
 1

Pseudo-Cut Strategies for Global Optimization

Fred Glovera

Leon Lasdonb

John Plummerc

Abraham Duarted

Rafael Martie

Manuel Lagunaf

Cesar Regog

Abstract

Motivated by the successful use of a pseudo-cut strategy within the setting of constrained
nonlinear and nonconvex optimization in Lasdon, et al. (2010), we propose a framework
for general pseudo-cut strategies in global optimization that provides a broader and more
comprehensive range of methods. The fundamental idea is to introduce linear cutting
planes that provide temporary, possibly invalid, restrictions on the space of feasible
solutions, as proposed in the setting of the tabu search metaheuristic in Glover (1989), in
order to guide a solution process toward a global optimum, where the cutting planes can
be discarded and replaced by others as the process continues. These strategies can be
used separately or in combination, and can also be used to supplement other approaches
to nonlinear global optimization. Our strategies also provide mechanisms for generating
trial solutions that can be used with or without the temporary enforcement of the pseudo-
cuts.

keywords: global optimization, metaheuristics, pseudo-cuts, tabu search, adaptive
memory programming

a OptTek Systems, Inc., Boulder, CO 80302, USA (glover@opttek.com)
b Information, Risk, and Operations Management Department, The University of Texas at Austin, USA
(Leon.Lasdon@mccombs.utexas.edu)
c Dept of CIS/QMST, McCoy College of Business Administration, Texas State University, USA
(jcplummer@austin.rr.com)
d Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain
(Abraham.Duarte@urjc.es)
e Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
(Rafael.Marti@uv.es)
f Leeds School of Business, University of Colorado, Boulder, CO 80309, USA (Laguna@colorado.edu)
gSchool of Business Administration, University of Mississippi, University, MS 38677, USA

 2

1. Introduction

We consider the constrained global optimization problem (P) expressed in the following
general form:

(P) minimize 𝑓𝑓(𝑥𝑥)
 subject to:
 𝐺𝐺(𝑥𝑥) ≤ 𝑏𝑏
 𝑥𝑥 ∈ ℝ𝑛𝑛

where x is an n-dimensional vector of decision variables, G is an m-dimensional vector of
constraint functions, and without losing generality the vector b contains upper bounds for
these functions. The set S is defined by simple bounds on x, and we assume that it is closed
and bounded, i.e., that each component of x has a finite upper and lower bound.

We introduce strategies for solving (P) which are based on pseudo-cuts, consisting of
linear inequalities that are generated for the purpose of strategically excluding certain
points from being admissible as solutions to an optimization problem. The pseudo prefix
refers to the fact that these inequalities may not be valid in the sense of guaranteeing that
at least one globally optimal solution will be retained in the admissible set. Nevertheless,
a metaheuristic procedure that incorporates occasional invalid inequalities with a
provision for replacing them can yield an aggressive solution approach that can prove
valuable in certain settings. The use of pseudo-cuts to create temporary restrictions in a
search process was suggested in Glover (1989) in the context of a tabu search procedure.
In this approach the cuts are treated in the same way as other restrictions imposed by tabu
search, by drawing on a memory-based strategy to cull out certain cuts previously
introduced and drop them from the pool of active restrictions. The present approach is
particularly motivated by the work of Lasdon, et al. (2010), where a simplified instance
of such strategies was found to be effective for improving the solution of certain
constrained non-convex nonlinear continuous problems.

In the present paper we likewise assume the objective function of (P) is non-convex
(hence a local optimum may not be a global optimum), and allow for non-convexity in
the constraints. We also allow for the presence of integer restrictions on some of the
problem variables under the provision that such variables are treated by means of
constraints or objective function terms that permit them to be treated as if continuous
within the nonlinear setting. In the case of zero-one variables, for example, a concave
function such as xj(1 – xj) may be used that is 0 when xj = 0 or 1, and is positive
otherwise. See Bowman and Glover (1972) for additional examples.

We make recourse to an independent algorithm to generate trial solutions to be evaluated
as candidates for a global optimum, where as customary the best feasible candidate is
retained as the overall “winner”. The independent algorithm can consist of a directional
search (based on gradients or related evaluations) as in Lasdon et al. (2010), or may be a
“black box” algorithm as used in simulation optimization as in April et al. (2006) and
Better et al. (2007).

