

Adaptive Memory Programming for Constrained
Global Optimization

LEON LASDON Information, Risk, and Operations Management Department
The University of Texas at Austin, USA
Leon.Lasdon@mccombs.utexas.edu

ABRAHAM DUARTE Departamento de Ciencias de la Computación
Universidad Rey Juan Carlos, Spain
Abraham.Duarte@urjc.es

FRED GLOVER OptTek Systems, Inc.
Boulder, CO 80302, USA
Glover@opttek.com

MANUEL LAGUNA Leeds School of Business
University of Colorado at Boulder
Laguna@colorado.edu

RAFAEL MARTÍ Departamento de Estadística e Investigación Operativa
Universidad de Valencia, Spain
Rafael.Marti@uv.es

Abstract

The problem of finding a global optimum of a constrained multimodal function has been
the subject of intensive study in recent years. Several effective global optimization
algorithms for constrained problems have been developed; among them, the multistart
procedures discussed in Ugray et al. (2007) are the most effective. We present some new
multistart methods based on the framework of adaptive memory programming (AMP),
which involve memory structures that are superimposed on a local optimizer.
Computational comparisons involving widely used gradient-based local solvers, such as
Conopt and OQNLP, are performed on a testbed of 26 problems that have been used to
calibrate the performance of such methods. Our tests indicate that the new AMP
procedures are competitive with the best performing existing ones.

Last revision: November 21, 2008

mailto:Leon.Lasdon@mccombs.utexas.edu�
mailto:Abraham.Duarte@urjc.es�
mailto:Glover@opttek.com�
mailto:Laguna@colorado.edu�
mailto:Rafael.Marti@uv.es�

AMP for Constrained Global Optimization / 2

1. Introduction
The constrained continuous global optimization problem (P) may be formulated in a
general form as follows:

(P) minimize f(x)
 subject to:
 G(x) ≤ b
 x∈S ⊂ Rn

where x is an n-dimensional vector of continuous decision variables, G is an m-
dimensional vector of constraint functions, and without losing generality the vector b
contains upper bounds for these functions. The set S is defined by simple bounds on x,
and we assume that it is closed and bounded, i.e., that each component of x has a finite
upper and lower bound. The objective function f and the constraint functions G are
assumed to have continuous first partial derivatives at all points in S.

There are many effective methods, such as Conopt, Snopt and Knitro, most of them
requiring gradients of the problem functions, for finding local solutions to (P). In this
paper we propose memory structures (Glover 1989) that can be superimposed to these
methods to drive the search on a long term horizon to solve the global optimization
problem. These structures use a local solver to generate trial solutions which are
candidates for a global optimum, where as customary the best feasible candidate is
retained as the overall “winner”. The local solver may be gradient-based, or may be a
“black box” algorithm as typically used in simulation optimization (see, e.g., April et al.,
2006; Better, Glover and Laguna, 2007). The local solver used here is Conopt, a GRG
algorithm (Smith and Lasdon, 1992), described in (Drud 1994). This gradient-based
algorithm is known to have a superlinear convergence rate, and has an excellent
combination of reliability and efficiency, when applied to both small and large sparse
smooth NLP’s. Our adaptive memory structure will guide the selection of starting points
for the local solver. Specifically, we propose two different Adaptive Memory
Programming (AMP) approaches (Glover and Laguna, 1997); the first one, described in
Section 2, is based on a tabu tunneling strategy and the second one, described in Section
3, is based on a pseudo-cut strategy. Both are designed to prevent the search from being
trapped in local optima.

In Section 4, we describe the GAMS implementation of both AMP approaches. Section 5
is devoted to our computational experiments on 26 hard problems from the literature (see
Ugray et al. 2007). We will show that the tabu tunneling strategy is able to outperform
the state-of-the-art methods for constrained global optimization. On the other hand, the
pseudo-cut strategy obtains lower quality results on average (as compared to the
tunneling strategy), although it substantially improves the Conopt method and it is
capable of establishing new best-known solutions to three instances. We also show that
the pseudo-cut strategy can be coupled with the tunneling method for improved
outcomes. The paper finishes with relevant conclusions.

AMP for Constrained Global Optimization / 3

2. Tabu Tunneling Method
Metaheuristic methodologies diversify a search to march beyond local optimality in the
quest for a global optimum. Applying a local optimizer to points in the same region of
the solution space may result in repeatedly obtaining the same local optimum, unless
additional constraints are imposed or the evaluation criterion is modified. In this section
we propose an adaptive modification of the objective function to perform multiple
searches with the goal of reaching different local optima of the original objective
function.

Our approach modifies and extends the global optimization tunneling method (TM) of
Levy and Gomez (1985) for unconstrained problems. The original TM approach consists
of two phases, minimization and tunneling, which are alternated until a cutoff point is
reached. For a given starting point s0, the minimization phase applies a descent algorithm
to find a local optima s. The tunneling phase is designed to obtain a good starting point
for the next minimization phase. The objective is to obtain a point t with a value as good
as s (f(t) ≤ f(s)) in a different basin of attraction. Therefore if we apply the descent
method from t we can obtain now a solution w better than s and t as shown in Figure 1.

Figure 1. Tunneling approach

The objective of the tunneling problem must therefore be constructed so that its
minimization leads to points which both improve the original function f(x) and are distant
from the current solution s. A standard tunneling function T(x,s,λ) is given by the
expression:

λλ
sx

sfxfsxT
−

−
=

)()(),,(

where λ is positive. Levy and Gomez proposed that an equation-solving method be
applied to seek a point where T = 0.

As mentioned in Murray and Ng (2002), a pure tunneling method has severe drawbacks,
because the T function inherits any nonconvexity in f, and the new term in the
denominator creates a singularity at s. Thus the tunneling subproblem is at least as

s0 s t w

tunneling

AMP for Constrained Global Optimization / 4

difficult as the original, and an equation solver or local optimizer applied to it may fail to
find a point t satisfying f(t) ≤ f(s) even if one exists.

