
Path Relinking for Large Scale Global Optimization 
 
 
 
ABRAHAM DUARTE 
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain. 
Abraham.Duarte@urjc.es 
 
RAFAEL MARTÍ 
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain. 
Rafael.Marti@uv.es 
 
FRANCISCO GORTAZAR 
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain. 
Francisco.Gortazar@urjc.es 
 
 
 
ORIGINAL VERSION:  March 25, 2010 
REVISED VERSION:  July 2, 2010 

 

Abstract 

In this paper we consider the problem of finding a global optimum of a multimodal 
function applying path relinking. In particular, we target unconstrained large scale problems 
and compare two variants of this methodology: the static and the evolutionary path relinking.  
Both are based on the strategy of creating trajectories of moves passing through high quality 
solutions in order to incorporate their attributes to the explored solutions. 

Computational comparisons are performed on a test-bed of 19 global optimization 
functions previously reported with dimensions ranging from 50 to 1000, totalizing 95 
instances.  Our results show that the evolutionary path relinking procedure is competitive with 
the state-of-the-art methods in terms of the average optimality gap achieved.  Statistical 
analysis is applied to draw significant conclusions. 
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1. Introduction 
Path-relinking (PR) is an intensification strategy to explore trajectories connecting elite 
solutions obtained by heuristic methods (Glover and Laguna 1997). It can be considered as an 
extension of the combination methods applied in most evolutionary algorithms. Instead of 
directly producing a new solution when combining two or more original solutions, PR 
generates paths between and beyond the selected solutions in the neighbourhood space.  In 
particular, in global optimization, where solutions are represented as real vectors, most 
evolutionary algorithms perform linear combinations between pairs of solutions.  
Alternatively, in problems where solutions are represented as a permutation, integer or binary 
vectors, such as ordering or knapsack-type problems, other kinds of combination methods 
have been applied.  In all these settings, path-relinking provides a unified approach to produce 
combination methods for all types of problems.  In this paper we explore the application of the 
path relinking methodology, in its variant known as evolutionary path relinking, to the global 
optimization problem. 
 
The strategy of creating trajectories of moves passing through high quality solutions was first 
proposed in connection with tabu search in Glover (1989). The approach was then elaborated 
in greater detail in Glover (1994), as a means of integrating TS intensification and 
diversification strategies, and given the name path relinking (PR).  PR generally operates by 
starting from an initiating solution, selected from a subset of high quality solutions, and 
generating a path in the neighborhood space that leads toward the other solutions in the 
subset, which are called guiding solutions.  This is accomplished by selecting moves that 
introduce attributes contained in the guiding solutions. 
 

 
 

Figure 1. Path relinking representation 
 
To generate the desired paths, it is only necessary to select moves that perform the following 
role: upon starting from an initiating solution, the moves must progressively introduce 
attributes contributed by a guiding solution as it is shown in Figure 1.  The roles of the 
initiating and guiding solutions are interchangeable; each solution can also be induced to move 
simultaneously toward the other as a way of generating combinations.  First consider the 
creation of paths that join two selected solutions x′ and x″, restricting attention to the part of 
the path that lies “between” the solutions, producing a sequence x′ = x(1), x(2), …, x(r) = x″ of 
intermediate solutions.  The relinked path may encounter solutions that may not be better 
than the initiating or guiding solution, but that provide fertile “points of access” for reaching 
other, somewhat better, solutions.  For this reason it is valuable to examine neighboring 
solutions along a relinked path, and keep track of those of high quality which may provide a 
starting point for launching additional searches. 
 
Laguna and Martí (1999) proposed the adaptation of path relinking to the context of multi-
start methods in which the solutions are not previously linked.  Specifically, they coupled 
GRASP with PR as a form of intensification. The relinking in this method consists in finding a 
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path between a solution found with GRASP and a chosen elite solution.  Resende and Ribeiro 
(2003) present numerous examples of GRASP with PR. Resende and Werneck (2004) 
introduced evolutionary path relinking (EvoPR) as a post-processing phase for GRASP with PR 
(see also Andrade and Resende 2007). In EvoPR, the solutions in the elite set are evolved in a 
similar way that the reference set evolves in scatter search (Laguna and Martí, 2003). 
 
In this paper we explore the adaptation of the PR and EvoPR methodologies to obtain high 
quality solutions to the unconstrained global optimization problem.  This problem can be 
formulated as follows: 

(𝑃𝑃)     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝑓𝑓(𝑥𝑥) 
 𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢 
𝑥𝑥 ∈  𝑅𝑅𝑀𝑀  

 
where 𝑓𝑓(𝑥𝑥) is a nonlinear function and 𝑥𝑥 is a vector of continuous and bounded variables.  We 
investigate the path relinking methods for (P) and perform comparative computational testing 
with currently leading methods for unconstrained global optimization on a benchmark set of 
high-dimensional problems for which global optima are known. 
 
In prior work on unconstrained global optimization, scatter search was applied as a stand-
alone method (without local optimization) in Laguna and Martí (2005).  It focused on testing 
several alternatives for generating diversification and updating the reference set.  However, 
the combinations generated by their approach are linear and limited to joining pairs of 
solutions.  This study is extended in Duarte et al. (2010), where a scatter tabu search method, 
STS, is presented.  It basically hybridizes the scatter search methodology with two tabu search 
improvement methods. Based on extensive experimentation with the CEC2005 instances 
(Suganthan et al. 2005) and sixteen previous methods, twelve of them from Hansen (2006), 
the study identified two leading methods: the proposed STS and, the covariance matrix 
adaptation evolution strategy, G-CMA-ES (Auger and Hansen 2005).  On the other hand, 
Herrera et al. (2010b) considered three previous methods as the state-of-the-art on 
unconstrained global optimization: Differential Evolution DE (Storn and Price 1997), G-CMA-ES 
(Auger and Hansen 2005) and Real coded CHC (Eshelman and Schaffer 1993).  We include 
these four methods (STS, DE, G-CMA-ES and CHC) in our computational testing. 
 
The next section describes the basic path relinking approach for the unconstrained global 
optimization problem.  Section 3 provides insight on the evolutionary path relinking, which can 
be considered as an extension of the basic design. We perform a computational study 
comparing our method to the four leading methods previously indicated, applied to the set of 
19 scalable functions proposed in Herrera et al. (2010a) whose form is described in Section 4, 
where we also report our computational findings.  Finally, we summarize our conclusions in 
Section 5. 
 
 
2. Path Relinking 
Figure 2 shows the pseudo-code of a simple PR procedure for a minimization problem.  It starts 
with the generation of solutions.  The reference set (RefSet) contains 𝑏𝑏 elite solutions 
previously generated.  It can be constructed with a diversification generator method as in 
scatter search (Laguna and Martí 2003), where we build a large set of diverse solutions 𝐷𝐷 and 
then extract the 𝑏𝑏 bests (according to quality and diversity). However, path relinking is not 
restricted to this design and can start from a set of elite solutions obtained during any previous 
search process. 
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To reduce the computational effort, we limit the application of the improvement method to 
the best solution in RefSet (step 3).  In step 4, NewSubsets is constructed with the sets of 
solutions in RefSet to be submitted to the relinking process.  It must be noted that the path 
relinking methodology is not limited to relink pairs of solutions; but it permits to relink an 
arbitrary number of solutions.  In this paper we explore the relinking from one solution 𝑎𝑎 to a 
pair of solutions, 𝑥𝑥 and 𝑦𝑦.  We will denote it as (𝑎𝑎, 𝑥𝑥,𝑦𝑦). 
 
The sets (𝑎𝑎, 𝑥𝑥,𝑦𝑦) in NewSubsets are selected one at a time in lexicographical order and the 
Relinking Method is applied to generate a path of solutions from 𝑎𝑎 to 𝑥𝑥 and 𝑦𝑦 in steps 5 and 6 
of Figure 2.  The Improvement Method is applied to the best solution in the path (step 7).  The 
improved solution is checked to see whether it improves upon the best solution found 𝑥𝑥1. If 
so, the new solution replaces it.  The search finishes when all the sets in NewSolutions have 
been examined. 
 

1. Create a RefSet of b elite solutions. 
2. Evaluate the solutions in RefSet and order them.  Let x1 be the best one. 
3. Apply the improvement method to x1 and replace it with the improved solution. 
4. Generate NewSubsets, which consists of the sets (a, x, y) of solutions in RefSet. 
while ( NewSubsets ≠ ∅ ) do 

5. Select the next set (a, x, y) in NewSubSets. 
6. Apply the Relinking Method to produce the sequence from a to x and y. 
7. Apply the Improvement Method to the best solution in the sequence. Let w be the 

improved solution. 
if (f(w) < f(x1) ) then 

8. Make x1 = w  
end if 
9. Delete (a, x, y) from NewSubsets 

end while 

Figure 2. Path relinking procedure 
 
To generate the sets of solutions (𝑎𝑎, 𝑥𝑥,𝑦𝑦) in RefSet to be submitted to the relinking process, 
we adapt a method typically implemented in scatter search (Martí et al. 2006).  It generates 
subsets of three reference solutions by expanding pairs into subsets of larger size.  The 
objective is to select representative subsets of different compositions while limiting the 
number of them. Specifically, considering the RefSet = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑏𝑏}  where the solutions are 
ordered by quality (i.e., 𝑓𝑓�𝑥𝑥𝑀𝑀� ≤ 𝑓𝑓�𝑥𝑥𝑀𝑀+1� for 𝑀𝑀 = 1, … , 𝑏𝑏 − 1), we limit the relinking sets to 3-
tuples of the form �𝑥𝑥𝑀𝑀 , 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1� with 𝑀𝑀 < 𝑗𝑗.  Consider for example that 𝑏𝑏 = 6 and the ordered 
RefSet is {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥6}  where 𝑥𝑥1 is the best solution.  Then, to create a path from, for 
example 𝑥𝑥1, we can consider the guiding solutions 𝑥𝑥2 and 𝑥𝑥3, thus obtaining the relinking set 
(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3). On the other hand, to create a path from, for example 𝑥𝑥3, we can consider, the 
guiding solutions 𝑥𝑥5 and 𝑥𝑥6 thus obtaining the relinking set (𝑥𝑥3,𝑥𝑥5,𝑥𝑥6). 
 
