
 
 

Mathematical Models and Solving Methods for  
Diversity and Equity Optimization 
 
RAFAEL MARTÍ 
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain 
Rafael.Marti@uv.es 
 
FRANCISCO PARREÑO 
Escuela Superior de Ingeniería Informática, Universidad de Castilla La Mancha, Spain 
Francisco.Parreno@uclm.es 
 
JORGE MORTES 
Département Automatique, Productique et Informatique, IMT Atlantique, France 
jorge.mortes-alcaraz@imt-atlantique.fr 
 
 
 
 

 
ABSTRACT 

Discrete diversity optimization basically consists in selecting a subset of elements of a given set in such 
a way that the sum of their pairwise distances is maximized. Equity, on the other hand, refers to 
minimize the difference between the maximum and the minimum of the distances in the subset of 
selected elements to balance their diversity. Both problems have been studied in the combinatorial 
optimization literature, but recently major drawbacks in their classic mathematical formulations have 
been identified. We propose new mathematical models to overcome these limitations, and heuristic 
methods to solve large size instances of them.  In particular, we propose a matheuristic based on the 
CMSA methodology for diversity, and a GRASP heuristic for equity. Our extensive experimentation 
compares the original models with the new proposals by analyzing the solutions of our heuristics and 
those of the previous approaches.  We also evaluate their quality with respect to the optimal solutions, 
size permitting. Statistical analysis allows us to draw significant conclusions. 
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1. Introduction 

Maximizing diversity by means of combinatorial optimization models has gained prominence in 
Operations Research (OR) over the last two decades, and constitutes nowadays a well-established 
research area.  Continuous diversity models were very popular in the mathematical programming 
literature in the sixties and seventies, and in the late eighties they were adapted to discrete models. 
Terms like diversity, dispersion, and equity are nowadays widely applied in discrete optimization, 
especially in areas related to logistics and planning.  

Kuby (1988) proposed the first integer models to state in mathematical terms the rather ambiguous 
concept of diversity. To formulate it, the author considered a base graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the 
set of 𝑛𝑛 nodes or elements, and 𝐸𝐸 is the set of edges, and 𝑑𝑑𝑖𝑖𝑖𝑖  is the inter-element distance between 
any two elements 𝑖𝑖 and 𝑗𝑗. The maximum diversity problem (MaxSum model) consists in selecting a 
subset of 𝑚𝑚 elements 𝑀𝑀 ⊆ 𝑉𝑉, in such a way that their sum of distances is maximized. In mathematical 
terms, it can be easily formulated with binary variables, 𝑥𝑥𝑖𝑖 ∈ {0,1}, indicating whether element 𝑖𝑖 is 
selected or not, as follows: 

(MaxSum model) Maximize   ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖<𝑖𝑖  

 subject to ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝑚𝑚 

          𝑥𝑥𝑖𝑖 ∈ {0,1}          𝑖𝑖 = 1, … ,𝑛𝑛   

Kuby (1988) also introduced the 𝑝𝑝-dispersion problem (MaxMin model), in which instead of 
maximizing the sum of distances among the selected elements, it maximizes the minimum distance 
between the selected elements.  

Since these early proposals, many researchers have developed models and methods, mainly heuristics 
and metaheuristics (Glover et al., 2021), to provide high-quality solutions to these two problems.  
From Erkut and Neuman (1989) to Martínez-Gavara et al. (2021), we can find more than 50 papers 
published in top ranked journals proposing solving methods for these problems and their variants, 
where the MaxSum model is the most widely applied. 

A very interesting alternative to diversity was introduced by Prokopyev et al. (2009) under the term 
equity, which incorporates the concept of fairness among candidates.  The associated models appear 
not only in group selection, but also in facility location or sub-graph identification, in which one may 
address fair diversification among members of a network.  The Minimum Differential Dispersion 
model, MinDiff, minimizes extreme equity values of the selected elements, namely the maximum and 
the minimum sum of distances for each selected element. It can be formulated as: 

(MinDiff model) Minimize  max
𝑖𝑖∈𝑀𝑀

∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖:𝑖𝑖≠𝑖𝑖 − min
𝑖𝑖∈𝑀𝑀

∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖:𝑖𝑖≠𝑖𝑖  

 subject to ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝑚𝑚 

𝑥𝑥𝑖𝑖 ∈ {0,1}                 𝑖𝑖 = 1, … ,𝑛𝑛   
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Parreño et al. (2021) recently identified an important issue in the MaxSum and the MinDiff models 
when analyzing their solutions. In particular, although the optimal solution of the MaxSum has an 
overall large diversity value, as measured by its objective function, some of its selected elements might 
be relatively close, which is not in line with the objective of maximizing diversity.  Figure 1 shows the 
optimal solution of an Euclidean instance with with 𝑛𝑛 = 50 elements from which we select 𝑚𝑚 = 5 to 
maximize their inter-distances sum. 

 

Figure 1. Optimal MaxSum solution of an instance with 𝑛𝑛 = 50 and 𝑚𝑚 = 10. 