To overcome these limitations, and to extend the method to constrained problems, our
tabu tunneling method (TTM) modifies the original tunneling procedure as follows:

1. Since it is difficult to find a point t different from a local solution s satisfying

f(t) ≤ f(s) in a single application of a local solver, we have developed a multistep
process for this purpose, which we call the tunneling loop. We define a TabuList of
points from which to move away, including both the most recent local solution of the
original problem P, and recent solutions of tunneling subproblems which failed to
achieve the desired condition.

2. To enforce movement away from several points, we redefine the denominator of T to

be the product of distances from the points in TabuList.

3. Rather than making the current best objective value Best_f the target to be achieved

by the tunneling loop, we define an aspiration value for the objective function which
is slightly less than Best_f;

aspiration = Best_f - ε1·(1+abs(Best_f))

where the default value of ε1 is 0.02, and the additive unity term is included to ensure
a nonzero reduction when Best_f is zero, and a significant reduction when abs(Best_f)
is very small. With these elements, our tunneling function TTf is:

∏
∈

−
=

TabuLists
i

i

sxdist
aspirationxfxTTf 2

2

)),((
))(()(

For simplicity, we do not indicate explicitly the dependence of TTf on aspiration and
the points in TabuList. This function has a global minimum of zero at any feasible
point where f = aspiration, and minimizing this expression tends to move away from
all points in TabuList.

4. To accommodate constraints other than simple bounds, we redefine the tunneling

subproblem (TP) to include all the constraints of the original problem:

(TP) minimize TTf(x)
 subject to:
 bG(x) ≤
 Sx ∈

5. Since TTf is not defined at any of the points in TabuList, the starting point for (TP)

cannot be in TabuList. Further, if the local solver used to solve (TP) encounters any
point in TabuList during its solution process, it may terminate due to a domain

AMP for Constrained Global Optimization / 5

violation error. This happened when using Conopt in a number of experiments, for
the following reasons. Since Conopt is a “feasible point” solver, if the starting point
is not feasible, it tries to find a feasible point using a standard phase 1 procedure, just
as the Simplex algorithm for linear programming would do. This phase 1 procedure
ignores the given objective and substitutes an objective equal to the sum of constraint
violations. Thus there is no mechanism in phase 1 to avoid the points in TabuList,
and we found that in many cases where an infeasible starting point was supplied for
(TP), Conopt’s phase 1 terminated with a feasible solution equal to a point in
TabuList. When it attempted to use this point to initiate minimization of TTf in phase
2, this triggered a fatal error message and Conopt terminated.

The only sure way to avoid the problem in point 5 above is to provide the local solver
with a feasible starting point not equal to any of the points in TabuList. We have found
that an effective way to do this is to first randomly perturb away from the current local
solution (the newest point in TabuList) to a (generally infeasible) point x0, and then find
the feasible point closest to x0 by solving the following Projection Problem

(PP) minimize 2
0xx −

 subject to:
 bG(x) ≤

 Sx ∈

In all constrained problems solved thus far, containing hundreds of instances of (PP), this
strategy has never failed to provide a suitable starting point for (TP).

As in a variety of simple tabu search implementations, we maintain TabuList as a circular
list. After each solution of the tunneling problem defined above, we add the solution to
that problem to the list, and if the size of the new list exceeds the limit (called
TabuTenure in the following description), some old point is dropped from the list. We
have experimented with dropping the oldest element, dropping the element farthest from
point just added to the list, and dropping the oldest element whose distance from the point
just added is larger than a specified fraction of the largest distance. Results comparing
these alternatives are discussed later.

Figure 2 provides a pseudo-code description of our tabu tunneling algorithm, in which LS
is the local search or descent algorithm for constrained global optimization. In line 5 we
use the expression s = LS(s0, f(x),G,S) to indicate that we optimize problem (P) (i.e., the
minimization of f(x) subject to the original constraints G and S) from the initial point s0
with the LS optimizer. Similarly, in line 11 the expression
s = LS(s', TTf(x,aspiration),G,S) indicates that we solve problem (TP) with objective
function TTf(x) subject to the original constraints G and S from the initial point s' using
LS. Also, s = LS(x0,

2
0xx − ,G,S) in line 12 represents solving the projection problem

(PP) starting from x0 using LS.

AMP for Constrained Global Optimization / 6

The While-loop (lines 9 to 18) in Figure 2 performs the tunneling approach, and is
repeated TotalIter times. Note that in line 15 we update the TabuList, which means that
we add the point s obtained in line 14 and drop some other point from the list. The
tunneling loop ends when the tunneling solution has an f value less than or equal to
Best_f, or when the iteration limit MaxIter is reached. At this point the search can either
terminate (if the GlobalIter counter reaches its maximum, TotalIter) or continue
performing a new iteration in Step 5 from s0 (the latest local optimum obtained with the
tunneling minimization).

