2_1_7_3 20 10 269 4 65 22 36 1321 286213 0.3 1.92 0 
EX2_1_7_4 20 10 253 6 29 4 9 3676 83989 0.39 1.41 0 
EX2_1_7_5 20 10 254 5 29 3 15 2620 71004 0.33 1.34 0 

EX2_1_8 24 10 226 3 120 8 25 981 1071730 0.29 2.87 0 

Means(geom)   258.6 4.1 48.7 10.5 12.8 1760.7 137876.8 0.3 1.5  

 
 

Comparing the “total solver calls” and “base case solver calls” columns shows that the new 

parameters represent a substantial loosening of both filters.  The looser filters result in many 

more solver calls in all but problem 9_2_5, and the geometric mean solver calls is 48.7 with the 

loose filters versus 10.5 with the tighter ones.  The behavior of 9_2_5 is surprising (6 solver calls 

with loose filters versus 45 with tighter ones), but the run with looser filters finds the global 

minimum at iteration 344, and after that its merit thresholds and set of local solutions differ from 

those of the base case run. 

Table 6 below shows the geometric performance means and totals obtained from solving the 

14 concave QP problems with base case parameters, with and without the OptQuest “use linear 

constraints” option, which maps each trial point into a nearest point feasible for the linear 

constraints.  Since these are linearly constrained problems, invoking this option guarantees that 

all trial points are feasible. 

 
Table 6:  Solving Concave QP problems with and without “use linear constraints” 

 
 
 

Case 

 
Iterations 

to best 

 
Solver calls 

to best 

Total 
Solver 
calls 

 
Locals 
found 

 
fcn calls to 

best 

 
Total fcn 

calls 

 
Time to 

best 

 
Total 
time 

 
 

Failed 

no use 284.8 2.3 6.6 3.7 643.8 3875.1 0.3 0.6 7 

use 247.1 2.1 12.1 3.1 437.7 3827.6 6.9 19.0 2 
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Clearly this option helps: there are roughly twice as many solver calls on average when using 

it, and only 2 failures, versus 7 in the base case.  The gaps for the 2 unsolved problems (2_1_7_5 

and 2_1_9) are between 1% and 3.5% in both cases.  However, this option increases run times 

here by about a factor of 30, so it is currently off by default. 

4.2 The Lennard-Jones and Morse Energy Minimization Problems 

The Floudas et. al. set of test problems includes two GAMS models that choose the locations of a 

cluster of N particles to minimize the potential energy of the cluster, using two different potential 

energy functions, called Lennard-Jones and Morse.  The decision variables are the (x,y,z) 

coordinates of each particle.  Particle 1 is located at the origin, and three position components of 

particles 2 and 3 are fixed, so each family of problems has 3N-6 variables.  These problems have 

many local minima, and their number increases rapidly with problem size, so they constitute a 

good test for global optimization algorithms. 

Results of applying OQNLP to 14 of these problems, using 200 stage 1 and 1000 total 

iterations, are shown in Tables 7 and 8.  Each problem set was solved with LSGRG2 and 

CONOPT.  These results use CONOPT for the Lennard-Jones problems and LSGRG2 for the 

Morse, because they provide slightly better results, illustrating the value of being able to call 

several solvers.  Because of the many distinct local minima, the number of local minima found is 

equal to the number of solver calls for the 3 largest Lennard-Jones problems and for all the 

Morse problems,  

 
Table 7:  Solving 6 Lennard-Jones Problems Using CONOPT and Loose Filters 

 
 
 

Problem name 

 
 

Variables 

 
 

Constraints

 

Solver calls to 
best 

Total 
Solver 
calls 

 

Locals 
found

 

Time to 
best 

 
 

Total 

 
 

Gap,% 
EX8_6_1_5 9 10 1 152 39 1.09 21.83 0.00 

EX8_6_1_10 24 45 21 130 114 18.56 68.34 0.00 
EX8_6_1_15 39 105 6 104 100 13.63 165.09 0.00 
EX8_6_1_20 54 190 67 118 118 257.62 396.21 1.12 
EX8_6_1_25 69 300 42 94 94 325.82 730.68 1.84 
EX8_6_1_30 84 435 16 59 59 134.35 434.56 0.88 

 
 

The Lennard-Jones problems are the more difficult of the two. The 3 largest problems have 

gaps of roughly 1% to 2%, using the looser filter parameters in Table 4.  The default filter 
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parameters led to positive gaps for the last 3 problems totaling 7.8%, while this sum in Table 7 is 

3.8%.  The objective approaches infinity as the distance between any 2 particles approaches zero, 

so its unconstrained minimization for N=20 leads to about 50,000 domain violations (either 

divide by zero or integer power overflow), and this number grows rapidly with N.  Hence we 

added constraints lower bounding this distance by 0.1 for all distinct pairs of points, and the 

number of these constraints is shown in the table.  None are active at the best solution found. 