Figure 1 shows the 50 points in the set (depicted with small black circles), and the 5 points selected in 
the optimal solution of the MaxSum model (depicted with larger red circles). Parreño et al. (2021) 
identified two important characteristics of the geometry in the MaxSum solutions represented in their 
study: the selected points are located close to the border of the diagram avoiding the central region, 
and some of the selected points are very close to each other (as the two selected points in the left-
bottom part of Figure 1). This second characteristic can be considered an issue, since the objective of 
the model is to achieve diversity, and there is no justification to select close points. The authors also 
pointed out that a similar situation, if not even worse, can be found in the MinDiff model. Figure 2 
shows the optimal MinDiff solution of an instance with 𝑛𝑛 = 25 elements from which we have to select 
𝑚𝑚 = 3 of them to minimize the difference of their inter-distances. 

 

Figure 2. Optimal MinDiff solution of an instance with 𝑛𝑛 = 25 and 𝑚𝑚 = 3. 
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The location of the three selected points in Figure 2 clearly illustrates the drawback of the MinDiff 
model.  These points are located in the upper part of the diagram, and they are relatively close to each 
other. This objective function seeks for inter-distance equality among the selected points, which is the 
desired objective in terms of equity; however, it ignores how large or small these distances are. 
Considering that the equity model belongs to the family of diversity problems, there is no justification 
to select points very close to each other, when we could select points with similar inter-distances, but 
at a larger distance from each other. We can find applications in facility location theory in which, 
together with the equal-distance distribution, we need that the selected points are relatively distant 
to cover a territory (Teitz, 1968). Consider for example the case in which the facilities provide a service, 
and they have to be scattered over a territory, and we have to avoid their concentration in a specific 
zone. At the same time, they may need to be within a specific distance, and none of them can be very 
far from the rest. This type of situation may occur in emergency health care in which portable clinics 
are installed to provide service and at the same time they depend among them to share supplies. In 
these location models, the MinDiff properly reflects the idea of being at a similar distance but the 
standard model fails on scatter them over the territory. 

The limitations found with the two models described above, have been also identified in the recent 
review by Martí et al. (2022) in which the research on diversity problems is classified in three periods: 
the early period (1980-2000), the expansion period (2000 -2010), and the development period (2010 
– now). As a matter of fact, in the first paper on discrete diversity models, Kuby (1988) already 
mentioned the potential limitations of the MaxMin model due to its multiple optimal solutions and 
pointed out a possible solution combining it with the MaxSum model. In line with that, Porumbel et 
al. (2011) proposed a heuristic that considers both objectives simultaneously. We view our proposal 
to extend the classical models on diversity and equity, as built from these previous studies. 

In this paper we propose extended formulations for the MaxSum and MinDiff models to optimize their 
respective objective functions while avoiding the selection of very close elements. In this way, we 
overcome their limitations and offer robust models to achieve diversity and equity respectively. We 
test these models with CPLEX on the instances in the public domain benchmark library MDPLIB. As 
expected, in some cases CPLEX cannot solve large size instances in practical CPU times, so we propose 
heuristic methods to target them. Specifically, we consider a matheuristic for the Extended MaxSum, 
based on the CMSA methodology (Construct, Merge, Solve and Adapt by Blum et al. 2016), and a 
GRASP (Feo and Resende, 1989) for the Extended MinDiff. 

2. Extended mathematical formulations 

In our diversity and equity models, we want to avoid the selection of close points. This can be easily 
achieved by adding a threshold constraint, in which we do not allow the selection of two points if its 
inter-distance is lower than a value. In mathematical terms, this can be easily included in the models 
above based on binary variables, with the constraints: 

 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 𝑑𝑑∗𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖       𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛 

The problem is how to set the threshold value 𝑑𝑑∗. It is clear that the larger the value the better the 
solution; however, if we select it too large, we may obtain an unfeasible model. The best 𝑑𝑑∗ is given 
by the solution of the MaxMin model, since it is the maximum value with feasible solutions. This 
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model, also known as 𝑝𝑝-dispersion problem (Kuby, 1988), can be trivially formulated by simply 
considering its objective function over the set of selected elements 𝑀𝑀: 

 

Maximize 𝑑𝑑∗ = min
𝑖𝑖,𝑖𝑖∈𝑀𝑀

𝑑𝑑𝑖𝑖𝑖𝑖  

subject to  𝑀𝑀 ⊆ 𝑉𝑉,  |𝑀𝑀| = 𝑚𝑚. 

The MaxMin diversity problem has been exhaustively studied, and there are many efficient models 
and heuristic algorithms to solve it (see for example Resende et al., 2010). We build our extended 
model on the MaxSum problem by merging the standard models on the MaxSum and MaxMin as 
follows: 

(Extended MaxSum) Maximize ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖<𝑖𝑖  

subject to ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝑚𝑚 

 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 𝑑𝑑∗𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖       𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛 

𝑑𝑑∗ = Max  min
𝑖𝑖,𝑖𝑖∈𝑀𝑀′

𝑑𝑑𝑖𝑖𝑖𝑖  

subject to 𝑀𝑀′ ⊆ 𝑉𝑉,  |𝑀𝑀′| = 𝑚𝑚. 