Figure 2. Pseudo-code of the Tabu Tunneling method

3. The Tabu Cutting Method
The pseudo-cut strategy (Glover 2008) is based on generating hyperplanes that are
orthogonal to selected rays (half-lines) originating at a point x′ and passing through a
second point x″, so that the hyperplane intersects the ray at a selected point xo. We

Initialization
1. s0 = user-provided initial solution
2. Let TabuList be the memory list with TabuTenure size
3. Let Best_f be the value of the best solution found (initialized to ∞)
4. GlobalIter = 0

Minimization of original objective starting from s0
5. s = LS(s0, f(x),G,S)
6. TabuList = {s}
If (f(s) < Best_f)

7. Best_f = f(s)

Tabu Tunneling
8. i = 0, improve = 0
While (i < MaxIter and improve = 0) // default value of MaxIter = 5

9. r = vector with components uniformly distributed on [-1,11]
10. rs /*2εβ = // default value of 2ε = 0.1

11. rsx *0 β+=

12. s' = LS(x0,
2

0xx − ,G,S)

13. aspiration = Best_f - ε1·(1+abs(Best_f)) // default value of ε1=0.02
14. s = LS(s', TTf(x,aspiration),G,S)
15. Update the TabuList
If (f(s) ≤ Best_f)

16. Best_f =f(s)
17. improve=1

18. i = i + 1
19. GlobalIter = GlobalIter + 1
If (GlobalIter = TotalIter) // default value of TotalIter = 20

20. STOP
Else

21. s0= s and GOTO Step 5.

AMP for Constrained Global Optimization / 7

employ a simplified variant of the method here. The half-space that forms the pseudo-cut
is then produced by the associated inequality that excludes x′ and x'' from the admissible
half-space. Let x identify points on the ray originating at x′ that passes through x″:

 x = x′ + λ(x″ – x′), λ ≥ 0

A hyperplane orthogonal to this line may then be expressed as (x″ – x′) x = b where b is
an arbitrary constant. Let xo be a point in the ray (xo=x′+λo(x″–x′)) then, the inequality
(pseudo-cut) that excludes x′ and x'' and includes xo is given by:

(x″ – x′) x ≥ (x″ – x′) xo

We make use of this inequality or pseudo-cut (shown in Figure 3) called pcut(x′) within a
two-stage process. In the first stage x′ represents a point that is used to initiate a current
search by the local search or descent method LS, and x″ is the point obtained. We can
use GRG methods or any other local optimizer for constrained optimization as the
descent method and employ the same notation introducing in the previous section (i.e.
x″ = LS(x′,f(x),G,S).

Figure 3. Pseudo-cut representation

Once we obtain the point x″ with the local optimizer, we generate a new point xo. The
point xo can be simply computed as xo = x′ + m(x″ – x′) where m is a multiple of the
distance between x′ and x″. We now add the pseudo-cut pcut(x′) to the set of constraints
of the problem and solve the extended problem by applying the local search method from
xo to obtain y. Using our previous notation:

y = LS(xo, f(x),G∪{pcut(x′)}, S).

We repeat this first stage of the process iteratively. We make now x′ = xo, x″ = y,
compute a new point xo and create the associated pseudo-cut. Since we want to solve
now the original problem with two pseudo-cuts (the one introduced in the previous
iteration and the new one), we create a short term memory structure TabuCutList to store
the recent cuts (we limit its size to the TabuTenure latest cuts). As it is customary in tabu
search implementations the short term memory is implemented as a circular list in which

x′ x″ xo

Pseudo-cut
(x″ – x′) x ≥ (x″ – x′) xo

Ray
x′ + λ(x″ – x′)

AMP for Constrained Global Optimization / 8

we drop from the list the first cut (the oldest one) when we introduce a new one, thus
keeping the size TabuTenure constant.

Figure 4. Second stage of the method

In the process above, we can eventually obtain the point y = LS(xo, f(x),G∪{pcut(x′)}, S)
lying on the hyperplane associated with the current pseudo-cut pcut(x′), as shown in
Figure 4. In this case, we resort to the second stage of our algorithm, in which we replace
pcut(x′) with a new cut. To this end we define a new point xo in the segment from x″ to y:
xo = x″+m(y – x″). Note that the multiple m is selected to be greater than 1 in the first
stage and less than 1 in this second stage. Then the new cut is given by the expression:

(y – x'′) x ≥ (y – x'′) xo

As in the first stage, we solve now the problem with this cut (that we called pcut(x″)). In
terms of our notation, we apply LS(xo, f(x),G∪{pcut(x″)}, S). If the final point of this
local search application does not lie on the hyperplane associated with the current cut, we
return to the Stage 1 of the process; otherwise we perform a new iteration of the Stage 2.

At a given iteration of the tabu cutting method (TCM) we apply the local search method
LS from x′, to solve the original problem in which we added all the cuts in the
TabuCutList. That is, we obtain y by applying the local optimizer with the following
parameters:

y = LS(x′, f(x),G ∪ TabuCutList, S)

In a basic design of the TCM we repeat this mechanism, in which we add one cut at each
iteration (dropping from the list of active cuts the oldest one) and apply the local search
method for MaxIter iterations. However, we have empirically found that this basic
mechanism is not able to improve the original solutions by itself, and a more elaborated
managing of the cuts is needed.

Figure 5 shows a pseudo-code of TCM. Given that the points x′ and x″ change their
identities in the two stages, it is convenient to refer to the points as P0 (P0 = x′ in the first
stage), P1 (P1 = x″ in the first stage), Q1 (Q1 = x0 in the first stage), etc.

x′ x″ xo y

Pseudo-cut pcut(x')
(x″ – x′) x ≥ (x″ – x′) xo

Ray
x′ + λ(x″ – x′)

AMP for Constrained Global Optimization / 9

Figure 5. Pseudocode of the pseudo-cut method

Steps 10 to 20 in Figure 5 show the main loop of our Tabu Cutting Method. We can
identify the following three cases when applying the local search method LS from Q1 to
obtain Q2. Let pcut(Q1) be the latest cut added to TabuCutList (Step 11 in the
procedure). Depending where Q2 lies we can distinguish:

A. Q2 is equal to Q1. This case is identified in the IF statement above step 16
(||Q1 – Q2|| < minDist). This indicates that the local search method is not
able to generate a new solution, probably because the search remains in the
same basin of attraction. We therefore add a new cut farther away from x″.
Then, in Step 16 we increase the value of pert, and resort to Step 18 to
compute a new point Q1 as shown in Figure 6.