The path relinking approach subordinates other considerations, such as the objective function 
value, to the goal of choosing moves that introduce the attributes of the guiding solutions, in 
order to create a “good attribute composition” in the current solution.  The approach is called 
path relinking either by virtue of generating a new path between solutions previously linked by 
a series of moves executed during a search, or by generating a path between solutions 
previously linked to other solutions but not to each other.  However, in the context of GRASP 
with Path Relinking (Laguna and Martí 1999) the solutions are not previously linked, since they 
are independently obtained by strategically sampling the solution space.  From this point of 
view, PR can be simply considered as a population-based method that operates on a set of 
reference or elite solutions by combining them in a specific way.  To unify the notation with 
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scatter search we will also let RefSet refer to this set of reference solutions that have been 
selected or generated with an embedded search method. 
 

2.1 Reference Set Initialization 
We have implemented a generator of solutions based on techniques from the area of statistics 
known as Design of Experiments.  One of the most popular design of experiments is the 
factorial design kn, where n is the number of factors (in our case variables) and k is the number 
of levels (in our case possible variable values).  A full factorial design considers that all 
combinations of the factors and levels will be tested.  However, it can quickly become 
impractical even for a small number of levels, because the number of experiments 
exponentially increases with the number of factors.  We therefore consider a factorial design, 
in which we draw conclusions based on a fraction of experiments, which are strategically 
selected from the set of all possible experiments in the corresponding full factorial design.  
One of the most notable proponents of the use of fractional factorial designs is Genichi 
Taguchi (Roy, 1990), who proposed a special set of orthogonal arrays to lay out experiments 
associated with quality improvement in manufacturing.  These orthogonal arrays are the result 
of combining orthogonal Latin squares in a unique manner.  We use Taguchi’s arrays as a 
mechanism for generating diversity, as previously introduced in Laguna and Martí (2005).  
Table 1 shows the L9(3

4) orthogonal array that can be used to generate 9 solutions for a 4-
variable problem. 
 

Experiment Factors 
 1 2 3 4 
1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 2 3 
8 3 2 1 3 
9 3 3 2 1 

Table 1. L9(34) orthogonal array. 
 
The values in Table 1 represent the levels at which the factors are set in each experiment.  For 
the purpose of creating a diversification generator based on Taguchi tables, we translate each 
level setting as follows: 

1 ∶= 𝑀𝑀𝑀𝑀𝑚𝑚 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑀𝑀 =  𝑙𝑙𝑀𝑀 +
1
2

(𝑢𝑢𝑀𝑀 − 𝑙𝑙𝑀𝑀) 

2 ∶= 𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀𝑙𝑙 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑀𝑀 =  𝑙𝑙𝑀𝑀 +
1
4

(𝑢𝑢𝑀𝑀 − 𝑙𝑙𝑀𝑀) 

3 ∶= 𝑢𝑢𝑢𝑢𝑢𝑢𝑀𝑀𝑙𝑙 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑀𝑀 =  𝑙𝑙𝑀𝑀 +
3
4

(𝑢𝑢𝑀𝑀 − 𝑙𝑙𝑀𝑀) 

 
Since we are facing high dimensional problems (50 ≤ 𝑀𝑀 ≤ 1000) and we have found Taguchi 
tables up to 𝑀𝑀 = 40, we will split the set of variables into subsets of 40 and complete the rest 
of variables with the value assigned to levels 1, 2 or 3 . The table with 40 variables and three 
levels contains 81 experiments. Then, we generate 81 solutions by assigning the values in the 
table to the first 40 variables and the mid value (level 1) to the rest of the variables.  We 
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generate 81 more solutions by keeping the values in the table to the first 40 variables and 
assigning the lower value (level 2) to the rest of the variables.  Similarly, assigning the upper 
value (level 3) we obtain another 81 solutions.  In this way we generate 243 solutions applying 
the values in the table to the first 40 variables.  We now move to the next set of variables to 
assign the Taguchi levels.  Specifically, we apply the Taguchi values to variables from 21 to 60. 
We have experimentally found that with this “shifting”, in which we move 20 positions in the 
list of variables to assign the next 40 variables to the Taguchi levels, we obtain good results 
with a low computational effort (i.e., evaluating a relatively reduced number of solutions).  
Therefore, we generate three groups of 81 solutions by assigning the values in the table to the 
variables from 21 to 60 and the mid, lower and upper values respectively to the rest of the 
variables, thus obtaining another 243 solutions.  We proceed in the same way, generating a 
total of 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀 = 243⌈𝑀𝑀/20⌉ initial solutions. 
 
The method then starts by generating a set 𝐷𝐷 with 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀 solutions strategically distributed in 
the solution space.  The RefSet is populated with the best 𝑏𝑏 solutions in 𝐷𝐷. It must be noted 
that this is not the standard way to create the RefSet, in which diversity is usually considered. 
However, the application of the Taguchi strategy directly provides the desired level of diversity 
in the generated solutions, and we have found that there is no need for including an additional 
diversification strategy. 
 

2.2 Improvement Method: Two stage line search 
We implement the so-called line-search coupled with the simplex method as our improvement 
method.  The combination of these two procedures was successfully applied as the 
improvement method in Duarte et al. (2010), in which memory structures were also included.  
Their method first orders the variables according to their attractiveness and then selects the 
first ts (where ts is a search parameter) to perform the associated line searches. As it is 
customary in tabu search, the method permits non-improving moves that deteriorates the 
objective function value.  In this way, the best solution in the line search is selected even if it 
does not improve the original solution. When a variable is selected and we move to the best 
solution in its associated line-search, we labelled it as tabu and we do not allow the method to 
select it in the next tenure iterations.  After this part based on local searches, the Simplex 
method is applied if the final solution obtained lies within a hypersphere of radius T centered 
at any solution previously submitted to the simplex method. We implement here a variant of 
that procedure with two stages but with no memory structures.  Figure 3 shows a pseudo-code 
of the method. 
 

1. Let 𝑥𝑥 be the initial solution. Set ℎ = 𝑙𝑙𝑎𝑎𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 /100. 
2. For 𝑘𝑘 = 1 to 10 

3. For each variable 𝑀𝑀 compute 𝑥𝑥 + ℎ𝑀𝑀𝑀𝑀  and  𝑥𝑥 − ℎ𝑀𝑀𝑀𝑀  and consider the best of both values. 
4. Order the variables according to these values in increasing order. 
5. For 𝑠𝑠 = 1 to  𝑀𝑀/2 

6. Select the next variable 𝑀𝑀 in the ordered list. 
7. Perform a line search along  𝑥𝑥 + 𝑞𝑞ℎ𝑀𝑀𝑀𝑀 . 
8. Make 𝑥𝑥: = the best solution in the line search. 

9. Apply the Simplex method to 𝑥𝑥, the best solution found. 
10. Select 𝛼𝛼 randomly in [−ℎ, ℎ]. 
11. Generate the 𝑀𝑀 points 𝑥𝑥1,  𝑥𝑥2, … , 𝑥𝑥𝑀𝑀  where 𝑥𝑥𝑀𝑀 = (𝑥𝑥1, … ,  𝑥𝑥𝑀𝑀 + 𝛼𝛼, … , 𝑥𝑥𝑀𝑀). 

12. Apply the Simplex Method for a maximum of 1000 evaluations. 
13. Let 𝑥𝑥 be the best solution found. 

14. Return 𝑥𝑥 

Figure 3. Improvement method 
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Our improvement method searches in a discretized space (as it is typically done in global 
optimization).  According to the experimentation in Duarte et al. (2010) we use a grid of size 
ℎ = 𝑙𝑙𝑎𝑎𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 /100 where 𝑙𝑙𝑎𝑎𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  is the minimum range of the variables (i.e., the 
minimum difference between the upper and the lower bounds). 
 
The first stage of the improvement method applies consecutive line searches, each of which 
consists of modifying the value of a variable 𝑀𝑀 (which is equivalent of moving in the direction of 
a vector unit 𝑀𝑀𝑀𝑀).  Given a solution 𝑥𝑥 we first evaluate the potential contribution of each 
variable to improve its value.  Specifically, for each variable 𝑀𝑀 = 1, . . . ,𝑀𝑀, we evaluate two 
solutions 𝑥𝑥 + ℎ𝑀𝑀𝑀𝑀  and  𝑥𝑥 − ℎ𝑀𝑀𝑀𝑀 , where ℎ is the width of the grid, and consider the best of the 
two values.  Then, we order the variables according to these values (where the variable 𝑀𝑀 with 
better associated value comes first).  We then select the 𝑀𝑀/2 first variables in the ordered list 
and perform a line search for each of them. 
 
Given a variable 𝑀𝑀 a line search consists of examining the feasible solutions with the form 
𝑥𝑥 + 𝑞𝑞ℎ𝑀𝑀𝑀𝑀  where 𝑞𝑞 is an integer value in [−20,20].  Considering that only bound constraints on 
the variables are present, the feasibility condition only requires to verify  𝑙𝑙 ≤ 𝑥𝑥 + 𝑞𝑞ℎ𝑀𝑀𝑀𝑀 ≤ 𝑢𝑢.  
To reduce the number of evaluations in this process we apply a first improving strategy, 
randomly scanning the solutions of the form 𝑥𝑥 + 𝑞𝑞ℎ𝑀𝑀𝑀𝑀  and selecting the first one improving the 
current solution.  We then resort to the next variable in the ordered list and perform a line 
search from the best solution found in the previous line search.  After 𝑀𝑀/2 consecutive line 
searches we recalculate the potential contribution of each variable by computing again 
𝑥𝑥 + ℎ𝑀𝑀𝑀𝑀  and  𝑥𝑥 − ℎ𝑀𝑀𝑀𝑀  for the current solution 𝑥𝑥, where 𝑀𝑀 = 1 to 𝑀𝑀.  Then, we order the 
variables according to these new values (starting now with the first variable in the new 
ordered list). We repeat this process until no further improvement is found or for a maximum 
of 10 iterations, thus performing a maximum of 10𝑀𝑀/2 line searches. 
 