𝑥𝑥𝑖𝑖 ∈ {0,1}    𝑖𝑖 = 1, … ,𝑛𝑛   

In the Extended MaxSum model, the set 𝑀𝑀′ represents the solution of the problem MaxMin problem 
(that we call the lower level problem), and 𝑀𝑀 represents the solution of the constrained MaxSum 
defined by the 𝑥𝑥-variables (upper level problem). Note that if we consider the Extended Model as a 
bi-level model, it is straightforward to solve, since the variables of the two problems are separated. 
We only have to solve the lower level model, MaxMin in this case, and then, with its optimal objective 
function value 𝑑𝑑∗, solve the upper level model. However, considering that the two problems are NP-
hard, the extended problem is indeed difficult to solve. 

If we analyze the extended model from the perspective of the set of solutions, we can see that we are 
solving the upper level problem, the MaxSum, in the restricted feasible region given by the optimal 
solutions of the MaxMin problem. As a matter of fact, a straightforward (inefficient) way to obtain the 
optimal solution of the extended problem, would be to enumerate all the feasible solutions (selections 
of 𝑚𝑚 elements) and keep all the optimal solutions of the MaxMin. Then, evaluate them in terms of the 
MaxSum objective function, and return the one with maximum value. This is clearly impracticable in 
medium or large size instances due to the large number of solutions, but it helps to understand the 
nature of the model. For example, we may conclude that if the MaxMin model has many alternate 
optimal solution, it makes sense to search the best of them in terms of a secondary objective, which 
helps to break ties. This will obviously depend on each particular instance, but we have empirically 
found that, in general, the MaxMin model has many alternate optimal solutions and it makes sense to 
consider a secondary objective. 
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Another important aspect of the extended model is to compute how much it deteriorates the upper 
objective function with respect to the original (upper) model. If we solve the MaxSum over a restricted 
set of solutions, it is expected that the optimal value may be worse than the optimal value of the 
standard MaxSum model in which the feasible region is significantly larger. However, we have to keep 
in mind that both models are highly correlated, and when we restrict the search of the MaxSum 
solution to the MaxMin optimal solutions, we are actually having very good candidate solutions, and 
therefore we do not expect a significant deterioration in the MaxSum final value. However, the 
Extended MinDiff problem exhibits a very different situation. 

Sandoya et al. (2018) computed the correlation of the best values of four diversity and equity models 
(MaxSum, MaxMin, MinDiff, and MaxMinSum) over 30 instances with 𝑛𝑛 = 20 elements from which 
𝑚𝑚 = 5 have to be selected. The correlation obtained in their study between the MaxSum and MaxMin 
is 0.78, while the correlation between the MinDiff and the MaxMin is 0.03. Our hypothesis is then that 
in the Extended MaxSum, we do not expect an important deterioration of the objective compared 
with the original MaxSum, but in the Extended MinDiff it is likely to occur. From a theoretical 
perspective, we can model the Extended MinDiff in similar terms as we modeled above the Extended 
MaxSum:  

(Extended MinDiff) Minimize  max
𝑖𝑖∈𝑀𝑀

∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖:𝑖𝑖≠𝑖𝑖 −min
𝑖𝑖∈𝑀𝑀

∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖:𝑖𝑖≠𝑖𝑖  

subject to ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝑚𝑚 

 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 𝑑𝑑∗𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖       𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛 

𝑑𝑑∗ = Max  min
𝑖𝑖,𝑖𝑖∈𝑀𝑀′

𝑑𝑑𝑖𝑖𝑖𝑖  

subject to 𝑀𝑀′ ⊆ 𝑉𝑉,  |𝑀𝑀′| = 𝑚𝑚. 

𝑥𝑥𝑖𝑖 ∈ {0,1}    𝑖𝑖 = 1, … ,𝑛𝑛   

In our computational testing, we will see that the extended model provides poor solutions due to the 
low correlation between the objectives (MinDiff and MaxMin) mentioned above. We will therefore 
propose a method to relax the lower level problem (MaxMin) in search for a compromise between 
both objectives. The Extended MaxSum is, on the other hand, simpler to analyze, since we can directly 
consider it as shown in the formulation. We will solve both extended models with CPLEX and compare 
them with their original counterparts respectively. 

3. Previous methods 

We have identified a previous effort in line with the Extended MaxSum, so we will describe it in this 
section. On the other hand, there is no previous method for the Extended MinDiif, and therefore we 
will use a competitive MinDiff solver as a reference in our comparisons. 