Initialization
1. Let TabuCutList be the memory list of pseudo-cuts with TabuTenure size
2. Let m=0.1, MaxIter = 5 and GlobalIter= 20
3. Let P0 be a random point and Best_f = f(P0)

While (Iter1 < GlobalIter)
4. TabuCutList = ∅
5. improved = FALSE
6. pert = m
7. P1 = LS(P0, f(x),G,S)
If (f(P1) < Best_f)

8. Best_f = f(P1)
9. Q1 = P0 + (1 + pert)*(P1 – P0)

While (Iter2 < MaxIter and NOT improved and ||P1 – P0|| > minDist)
10. Remove from TabuCutList the cuts violated at Q1 and the old cuts (TabuTenure)
11. Add to TabuCutList the cut pcut(Q1): (P1 – P0) x ≥ (P1 – P0) Q1
12. Q2 = LS(Q1, f(x),G∪ TabuCutList, S)
If (f(Q2) < Best_f)

13. improved = TRUE
14. Best_f = f(Q2)
15. go to 21

 If (||Q1 – Q2|| < minDist)
16. pert = pert + m

 Else
17. pert = m

// Stage 1
If (Q2 does not verify pcut(Q1) with equality or ||Q2 – Q1|| < minDist)

18. P0 = Q1; P1 = Q2; Q1 = P0 + (1 + pert)*(P1 - P0)
//Stage 2
If (Q2 verifies pcut(Q1) with equality and ||Q2 – Q1|| > minDist)

19. P0 = P1; P1 = Q2; Q1 = P0 + (1 - pert)*(P1 - P0)
20. Iter2 = Iter2 + 1

21. Generate a new point P0 perturbing Q2

AMP for Constrained Global Optimization / 10

Figure 6. A-Strategy

B. Q2 verifies the cut pcut(Q1) with equality ((P1 – P0) Q2 ≥ (P1 – P0) Q1)
but it is different to Q1 as shown in Figure 7. This indicates that we
probably would find better solutions closer to P1 (in the infeasible region of
the added cut). This is the Stage 2 of the method. In Step 19 we define a
new point Q1 closer to P1 (according to pert = m set in Step 17) and in Step
10 we remove pcut(Q1).

Figure 7. B-Strategy

C. Q2 strictly verifies the cut with inequality ((P1 – P0) Q2 > (P1 – P0) Q1).

We therefore have obtained a good solution (Q2) in the feasible region of
the cut pcut(Q1). So we keep this cut in the TabuCutList and repeat the
process from Q2. Then, in Step 18 we exchange the roles of the points
(P0 = Q1; P1 = Q2), and compute a new point Q1. Figure 8 shows this
case.

P0 P1 Q1 Q2

x' x'' xo

Pseudo-cut pcut(Q1)

 P0 Q1 P1

 x' xo x’’

Pseudo-cut pcut(Q1)

P0 P1 Q1=Q2

x' x'' xo

Pseudo-cut pcut(Q1)

P0 P1 Q1

x' x'' xo

Pseudo-cut pcut(Q1)

AMP for Constrained Global Optimization / 11

Figure 8. C-Strategy

The inner While loop terminates when the maximum number of iterations MaxIter is
reached, or the value of the incumbent solution (Best_f) is improved. Then, a new point
P0 is generated in Step 21 by perturbing Q2. Specifically if li and ui are respectively the
lower and upper bounds of variable xi, and r is a random number in the range [0,1], then
the value of the ith variable in P0 is computed from Q2 as:

P0i = Q2i + r (ui - li)

Then the search continues in the outer While loop until GlobalIter global iterations are
performed.

4. GAMS Implementation

We implemented both AMP approaches — TTM and TCM — in the GAMS algebraic
modeling language (see www.gams.com). While GAMS is usually employed to code an
optimization model, it contains enough programming constructs, e.g. loops and
conditionals, to quickly and easily implement algorithms of moderate complexity. Alp,
Ertek and Birbil (2006) describe GAMS implementations of column generation for
cutting stock problems and Conejo et al. (2006) develop GAMS code for decomposition
approaches including Dantzig-Wolfe and Benders. GAMS’s advantages in this respect
include:

1. Applying a GAMS solver to a GAMS model requires a single SOLVE statement, and

one additional statement allows one to change the solver. This permitted us to try any
of 3 different local NLP solvers within the AMP framework. In a more general
programming language like Java or C, each solver generally has differing input and
interface requirements, so employing multiple solvers is much more difficult.

2. Because of advantage 1, as well as the powerful and compact way one represents
optimization models in GAMS, someone with a moderate knowledge of GAMS can
implement and debug an algorithm such as the three referred to in the references
above or AMP in a few days.

3. The algorithm can be applied to any problem already coded in GAMS. Since GAMS
has a library currently containing 413 smooth NLP’s (called GLOBALLIB), most

P0 P1 Q1 Q2

x' x'' xo

Pseudo-cut pcut(Q1)

 P0 P1 Q1
 x' x'' xo

Pseudo-cut pcut(Q1)

http://www.gams.com/�

AMP for Constrained Global Optimization / 12

with multiple distinct local optima, solution methods can be applied to a fairly large
set of problems, many of which are large and/or difficult. GLOBALLIB can be
downloaded at http://www.gamsworld.org/global/globallib.htm

4. GAMS is already interfaced to four powerful and widely used global optimizers,
OQNLP, BARON, LGO, and LINDOGLOBAL, so these can also be applied to any
problem solvable by the AMP GAMS implementation, and the results are directly
comparable.

5. AMP can be started from the final solution of any other GAMS solver, showing what
happens when the two are combined sequentially. The experiments below include a
set starting with OQNLP, then applying TTM, as well as TTM coupled with TCM.