The second stage is applied to the best solution 𝑥𝑥 = (𝑥𝑥1,  𝑥𝑥2, … , 𝑥𝑥𝑀𝑀) found in the first stage. It 
starts by perturbing the value of each variable in 𝑥𝑥 in the amount 𝛼𝛼 to create an initial simplex.  
Specifically, we generate the 𝑀𝑀 points 𝑥𝑥1,  𝑥𝑥2, … , 𝑥𝑥𝑀𝑀  where 𝑥𝑥𝑀𝑀 = (𝑥𝑥1, … ,  𝑥𝑥𝑀𝑀 + 𝛼𝛼, … , 𝑥𝑥𝑀𝑀). The 
value of 𝛼𝛼 is randomly selected in [−ℎ,ℎ].  Then, the simplex method performs iterations 
attempting to replace the worst point in the simplex by a new and better one using reflection, 
expansion, and contraction steps (Avriel 1976).  The method finishes when the number of 
function evaluations reaches 1000 or if the improvement achieved is lower than 0.001. 
 
It must be noted that the line search only explores solutions in the discretized grid.  This 
permits to efficiently examine scattered solutions but at the same time limits the method. On 
the other hand, the Simplex is not limited to the grid but only explores a small region. 
Therefore the combination of both methods complements each other. 
 

2.3 Linking Solutions  
We consider two different ways to link solutions with a path of intermediate solutions (as 
shown in Figure 1).  The first one, called orthogonal linking, sequentially replaces coordinates 
of the guiding solutions into the initiating solution.  Specifically, in (𝑎𝑎, 𝑥𝑥,𝑦𝑦) we create a path of 
intermediate solutions starting in 𝑎𝑎 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑀𝑀) by replacing alternatively its coordinates 
in blocks of size 𝑀𝑀 with those in 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑀𝑀) and 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑀𝑀), obtaining the 
sequence of solutions 𝑎𝑎(1),𝑎𝑎(2),𝑎𝑎(3), …, where: 
 
𝑎𝑎(1) = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑀𝑀 ,𝑎𝑎𝑀𝑀+1,𝑎𝑎𝑀𝑀+2, … ,𝑎𝑎𝑀𝑀), 
𝑎𝑎(2) = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑀𝑀 ,𝑦𝑦𝑀𝑀+1,𝑦𝑦𝑀𝑀+2, … ,𝑦𝑦2𝑀𝑀 ,𝑎𝑎2𝑀𝑀+1,𝑎𝑎2𝑀𝑀+2, … ,𝑎𝑎𝑀𝑀), 
𝑎𝑎(3) = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑀𝑀 ,𝑦𝑦𝑀𝑀+1,𝑦𝑦𝑀𝑀+2, … ,𝑦𝑦2𝑀𝑀 ,𝑥𝑥2𝑀𝑀+1,𝑥𝑥2𝑀𝑀+2, … , 𝑥𝑥3𝑀𝑀 ,𝑎𝑎3𝑀𝑀+1,𝑎𝑎3𝑀𝑀+2, … ,𝑎𝑎𝑀𝑀). 
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To limit the number of points in the path we compute 𝑀𝑀 = 𝑀𝑀/𝑘𝑘 where 𝑘𝑘 is a low value that 
will be set in our computational study. The diagram in Figure 4 illustrates this method with a 
simple case with two variables and 𝑀𝑀 = 1.  We represent an initiating solution 𝑎𝑎 = (𝑎𝑎1,𝑎𝑎2) 
and two guiding solutions, 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2)  and 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2).  In the first step, we replace the first 
coordinate in 𝑎𝑎 with the first coordinate in 𝑥𝑥, keeping the second coordinate as it is, thus 
obtaining 𝑎𝑎(1) = (𝑥𝑥1,𝑎𝑎2). In the second step we keep the added coordinate in 𝑎𝑎(1) and 
replace its second coordinate with its value in 𝑦𝑦, obtaining 𝑎𝑎(2) = (𝑥𝑥1,𝑦𝑦2). 
 

 
Figure 4. Orthogonal Linking 

 
Our second option for relinking consists of moving from the initiating solution 𝑎𝑎, in the 
direction given by the vector from 𝑎𝑎 to the first guiding solution 𝑥𝑥.  We consider the 
intermediate solutions 𝑎𝑎(1),𝑎𝑎(2), … ,𝑎𝑎(𝑘𝑘 − 1) obtained as the convex combination of 𝑎𝑎 and 𝑥𝑥 
in the first half segment joining them as: 
 

𝑎𝑎(1) = 𝑎𝑎 +
1
𝑘𝑘

(𝑥𝑥 − 𝑎𝑎) 

𝑎𝑎(2) = 𝑎𝑎 +
1

𝑘𝑘 − 1
(𝑥𝑥 − 𝑎𝑎) 

…… 

𝑎𝑎(𝑘𝑘 − 1) = 𝑎𝑎 +
1
2

(𝑥𝑥 − 𝑎𝑎) 

 
Then, we select the best intermediate solution above, say 𝑎𝑎(𝑗𝑗), and repeat the process from 
𝑎𝑎(𝑗𝑗) to 𝑦𝑦.  In particular, we examine: 
 

𝑎𝑎(𝑘𝑘) = 𝑎𝑎(𝑗𝑗) +
1
𝑘𝑘

(𝑦𝑦 − 𝑎𝑎(𝑗𝑗)) 

𝑎𝑎(𝑘𝑘 + 1) = 𝑎𝑎(𝑗𝑗) +
1

𝑘𝑘 − 1
(𝑦𝑦 − 𝑎𝑎(𝑗𝑗)) 

…… 

𝑎𝑎(2𝑘𝑘 − 2) = 𝑎𝑎(𝑗𝑗) +
1
2

(𝑦𝑦 − 𝑎𝑎(𝑗𝑗)) 
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a1
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y1
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Figure 5 shows a representation of this process that we call straight linking on a small example 
with two coordinates. 
 

 
Figure 5. Straight Linking 

 
In our computational experiments we compare both types of relinking and select the best one 
in terms of solution quality for our final design. 
 
 

3. Evolutionary Path Relinking 
Figure 6 shows the pseudo-code of an Evolutionary PR procedure for a minimization problem.  
It starts with the creation of an initial set of 𝑏𝑏 elite solutions (RefSet).  As in the SS method, the 
solutions in RefSet are ordered according to quality, and the search is initiated by assigning the 
value of TRUE to the Boolean variable NewSolutions.  In step 3, NewSubsets is constructed with 
the (𝑎𝑎, 𝑥𝑥,𝑦𝑦) sets of solutions (described in Section 2) in RefSet, and NewSolutions is switched 
to FALSE. 
 
The sets in NewSubsets are selected one at a time in lexicographical order and the Relinking 
Method is applied to generate a path of solutions in step 5 of Figure 6.  The Improvement 
Method is applied to the best solution found in the relinking process (step 6).  The improved 
solution, 𝑙𝑙, is added to the Pool.  When all the sets (𝑎𝑎, 𝑥𝑥, 𝑦𝑦) in NewSubSets have been 
explored, we examine in steps 8 to 10 the improved solutions added to Pool to check whether 
they qualify to enter the RefSet.  In this way, we evolve the RefSet alternating both phases, 
relinking the solutions (steps 3 to 7) and updating it (steps 8 to 10) until the maximum number 
of function evaluations MaxEvaluations is reached.  If at some point no new solution in Pool 
qualifies to enter the RefSet or the number of global iterations (relinking+updating) reaches 
the maximum value, MaxIter, the RefSet is rebuilt (step 12) and the search continues. 
 
It must be noted that the criterion to enter a solution to the RefSet depends on both, quality 
and diversity.  Given a solution 𝑙𝑙 in Pool, let 𝑥𝑥𝑙𝑙  be the closest solution to 𝑙𝑙 in the RefSet 
solutions with a worse value than 𝑙𝑙. In mathematical terms, 

𝑥𝑥𝑙𝑙 = argmin𝑥𝑥∈𝑅𝑅𝑀𝑀𝑓𝑓𝐷𝐷𝑀𝑀𝑅𝑅 {𝑚𝑚(𝑥𝑥,𝑙𝑙):𝑓𝑓(𝑥𝑥) > 𝑓𝑓(𝑙𝑙)}. 

We admit 𝑙𝑙 into RefSet if it improves upon the best solution in it, 𝑥𝑥1, or alternatively, if it 
improves upon the worst solution, 𝑥𝑥𝑏𝑏 , and its distance with 𝑥𝑥𝑙𝑙 , is larger than the pre-

a
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established distance threshold dthresh (see the If- statement between steps 8 and 9 in Figure 
6). 
 

1. Obtain a RefSet of b elite solutions.  
2. Evaluate the solutions in RefSet and order them according to their objective function value such 

that x1 is the best solution and xb the worst.  Make NewSolutions = TRUE and GlobalIter=0. 
while ( NumEvaluations < MaxEvaluations ) do 

3. Generate NewSubsets, which consists of the sets (a, x, y) of solutions in RefSet that include at 
least one new solution.  Make NewSolutions = FALSE and Pool = ∅. 

while ( NewSubsets ≠ ∅ ) do 
4. Select the next set (a, x, y) in NewSubSets. 
5. Apply the Relinking Method to produce the sequence from a to x and y. 
6. Apply the Improvement Method to the best solution in the sequence. Let w be the 

improved solution. Add w to Pool. 
7. Delete (a, x, y)from NewSubsets 

end while 
for (each solution w ∈ Pool) 

8. Let xw be the closest solution to w in RefSet 
if ( f(w) < f(x1) or  ( f(w) < f(xb) & d(w, xw)>dthresh) then 

9. Make xw = w and reorder RefSet 
10. Make NewSolutions = TRUE 

end if 
end for 
11. GlobalIter = GlobalIter +1 
If ( GlobalIter = MaxlIter or NewSolutions= FALSE) 

12. Rebuild the RefSet. GlobalIter =0 
end while 

Figure 6. Evolutionary Path Relinking procedure 
 
When no new solution in Pool qualifies to enter the RefSet, or GlobalIter reaches the maximum 
value, MaxIter, we invoke in step 12 of the algorithm the rebuilding of the RefSet.  It basically 
consists of resorting again to the set of solutions D initially generated with the Taguchi 
strategy.  In the initial construction of the RefSet we used the best 𝑏𝑏 solutions in D.  Now we 
continue exploring the solutions in D ordered according to their quality. In particular, we 
consider the solution 𝑎𝑎 in position 𝑏𝑏 + 1 and directly subject it to the PR algorithm, which is 
applied between 𝑎𝑎 and two solutions 𝑥𝑥 and 𝑦𝑦 selected from RefSet (Resende et al. 2010). The 
selection is probabilistically made according to the value of the solutions. The improvement 
method is applied to the output of PR, but now, the resulting solution is directly tested for 
inclusion in RefSet (we apply here the same criterion formulated in the If-statement between 
steps 8 and 9 in Figure 6). If succeeds, it replaces a solution in the RefSet and can be used as 
guiding solution in later applications of PR.  We repeat this process 𝑏𝑏 times; i.e. we consider 𝑏𝑏 
solutions in D and check whether their associated relinked+improved solution qualifies to 
become part of the RefSet.  Then the search continues evolving the RefSet until the maximum 
number of evaluations is reached. 
 