3.1 The MaxSum model 

Porumbel et al. (2011) proposed a fast tabu search (Glover et al., 2021) for a model that combines the 
MaxMin and the MaxSum problems, which can be considered a first approach to solve the Extended 
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MaxSum. In particular, the authors minimize the MaxMin objective function and consider the MaxSum 
as a secondary objective. The inclusion of this secondary objective is motivated by the fact that there 
may be a relative large number of solutions that qualify as optimal for the MaxMin, and it makes sense 
to choose the best one among them in terms of the MaxSum objective. This is exactly the point of 
departure of our research. Although not mentioned by these authors, and ignored by researchers in 
discrete diversity optimization, we can find this proposal in the very first paper published for these 
problems. In fact, Kuby (1988) not only introduced the MaxSum and the MaxMin as described above, 
but this author also introduced what he called a multi-criteria approach, which is the same problem 
solved by Porumbel et al., arguing that the MaxSum model is an appropriate way to choose among 
the many alternate optima of the MaxMin problem. 

The tabu search by Porumbel et al. (2011) has two phases. In the first one a greedy algorithm 
constructs an initial solution. At each iteration, it adds to the partial solution under construction the 
element with the largest contribution in terms of the MaxMin objective, and it breaks ties according 
to the MaxSum. The second phase is a short term tabu search based on Add and Drop moves. An 
interesting characteristic of this method is its implicit use of memory. Instead of the typical tabu list, 
the method employs a tabu rule in which it always drops from the solution its oldest point. Then, it 
adds to the solution the best element in a similar way than its greedy construction. In this way, the 
authors avoid the quadratic complexity that usually exhibit local search methods based on exchanges. 
Their empirical analysis shows that this simple tabu search performs better than previous approaches 
for the MaxMin model. 

An alternative way to approach this problem came from the exact domain. Sayyady and Fathi (2016) 
proposed an efficient method to solve the MaxMin to optimality. The authors consider the node 
packing problem, in which given a threshold value 𝑙𝑙, a graph 𝐺𝐺(𝑙𝑙) is defined with the set 𝑉𝑉 of 𝑛𝑛 nodes 
of graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), and the set of edges 𝐸𝐸(𝑙𝑙) = {(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸: 𝑑𝑑𝑖𝑖𝑖𝑖 < 𝑙𝑙}. The node packing problem 
consists in finding a maximum cardinality subset of nodes so that no two nodes in this subset are 
adjacent to each other.  In this way, an optimal solution of the node packing problem in 𝐺𝐺 provides a 
set of 𝑣𝑣(𝑙𝑙) points with minimum distance larger than or equal to 𝑙𝑙. Sayyady and Fathi proposed to 
solve a sequence of node packing problems for different values of 𝑙𝑙 until it obtains a set of 𝑣𝑣(𝑙𝑙) = 𝑚𝑚 
points (the optimal solution of the MaxMin model). In mathematical terms, the method iteratively 
solves the following problem: 

𝑣𝑣(𝑙𝑙)=Maximize ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  

subject to 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖 ≤ 1             ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸(𝑙𝑙) 

𝑥𝑥𝑖𝑖 ∈ {0,1}                𝑖𝑖 = 1, … ,𝑛𝑛   

The authors propose a systematic search in the interval 𝑙𝑙 ∈ [𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛,𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚], where 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 are 
the minimum and maximum values respectively among all the distances in the graph. They base the 
search on the property that if we have two 𝑙𝑙 −values, 𝑙𝑙1 and 𝑙𝑙2 such that 𝑙𝑙1 < 𝑙𝑙2, 𝑣𝑣(𝑙𝑙1) ≥ 𝑚𝑚 and 
𝑣𝑣(𝑙𝑙2) < 𝑚𝑚 then, the optimal value of the MaxMin problem 𝑧𝑧∗ verifies 𝑙𝑙1 ≤ 𝑧𝑧∗ < 𝑙𝑙2. The method 
performs a binary search over the ordered set of different distances in the graph. To that end, the 
minimum distance between consecutive values is computed to divide the search into 2𝑞𝑞 equal 
subintervals, performing at most 𝑞𝑞 steps (i.e., solving the node packing problem a maximum of 𝑞𝑞 



M a r t í ,  e t  a l .  | 8 
 

times). We will apply this method in CPLEX as a first step, to obtain the optimal solution of the MaxMin 
problem, to then solve the upper level problem in the extended model. 

To sum it up, we have identified two previous approaches that can be applied to solve the Extended 
MaxSum, the heuristic by Porumbel et al. (2011), and the exact method by Sayyady and Fathi (2016). 
In this latter case, we first obtain the MaxMin optimal solution value 𝑑𝑑∗, and then solve with CPLEX 
the MaxSum formulation with the additional constraint that excludes the pairs of elements with 
distance lower than 𝑑𝑑∗. Since this can be impractical for large size instances, we propose a 
matheuristic, CMSA, to efficiently solve medium and large instances. In our empirical testing we 
compare these approaches. 