 3

2. Pseudo-Cut Form and Representation

Our pseudo-cut strategy is based on generating hyperplanes that are orthogonal to
selected rays (half-lines) originating at a point x′ and passing through a second point x″,
so that the hyperplane intersects the ray at a point xo determined by requiring that it lies
on the ray at a selected distance d from x′. The half-space that forms the pseudo-cut is
then produced by the associated inequality that excludes x′ from the admissible half-
space. We define the distance d by reference to the Euclidean (L2) norm, but other norms
can also be used.

To identify the pseudo-cut as a function of x′, x″ and d, we represent the ray that
originates at x′ and passes through x″ by

𝑥𝑥 = 𝑥𝑥′ + 𝜆𝜆(𝑥𝑥′′ − 𝑥𝑥′), 𝜆𝜆 ≥ 0 (1)

(Hence x′ and x″ lie on the ray at the points determined by λ = 0 and 1, respectively.)

A hyperplane orthogonal to this line may then be expressed as.

𝑎𝑎𝑥𝑥 = 𝑏𝑏 (2.1)

where

𝑎𝑎 = (𝑥𝑥′′ − 𝑥𝑥′) (2.2)
𝑏𝑏 = an arbitrary constant (2.3)

The specific hyperplane that contains a given point xo on the ray (1) results by choosing

𝑏𝑏 = 𝑎𝑎𝑥𝑥0 (2.4)

To identify the point xo that lies on the ray (1) at a distance d from x′, we seek a value λ =
λo that solves the equation

𝑑𝑑(𝑥𝑥′ , 𝑥𝑥′′) = ‖𝑥𝑥′ − 𝑥𝑥0‖ = 𝑑𝑑 (3.1)

where

𝑥𝑥0 = 𝑥𝑥′ + 𝜆𝜆0(𝑥𝑥′′ − 𝑥𝑥′) (3.2)

Consequently, by the use of (3.2) the desired value of λo

 is obtained by solving the
equation

���𝑥𝑥𝑗𝑗′ − 𝑥𝑥𝑗𝑗0�
2

𝑗𝑗

= 𝑑𝑑 (3.3)

 4

For the value of λo and the hyperplane thus determined, the associated half-space that
excludes x″ (and x′) is then given by

𝑎𝑎𝑥𝑥 ≥ 𝑎𝑎𝑥𝑥0 (4)

3. Pseudo-Cut Strategy

We make use of the pseudo-cut (4) within a 2-stage process. In the first stage x′
represents a point that is used to initiate a current search by the independent algorithm,
and x″ is the point obtained at the conclusion of this search phase (e.g., x″ may be a local
optimum). The distance d is then selected so that xo lies a specified distance beyond x″.

In the second stage we take x′ to be the point x″ identified in the first stage, and
determine x″ by applying the independent algorithm to the problem that results after
adding the pseudo-cut generated in the first stage. In this case d is chosen so that xo lies
between x′ and x″ at a selected distance from x′.

The value of d in both of these cases may be expressed as a multiple m of the distance
between the points currently denoted as x′ and x″, i.e.

𝑑𝑑 = 𝑚𝑚‖𝑥𝑥′′ − 𝑥𝑥′‖ (5)

The multiple m is selected to be greater than 1 in the first stage and less than 1 in the
second. Because the points x′ and x″ change their identities in the two stages, it is
convenient to refer to the points generated in these stages by designating them as P0, P1,
Q1, etc., as a basis for the following description. (We later identify additional variations
based on choosing d, x′ and x″ in different ways.) The pseudo-cut pool (or simply cut
pool) refers to all pseudo-cuts previously added that have not yet been discarded. The
pool begins empty.

Together with the statement of the Pseudo-Cut Generation Procedure, we include
parenthetical remarks, underlined and in italics, that identify specific accompanying
diagrams to illustrate some of the key steps of the procedure. A complete pseudo-code of
this procedure appears in the Appendix.