GRASP with evolutionary path relinking (EvoPR) and scatter search (SS) are evolutionary 
methods based on evolving a small set of selected solutions (elite set in the former and 
reference set in the latter). We can therefore observe similarities between them, as pointed 
out in Resende et al. (2010). In some implementations of SS, GRASP is used to populate the 
reference set, but note that other constructive methods can be used as well. Similarly, PR can 
be used to combine solutions in SS, but we can use any other combination method (Laguna 
and Martí 2003). From an algorithmic point of view, we may find two main differences 
between these methods. The first one is that in SS we do not apply PR to the solutions 
obtained with GRASP (as we do in GRASP with EvoPR), but rather, we only apply PR as a 
combination method between solutions already in the reference set. The second difference is 
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that in SS when none of the new solutions obtained with combinations are admitted to the 
reference set, it is rebuilt, removing some of its solutions, as specified in the reference set 
update method. In GRASP with EvPR we do not remove solutions from RefSet, but rather, we 
again apply GRASP and use the same rules for inclusion in the RefSet. 
 
 

4. Computational Experiments 
This section describes the computational experiments that we performed to test the efficiency 
of our PR procedures as well as to compare them with the previous methods identified to be 
the state-of-the-art for unconstrained global optimization.  We implement the methods in Java 
SE6 and run the algorithms on a Pentium 4 computer at 3GHz with 6GB of RAM. We have 
employed 11 simple scalable functions, called F1 to F11, and 8 hybrid composition functions, 
called F12 to F19.  Herrera et al. (2010a) describe in detail these 19 functions, all of them with 
optimum known.  Figure 7 contains the mathematical expressions of the simple functions (we 
can see how they are biased to make them even harder to solve). The hybrid composition 
functions are obtained by combining them. 
 

 
Figure 7. Simple scalable functions 

 
In all the experiments we report the error with respect to the optimum.  In mathematical 
terms, given a solution 𝑥𝑥 the error is defined as 𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑙𝑙𝑢𝑢), where 𝑙𝑙𝑢𝑢 is the optimum of the 
function.  We now describe the preliminary experimentation to set the values of the key 
search parameters as well as to test the different elements of our path relinking methods.  
After that, we compare our final method with the state-of-the-art procedures for global 
optimization. 
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4.1 Construction and Local Search  
In the first preliminary experiment, we test the Taguchi constructive method.  Specifically, we 
compare it with the constructive method in Duarte et al. (2010), called Frequency.  We 
perform 1000 constructions with each method and report the best solution value obtained 
overall.  We employ three functions in this experiment, F3, F8, and F13, each one with 
dimensions 50, 100, 200, 500, and 1000, thus totalizing 15 instances.  Table 2 reports the 
average error achieved with each constructive method over the three instances for each 
dimension value. 
 

 
50 100 200 500 1000 

Frequency 5.34E+10 1.13E+11 2.71E+11 7.32E+11 1.45E+12 
Taguchi 3.74E+10 6.03E+10 1.33E+11 3.65E+11 7.63E+11 

Table 2. Constructive methods 
 
Table 2 clearly shows that the Taguchi-based approach results in lower error values than the 
Frequency method.  In particular, its average error value is approximately half of value 
obtained with the Frequency constructive method.  We compare both methods with two well-
known nonparametric tests for pairwise comparisons: the Wilcoxon test and the Sign test. The 
former one answers the question: Do the two samples (solutions obtained with Frequency and 
Taguchi in our case) represent two different populations? The resulting p-value of 0.001 
indicates that the values compared come from different methods. On the other hand, the Sign 
test computes the number of instances on which an algorithm supersedes another one. The 
resulting p-value of 0.000 indicates that there is a clear winner between both methods.  We 
therefore consider the Taguchi based method as the constructive procedure of our final 
algorithm. 
 
In our second preliminary experiment we test several state-of-the-art local search methods to 
improve the solutions obtained with the Taguchi procedure, including our two stage line 
search described in Section 2.2.  According to Hvattum et al. (2010), some of the best local 
search methods in global optimization are the following three procedures: Compass search 
(Kolda et al. 2003), Solis and Wets (1981) and Tabu line search (Duarte et al., 2010).  Since our 
two stage line search includes the application of the well-known Simplex method for 
unconstrained global optimization, we also apply this method as a post-processing of these 
three procedures in order to report a fair comparison.  We run these methods to solve 
functions F3, F13 and F17 and report the average error obtained in these three instances per 
dimension. 
 

 
50 100 200 500 1000 

Compass search 8.22E+13 2.82E+14 7.99E+14 1.69E+15 2.07E+16 
Solis and Wets 3.19E+10 6.17E+10 1.44E+11 1.91E+11 8.44E+11 
Tabu line search 1.70E+09 5.15E+09 1.28E+10 2.28E+11 9.68E+10 
Two stage line search 1.76E+03 4.06E+03 1.17E+04 2.15E+10 4.60E+04 

Table 3. Local search methods 
 
Results in Table 3 clearly show that our two stage line search method consistently outperforms 
the other three local search methods tested, when improving the solutions generated with our 
constructive method.  We apply a Friedman test for paired samples to the data used to 
generate this table.  The resulting p-value of 0.000 obtained in this experiment clearly 
indicates that there are statistically significant differences among the six methods tested (we 
are using the typical significance level of α = 0.05 as the threshold between rejecting or not the 
null hypothesis).  A typical post-test analysis consists of ranking the methods under 
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comparison according to the average rank values computed with this test.  According to this, 
the best method is the Two-stage line search (with a rank value of 1.13), followed by the Tabu 
line search (2.47), while the Compass search and the Solis and Wets methods rank in lower 
positions (with 3.00 and 3.40 rank values respectively).  We therefore consider the Two-stage 
line search as the improvement method of the path relinking and evolutionary path relinking 
procedures in the next experiments. 
 

4.2 Path Relinking Elements 
In this subsection we discuss and compare the parameters and elements of the path relinking 
variants.  Specifically we first compare the straight linking and the orthogonal linking, each one 
with three different values of the 𝑘𝑘 search parameter, and then we compare the path relinking 
with the evolutionary path relinking algorithm run with three different sizes of the RefSet. 
 
The third preliminary experiment tests the effect of the path relinking approaches presented in 
Section 2.3.  Specifically, we compare the straight linking and the orthogonal linking, each one 
with the parameter 𝑘𝑘 ∈ {2, 3, 4} in the algorithm outlined in Figure 2.  Table 4 summarizes the 
average error results obtained over the functions F3, F13 and F17. 
 

  
50 100 200 500 1000 Average 

Straight 
2 264.55 1487.97 4204.76 12650.73 25526.22 8826.85 
3 198.78 1077.50 3978.56 12216.51 24426.14 8379.50 
4 250.02 1102.69 4193.04 12612.82 23886.72 8409.06 

Orthogonal 
2 166.53 1479.34 6229.81 17213.48 36570.62 12331.96 
3 349.65 1286.24 5561.30 18508.22 37495.35 12640.15 
4 204.43 1239.76 5102.37 17865.76 35661.70 12014.80 

Table 4. Relinking methods 

 
Results in Table 4 indicate that the straight linking is, in general, a better approach than the 
orthogonal linking in the context of global optimization.  Moreover, the best value for the 
search parameter in the straight linking turns out to be 𝑘𝑘 = 3.  The Friedman test obtains a p-
value of 0.00 and the associated ranking is: “Straight with 𝑘𝑘 = 3” (with a rank value of 2.13), 
“Straight with 𝑘𝑘 = 4” (2.33), “Straight with 𝑘𝑘 = 2” (3.40), “Orthogonal with 𝑘𝑘 = 4” (4.07), 
“Orthogonal with 𝑘𝑘 = 2“ (4.53), and “Orthogonal with 𝑘𝑘 = 3“ (4.53).  Thus, we select the 
straight linking with 𝑘𝑘 = 3 as the relinking method in both, the path relinking and the 
evolutionary path relinking procedures. 
 
In our last preliminary experiment we compare the path relinking method (outlined in Figure 
2) with the evolutionary path relinking method (outlined in Figure 6).  In the path relinking 
method, the RefSet size, 𝑏𝑏, is set to 10; while in the evolutionary path relinking, we test three 
different values of the RefSet size, 4, 8, and 12.  Table 5 reports the average error results 
obtained over the functions F3, F13 and F17. Column eight in Table 5 reports the average value 
of columns 3 to 7. 
 

  |RefSet| 50 100 200 500 1000 Average 
PR 10 61.71 128.78 514.13 2286.31 5751.37 1748.46 

EvoPR 
4 75.61 183.97 484.40 1614.59 3920.29 1255.77 
8 52.20 252.96 978.13 2716.49 6656.13 2131.18 

12 79.72 611.52 1697.12 4298.49 8908.66 3119.10 

Table 5. Path relinking and Evolutionary path relinking 
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Table 5 reports an interesting result. The path relinking algorithm improves the evolutionary 
path relinking algorithm when the size of the reference set is relatively large (𝑏𝑏 = 8, 12); 
however, with a low RefSet value, 𝑏𝑏 = 4, the evolutionary path relinking is able to produce the 
best results (its average error value of 1255.77 compares favorably with the 1748.46 of the 
path relinking).  Moreover the Friedman test shows a p-value of 0.00 and the ranking EvoPR-4 
(1.50), PR (1.67), EvoPR-8 (2.83), and EvoPR-12 (4.00).  We therefore consider EvoPR with 
𝑏𝑏 = 4 as our best algorithm and compare it with the state-of-the-art methods in the next 
experiment. 
 