3.2 The MinDiff model 

Duarte et al. (2015) proposed a heuristic algorithm to find good solutions for the MinDiff problem. 
The authors adapted a Greedy Randomized Adaptive Search Procedure (GRASP) in terms of this equity 
problem. GRASP (Feo and Resende, 1989) is a multi-start algorithm where each iteration consists in 
two steps: constructive method and improvement method. In this way, in the first step, the algorithm 
constructs a feasible solution using a greedy randomized procedure and, in the second step, it uses a 
local search to improve the constructed solution. We make below a brief description of the two 
constructive methods (C1 and C2), and the three local search methods (LS1, LS2, and LS3) proposed in 
Duarte et al. (2015). 

The first constructive method (C1) is based on the standard GRASP design. It first creates a candidate 
list (𝐶𝐶𝐶𝐶) with all the elements that could be added to the solution (𝑀𝑀). After that, it selects two 
elements at random from  𝐶𝐶𝐶𝐶 , and adds them to 𝑀𝑀. An iteration finishes by removing the elements 
from 𝐶𝐶𝐶𝐶. 

To compute the greedy evaluation function, we calculate for each element 𝑢𝑢 ∈ 𝐶𝐶𝐶𝐶, the change in the 
objective function that it may cause if added to the solution. To do that, we first compute, for each 
element 𝑣𝑣 in 𝑀𝑀, the sum of the distances to the rest of the elements in 𝑀𝑀, and we include in this 
computation the element 𝑢𝑢. In mathematical terms, 

𝑠𝑠(𝑣𝑣) =  � 𝑑𝑑𝑤𝑤𝑤𝑤
𝑤𝑤∈𝑀𝑀

+ 𝑑𝑑𝑢𝑢𝑤𝑤 . 

Then, we compute the maximum and minimum of these sum of distance (𝑠𝑠-values), 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 
respectively, and we include the sum of distances from 𝑢𝑢 to the elements in the solution. In other 
words, we compute the maximum and minimum of the sum of distances in the solution considering 
that 𝑢𝑢 is already part of the solution.  

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = max �� 𝑑𝑑𝑢𝑢𝑤𝑤
𝑤𝑤∈𝑀𝑀

, max
𝑤𝑤∈𝑀𝑀

𝑠𝑠(𝑣𝑣)�, 

and 

𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 = min �� 𝑑𝑑𝑢𝑢𝑤𝑤
𝑤𝑤∈𝑀𝑀

, min
𝑤𝑤∈𝑀𝑀

𝑠𝑠(𝑣𝑣)�. 
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Finally, the greedy function is computed as 𝑔𝑔(𝑢𝑢) = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛. 

As it is customary in GRASP, C1 creates the restricted candidates list (𝑅𝑅𝐶𝐶𝐶𝐶) as 

𝑅𝑅𝐶𝐶𝐶𝐶 = {𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶 | 𝑔𝑔(𝑣𝑣) ≤ 𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛼𝛼1 ⋅ (𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛)}, 

where  𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 =  max
𝑢𝑢∈𝐶𝐶𝐶𝐶

𝑔𝑔(𝑢𝑢), 𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛 =  min
𝑢𝑢∈𝐶𝐶𝐶𝐶

𝑔𝑔(𝑢𝑢), and 𝛼𝛼 ∈ [0,1]. This list contains all the elements in CL 

whose greedy function does not exceed an α-percentage of its best value.  Lastly, the method selects 
one element from 𝑅𝑅𝐶𝐶𝐶𝐶 at random, includes it into 𝑀𝑀 and removes it from 𝐶𝐶𝐶𝐶. 

The second constructive method (C2) is based on the strategy proposed in Resende and Werneck 
(2004). C2 creates the RCL by selecting 𝛼𝛼2|𝐶𝐶𝐶𝐶| elements at random, evaluates the greedy function on 
all these elements, and selects the element with best value to become part of the partial solution. In 
the same way that C1, the method iterates until m elements are selected. We may say that C1 first 
implements the greedy strategy and then the random one, while C2 applies them in the other way 
around. 

The authors proposed three different local search procedures to improve the solution provided by the 
constructive methods. They are based on trying to exchange an element 𝑢𝑢 ∈ 𝑀𝑀 with another element 
𝑣𝑣 not in the solution. In this way, the algorithm computes the objective function value of the new 
solution 𝑀𝑀′ = 𝑀𝑀 ∪ {𝑢𝑢} \ {𝑣𝑣} in an incremental way. For each 𝑤𝑤 ∈ 𝑀𝑀 \ {𝑢𝑢}, 

𝑠𝑠(𝑤𝑤) = � 𝑑𝑑𝑤𝑤𝑚𝑚
𝑚𝑚∈𝑀𝑀\{𝑢𝑢}

+ 𝑑𝑑𝑤𝑤𝑤𝑤   

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = max� � 𝑑𝑑𝑤𝑤𝑤𝑤
𝑤𝑤∈𝑀𝑀\{𝑢𝑢}

, max
𝑤𝑤∈𝑀𝑀\{𝑢𝑢}

𝑠𝑠(𝑤𝑤)�, 

 

𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛 = min� � 𝑑𝑑𝑤𝑤𝑤𝑤
𝑤𝑤∈𝑀𝑀\{𝑢𝑢}

, min
𝑤𝑤∈𝑀𝑀\{𝑢𝑢}

𝑠𝑠(𝑤𝑤)�. 