 5

Pseudo-Cut Generation Procedure1

Stage 1:
 (1.1) Let x′ = P0 denote a starting point for the independent algorithm, let x″ =

P1 denote the best point obtained during the current execution of the
algorithm, and let xo = Q1 be the point determined by (3) upon selecting
a value m > 1 in (5). (See Note 1.) If xo violates any pseudo-cut
contained in the cut pool, remove this cut from the pool.

 (1.2) Add the pseudo-cut (4) to the cut pool and apply the independent
algorithm starting from the point Q1. Let Q2 denote the best point of the
current execution. If Q2 = Q1, then increase the value of m to determine
a new Q1 by (3) that replaces the previous cut that was generated for a
smaller m value, and then repeat step (1.2) (without increasing an
iteration counter). Otherwise, if Q2 differs from Q1, proceed to step
(1.3). (See Note 2.)

 (1.3) If Q2 does not lie on the hyperplane ax = axo associated with the current
pseudo-cut (4) then redefine P0 = Q1, P1 = Q2, and return to step (1.1).
(Fig. 1(a) shows this case and Fig. 1(b) shows this case after returning to
step (1.1).) Otherwise, if Q2 lies on ax = axo, then proceed to Stage 2.
(See Note 3.) (Fig. 1(c) shows this case.)

Stage 2:
 (2.1) Remove the pseudo-cut (4) just added in step (1.2) and replace it with a

new one determined as follows. Let x′ = P1 and x″ = Q2, and determine
a point xo = R1 by (3) and (5), where m is chosen to satisfy1 > m > 0.
(See Note 4 for choosing m large enough but less than 1.) If xo violates
any pseudo-cut contained in the cut pool, remove this cut from the pool.

 (2.2) Add the new pseudo-cut (4) to the cut pool and apply the independent
algorithm starting from the point R1. Let R2 denote the best point of the
current execution. (a) If R2 = R1, then redefine P0 = Q1, P1 = Q2.
Otherwise, (b) if R2 ≠ R1 (Diagram 2.1 shows this case), then whether
or not R2 lies on the cut hyperplane, redefine P0 = P1 and P1 = R2. In
either case (a) or (b), return to step (1.1) of Stage 1. (See Note 5.)
(Diagram 2.1.1 shows this case, inherited from (b), while Fig. 1(f)
shows the case inherited from (a). Both of these two diagrams also show
the new P0, P1 and Q1, and the new pseudo-cut produced at step (1.1).)

We observe that each time the method returns to step (1.1) in the Pseudo-Cut Generation
Procedure, whether from step (1.3) or step (2.2), the current designation of P0 and P1 is
compatible with the original designation, i.e., P0 always represents a point that has been
used to start the independent algorithm and P1 represents the resulting best solution
found on the current (most recent) execution of the algorithm.

1 A complete pseudo-code for this procedure appears in the Appendix.

 6

We also remark that when the method specifies that the independent algorithm should
start from Q1 in step (1.2) or from R1 in step (2.2), it may be preferable to start the
method from a point slightly beyond this intersection with the current pseudo-cut
hyperplane, to avoid numerical difficulties that sometimes arise in certain nonlinear
methods if starting solutions are selected too close to the boundaries of the feasible
region.

Illustrative Diagrams

The diagrams that illustrate several main components of the procedure are as follows.

Fig. 1(a) Fig. 1(b)

 Fig. 1(c) Fig. 1(d)

P0

x’

Stage 1
(Q2 not on hyperplane)

P1

x’’

Q1

x0

Q2

New Stage 1
(start over)

P1 (new)
x’’
Q2 (old)

P0 (new)
x’
Q1 (old)

Q1 (new)
x0

Stage 1
(Q2 on hyperplane)

P0

x‘

P1

x’’

Q1

x0

Q2

Stage 2
(Q2 on Stage 1 hyperplane, R2 ≠ R1)

P0

P1

x‘

Q1

Q2

x’’

R2 R1

x0

Note, Stage 1
hyperplane is
dropped

(R2 may or may not
be on new hyperplane)

 7

 Fig. 1(e) Fig. 1(f)