In the final experiment we consider our evolutionary algorithm, called EvoPR, run for 20 global 
iterations (MaxIter=20).  For an aggressive search of the solution space, the size of the grid ℎ, 
is multiplied by 0.01 after each global iteration.  As mentioned in the introduction, we 
compare our method with four algorithms identified in previous studies as the state-of-the art 
methods: STS (Duarte et al. 2010), DE (Storn and Price 1997), G-CMA-ES (Auger and Hansen 
2005), and CHC (Eshelman and Schaffer 1993). 
 
 

4.3 Comparison with Previous Methods 
Following the guidelines in Herrera et al. (2010a) and Herrera and Lozano (2009) we run our 
final experiment with the following requirements: 

 Each algorithm is run 25 times for each test function. 
 All the methods stop when the maximum number of evaluations reaches 5000𝑀𝑀, 

where 𝑀𝑀 is the problem dimension. 
 
We report the results of this experiment in four tables where averages across the 19 functions 
are reported.  Specifically, Table 6 reports, for each method and each dimension, the average 
error of the best solution found in the 25 runs. Tables 7 and 8 report respectively the 
maximum and minimum error achieved in the 25 runs.  Finally, Table 9 reports the median of 
the error achieved in the 25 runs.  We complement this information with Table 10 where the 
number of optima that each method is able to match is reported, and the tables in the 
Appendix with the individual results for each dimension and function. 
 

  DE CHC G-CMA-ES STS EvoPR 
50 1.74E+001 1.76E+005 1.01E+002 6.92E+001 2.41E+001 
100 5.44E+001 3.70E+005 2.29E+002 5.02E+002 1.62E+002 
200 3.64E+002 1.37E+006 5.87E+002 2.26E+003 7.45E+002 
500 3.39E+003 1.80E+006 1.57E+261 1.38E+004 3.82E+003 
1000 1.33E+004 4.60E+006 - 6.27E+004 1.16E+004 
Average 3.43E+03 1.67E+06 3.91E+260 1.59E+04 3.27E+03 

Table 6. Average error over the 25 runs 
 

  DE CHC G-CMA-ES STS EvoPR 
50 1.70E+01 2.60E+01 7.68E+01 2.89E+001 1.22E+01 
100 4.89E+01 1.09E+02 1.86E+02 3.10E+002 1.15E+02 
200 3.26E+02 4.69E+02 4.49E+02 1.71E+003 6.02E+02 
500 3.08E+03 3.70E+03 6.93E+215 1.04E+004 3.45E+03 
1000 1.26E+04 1.51E+04 - 5.20E+004 1.06E+04 
Average 3.21E+03 3.87E+03 1.73E+215 1.29E+04 2.96E+03 

Table 7. Minimum error over the 25 runs 
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  DE CHC G-CMA-ES STS EvoPR 
50 1.79E+01 3.76E+06 1.27E+02 1.42E+002 6.72E+01 
100 6.33E+01 6.87E+06 2.83E+02 7.71E+002 3.45E+02 
200 4.25E+02 2.82E+07 7.97E+02 3.11E+003 3.45E+02 
500 3.62E+03 1.38E+07 2.18E+262 1.77E+004 4.28E+03 
1000 1.40E+04 1.04E+08 - 7.73E+004 1.33E+04 
Average 3.62E+03 3.14E+07 5.46E+261 1.98E+04 3.67E+03 

Table 8. Maximum error over the 25 runs 
 

  DE CHC G-CMA-ES STS EvoPR 
50 1.74E+01 1.76E+05 9.97E+01 5.31E+001 2.42E+01 
100 5.32E+01 3.70E+05 2.27E+02 5.67E+002 1.45E+02 
200 3.53E+02 1.37E+06 5.77E+02 2.57E+003 7.97E+02 
500 3.40E+03 1.80E+06 3.10E+257 1.61E+004 3.60E+03 
1000 1.33E+04 4.60E+06 - 7.11E+004 1.12E+04 
Average 3.43E+03 1.67E+06 7.74E+256 1.81E+04 3.14E+03 

Table 9. Median error over the 25 runs 
 

  DE CHC G-CMA-ES STS EvoPR 
50 7 2 4 0 8 
100 6 0 4 0 8 
200 6 0 5 0 6 
500 6 0 2 0 5 
1000 6 0 - 0 4 
Sum 31 2 15 0 31 

Table 10. Number of optima over the 25 runs 
 
Tables 6 to 9 show that our EvoPR method consistently produces the best average results, 
since it is able to obtain lower error values (avg., min., and median) than DE, CHC and G-CMA-
ES.  Moreover, considering the number of optima shown in Table 10, EvoPR and DE obtain 31 
out of the 95 test functions while CHC, G-CMA-ES and STS obtain 2, 15 and 0 respectively. 
 
We now focus on the average error values, since they are the most informative in statistical 
terms, and apply a Friedman test for paired samples to the data used to generate Table 6.  The 
resulting p-value of 0.000 obtained in this experiment clearly indicates that there are 
statistically significant differences among the five methods tested.  According to the post-test 
analysis, the ranking of the methods under comparison is: DE (1.39), EvoPR (2.45), STS (3.37), 
G-CMA-ES (3.80) and CHC (4.00).  If we consider now the average of the minimum errors 
reported in Table 7 and apply the Friedman test for paired samples to the data used to 
generate this table, we obtain the following rank: DE (1.88), EvoPR (2.34), G-CMA-ES (3.11), 
CHC (3.68), and STS (3.99).  The associated p-value in this test is 0.00 indicating, as above, that 
there are statistically significant differences among the six methods tested. 
 
As a result of the analysis above, it is difficult to establish a clear winner overall.  On one hand, 
our EvoPR method obtains an average and minimum error values overall of 3.27E+03 and 
2.96E+03 respectively, which compare favorably with the 3.43E+03 and 3.21E+03 of the DE 
method. On the other hand, the rank values of the Friedman test favor the DE method with 
respect to the EvoPR (1.39 and 2.45 for the average errors, and 1.88 and 2.34 for the minimum 
errors). Finally, both are able to match the same number of optima, equal to 31.  We could 
conclude that both methods, DE and EvoPR, obtain the best results overall. G-CMA-ES also 
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obtains good solutions considering the difficulty of the instances tested. Finally, CHC and STS 
are not able to produce quality solutions in this kind of large and difficult instances. 
 
We finish our experimentation with the analysis of the number of evaluations consumed by 
the improvement method.  Table 11 reports the number of times that the improvement 
method is invoked, Imp. Method calls, the average number of evaluations consumed by the 
line searches and the simplex on a run of the improvement method, Line searches eval., and 
Simplex eval. respectively.  Finally, the last column in Table 11 reports the percentage of the 
total number of evaluations consumed by the Improvement Method, %Imp Method eval.  This 
table confirms what is well known about heuristic algorithms: the improvement method is a 
key element and justifies a relatively large percentage of the total running time (number of 
evaluations in our case). 
 

  Imp. Method calls Line searches eval. Simplex eval. %Imp Method eval. 
50 125.7 777.5 566.6 67.6% 
100 139.2 1601.5 616.8 61.7% 
200 143.0 3304.3 704.5 57.3% 
500 144.8 8476.6 970.4 54.7% 
1000 151.9 16765.3 1425.5 55.3% 
Average 140.9 6185.0 856.8 59.3% 

Table 11. Number of optima over the 25 runs 
 

5. Conclusions 
We have described the development and implementation of path relinking (PR) for the 
optimization of large scale unconstrained functions.  Based on a series of preliminary 
experiments, to identify effective ways to coordinate the underlying strategies, we are able to 
produce a method that reaches high quality solutions on previously reported problems. These 
strategies include two different methods to perform the relinking of solutions, which can be 
applied to different types of problems.  Our extensive comparison with previous methods 
shows that the PR method is very competitive for unconstrained global optimization problems. 
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Appendix 

    F1 F2 F3 F4 

    Avg Min Max Med Avg Min Max Med Avg Min Max Med Avg Min Max Med 

50
 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.60E-01 2.56E-01 8.49E-01 3.29E-01 2.89E+01 2.55E+01 3.10E+01 2.90E+01 3.98E-02 0.00E+00 9.95E-01 1.51E-13 

CHC 1.67E-11 1.23E-11 2.33E-11 1.67E-11 6.19E+01 5.13E+01 8.43E+01 6.19E+01 1.25E+06 9.74E-01 2.01E7 1.25E+06 7.43E+01 5.47E+01 1.00E+02 7.43E+01 

G-CMA-ES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.75E-11 2.08E-11 3.82E-11 2.64E-11 7.97E-01 0.00E+00 3.99E+00 0.00E+00 1.05E+02 7.16E+01 1.33E+02 1.08E+02 

EvoPR 1.22E-02 0.00E+00 1.53E-01 0.00E+00 3.71E-01 9.27E-02 7.80E-01 2.56E-01 1.12E+02 4.46E+01 5.06E+02 1.24E+02 4.96E-02 0.00E+00 9.95E-01 0.00E+00 

STS 2.15E-01 6.99E-02 5.51E-01 1.73E-01 4.52E+01 3.46E+01 5.84E+01 3.88E+01 1.84E+02 4.85E+01 4.24E+02 1.49E+02 3.80E+01 2.34E+01 6.01E+01 3.06E+01 

10
0 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.45E+00 3.82E+00 5.59E+00 4.34E+00 8.01E+01 7.55E+01 1.25E+02 7.81E+01 7.96E-02 1.37E-13 9.95E-01 4.23E-13 