A significant disadvantage of the GAMS implementation of TTM arises because the
objective of problem (TP), the function TTf(x), depends on x not only through the original
objective f(x) but also directly because of its denominator. Thus models with different
names for the variables x require different GAMS expressions to compute the
denominator of TTf. Hence the algorithm implementation depends on the model,
restricting the number of problems to which this implementation can be easily applied.
We chose two families of problems, a set of bound-constrained “atom energy” problems
where the GAMS variable names are x(i), y(i), and z(i), and a more diverse set of more
generally constrained problems, where the variable names are x(i) (with the exception of
EX2_1_8 where the names are x(i,j)).

5. Computational Experiments
This section describes the results obtained applying the GAMS implementation of TTM
and TCM described above. All experiments were conducted on a Dell Latitude D820
computer with an Intel T2500 CPU running at 2.0 GHz with 1.9 GB of RAM. The
GAMS version used was 22.5.

We have employed 26 problem instances in our experimentation. Results obtained
solving these using the OQNLP multistart algorithm are given in Ugray et al. (2007).
The problems are members of both the GAMS GLOBALLIB and the set compiled by
Floudas et al. (1999). Table 1 shows the characteristics of these problems, providing the
name, number of variables, number of linear and nonlinear constraints, best known
objective value, and the value obtained when running the Conopt solver from the starting
point provided in the GAMS model (Conopt Value). The “atom energy” problems
referred to above choose the locations of a cluster of n particles to minimize the potential
energy of the cluster, using two different potential energy functions, called Lennard-
Jones (EX8_6_1_n) and Morse (EX8_6_2_n). The decision variables are the (x,y,z)
coordinates of each particle. Particle 1 is located at the origin, and three position
components of particles 2 and 3 are fixed, so each family of problems has 3n variables,
with 6 of them fixed. These problems have many local minima, and their number
increases rapidly with problem size, n, so they constitute a good test for global
optimization algorithms. Eight problems from each set are solved, with n ranging from 5
to 50. The Lennard-Jones series has many nonlinear constraints, imposed to insure that a
division by zero in the objective (which occurs when two or more particles occupy the

http://www.gamsworld.org/global/globallib.htm�

AMP for Constrained Global Optimization / 13

same point) is avoided, and all have simple bounds. None of these constraints are active
at any local solution, so both series are “essentially unconstrained”. The remaining 10
problems have either general linear constraints or linear and nonlinear constraints. Some
of these were selected because OQNLP had difficulties solving some of them in the
experiments in (Ugray et al. 2007).

Problem Vars.

Linear
constraints

Nonlinear
constraints

Best known
objective

Conopt
value

Conopt
gap No.

1 EX2_1_1 5 1 0 -17 0 100.00%
3 EX2_1_6 10 5 0 -39.00 -21.25 45.83%
3 EX2_1_8 24 10 0 15639.00 19971 90.24%
4 EX2_1_9 10 1 0 -0.375 -.333.00 15.26%
5 EX2_1_7_1 20 10 0 -394.75 -38.52 30.85%
6 EX2_1_7_2 20 10 0 -884.75 -794.77 16.07%
7 EX2_1_7_3 20 10 0 -8695.01 -6012.66 90.18%
8 EX2_1_7_4 20 10 0 -754.75 -633.44 27.70%
9 EX2_1_7_5 20 10 0 -4150.41 -407.43 11.20%

10 EX3_1_3 6 4 2 -310.00 -132 57.42%
11 EX8_6_1_5_ 15 0 10 -9.10 -9.10 0.00%
12 EX8_6_1_10 30 0 45 -28.42 -26.02 10.85%
13 EX8_6_1_15 45 0 105 -52.32 -47.45 9.31%
14 EX8_6_1_20 60 0 190 -77.18 -70.67 8.43%
15 EX8_6_1_25 75 0 300 -102.37 -95.47 6.74%
16 EX8_6_1_30 90 0 435 -128.29 -113.75 11.33%
17 EX8_6_1_40 120 0 780 -184.16 -168.34 8.59%
18 EX8_6_1_50 150 0 1225 -241.67 -232.79 3.67%
19 EX8_6_2_5_ 15 0 0 -9.30 -9.30 0.00%
20 EX8_6_2_10 30 0 0 -31.89 -31.07 2.56%
21 EX8_6_2_15 45 0 0 -63.16 -63.16 0.00%
22 EX8_6_2_20 60 0 0 -97.42 -97.42 0.00%
23 EX8_6_2_25 75 0 0 -136.07 -135.03 0.77%
24 EX8_6_2_30 90 0 0 -177.58 -177.46 0.07%
25 EX8_6_2_40 120 0 0 -268.39 -267.74 0.24%
26 EX8_6_2_50 150 0 0 -366.64 -366.64 0.00%
 Total 547.32%

Table 1. Problem characteristics

The last column in Table 1 shows the Conopt “gap”, the percentage difference between
the best known objective value and the final Conopt objective value. Conopt alone is
able to achieve the best known objective value in only 6 of these problems, and 16 of
Conopt’s solutions have a gap greater than 5%. The sum of the gaps is 547.3%.

5.1. Base Case Runs
Table 2 shows the results obtained with the TTM and TCM methods. Both are run using
iteration limits of TotalIter = 20 major iterations, MaxIter = 4 minor iterations per major
iteration and a TabuTenure value of 2. Thus there are 20 tunneling loops in the TTM
method, each ending with a solution of the original problem, starting from the final point

AMP for Constrained Global Optimization / 14

reached in the tunneling loop. In each tunneling loop the projection and tunneling
subproblems are solved at most 4 times, fewer if the best value found so far is achieved
or exceeded before 4 tunneling subproblems are solved. Each such occurrence is a
tunneling “success”. Hence the local solver Conopt is called upon to find 21 solutions of
the original problem (one at the user-provided initial point) and to solve at most
4*20 = 80 subproblems and 80 projection subproblems, at most 181 solver calls in all.
Similarly, there are 20 cutting loops in the TCM, each one with the addition of at most 4
pseudo-cuts.