A Rule for Dropping Pseudo-Cuts: We allow for pseudo-cuts to be dropped (removed
from the cut pool) by a rule that goes beyond the simple provision for dropping cuts
already specified in the algorithm. We consider the pseudo-cuts to have the same
character as tabu restrictions that are monitored and updated in the short term memory of
tabu search. We propose the use of two tabu tenures t1 and t2 for using such memory,
where t1 is relatively small (e.g., 1 ≤ t1 ≤ 5) and t2 is selected to be larger (e.g., 7 ≤ t2 ≤
20). (The indicated ranges are for illustrative purposes only.) Each pseudo-cut not
dropped by the instructions stipulated in the algorithm will be retained for t1 iterations
(executions of step (1.1)) after the cut is created, and then dropped after this number of
iterations whenever the cut becomes non-binding (the current solution x" produced by the
independent algorithm does not lie on the cut hyperplane). However, on any iteration
when no cut is dropped (either directly by the algorithm or by this rule), a second rule is
applied by considering the set of all cuts that have been retained for at least t2 iterations.
If this set is non-empty, we drop oldest cut from it (the one that has been retained for the
greatest number of iterations).

The following additional observations are relevant.

Note 1. The values chosen for m are a key element of the cut generation strategy in its
present variation, and will depend on such things as the sizes of basins of attraction in
the class of problem considered. Within step (1.1), m may be chosen to be a selected
default fraction greater than 1, but bounded from below by a value that assures xo will lie
a certain minimum distance beyond x".

Note 2. To avoid numerical problems, it is appropriate to require that Q2 differ from Q1
by a specified amount in step (1.2) in order to be considered “not equal” to Q1. Also, the
increase in the value of m in step (1.2) can be chosen either as a default percentage
increase or as an amount sufficient to assure that d grows by a specified value
independent of this percentage. This value of m drops back to its original value whenever
the method re-visits step (1.1), but if a succession of increases in step (1.2) causes the
distance separating Q1 from P1 to exceed a specified threshold (anticipated to render all
feasible solutions for the original problem inadmissible relative to the pseudo-cut (4) at
step (1.2)), then the procedure may be terminated or re-started from scratch from a new

New Stage 1
(start over)

P0 (new)
x‘
P1 (old)

Q1 (new)
x0

R2 = P1 (new)
x’’

Option from Note 5,
drop this hyperplane Option from Note 5,

drop this hyperplane

Stage 2
(followed by new Stage 1, R2 = R1)

P0 (new)
x’
Q1 (old)

Q1 (new)
x0

P1 (new)
x’’

Q2 (old)

R2 = R1

 8

initial starting solution x′ = P0 produced by a multi-start procedure, e.g. as described in
Ugray, et. al (2009).

Note 3. In step (3.3) we require the point Q2 to lie a certain minimum distance from the
hyperplane ax = axo in order to be considered as not lying on the hyperplane.

Note 4. The value of m in step (2.1) is assumed to be chosen to prevent the point Q1 from
satisfying the pseudo-cut (4) produced in step (2.2). It suffices to choose m so that the
distance of R1 from P1 is as least as great as the distance of Q1 from P1. (If this distance
is the same, then R1 and Q1 will lie on a common hyper-sphere whose center is P1, and
the pseudo-cut (4) of (2.2) is produced by a tangent to this hyper-sphere.)

Note 5. An interesting possible variation in Step (2.2) that reduces the number of pseudo-
cuts maintained, and hence constrains the search space less restrictively, is to drop the
latest pseudo-cut (4) (that led to determining R2) before returning to (1.1) to generate the
new pseudo-cut. (The cut thus dropped is not immediately relevant to the next step of the
search in any event.) Another variation is to make sure that d is large enough to render
the most recent Q2 infeasible relative to the pseudo-cut. This variation will avoid cases
where sometimes Q2 may be revisited as a local optimum. (The procedure may be
monitored to see if multiple visits to the same Q2 point occur, as a basis for deciding if
the indicated variation is relevant.)

Finally, we observe that a simplified version of the Pseudo-Cut Generation Procedure can
be applied that consists solely of Stage 1, with the stipulation in step (1.3) that the
pseudo-cut (4) is generated and the method returns to (1.1) in all cases.

4. Determination of the distance d by exploiting quick

objective function and directional evaluations.