CHC 3.56E-11 2.64E-11 4.8E-11 3.56E-11 8.58E+01 7.30E+01 9.74E+01 8.58E+01 4.19E+06 9.12E+01 7.26E7 4.19E+06 2.19E+02 1.64E+02 2.93E+02 2.19E+02 

G-CMA-ES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.51E-10 7.71E-11 2.72E-10 1.62E-10 3.88E+00 0.00E+00 1.84E+01 2.27E+00 2.50E+02 1.86E+02 3.50E+02 2.50E+02 

EvoPR 4.34E-02 0.00E+00 2.97E-01 0.00E+00 3.30E+00 1.97E+00 4.68E+00 3.19E+00 3.98E+02 9.55E+01 2.42E+03 2.32E+02 1.07E-01 0.00E+00 1.14E+00 5.04E-02 

STS 6.31E-01 2.29E-01 9.66E-01 9.17E-01 5.97E+01 4.82E+01 6.95E+01 4.84E+01 5.21E+02 2.24E+02 1.69E+03 5.06E+02 1.10E+02 5.84E+01 1.75E+02 1.23E+02 

20
0 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.92E+01 1.74E+01 2.10E+01 1.93E+01 1.78E+02 1.74E+02 2.27E+02 1.77E+02 1.27E-01 7.44E-13 9.95E-01 3.58E-12 

CHC 8.34E-01 1.36E-11 2.09E+01 8.34E-01 1.03E+02 9.34E+01 1.15E+02 1.03E+02 2.01E7 2.07E+02 4.31E8 2.01E7 5.40E+02 4.02E+02 7.72E+02 5.40E+02 

G-CMA-ES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.16E-9 4.9E-10 5.79E-9 9.91E-10 8.91E+01 0.00E+00 1.19E+02 8.95E+01 6.48E+02 0.00E+00 8.31E+02 6.68E+02 

EvoPR 8.03E-02 0.00E+00 2.97E-01 3.0E-5 8.03E+00 6.29E+00 4.68E+00 7.50E+00 2.91E+02 1.92E+02 2.42E+03 1.94E+02 3.52E-01 0.00E+00 1.14E+00 1.08E+00 

STS 4.51E+00 3.08E+00 6.42E+00 3.70E+00 7.35E+01 6.76E+01 8.18E+01 7.98E+01 2.17E+03 1.49E+03 6.72E+03 1.72E+03 3.19E+02 1.23E+02 4.60E+02 4.04E+02 

50
0 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.35E+01 5.13E+01 5.59E+01 5.33E+01 4.76E+02 4.70E+02 5.22E+02 4.74E+02 3.20E-01 4.64E-12 2.25E+00 9.22E-03 

CHC 2.84E-12 1.93E-12 4.38E-12 2.84E-12 1.29E+02 1.16E+02 1.41E+02 1.29E+02 1.14E+06 4.94E+02 2.85E7 1.14E+06 1.91E+03 1.46E+03 2.22E+03 1.91E+03 

G-CMA-ES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.48E-4 1.52E-4 5.7E-4 3.31E-4 3.58E+02 2.50E+02 8.31E+02 3.55E+02 2.10E+03 1.88E+03 2.31E+03 2.07E+03 

EvoPR 0.00E+00 0.00E+00 1.0E-5 0.00E+00 2.04E+01 1.66E+01 2.28E+01 2.19E+01 5.97E+02 4.91E+02 1.17E+03 6.22E+02 1.45E+00 0.00E+00 5.97E+00 0.00E+00 

STS 2.85E+01 2.34E+01 3.49E+01 2.47E+01 8.50E+01 8.01E+01 9.02E+01 9.02E+01 7.82E+03 5.45E+03 1.44E+04 7.78E+03 7.57E+02 5.57E+02 1.11E+03 6.66E+02 

10
00

 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.46E+01 8.22E+01 8.65E+01 8.44E+01 9.69E+02 9.66E+02 9.71E+02 9.69E+02 1.44E+00 2.76E-11 4.69E+00 1.32E+00 

CHC 1.36E-11 7.56E-12 2.33E-11 1.36E-11 1.44E+02 1.38E+02 1.57E+02 1.44E+02 8.75E+03 1.22E+03 1.80E+05 8.75E+03 4.76E+03 4.13E+03 5.36E+03 4.76E+03 

G-CMA-ES 
                EvoPR 4.0E-5 0.00E+00 3.4E-4 0.00E+00 3.21E+01 3.08E+01 3.41E+01 3.16E+01 1.12E+03 1.03E+03 1.22E+03 1.09E+03 4.08E+02 1.99E+00 1.21E+03 1.21E+03 

STS 6.42E+01 5.25E+01 7.66E+01 7.04E+01 9.05E+01 8.76E+01 9.46E+01 9.02E+01 1.51E+04 1.23E+04 1.83E+04 1.55E+04 1.55E+03 7.86E+02 2.40E+03 2.22E+03 
 

Table 12.Results for functions F1-F4 
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    F5 F6 F7 F8 

    Avg Min Max Med Avg Min Max Med Avg Min Max Med Avg Min Max Med 

50
 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.43E-13 1.14E-13 1.71E-13 1.42E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.44E+00 1.89E+00 4.62E+00 3.54E+00 

CHC 1.67E-03 9.92E-12 2.21E-02 1.67E-03 6.15E-7 4.72E-7 7.33E-7 6.15E-7 2.66E-9 4.58E-10 9.92E-9 2.66E-9 2.24E+02 3.19E+01 6.27E+02 2.24E+02 

G-CMA-ES 2.96E-4 0.00E+00 7.40E-03 0.00E+00 2.09E+01 2.00E+01 2.12E+01 2.11E+01 1.01E-10 6.16E-11 2.32E-10 7.67E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

EvoPR 5.13E-02 0.00E+00 1.56E-01 4.74E-02 6.85E-03 0.00E+00 8.59E-02 0.00E+00 2.63E-02 0.00E+00 1.73E-01 1.0E-5 2.08E+02 1.43E+02 2.94E+02 2.09E+02 

STS 1.01E+00 9.13E-01 1.05E+00 1.02E+00 1.16E-01 6.97E-02 2.03E-01 1.71E-01 1.56E-01 1.26E-01 2.09E-01 1.44E-01 7.90E+02 3.20E+02 1.56E+03 5.20E+02 

10
0 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.1E-13 2.84E-13 3.41E-13 3.13E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.69E+02 2.86E+02 4.84E+02 3.47E+02 

CHC 3.83E-03 7.16E-12 4.16E-02 3.83E-03 4.1E-7 3.02E-7 5.46E-7 4.1E-7 1.40E-02 2.05E-10 3.50E-01 1.40E-02 1.69E+03 9.32E+02 3.26E+03 1.69E+03 

G-CMA-ES 1.58E-03 0.00E+00 1.48E-02 0.00E+00 2.12E+01 2.00E+01 2.14E+01 2.13E+01 4.22E-4 2.78E-9 9.41E-03 6.98E-7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

EvoPR 3.92E-02 0.00E+00 1.06E-01 1.06E-01 2.5E-4 0.00E+00 7.2E-4 0.00E+00 9.17E-02 0.00E+00 4.76E-01 0.00E+00 2.27E+03 1.95E+03 2.78E+03 2.34E+03 

STS 1.07E+00 9.99E-01 1.11E+00 1.07E+00 6.05E-01 4.50E-01 9.19E-01 5.58E-01 7.28E-01 5.75E-01 8.61E-01 6.53E-01 7.99E+03 5.15E+03 1.09E+04 9.27E+03 

20
0 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.54E-13 5.97E-13 7.11E-13 6.54E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.53E+03 4.82E+03 6.63E+03 5.33E+03 

CHC 8.76E-03 4.41E-12 4.67E-02 8.76E-03 1.23E+00 1.3E-7 4.41E+00 1.23E+00 2.59E-01 1.2E-9 2.65E+00 2.59E-01 9.38E+03 5.91E+03 1.49E+04 9.38E+03 

G-CMA-ES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.14E+01 2.14E+01 2.15E+01 2.14E+01 1.17E-01 4.62E-5 7.85E-01 2.61E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

EvoPR 2.68E-02 0.00E+00 1.06E-01 2.99E-02 6.22E-01 0.00E+00 7.2E-4 2.33E+00 3.82E-02 0.00E+00 4.76E-01 3.0E-5 1.34E+04 1.09E+04 2.78E+03 1.45E+04 

STS 1.12E+00 1.07E+00 1.19E+00 1.11E+00 5.67E-01 4.66E-01 6.69E-01 5.36E-01 3.03E+00 2.53E+00 3.93E+00 3.02E+00 3.77E+04 2.90E+04 4.75E+04 4.40E+04 

50
0 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.65E-12 1.59E-12 1.71E-12 1.65E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.09E+04 5.51E+04 6.51E+04 6.11E+04 

CHC 6.98E-03 8.53E-14 4.42E-02 6.98E-03 5.16E+00 2.83E+00 8.05E+00 5.16E+00 1.27E-01 7.76E-9 1.66E+00 1.27E-01 7.22E+04 6.09E+04 8.86E+04 7.22E+04 

G-CMA-ES 2.96E-4 0.00E+00 7.40E-03 0.00E+00 2.15E+01 2.15E+01 2.16E+01 2.15E+01 
    

2.36E-6 7.68E-7 3.91E-6 2.31E-6 

EvoPR 3.03E-02 0.00E+00 1.33E-01 9.86E-03 1.21E+00 0.00E+00 2.62E+00 1.0E-5 8.06E-03 0.00E+00 2.60E-02 2.51E-02 7.05E+04 6.40E+04 7.75E+04 6.61E+04 

STS 1.28E+00 1.21E+00 1.33E+00 1.31E+00 5.28E-01 4.62E-01 6.18E-01 4.91E-01 9.54E+00 8.73E+00 1.04E+01 9.07E+00 2.45E+05 1.84E+05 3.05E+05 2.90E+05 

10
00

 

DE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.29E-12 3.18E-12 3.41E-12 3.3E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.46E+05 2.31E+05 2.58E+05 2.46E+05 