Table 8 shows the Morse potential results using the LSGRG2 solver and the default OQNLP 

parameters shown in Table 2.  The objective here has no singularities, so there are no difficulties 

with domain violations, and the only constraints are variable bounds.  All problems are solved to 

very small gaps except the largest (144 variables), which has a gap of .125%.  The number of 

solver calls is much smaller than for the Lennard-Jones problems, because the filters are much 

tighter.  Each call leads to a different local optimum. The largest problem is solved to a gap less 

than 1.e-4% with 5000 total and 1000 stage 1 iterations and the same filter parameters.  This run 

terminated because the 3000 second time limit was exceeded, took 4083 iterations, and found 

210 distinct local optima in 210 solver calls, compared to only 25 in the base case. 

 
Table 8:  Solving 8 Morse Problems Using Lsgrg2 and default Parameters 

 
 
 

Problem name 

 
 

Variables 

 
Solver calls 

to best 

 
Total Solver 

calls 

 
Locals 
found 

 
 

Time to best

 
 
 Total time 

 
 

Gap 

EX8_6_2_5 9 1 5 5 0.23 0.61 0.0000 

EX8_6_2_10 24 1 15 15 0.57 4.44 0.0000 

EX8_6_2_15 39 1 6 6 1.41 6.43 0.0000 

EX8_6_2_20 54 2 43 43 4.2 51.2 0.0000 

EX8_6_2_25 69 4 20 20 13.44 58.38 0.0000 

EX8_6_2_30 84 17 43 43 68.56 160.19 0.0000 

EX8_6_2_40 114 7 33 33 66.29 273.91 0.0000 

EX8_6_2_50 144 20 25 25 337.2 403.96 0.1251 

 
 
4.3  Problems with Discrete Variables 

There are 11 MINLP problems in the Floudas et. al. test set, with the total number of variables 

ranging from 3 to 29 and the number of binary variables ranging from 1 to 8.  Two of these, 

EX12_2_3 and EX12_2_4, had been reformulated so that all binaries appeared linearly, and we 

restored them to their original state where the binaries appear nonlinearly.  OQNLP allows such 
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representations, while the other GAMS MINLP solvers do not.  The final test set contains 13 

problems.  These are far too small to yield meaningful inferences about the power of OQNLP on 

problems of practical size, but allow preliminary testing of the two MINLP modes described in 

Section 3.5.  The geometric means of some measures of computational outcomes and effort for 

both modes are shown in Table 9, using the LSGRG2 NLP solver. 

 
Table 9:  Solution Statistics for 13 Problems with Discrete Variables 
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discrete 
only default 10.2 10.2 20.1 2065.8 5794.1 0.8 1.5 0 

all default 261.7 4.0 32.1 1065.7 25022.2 0.3 0.8 7 

all (1000,5000) 1551.9 12 89.1 10196.8 224025.7 0.8 3.7 1 

all default,use 272.4 3.6 115.8 1178.0 88983.0 9.9 26.1 0 
 

 

The first table row is for mode 2, where OptQuest manipulates only the discrete variables.  

Each NLP problem was “cold started” from the same initial point in these runs, so the number of 

function calls could be reduced substantially by warm starts.  All runs are terminated by 

OptQuest after the small number of possible binary variable combinations have been completely 

enumerated.  The optimal solution is found on average about midway through the solution 

process, but we expect that this will occur earlier as the number of discrete variables increases.  

The OptQuest logic requires that at least one population of binary solutions be evaluated before 

any learning can occur, and the average number of solver calls to find the best solution here is 

about equal to the population size of 10.   

The last 3 rows of Table 9 show results for mode 1, where OptQuest manipulates both binary 

and continuous variables.  In rows 2 and 3, we do not require trial points to satisfy linear 

constraints, while in row 4 we do.  Without using linear constraints, the default number of stage 

1 and total iterations of (200,1000), are not enough to find the best solution for about 7 of the 13 

problems.  This is because many OptQuest trial points have the same values for the binary 
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variables but different values for the continuous variables, so complete enumeration takes far 

longer than in mode 2.  However, 1000 stage 1 and 5000 total iterations solve all but 1 problem 

(its gap is 9.4%), and the ratio (solver calls to best)/(total solver calls) of about 1/9 is favorably 

small.  Row 4 shows that, if trial points are required to satisfy linear constraints, all problems are 

solved in 1000 total iterations.  This is because these problems have mostly linear constraints 

(geometric mean of linear constraints is 9.1 and of total constraints is 9.9), so the projected trial 

points tend to contain an optimal set of binary variable values earlier, after only 3.6 solver calls 

on average.  However, solving the MILP’s which map trial points into nearest points which 

satisfy the linear constraints increases total solution time by about a factor of 30 (compare the 

times in rows 2 and 4). 