In a context where a computational method exists that can relatively quickly calculate the
objective function value for the point xo, and in addition can fairly quickly calculate
whether a given direction is an improving direction, the value of d that determines xo can
be determined implicitly rather than explicitly.

This is done by generating a number of successively larger candidate values for the scalar
weight λo, starting from λo > 1 for Step (1.1) of the Pseudo-Cut Generation Procedure,
and starting from λo > 0 otherwise. For each candidate value of λo, we then check whether
one or more of the following conditions hold for the associated xo vector. (It is assumed
that terms like feasible improving direction and stronger improving direction are
understood and need not be defined.)

Condition 1(a). There exists a feasible improving direction from xo that lies in the
region satisfying the pseudo-cut (4).

 9

Condition 1(b). The direction from xo on the ray for λ > λo is a feasible improving
direction.

Condition 2(a). The improving direction from Condition 1 (for a given choice of
1(a) or 1(b)) is stronger than any feasible improving direction that does not lie in
the region satisfying the pseudo-cut (4).

Condition 2(b). The improving direction from Condition 1 (for a given choice of
1(a) or 1(b)) is stronger than the direction from xo on the ray for λ < λo
(automatically satisfied the latter is not a feasible improving direction).

The conditions 1(b) and 2(b) are more restrictive than 1(a) and 2(a), respectively, but are
easier to check. Condition 2 is evidently more restrictive than Condition 1.

For a selected condition, we then choose the first (smallest) candidate λo value (and
associated xo) for which the condition is satisfied. This choice then indirectly determines
the distance d.

5. Choosing the points x′ and x″

We have previously indicated that x′ is customarily chosen as a point that initiates the
search of the independent algorithm, and x″ denotes the best point determined on the
current pass of the algorithm, as where x″ may denote a local optimum. We now consider
other choices that can be preferable under various circumstances.

It is possible, for example, that an effort to determine a point xo according to Condition 1
or 2 of the preceding section will not be able to identify a feasible point that qualifies. In
this case, it may be preferable to reverse the roles of x′ and x″ to seek a qualifying xo on
the ray leading in the opposite direction. Moreover, it may be worthwhile to examine the
option of reversing the roles of x′ and x″ in any event, where the ultimate choice of which
point qualifies as x′ will depend on the evaluation of the point xo that is generated for
each case.

Still more generally, the collection of candidate points from whose members a particular
pair of points x′ and x″ will be chosen can be generated by a variety of considerations,
including those used in composing a Reference Set in Scatter Search (see, for example,
Glover, Laguna and Marti (2000) and Marti, Glover and Laguna (2006)). Likewise the
criteria for selecting x′ and x″ from such a collection can also incorporate criteria from
Scatter Search. Here, however, we suggest three alternative criteria.

Criterion 1. Let x′(i) and x″(i), i = 1,…,i*, identify the points used to determine
previous pseudo-cuts (i.e., those successfully generated and introduced at some
point during the search). Let x*(i) identify the point on the ray from x′(i) through

 10

x″(i) that lies a unit distance from x′(i). Finally for a candidate pair of points x′
and x″, let x* denote the point on the ray from x′ through x″ that lies a unit
distance from x′. From among the current pairs x′ and x″, we select the one such
that x* maximizes the minimum distance from the points x*(i), i = 1,…,i*.

Criterion 2. Choose the candidate pair x′ and x″ by the same rule used in Criterion
1, except that x*(i) is replaced by the point xo(i) (the “xo point” previously
determined from x′(i) and x″(i)), and x* is likewise replaced by the point xo

determined from the currently considered x′ and x″.

Criterion 2 allows for the possibility that x′ and x″ may lie on the same ray as generated
by some pair x′(i) and x″(i), provided the point xo lies sufficiently distant from the point
xo(i). This suggests the following additional criterion.

Criterion 3. Employ Criterion 1 unless the minimum distance of the selected point
x* from the points x*(i), i = 1,…,i* falls below a specified threshold, in which
case employ Criterion 2.

A variant on Criterion 3 is to employ Criterion 1 except where the minimum distance
determined from Criterion 2 exceeds a certain lower bound, where this latter may be
expressed in terms of the minimum distance obtained for Criterion 1.