CHC 7.02E-03 1.14E-13 3.83E-02 7.02E-03 1.38E+01 1.03E+01 1.63E+01 1.38E+01 3.52E-01 2.28E-7 2.90E+00 3.52E-01 3.11E+05 2.61E+05 3.43E+05 3.11E+05 

G-CMA-ES 
                EvoPR 3.72E-02 0.00E+00 2.00E-01 1.97E-02 1.97E+00 0.00E+00 2.68E+00 2.45E+00 1.5E-4 0.00E+00 3.21E-03 0.00E+00 2.15E+05 1.98E+05 2.45E+05 2.06E+05 

STS 1.60E+00 1.53E+00 1.72E+00 1.60E+00 5.57E-01 4.88E-01 6.57E-01 5.73E-01 
    

1.09E+06 9.07E+05 1.34E+06 1.24E+06 
 

Table 13. Results for functions F5-F8 
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    F9 F10 F11 F12 

    Avg Min Max Med Avg Min Max Med Avg Min Max Med Avg Min Max Med 

50
 

DE 2.73E+02 2.72E+02 2.74E+02 2.73E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.23E-5 3.35E-5 1.04E-4 5.6E-5 5.35E-13 2.72E-13 7.19E-13 5.27E-13 

CHC 3.10E+02 2.99E+02 3.20E+02 3.10E+02 7.30E+00 4.62E-11 1.62E+01 7.30E+00 2.16E+00 3.68E-4 1.34E+01 2.16E+00 9.57E-01 6.04E-11 2.39E+01 9.57E-01 

G-CMA-ES 1.66E+01 4.38E+00 3.36E+01 1.61E+01 6.81E+00 2.10E+00 1.26E+01 6.71E+00 3.01E+01 7.83E+00 6.94E+01 2.83E+01 1.88E+02 1.15E+02 2.51E+02 1.87E+02 

EvoPR 8.02E+00 2.78E+00 1.81E+01 9.69E+00 4.80E-02 0.00E+00 8.45E-01 0.00E+00 9.68E+00 1.54E+00 2.60E+01 1.18E+01 2.27E+00 4.19E-02 8.26E+00 1.02E-01 

STS 3.07E+01 2.48E+01 3.93E+01 3.10E+01 3.29E-03 1.17E-03 9.60E-03 7.35E-03 3.24E+01 2.84E+01 3.70E+01 3.45E+01 1.02E+00 3.54E-01 3.14E+00 8.44E-01 

10
0 

DE 5.06E+02 5.04E+02 5.07E+02 5.06E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.28E-4 7.89E-5 1.7E-4 1.29E-4 5.99E-11 3.42E-11 8.27E-11 6.18E-11 

CHC 5.86E+02 5.69E+02 5.99E+02 5.86E+02 3.30E+01 1.42E+01 9.61E+01 3.30E+01 7.32E+01 1.64E+00 1.55E+02 7.32E+01 1.03E+01 6.43E-11 5.19E+01 1.03E+01 

G-CMA-ES 1.02E+02 4.31E+01 1.56E+02 1.06E+02 1.66E+01 9.28E+00 2.46E+01 1.68E+01 1.64E+02 8.07E+01 2.60E+02 1.51E+02 4.17E+02 3.46E+02 4.77E+02 4.20E+02 

EvoPR 2.91E+01 1.57E+01 4.53E+01 1.77E+01 2.05E-01 0.00E+00 1.44E+00 2.84E-01 2.60E+01 9.96E+00 3.77E+01 2.98E+01 5.01E+00 3.99E-01 2.07E+01 1.18E+00 

STS 7.73E+01 6.48E+01 9.41E+01 7.86E+01 1.75E-01 9.63E-02 2.51E-01 2.47E-01 7.34E+01 5.69E+01 8.52E+01 6.66E+01 4.89E+00 2.80E+00 7.23E+00 3.73E+00 

20
0 

DE 1.01E+03 1.01E+03 1.01E+03 1.01E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.62E-4 2.26E-4 3.1E-4 2.59E-4 9.76E-10 6.65E-10 1.49E-9 9.36E-10 

CHC 1.19E+03 1.16E+03 1.22E+03 1.19E+03 7.13E+01 3.57E+01 1.42E+02 7.13E+01 3.85E+02 1.19E+02 5.96E+02 3.85E+02 7.44E+01 1.60E+01 1.59E+02 7.44E+01 

G-CMA-ES 3.75E+02 2.95E+02 4.92E+02 3.81E+02 4.43E+01 3.04E+01 5.88E+01 4.41E+01 8.03E+02 6.37E+02 1.04E+03 7.93E+02 9.06E+02 8.30E+02 1.01E+03 9.08E+02 

EvoPR 6.22E+01 4.31E+01 4.53E+01 5.11E+01 1.04E+00 3.0E-5 1.44E+00 4.78E-01 5.93E+01 4.72E+01 3.77E+01 6.78E+01 1.00E+01 1.76E+00 2.07E+01 3.87E+00 

STS 1.63E+02 1.46E+02 1.78E+02 1.60E+02 4.23E+00 3.12E+00 5.99E+00 5.28E+00 1.65E+02 1.52E+02 1.87E+02 1.58E+02 1.95E+01 1.20E+01 3.33E+01 2.93E+01 

50
0 

DE 2.52E+03 2.52E+03 2.53E+03 2.52E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.76E-4 6.13E-4 7.83E-4 6.71E-4 7.07E-9 5.95E-9 9.29E-9 6.98E-9 

CHC 3.00E+03 2.97E+03 3.03E+03 3.00E+03 1.86E+02 1.08E+02 5.18E+02 1.86E+02 1.81E+03 1.50E+03 2.47E+03 1.81E+03 4.48E+02 3.63E+02 5.52E+02 4.48E+02 

G-CMA-ES 1.74E+03 1.58E+03 1.85E+03 1.76E+03 1.27E+02 1.03E+02 1.55E+02 1.27E+02 4.16E+03 3.50E+03 4.54E+03 4.18E+03 2.58E+03 2.41E+03 2.76E+03 2.59E+03 

EvoPR 1.75E+02 1.41E+02 2.41E+02 1.41E+02 3.29E+01 1.05E+01 6.63E+01 1.05E+01 1.77E+02 1.51E+02 2.48E+02 2.11E+02 1.73E+01 7.13E+00 3.67E+01 1.13E+01 

STS 4.44E+02 4.32E+02 4.69E+02 4.36E+02 2.75E+01 2.39E+01 3.12E+01 2.60E+01 4.43E+02 4.17E+02 4.81E+02 4.35E+02 7.23E+01 5.76E+01 8.93E+01 8.93E+01 

10
00

 

DE 5.13E+03 5.12E+03 5.14E+03 5.13E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.35E-03 1.25E-03 1.48E-03 1.35E-03 1.68E-8 1.4E-8 1.94E-8 1.7E-8 

CHC 6.11E+03 6.06E+03 6.16E+03 6.11E+03 3.83E+02 2.15E+02 7.40E+02 3.83E+02 4.82E+03 4.42E+03 5.42E+03 4.82E+03 1.05E+03 8.80E+02 1.21E+03 1.05E+03 

G-CMA-ES 
                EvoPR 4.07E+02 3.26E+02 5.68E+02 3.66E+02 3.86E+02 1.47E+02 4.78E+02 4.25E+02 3.96E+02 3.21E+02 5.86E+02 3.50E+02 3.23E+01 2.24E+01 5.76E+01 3.06E+01 

STS 9.06E+02 8.58E+02 9.37E+02 9.05E+02 5.60E+01 4.51E+01 6.61E+01 5.23E+01 9.15E+02 8.66E+02 9.58E+02 9.27E+02 1.75E+02 1.53E+02 2.01E+02 1.78E+02 
 

Table 14. Results for functions F9-F12 
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    F13 F14 F15 F16 

    Avg Min Max Med Avg Min Max Med Avg Min Max Med Avg Min Max Med 

50
 

DE 2.45E+01 2.28E+01 2.64E+01 2.44E+01 4.16E-8 1.32E-8 1.8E-7 2.58E-8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.56E-9 9.33E-10 2.68E-9 1.51E-9 

CHC 2.08E+06 1.14E+01 5.08E7 2.08E+06 6.17E+01 3.99E+01 1.48E+02 6.17E+01 3.98E-01 1.11E-8 2.12E+00 3.98E-01 2.95E-9 0.00E+00 9.17E-9 2.95E-9 

G-CMA-ES 1.97E+02 1.36E+02 2.32E+02 1.97E+02 1.09E+02 7.42E+01 1.50E+02 1.05E+02 9.79E-4 1.73E-4 3.85E-03 8.12E-4 4.27E+02 3.19E+02 5.27E+02 4.22E+02 

EvoPR 4.22E+01 3.39E+01 9.41E+01 3.54E+01 9.97E-01 4.48E-02 2.48E+00 2.01E+00 6.38E-02 0.00E+00 8.24E-01 8.24E-01 5.63E+00 2.00E-01 1.51E+01 2.27E+00 

STS 9.16E+01 3.68E+01 2.57E+02 1.15E+02 2.75E+01 1.22E+01 5.51E+01 1.70E+01 6.76E-02 4.84E-02 9.16E-02 7.86E-02 2.03E+00 7.44E-01 5.73E+00 2.46E+00 

10
0 

DE 6.17E+01 5.95E+01 6.45E+01 6.17E+01 4.79E-02 5.65E-8 9.95E-01 1.3E-7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.58E-9 2.63E-9 4.52E-9 3.53E-9 

CHC 2.70E+06 2.41E+01 5.61E7 2.70E+06 1.66E+02 1.19E+02 2.24E+02 1.66E+02 8.13E+00 2.42E-8 6.42E+01 8.13E+00 2.23E+01 1.05E+00 6.71E+01 2.23E+01 

G-CMA-ES 4.21E+02 3.48E+02 5.52E+02 4.12E+02 2.55E+02 2.16E+02 3.04E+02 2.52E+02 6.30E-01 2.39E-4 2.51E+00 4.13E-01 8.59E+02 7.47E+02 9.75E+02 8.48E+02 