The objective function of the new solution is then computed as 𝑓𝑓(𝑀𝑀′) =  𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛. So, if the new 
solution improves upon the previous one (i.e., 𝑓𝑓(𝑀𝑀’) < 𝑓𝑓(𝑀𝑀)), the method performs the move. Based 
on this algorithm, the authors define three local search procedures: The first one (LS1) implements 
the so-called best improvement strategy, in which the entire neighborhood is scanned in each 
iteration to identify the best move; the second one (LS2) does not make an exhaustive search, but it 
performs the first move that improves the solution (first improvement strategy), and the last 
procedure (LS3) applies a first strategy after sorting the vertices of 𝑀𝑀 in descending order according 
to their distance values with respect to the elements already in the solution (i.e., LS3 explores first the 
most promising moves). 

Duarte et al. (2015) performed an exhaustive experimentation to disclose the best configuration of 
their GRASP, and concluded that the best constructive method is C2 run with the parameter 𝛼𝛼2 set to 
0.5, and the best local search is LS2. We therefore include this method in our comparison. 
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4. The Extended MaxSum Diversity Problem 

The CMSA method (Construct, Merge, Solve, and Adapt) proposed by Blum et al. (2016) is based on 
solving a reduced instance (a sub-instance of reduced size) of a given instance with an exact method, 
and then use it to solve the original instance. It requires that any solution to the sub-instance is also a 
solution to the original instance.  In the diversity problems considered here, a solution is a selection 
of 𝑚𝑚 points, and therefore, if we solve the problem on a reduced instance in which a subset of the 
original points is considered, the output solution can be directly considered a solution of the original 
instance. Since we have an efficient exact method to solve medium size instances of the Extended 
Max-Sum problem, we can apply CMSA to target large instances of this problem. 

As described in Blum et al. (2016), the first step of each CMSA iteration (Construct) consists in 
generating a number of feasible solutions to the original problem instance in a probabilistic way. In 
our case, we apply a heuristic and collect a set of good solutions. In a second step (Merge), we 
populate the set 𝑆𝑆 with the nodes selected in these solutions. We expect that the nodes in 𝑆𝑆 are a 
sample of diverse points of the original instance. In the third step, we apply CPLEX to the sub-instance 
formed with the nodes in 𝑆𝑆, and solve it to optimality. Finally, in the last step (Adapt), we remove 
some of the elements in 𝑆𝑆 applying an aging mechanism. In this way, the set S with the "good" nodes 
evolves during the search process, since at each iteration new nodes are added and the old ones are 
dropped. The method performs iterations, keeping the best solution found so far, which is returned 
as its final output. 

When a node 𝑥𝑥 in a constructed solution is added to the set 𝑆𝑆, its age is set to 0 (𝑎𝑎𝑔𝑔𝑎𝑎(𝑥𝑥) = 0). Then, 
at the end of each iteration, the age of all the nodes in 𝑆𝑆 is incremented by one unit, with the exception 
of those in the best solution found so far, which are reset to 0. When the age of a node reaches the 
maximum age (𝑚𝑚𝑎𝑎𝑥𝑥_𝑎𝑎𝑔𝑔𝑎𝑎), it is dropped from 𝑆𝑆.  

It is well documented that the good performance of metaheuristics is based on a balance between 
search intensification and diversification. The intensification in the CMSA method comes from the 
number of repetitions 𝑘𝑘 of the heuristic method, which will determine the number of nodes added to 
𝑆𝑆 together with the exact resolution of the mathematical model. Search diversification, on the other 
hand, is managed by the maximum age, 𝑚𝑚𝑎𝑎𝑥𝑥_𝑎𝑎𝑔𝑔𝑎𝑎, which will determine the number of elements 
dropped from 𝑆𝑆, in a way that the size of 𝑆𝑆 permits to be solved to optimality. 

Considering that the tabu search method by Porumbel et al. (2011), TS, is an efficient way to obtain 
heuristic solutions for the MaxMin with a relative good value for the MaxSum, we apply it in the 
Construct step of our CMSA algorithm. We adapt TS to produce several good solutions to populate 𝑆𝑆.  
In particular, we divide its search into two parts. In the first one, we simply identify the best solution 
found, 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, in terms of the MaxMin objective, and during the second half we include in the elite set, 
𝐸𝐸𝑆𝑆, all the solutions 𝑀𝑀 visited with a MaxMin value larger than or equal to the 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Then, in the 
Merge step, we include in 𝑆𝑆 all the elements in the solutions in 𝐸𝐸𝑆𝑆. In mathematical terms: 