 TTM TCM

Problem
number Best value Gap

Iter to
best

Solver
calls

Tunnel
successes

 Best
value Gap

Iter to
best

Solver
calls

Cut
successes

1 -17.00 0.00% 20 129 11 -13.00 23.53% 18 60 2
2 -39.00 0.00% 8 53 6 -39.00 0.00% 1 19 0
3 15639.00 0.00% 2 7 4 15639.00 0.00% 20 20 2
4 -0.375 0.00% 1 4 8 -0.403 -7.47% 2 20 1
5 -394.75 0.00% 15 100 7 -477.33 -20.92% 40 87 3
6 -884.75 0.00% 2 15 4 -832.84 5.87% 2 20 1
7 -8695.01 0.00% 6 45 5 -7275.38 16.33% 2 20 1
8 -754.75 0.00% 8 51 5 -633.45 16.07% 1 98 0
9 -4023.94 3.05% 5 22 4 -1711.50 58.76% 60 84 3

10 -310.00 0.00% 4 19 4 -132.00 57.42% 2 21 1
11 -9.10 0.00% 1 10 10 -9.10 0.00% 2 25 1
12 -28.42 0.00% 7 42 5 -27.55 3.06% 21 22 5
13 -52.32 0.00% 6 41 6 -52.32 0.00% 25 80 3
14 -77.18 0.00% 15 106 6 -75.60 2.05% 2 24 1
15 -101.78 0.58% 20 165 5 -101.88 0.48% 23 80 5
16 -127.38 0.71% 19 142 6 -125.01 2.56% 22 40 4
17 -181.34 1.53% 15 124 5 -178.943 2.83% 20 22 5
18 -237.12 1.88% 2 19 1 -239.41 -0.94% 21 40 5
19 -9.30 0.00% 1 10 5 -9.30 0.00% 1 24 0
20 -31.89 0.00% 4 37 9 -31.89 0.00% 21 22 4
21 -63.16 0.00% 1 10 11 -63.16 0.00% 2 25 1
22 -97.42 0.00% 1 10 18 -97.42 0.00% 2 24 1
23 -136.07 0.00% 8 73 6 -136.07 0.00% 22 23 4
24 -177.58 0.00% 3 28 3 -177.58 0.00% 25 60 2
25 -268.39 0.00% 10 91 2 -268.18 0.08% 20 24 2
26 -366.64 0.00% 8 73 2 -366.64 0.00% 1 24 0

Summary 7.76% 6.9 51.9 5.9 151.71% 14.5 38.8 2.2

Table 2. Results of the base-case runs of TTM and TCM

The “Best value” columns in Table 2 show the objective value of the best solution found
by TTM and TCM, and Gap is the percentage difference between the best known
objective function value and the objective function value corresponding to the best
solution found by each method. The “Iter to best” and “Solver calls” columns show how
quickly in the solution process the best solution is obtained in terms of the number of
major iterations and the number of solver calls. The “successes” columns show the

AMP for Constrained Global Optimization / 15

number of tunnel or pseudo-cut loop successes, as defined above. The last row in Table 2
shows the total gap and the average values for all the other measures.

The results obtained with these base runs of the TTM are encouraging, with 23 of the 26
problems solved to gaps of less than 1% and 21 solved to gaps of essentially zero. The
total of the 26 gaps is 7.76%, a measure that we use later to compare algorithmic options.
On the other hand, the TCM obtains lower quality results when compared to those of the
TTM, with a gap sum of 151.71%. This gap sum includes three negative associated with
the three new best known solutions found by TCM in the set of test problems (problems
4, 5 and 18). These results indicate that TTM is a method that exhibits a more robust
behavior than TCM, when defining robustness as the ability to yield high quality
solutions consistently. A measure of robustness, for instance, may be given by the
standard deviation of the gap values, which for the experiments reported in Table 2, is
0.74% for TTM and 17.21% for TCM. Regarding these measures, both methods
compare well with Conopt’s 547.32% total gap and 30.35% standard deviation.

Of the 5 problems (9 and 15-18) for which TTM obtained nonzero gaps, 4 of them
(problems 15-18) are the largest of the EX8_6_1_n series. These problems have
hundreds of local optima and are known to be very difficult for any global solver. The
widely used multi-start solver OQNLP does not solve any of these 5 problems to gaps of
less than 1%, as we discuss momentarily. Regarding computational efficiency, TTM
finds its best solutions after roughly 1/3 of the major iteration budget of 20, averaging 6.9
major iterations to achieve its best solutions. The best solutions are found in 10 or fewer
iterations in 20 of 26 problems. The average solver calls to best is 51.9, which is less
than 25% of the maximum number of solver calls set at 221. An average of 6 tunneling
loops out of 20 achieve an objective value at least as good as the best value discovered
thus far, although some of these successes are revisits to the best known solution. Thus,
most tunneling loops do not improve the best solution, but in many cases starting the
original problem from the final points of these loops does improve it.

The TCM obtains the best known solutions in 13 out of 26 instances and it is able to
improve the best known solution in three instances. However, 8 problems resulted in
gaps larger than 1%. Surprisingly, the largest gaps are obtained in problems belonging to
the Ex2_1_7_n series, which the literature does not consider as hard as problems in the
other series included in this set of test problems. We now examine, in more detail, the
performance of TTM, which, as pointed out above, seems to be the more robust of the
two methods that we have developed.