Table 10 below shows that total solver calls increase quickly with the number of binary 

variables for the 2 discrete variable modes, especially the “all” mode.  When more than one 

problem has the same number of binaries, averages over those problems are given. The values 

for the “Discretes Only” mode are the number of feasible binary vectors, averaged over the 

number of problems shown.       

 

  Table 10: Average Solver Calls Vs. Number of Binary Variables 

Binaries  1 3 4 5 6 8 

Problems 1 3 2 1 4 2 

Discretes only 2 7 12.5 27 52.5 81 

all 52 35.7 17.5 109 195.5 551.5 

 

 

 

5.  Summary and future research 
The results of Section 4 show that OQNLP is a promising approach for smooth nonconvex 

NLP’s with continuous variables.  It solves all 142 of the test problems with no discrete variables 

with very reasonable solution effort.  While there is no guarantee of optimality and no “gap” is 

available, it can be combined with other algorithms that provide this information, e.g., LGO or 

BARON.  The lower bounds provided by these procedures can be used to estimate the gap for 
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the OQNLP solution, and the solution produced by any algorithm can be used as a warm start for 

any other. 

Future research includes enhancing the filter logic.  As described above, the filters needed to 

be loosened to solve 9 of the Floudas et. al. test problems, and this loosening could be done 

automatically. The merit filter parameter threshfactor (new threshold=threshfactor(1+old 

threshold)) could be calculated dynamically.  Each time a penalty value is above the threshold, 

calculate the value of threshfactor that would cause the new threshold to equal the penalty value.  

If this happens for waitcycle consecutive iterations, set threshfactor to the smallest of these 

values, so the new threshold would have just accepted the lowest of the penalty values.  Similar 

logic can be developed for the distance filter, reducing a basin radius maxdist if  that basin’s 

distance filter rejects trial points for waitcycle consecutive iterations.  

Also, the current distance filter logic allows overlap of the spherical approximations to the 

attraction basins.  The true basins can have no points in common, so we can impose this 

condition on the spheres.  If the spherical model basins for any 2 local solutions xi and xj have 

radii ri and rj, these must satisfy 

 ),( jidrjri ≤+  

where d(i,j) is the Euclidean distance between xi and xj.  If this inequality is violated, the radii ri 

and rj can be reduced by the same scale factor so that it holds as equality.  We plan to test these 

options soon. 

Another important aspect is the communication of locally optimal solutions back to OptQuest, 

to improve its search process.  These solutions usually have substantially lower penalty values 

than typical OptQuest trial points, so they are likely to ultimately be included in OptQuest’s 

population.  However, their penalty values often become the merit filter thresholds, causing most 

other trial points to be rejected.  Also, the local optima and their nearby “children” will be 

rejected by the distance filter.  We have seen these effects in preliminary tests.  

NLP algorithms can fail by failing to find a feasible point in cases where the problem instance 

is feasible.  With GRG algorithms, this usually happens when Phase 1 terminates at a local 

optimum of the Phase 1 objective.  OQNLP can be applied to such problems, if they are 

reformulated by dropping the true objective, adding deviation variables into all constraints, and 

minimizing the sum of these deviation variables.  This approach could greatly improve the 

ability of existing NLP solvers to diagnose infeasibility.  More generally, OQNLP can improve 
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NLP solver reliability by starting the solver from as many points as desired, while insuring that 

these points balance diversity and quality. 

The performance of OQNLP in solving MINLP’s is less clear, because the 13 MINLP test 

problems used here are so small.  More extensive testing is needed, which should clarify the 

relative merits of the 2 MINLP “modes” discussed in Section 4.3.  If OptQuest manipulates only 

the discrete variables, then all trial points generated by the current population may be generated 

at once, and the solver calls at these points may be done in any order.  The points can be sorted 

by increasing distance from their nearest neighbor, and each NLP call can be started from the 

previous optimum.  The NLP’s can also be solved in parallel. 

Finally, comparative studies of OQNLP and other global and MINLP solvers are needed.  

This testing is facilitated by the existing GAMS interfaces for BARON, LGO, DICOPT, and 

SBB.  The “MINLP World” and “Global World” websites developed by GAMS Development 

Corporation (see www.gamsworld.org) provide solver information and test problems with known 

solutions.  
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