𝑆𝑆 = {𝑥𝑥 ∈ 𝑉𝑉 ∶   𝑥𝑥 ∈ 𝑀𝑀,   𝑀𝑀 ∈ 𝐸𝐸𝑆𝑆} 

We now perform the Solve step of CMSA, in which we solve our problem on the reduced instance 
formed with the elements in 𝑆𝑆. In this step, we first apply the binary search method by Sayyady and 
Fathi (2016) to solve the MaxMin problem. In this way, we try to improve (increase) the MaxMin value 
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obtained with the tabu search in the Construct step. Let 𝑑𝑑∗ be the best MaxMin value obtained (i.e., 
the minimum distance between the selected elements in the solution in which this value is maximum).  
Then, we solve the MaxSum model restricted to the distances larger than or equal to 𝑑𝑑∗. The output 
of this phase is the best MaxSum solution in this set. This reduced MaxSum model can be expressed 
in mathematical terms as: 

(Solve step) Maximize ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖∈𝑆𝑆  

subject to ∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝑆𝑆 = 𝑚𝑚 

 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 𝑑𝑑∗𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖       𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 

𝑥𝑥𝑖𝑖 ∈ {0,1}        𝑖𝑖 ∈ 𝑆𝑆  

Note that in large instances this Solve step may require excessive long running times (since we are 
solving two exact models). We therefore limit its total execution time to keep the computational effort 
relatively low. In particular, we devote a third of the running time of this step to the first part to 
improve the MaxMin value with the binary search. The remaining two thirds of time are devoted to 
solve the MaxSum over the set of good MaxMin solutions. An early termination of these steps may 
obviously result in missing the optimal solution, and therefore we have to keep in mind that we are 
applying here a heuristic method, that balances solution quality with running time. 

The last step of a global iteration is Adapt, in which we remove from 𝑆𝑆 its oldest elements according 
to the 𝑚𝑚𝑎𝑎𝑥𝑥_𝑎𝑎𝑔𝑔𝑎𝑎 counter to keep its size relatively small, since in subsequent applications of Construct 
new elements will be added to 𝑆𝑆. It therefore manages the size of 𝑆𝑆, and in consequence the 
computational effort of CPLEX to solve the two models. In our empirical experimentation we will 
adjust it to obtain a good balance between search intensification (exploitation) and diversification 
(exploration). 

The central part of the CMSA method is the Solve step, in which we first apply the binary search solver 
to improve the MaxMin value, and then the MaxSum mathematical model. Considering that the TS 
applied in the Construct step may produce a very good MaxMin value 𝑑𝑑∗ (eventually optimal), we 
propose an alternative to this step, in which we only apply the MaxSum mathematical model shown 
above, skipping the binary search.  We call CMSA2 to the algorithm with this variant of the solve step 
(keeping the rest of the method as described above). 

5. The Extended MinDiff Equity Problem 

In this section, we adapt the GRASP methodology to the Extended MinDiff and call Extended GRASP 
(EXG) to the resulting method. In particular, we first solve the MaxMin problem to identify a set of 
high-quality solutions for this model. This first phase targets the lower level of the extended problem, 
since the elements in these high-quality MaxMin solutions form the elite set of good candidates to 
solve the upper-level problem. In the second phase, we solve the MinDiff over the subset of elite 
elements previously identified.  In this way, we achieve a compromise between the MaxMin and 
MinDiff models. It is worth mentioning that we do not solve the MinDiff over the set of optimal 
MaxMin solutions, as specified in the extended model, but we are proposing a heuristic approach in 
which we sequentially solve these two models in an approximate way.  
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In order to get the MaxMin elite set in the first phase of EXG, we implement a standard GRASP 
algorithm to solve the MaxMin problem, and then select all the elements in the best five solutions. 
The MaxMin GRASP works in the following way: The constructive method selects the first two 
elements at random, includes them into the partial solution, and creates a candidate list 𝐶𝐶𝐶𝐶 with the 
elements that are not in the solution. Then, it computes the so-called restricted candidate list, 𝑅𝑅𝐶𝐶𝐶𝐶, 
selecting 𝛼𝛼3|𝐶𝐶𝐶𝐶| elements. Lastly, it selects from 𝑅𝑅𝐶𝐶𝐶𝐶 the element with maximum distance to the 
partial solution and adds it. This algorithm iterates until it selects 𝑚𝑚 elements. On the other hand, to 
improve the solution provided by the constructive phase, the algorithm applies a local search post-
processing to the constructed solution. This procedure considers the two elements in the solution 
with the minimum inter-distance to remove the one with lower sum of distances to the rest of 
elements in the solution. In particular, we scan the elements not in the solution in the canonical order, 
and replace it with the first one that improves the MaxMin value of the solution (which constitutes 
the so-called first improvement strategy). The algorithm iterates until no further improvement is 
possible. At this stage, it returns the final solution as the local optimum and stops. 