5.2. Comparison of TTM with OQNLP
Table 3 shows the results of applying the multi-start OQNLP solver to problems 9 and
15-18, for which TTM failed to match the objective function value of the best known
solution. To this set, we add problem 14, which has also been difficulty for OQNLP.
After applying OQNLP with its default values for termination criteria and tolerances
were used (i.e., 1000 candidate starting points with 200 in stage 1), we use the resulting
best solution to start a TTM search.

AMP for Constrained Global Optimization / 16

Table 3 shows that OQNLP yields positive gaps for all problems (see “Initial gap”
column) and for only one of the problems (number 9) it is able to find a solution with a
gap value under 1%. The sum of the gap values is 15.65% which is more than twice as
large as TTM’s gap sum of 7.76% for these problems when executing both searches from
the same initial points. When starting TTM from the final OQNLP solution solves 2
problems to zero gaps, leaves 2 others with gaps less than 1%, and achieves a gap sum of
4.77%, as shown in Table 3

Problem
number

OQNLP
obj

Initial
gap

TTM
obj

TTM
gap

Major
iter

Solver
calls

Tunnel
successes

Failures
/calls

9 -4118.725 0.76% -4140.449 0.24% 5 42 1 0 /36
14 -76.21 1.25% -77.177 0.00% 1 4 1 32 / 47
15 -98.949 3.34% -102.373 0.00% 15 126 2 30 /36
16 -123.827 3.48% -128.097 0.15% 10 79 3 37 /45
17 -178.382 3.14% -179.773 2.38% 1 4 1 33/ 45
18 -232.795 3.67% -236.845 2.00% 2 13 2 40 /46

Total 15.65% 4.77% 5.7 44.7 1.7

Table 3. Results of first applying OQNLP and then TTM to a selected subset of problems

The last column of Table 3 shows that when OQNLP is applied to the EX8_6_1_n
problems (numbers 14 to 18), most of the Conopt calls fail to find a local optimum. This
is because many of Conopt’s function evaluations are at points where there are domain
violations — the denominator of one or more objective terms vanishes. Our GAMS
model of these problems includes nonlinear constraints which require these denominators
to exceed some small positive value, but the starting points used by OQNLP may not
satisfy these constraints. These points are generated by the OptQuest scatter search
procedure (Ugray et al. 2007), and there are options to force OptQuest to generate points
which satisfy linear constraints, but no such options exist within OptQuest for nonlinear
constraints. Since all points generated by TTM are feasible, domain violations are never
a problem, and all TTM Conopt calls for this family of problems end with a local
optimum. This illustrates an important advantage of TTM over any multi-start method
whose starting points are not guaranteed to be feasible.

5.3 Changing the Random Perturbation
In steps 9-11 of the TTM pseudo-code in Figure 2, a random perturbation vector r is
generated, a multiple of r is added to the current local solution s, and the feasible point
closest to the perturbed point is found by solving the projection problem in step 12.
Since each TTM subproblem may be nonconvex, a local solver applied to it may find a
final solution which depends on its starting point. Hence TTM’s progress is sensitive to
the values of r, and each run of TTM that uses a different sequence of random values for
r will generally differ from the others in the objective values found after each major and
minor iteration, and in the best value found overall. The results shown in Tables 2 and 3
all used the same seed for the GAMS random number generator, so that the same results
would be achieved if the problem were solved several times.

AMP for Constrained Global Optimization / 17

Table 4 shows the results of changing the random number seed to 5 values, all different
from each other and from the value used in Table 2, on two of the problems (9 and 15)
solved by TTM in Table 2 to positive gaps.

Problem
number Run Final Obj Gap

Gap <
1% ?

Major iter
to best

Solver
calls

Tunnel
successes

9 1 -4150.4101 0.00% 1 5 28 4
 2 -4150.4101 0.00% 1 11 82 3
 3 -4150.4101 0.00% 1 5 26 6
 4 -4023.9400 3.05% 0 6 29 5
 5 -4023.9400 3.05% 0 13 100 4

15 1 -101.8780 0.48% 1 20 163 7
 2 -100.7440 1.59% 0 15 118 5
 3 -101.7750 0.58% 1 11 78 5
 4 -101.8020 0.56% 1 2 9 2
 5 -101.8780 0.48% 1 5 34 2

Table 4. 5 runs of 2 problems with different random number seeds

Three of the 5 runs for problem 9 achieve the best known solution, while two end with
the same best objective value as found originally in Table 2. Four of the Final Obj values
for problem 15 improve upon the Table 2 value, with one slightly worse. Thus, if there is
enough run time available, TTM can achieve improved results simply by making multiple
runs with different seeds. As in Table 2, the last three columns in Table 4 show the
number of major iterations to the best solution, the numbers of solver calls to the best
solution and the number of tunnel successes, respectively.

5.4 Increasing the Number of Major Iterations
We have observed that TTM often finds better results if the major iteration limit is
increased. Table 5 shows the outcomes of increasing the major iteration limit to 40 on
the 5 problems that yielded positive gaps in the experiments reported in Table 2. We
employ the same random seed used in all the Table 2 runs.

Problem
number Final Obj Gap Improved?

Major
iter

Solver
calls

Tunnel
successes

9 -4105.278 1.09% Y 37 304 5
15 -101.775 0.58% N 20 165 5
16 -127.442 0.66% Y 22 163 7
17 -181.418 1.49% Y 21 178 6
18 -239.252 1.00% Y 26 235 2

Total 4.82%

Table 5. Solving 5 Positive Gap problems allowing 40 major iterations

As shown in the “Improved?” column of Table 5, four of the 5 final objective values
improve when increasing the number of major iterations from 20 to 40. The sum of the
gaps is reduced from 7.76% to 4.82%.