6. Additional Considerations for Choosing xo

To this point we have assumed that xo will lie beyond x″ on the ray leading from x′
through x″, on each execution of Step (1.1) of the Pseudo-Cut Generation Procedure.
However, in some case, as in the customary application of Scatter Search, it may be
preferable to select a point xo that lies between x′ and x″. We add this possibility as
follows.

First, we stipulate that the candidate values for λo lie in the interval 0 < λo < 1. Second,
we apply Condition 1 or Condition 2 (in either the (a) or (b) form)) to determine a value
λo

min which is the least λo value that satisfies the condition (assuming such a value exists
in the interval in the interval 0 < λo < 1). Next, we examine the candidate λo values in the
reverse direction (from larger to smaller) in the interval λo

min < λo < 1, and choose one of
the following Reverse Conditions as a basis for choosing a particular candidate value.

Reverse Condition 1(a). There exists a feasible improving direction from xo that
lies in the region not satisfying the pseudo-cut (4).

Reverse Condition 1(b). The direction from xo on the ray for λ < λo is a feasible
improving direction.

 11

Reverse Condition 2(a). The improving direction from Reverse Condition 1 (for a
given choice of 1(a) or 1(b)) is stronger than any feasible improving direction that
lie sin the region satisfying the pseudo-cut (4).

Reverse Condition 2(b). The improving direction from Reverse Condition 1 (for a
given choice of 1(a) or 1(b)) is stronger than the direction from xo on the ray for λ

> λo (automatically satisfied if the latter is not a feasible improving direction).

Finally, we identify the first (largest) λo candidate value satisfying the selected Reverse
Condition, denoted by λo

max (provided such a value exists in the indicated interval), and
choose λo = (λo

min + λo
max)/2. This final λo value is the one used to find a point strictly

between between x′ and x″ from which to launch a new search. This search can
optionally be constrained by adding a pseudo-cut (4) for xo determined from λo = λo

min (or
from a “reverse” pseudo-cut determined from λo = λo

max).

From among the various candidate values xo identified for launching a new search as
above, and also from among those that may be identified from applying Condition 1 or 2
for λo > 1 (allowing x′ and x″ to be interchanged), one may ultimately choose the option
such that xo receives a highest evaluation. This evaluation can be in terms of objective
function value (possibly considering directional improvement), or in terms of maximizing
the minimum distance of xo from points in a Reference Set. By such a use of a Reference
Set, the approach can foster diversity in conjunction with the search for improvement. In
fact, the indicated strategies can be used to create rules for a version of Scatter Search
that differs from more customary forms of the method. It should be noted that these
strategies for choosing xo vectors can be used without bothering to introduce pseudo-cuts.
For example, such a strategy can be employed for some initial duration of search to
produce xo trial solutions, and then the pseudo-cuts can subsequently be invoked to
impose greater restrictiveness on the search process.

7. Conclusion

The proposed collection of pseudo-cut strategies for global optimization expands the
options previously available for guiding solution processes for non-convex nonlinear
optimization algorithms. These strategies can be used to supplement other approaches for
solving such problems, or can be used by themselves. The mechanisms proposed for
generating trial solutions can similarly be used in a variety of ways, and may even be
used independently of the pseudo-cuts themselves. The demonstration that an
exceedingly simplified instance of a pseudo-cut strategy succeeded in enhancing a non-
convex optimization method in Lasdon, et al. (2010) suggests the potential value of more
advanced pseudo-cut strategies as described here, and of empirical studies for
determining which combinations of these strategies will prove most effective in practice.
The use of pseudo-cuts reinforces the theme of joining mathematically based exact
methods for convex problems with special strategies capable of modifying these methods
to enable them to solve non-convex problems. In this guise, the proposals of this paper
offer a chance to create a wide range of new hybrid algorithms that marry exact and
metaheuristic procedures.

 12

References

April, J., M. Better, F. Glover, J. Kelly and M. Laguna (2006) “Enhancing Business
Process Management with Simulation-Optimization,” Proceedings of the 2006
Winter Simulations Conference, L.F. Perrone, F.P. Wieland, J.Liu, B.G. Lawson,
D.M. Nicol, and R.M. Fujimoto, eds.