EvoPR 1.40E+02 7.37E+01 5.09E+02 7.46E+01 1.24E+00 1.36E-01 5.55E+00 1.05E+00 6.56E-02 0.00E+00 3.81E-01 3.81E-01 8.29E+00 2.03E+00 2.29E+01 9.31E+00 

STS 3.19E+02 1.16E+02 6.64E+02 3.52E+02 8.69E+01 5.12E+01 1.64E+02 5.23E+01 4.16E-01 3.44E-01 5.13E-01 4.20E-01 7.61E+00 3.28E+00 1.50E+01 1.07E+01 

20
0 

DE 1.36E+02 1.34E+02 1.38E+02 1.36E+02 1.38E-01 1.24E-7 9.95E-01 2.71E-7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.46E-9 5.54E-9 9.6E-9 7.26E-9 

CHC 5.75E+06 1.62E+02 1.01E8 5.75E+06 4.29E+02 3.52E+02 5.14E+02 4.29E+02 2.14E+01 7.42E-8 1.23E+02 2.14E+01 1.60E+02 6.19E+00 2.94E+02 1.60E+02 

G-CMA-ES 9.43E+02 8.02E+02 1.08E+03 9.34E+02 6.09E+02 5.08E+02 7.05E+02 6.24E+02 1.75E+00 4.81E-03 4.92E+00 2.10E+00 1.92E+03 1.66E+03 2.12E+03 1.90E+03 

EvoPR 1.71E+02 1.48E+02 5.09E+02 2.05E+02 3.75E+00 4.59E-01 5.55E+00 6.84E-01 3.80E-01 0.00E+00 3.81E-01 0.00E+00 1.74E+01 4.58E+00 2.29E+01 9.41E+00 

STS 1.37E+03 9.80E+02 2.36E+03 1.52E+03 2.30E+02 1.48E+02 3.46E+02 2.16E+02 3.13E+00 2.73E+00 3.86E+00 3.86E+00 2.89E+01 1.56E+01 4.98E+01 1.56E+01 

50
0 

DE 3.59E+02 3.57E+02 3.78E+02 3.58E+02 1.35E-01 5.55E-7 1.12E+00 9.01E-7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.04E-8 1.71E-8 2.3E-8 2.05E-8 

CHC 3.22E7 3.35E+02 2.21E8 3.22E7 1.46E+03 1.15E+03 1.77E+03 1.46E+03 6.01E+01 6.53E+00 2.66E+02 6.01E+01 9.55E+02 2.32E+01 1.11E+03 9.55E+02 

G-CMA-ES 2.87E+03 2.59E+03 3.55E+03 2.87E+03 1.95E+03 1.80E+03 2.15E+03 1.95E+03 2.82E262 1.25E217 3.93E263 5.57E258 5.45E+03 5.23E+03 5.85E+03 5.43E+03 

EvoPR 5.75E+02 4.39E+02 8.26E+02 7.01E+02 9.00E+00 3.28E+00 1.85E+01 6.03E+00 2.25E+00 4.75E-02 9.88E+00 1.32E+00 4.87E+01 2.96E+01 7.69E+01 7.69E+01 

STS 5.24E+03 4.19E+03 8.77E+03 4.39E+03 6.48E+02 4.41E+02 8.82E+02 5.38E+02 1.06E+01 9.59E+00 1.19E+01 1.02E+01 1.27E+02 9.78E+01 1.53E+02 1.28E+02 

10
00

 

DE 7.30E+02 7.28E+02 7.31E+02 7.29E+02 6.90E-01 1.3E-6 2.77E+00 9.95E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.18E-8 3.61E-8 4.71E-8 4.19E-8 

CHC 6.66E7 1.32E+03 1.67E9 6.66E7 3.62E+03 3.21E+03 3.98E+03 3.62E+03 8.37E+01 2.83E+01 1.31E+02 8.37E+01 2.32E+03 5.46E+01 2.75E+03 2.32E+03 

G-CMA-ES 
                EvoPR 1.13E+03 8.73E+02 1.54E+03 9.99E+02 4.31E+02 1.06E+01 9.16E+02 5.47E+02 1.26E+02 4.42E+01 2.01E+02 8.12E+01 8.44E+01 5.56E+01 1.46E+02 1.00E+02 

STS 1.15E+04 8.85E+03 2.04E+04 1.01E+04 1.22E+03 8.63E+02 1.62E+03 1.54E+03 2.18E+01 1.88E+01 2.50E+01 2.11E+01 3.13E+02 2.66E+02 3.59E+02 3.03E+02 
 

Table 15. Results for functions F13-F16* 
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    F17 F18 F19 

    Avg Min Max Med Avg Min Max Med Avg Min Max Med 

50
 

DE 7.98E-01 1.18E-02 2.24E+00 6.83E-01 1.22E-4 6.13E-5 2.36E-4 1.2E-4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CHC 2.26E+04 9.55E-01 5.59E+05 2.26E+04 1.58E+01 3.98E+00 2.94E+01 1.58E+01 3.59E+02 0.00E+00 5.26E+03 3.59E+02 

G-CMA-ES 6.89E+02 5.96E+02 8.03E+02 6.71E+02 1.31E+02 1.13E+02 1.59E+02 1.27E+02 4.76E+00 4.13E-01 9.28E+00 4.03E+00 

EvoPR 6.77E+01 5.36E+00 3.03E+02 5.86E+01 1.62E+00 2.04E-01 4.94E+00 4.32E+00 5.03E-02 0.00E+00 1.10E+00 1.10E+00 

STS 6.33E+01 1.42E+01 1.80E+02 6.10E+01 8.87E+00 4.71E+00 1.59E+01 7.09E+00 3.15E-02 1.90E-02 4.85E-02 3.17E-02 

10
0 

DE 1.23E+01 1.49E-01 1.47E+01 1.28E+01 2.98E-4 1.98E-4 4.98E-4 2.86E-4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CHC 1.47E+05 4.14E+01 1.78E+06 1.47E+05 7.00E+01 3.97E+01 9.51E+01 7.00E+01 5.45E+02 4.20E+00 5.67E+03 5.45E+02 

G-CMA-ES 1.51E+03 1.27E+03 1.74E+03 1.52E+03 3.07E+02 2.62E+02 3.41E+02 3.13E+02 2.02E+01 6.71E+00 1.55E+02 1.47E+01 

EvoPR 1.97E+02 2.84E+01 6.99E+02 4.15E+01 3.34E+00 8.63E-01 9.37E+00 1.29E+00 1.43E-01 0.00E+00 2.52E+00 1.0E-5 

STS 2.69E+02 9.20E+01 7.05E+02 2.26E+02 2.66E+01 1.39E+01 3.91E+01 2.97E+01 2.63E-01 1.64E-01 3.51E-01 2.93E-01 

20
0 

DE 3.70E+01 3.49E+01 3.95E+01 3.70E+01 4.73E-4 2.94E-4 6.07E-4 4.7E-4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CHC 1.75E+05 2.64E+02 4.37E+06 1.75E+05 2.12E+02 1.63E+02 2.61E+02 2.12E+02 2.06E+03 1.47E+01 2.11E+04 2.06E+03 

G-CMA-ES 3.36E+03 3.07E+03 3.84E+03 3.33E+03 6.89E+02 6.42E+02 7.35E+02 6.88E+02 7.52E+02 3.36E+01 3.08E+03 5.74E+02 

EvoPR 1.56E+02 6.46E+01 6.99E+02 6.81E+01 8.85E+00 3.78E+00 9.37E+00 5.96E+00 2.15E+00 1.73E-03 2.52E+00 3.40E-01 

STS 5.19E+02 3.45E+02 1.16E+03 3.91E+02 7.29E+01 5.56E+01 9.67E+01 6.74E+01 3.72E+00 2.94E+00 4.55E+00 3.48E+00 

50
0 

DE 1.11E+02 1.10E+02 1.13E+02 1.11E+02 1.22E-03 9.19E-4 1.74E-03 1.22E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CHC 8.40E+05 2.96E+02 1.21E7 8.40E+05 7.32E+02 6.32E+02 8.13E+02 7.32E+02 1.76E+03 4.82E+01 1.17E+04 1.76E+03 

G-CMA-ES 9.59E+03 8.60E+03 1.06E+04 9.50E+03 2.05E+03 1.92E+03 2.17E+03 2.06E+03 2.44E+06 3.48E+05 6.00E+06 2.50E+06 

EvoPR 3.94E+02 2.11E+02 8.01E+02 3.68E+02 3.28E+01 1.33E+01 1.72E+02 2.62E+01 5.00E+01 3.03E+01 8.30E+01 4.71E+01 

STS 1.79E+03 1.25E+03 4.13E+03 1.54E+03 2.36E+02 1.77E+02 3.83E+02 2.37E+02 1.29E+01 1.06E+01 1.49E+01 1.26E+01 

10
00

 

DE 2.36E+02 2.34E+02 2.51E+02 2.35E+02 2.37E-03 2.03E-03 3.23E-03 2.37E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CHC 2.04E7 1.91E+03 3.15E8 2.04E7 1.72E+03 1.59E+03 2.02E+03 1.72E+03 4.20E+03 1.19E+02 1.73E+04 4.20E+03 

G-CMA-ES 
            EvoPR 6.75E+02 4.76E+02 9.41E+02 7.86E+02 1.95E+02 1.61E+02 3.16E+02 1.75E+02 2.03E+02 1.53E+02 2.81E+02 1.74E+02 

STS 3.43E+03 2.97E+03 4.54E+03 3.43E+03 5.57E+02 4.26E+02 7.11E+02 4.36E+02 2.62E+01 2.27E+01 3.18E+01 2.63E+01 
 

Table 16. Results for functions F7*-F19* 

 


	The third preliminary experiment tests the effect of the path relinking approaches presented in Section 2.3.  Specifically, we compare the straight linking and the orthogonal linking, each one with the parameter 𝑘∈{2, 3, 4} in the algorithm outlined ...
	In our last preliminary experiment we compare the path relinking method (outlined in Figure 2) with the evolutionary path relinking method (outlined in Figure 6).  In the path relinking method, the RefSet size, 𝑏, is set to 10; while in the evolution...