AMP for Constrained Global Optimization / 18

5.5 Combining TTM and TCM
We considered the combination of our two proposed approaches. Specifically, the
TTM+TCM combination consists of running TTM and then applying TCM from the best
solution found by TTM. Symmetrically, in the TCM+TTM we first apply TCM and then
TTM. Table 6 reports the results of TTM, TTM+TCM and TCM+TTM on the 6
problems in Table 5.

 TTM TTM+TCM TCM+TTM
Problem no. Obj Gap Obj Gap Obj Gap

9 -17.000 0.00% -17.000 0.00% -17.000 0.00%
15 -101.775 0.58% -102.373 0.00% -101.199 1.14%
16 -127.377 0.71% -127.762 0.41% -126.927 1.06%
17 -181.341 1.53% -181.341 1.53% -181.650 1.36%
18 -237.118 1.88% -237.118 1.88% -236.757 2.03%

Total 4.71% 3.82% 5.60%

Table 6. Results of combining TTM and TCM

Table 6 shows that the combination of TTM+TCM is able to improve upon the original
TTM resulting in a gap sum of 3.82 % which compares favorably with the 4.71 %
obtained by the TTM alone. On the other hand, the combination TCM+TTM does not
perform well on average but yields the best result for problem 17 when compared to any
of the other methods, including TTM with 40 major iterations (as shown in Table 5).

6. Conclusions and Future Work
We have described an extension of a pure tunneling method, which we have denoted as
the tabu tunneling method (TTM) and an adaptation of the pseudo-cut strategy denoted as
tabu cutting method (TCM). The main idea of both approaches is the addition of a short
term memory structure that is typical to tabu search procedures. The testing described
here indicates that the resulting procedures are promising: (1) the TTM is competitive
with the best existing multi-start procedure for smooth constrained NLP’s, OQNLP, and
(2) the TCM improves the local search based methods, such as Conopt, and although it
found two new best solutions, its average performance is inferior to TTM. The testing
has been performed using GAMS, however, further testing on a larger problem set is
needed, and this requires that both approaches be implemented in a more general
language.

A direction for future work relates to the use of filters in order to determine points from
which to apply the local solver to the original problem. Currently a solution found by
solving a tunneling subproblem is used as a starting point for the original problem only if
its objective value is at least as good as the best found so far, or if the iteration limit
MaxIter (currently 5) is reached, in which case the last tunneling solution is used. TTM
might be even more efficient if additional criteria were applied to determine whether or
not to solve the original problem from one or more of the tunneling loop solutions.

AMP for Constrained Global Optimization / 19

Following the ideas used in OQNLP, one might start from a tunneling solution whose
true objective value was below a threshold — called the merit filter in Ugray et al. (2007)
— and which was sufficiently far from any local solution of the original problem found
so far (the distance filter). The merit filter criterion is applied in this version of TTM,
with the threshold equal to the best objective value found thus far. However, a second
more relaxed threshold could be used in conjunction with a distance filter, while
exceeding the current threshold would terminate the tunneling loop unconditionally.

Acknowledgments
This research has been partially supported by the Ministerio de Educación y Ciencia of
Spain (Grant Ref. TIN2006-02696).

References
Alp, S., G. Ertek and S. Birbil (2006) “Application of the Cutting Stock Problem to a

Construction Company: A Case Study,” in Proceedings of the 5th International
Symposium on Intelligent Manufacturing Systems, May 29-31, pp. 652-661.

April, J., M. Better, F. Glover, J. Kelly and M. Laguna (2006) “Enhancing Business
Process Management with Simulation-Optimization,” in Proceedings of the 2006
Winter Simulations Conference, L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson,
D. M. Nicol, and R. M. Fujimoto (eds.), pp. 642-649.

Better, M., F. Glover and M. Laguna (2007) “Advances in Analytics: Integrating
Dynamic Data Mining with Simulation Optimization,” IBM Journal of Research and
Development, vol. 51, no. 3/4, pp. 477-487.

Conejo, A. J., E. Castillo, R. Minguez and R. Garcia-Bertrand (2006) Decomposition
Techniques in Mathematical Programming, Springer, 541 pp.

Drud, A. (1994) “CONOPT—A Large-Scale GRG-Code,” INFORMS Journal on
Computing, vol. 6, no. 2, pp. 207-216.

Floudas, C.A., P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z. Gumus, S.T. Harding,
J.L. Klepeis, C.A. Meyer and C.A. Schweiger (1999) Handbook of Test Problems for
Local and Global Optimization, Springer, 484 pp.

Glover, F. (1989) “Tabu Search - Part I,” INFORMS Journal on Computing, vol. 1, no. 3,
pp. 190-206.

Glover, F. (2008) “Pseudo-Cut Strategies for Global Optimization,” OptTek Systems,
Inc., Technical Report.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers: Boston,
ISBN 0-7923-9965-X, 408 pp.

Levy, A.V. and S. Gomez (1985) “The Tunneling Method Applied to Global
Optimization,” in Numerical Optimization, Boggs P. T., R. H. Byrd and R. B.
Schnabel (eds.), SIAM, pp. 213-244.

AMP for Constrained Global Optimization / 20

Murray, W. and K-M. Ng (2002) “Algorithms for Global Optimization and Discrete
Problems based on Methods for Local Optimization,” in Handbook of Global
Optimization Volume 2, P. M. Pardalos and H. E. Romeijn (eds.), Springer, pp. 87-
114.

Smith, S. and L. Lasdon (1992) “Solving Large Nonlinear Programs Using GRG,”
INFORMS Journal on Computing, vol. 4, no. 1, pp. 2-15.

Ugray, Z., L. Lasdon, J. Plummer, F. Glover, J. Kelly and R. Martí (2007) “Scatter
Search and Local NLP Solvers: A Multistart Framework for Global Optimization,”
INFORMS Journal on Computing, vol. 19, no. 3, pp. 328-340.