Better, M., F. Glover and M. Laguna (2007) "Advances in Analytics: Integrating
Dynamic Data Mining with Simulation Optimization," IBM Journal of Research
and Development, Vol. 51, No. 3/4, pp. 477-487.

Bowman, V.J. and F. Glover (1972) “A Note on Zero-One Integer and Concave
Programming,” Operations Research, Vol. 20, No. 1, pp. 182-183.

Glover, F. (1989) "Tabu Search - Part I," ORSA Journal on Computing, Vol. 1, No. 3, pp.
190-206.

Glover, F., M. Laguna and R. Marti (2000) "Fundamentals of Scatter Search and Path
Relinking," Control and Cybernetics, Vol. 29, No. 3, pp. 653-684.

Lasdon, L., A. Duarte, F. Glover, M. Laguna and R. Marti (2010) “Adaptive Memory
Programming for Constrained Global Optimization,” Computers and Operations
Research 37, pp. 1500-1509.

Martí, R., F. Glover and M. Laguna (2006) “Principles of Scatter Search,” European
Journal of Operational Research 169, pp. 359-372.

Ugray, Z., L. Lasdon, J. Plummer, and M. Bussieck (2009), “Dynamic filters and
Randomized Drivers for the Multi-start Global Optimization Algorithm MSNLP,”
Optimization Methods and Software 24, pp. 635-656.

 13

Appendix – Pseudo-code for the Pseudo-Cut Method (Initial Simplified Version)

Initialization
1. Let TabuCutList be the memory list of pseudo-cuts with TabuTenure size
2. Let m = 0.1, MaxIter = 5 and GlobalIter= 20

Maxpert = 5 and Iter1 = 0. % Maxpert is a limit on pert
% The preceding values in 2. are suggestive only

3. Let P0 be a random point and Best_f = f(P0)

While (Iter1 < GlobalIter)
4. TabuCutList = ∅
5. improved = FALSE
6. pert = m and Iter2 = 0
7. P1 = LS(P0, f(x),G,S)
If (f(P1) < Best_f)

8. Best_f = f(P1)

While (Iter2 < MaxIter and ||P1 – P0|| > minDist)

//Begin Stage 1
9. Q1 = P0 + (1 + pert)*(P1 – P0)
10. Remove from TabuCutList the cuts violated at Q1. If no cuts are removed and if

there are any cuts retained more than t2 iterations, drop the oldest. (Disregard this
last instruction if 9 and 10 are reached from 16, below.)

11. Add to TabuCutList the cut pcut(Q1): (P1 – P0) x ≥ (P1 – P0) Q1
12. Q2 = LS(Q1, f(x),G∪ TabuCutList, S)
If (f(Q2) < Best_f)

13. improved = TRUE
14. Best_f = f(Q2); P0 = Q1; P1 = Q2; pert = m
15. go to 22

 If (||Q1 – Q2|| < minDist)
16. Drop the cut just added in 11, set pert = pert + m. If pert > Maxpert, go to 23.

Otherwise, return to 9.
 Else

17. pert = m
If (Q2 does not satisfy pcut(Q1) with equality (and ||Q2 – Q1|| > minDist))

18. P0 = Q1; P1 = Q2; Proceed to 22 (increase Iter2 and repeat Stage 1)
//Begin Stage 2
(Here Q2 satisfies pcut(Q1) with equality and ||Q2 – Q1|| > minDist)

19. Drop the cut just added in 11 and record P01 = P1 and Q01 = Q1.
20. P0 = P1; P1 = Q2; Q1 = P0 + (1 - pert)*(P1 - P0)
21. Execute instructions 10 – 15, but without dropping any cuts in 10 other than

those violated at Q1.
 If (||Q1 – Q2|| < minDist)
 21.1. P0 = Q01 (P1 is unchanged);

 Else (||Q1 – Q2|| ≥ minDist)
 21.2. P0 = P01; P1 = Q2

22. Iter2 = Iter2 + 1 (Return to 9 if Iter2 < MaxIter.)
23. Generate a new point P0 by a diversification step, Iter1=Iter1+1 (and return to 4 if

Iter1 < GlobalIter)