The second phase of EXG considers the elements in the elite set (i.e., those that form part of the good 
MaxMin solutions identified in the first phase). Now, we apply a second GRASP heuristic to solve the 
MinDiff problem over this set of points. However, this could lead to low quality MaxMin solutions 
since some of these elements can be relatively close. We therefore propose an adaptation of the 
GRASP to avoid the selection of close elements. In particular, in the C1 constructive method described 
in Section 3.2, instead of directly selecting an element from RCL, we compute 

𝑚𝑚𝑑𝑑(𝑢𝑢) =  min
𝑤𝑤∈𝑀𝑀

𝑑𝑑𝑤𝑤𝑢𝑢 ,∀ 𝑢𝑢 ∈ 𝑅𝑅𝐶𝐶𝐶𝐶, 

calculate 

𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 =  max
𝑢𝑢∈𝑅𝑅𝐶𝐶𝐶𝐶

𝑚𝑚𝑑𝑑(𝑢𝑢), and  𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 =  min
𝑢𝑢∈𝑅𝑅𝐶𝐶𝐶𝐶

𝑚𝑚𝑑𝑑(𝑢𝑢), 

and create a refined restricted candidate list (RCL2) from which the algorithm selects an element at 
random to add it to the solution. 

𝑅𝑅𝐶𝐶𝐶𝐶2 = {𝑣𝑣 ∈ 𝑅𝑅𝐶𝐶𝐶𝐶 | 𝑚𝑚𝑑𝑑(𝑣𝑣) ≥ 𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛽𝛽 ⋅ (𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛)}. 

We propose a similar adaptation of C2. Specifically, we first create RCL selecting 𝛼𝛼2|𝐶𝐶𝐶𝐶| elements at 
random, calculate  𝑚𝑚𝑑𝑑(𝑢𝑢) ∀ 𝑢𝑢 ∈ 𝑅𝑅𝐶𝐶𝐶𝐶, 𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛, and create a RCL2 in the same way to C1. 
The algorithm then proceeds in the same way as described in Section 3.2, evaluating 𝑔𝑔(𝑢𝑢) ∀ 𝑢𝑢 ∈
𝑅𝑅𝐶𝐶𝐶𝐶2, and adding to the solution the 𝑢𝑢 ∈ 𝑅𝑅𝐶𝐶𝐶𝐶2 with best value. 

Finally, we adapt the local search by modifying the typical move selection in diversity problems. In 
particular, we restrict the neighborhood of a solution, to those moves that do not deteriorate the 
MaxMin value of the current solution. In this way, the local search of the Extended GRASP explores 
this reduced neighborhood in search for an exchange of elements that improves the MinDiff value 
without reducing the MaxMin value. 
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6. Computational Experiments 

This section describes the computational experiments performed to assess the merit of the methods 
described in the previous sections. In particular, we consider our CMSA method for the Extended 
MaxSum, described in Section 4 and implemented in CPLEX, and the 2-phase GRASP for the Extended 
MinDiff (EXG), described in Section 5 and implemented in Python 3.8. All the experiments were 
conducted in a 2.8 Ghz Intel Core i5 8400 with 16 GB RAM.  

As it is customary in heuristic papers, we divide our experimentation into two parts. A first part 
devoted to analyze the elements of our algorithms, usually called scientific testing, and a second part 
to compare our methods with the best published so far, usually called comparative testing. To avoid 
the overtraining of the methods, we analyze their elements and set up the values of their parameters 
in a subset of instances. The comparative testing, on the other hand, is performed over the entire 
benchmark of instances (described in Section 6.1).  

This section is organized as follows. After the description of the instances and statistics used to report 
our experimentation in Section 6.1, we consider separate sections for each problem. In particular, 
Section 6.2 describes our findings on the Extended MinDiff, and Section 6.3 is devoted to the Extended 
MaxSum. 
 
6.1 Problem instances and statistics 

In line with previous papers on diversity problems, we consider the benchmark library called MDPLIB 
(Martí et al., 2013) to perform our empirical analysis. This set has been recently updated (MDPLIB 2.0, 
Martí et al. 2022) adding more challenging instances, and removing the nowadays trivial ones. The 
library is divided into the following three groups: SOM, GKD, and MDG. A brief description of the sets 
is included here: 

• SOM: This benchmark set contains the 70 original matrices with integer random numbers 
between 0 and 9 generated from an integer uniform distribution included in MDPLIB. In 
MDPLIB 2.0, 80 new larger instances are included with integer random numbers between 0 
and 100 generated in the same way. 

• GKD: This benchmark set contains the 140 original matrices for which the values were 
calculated as the Euclidean distances from randomly generated points with coordinates in the 
0 to 10. 300 new matrices are included in the MDPLIB 2.0, for which the values were calculated 
in the same way but with two coordinates in the 0 to 100 range. 

• MDG: This benchmark set contains the 100 original matrices with real numbers randomly 
selected between 0 and 10 from a uniform distribution. 

In our experimentation, we do not include the smallest instances in these sets (because they do not 
permit to differentiate among methods), and the largest ones (because CPLEX cannot solve them). 
Our testbed thus contains 500 instances. We considered a subset of 100 of them to perform the 
preliminary experimentation (scientific testing). 

In all our experiments, we report the following statistics: 
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• Value: Average objective function value of the method. 
• DevB: Average deviation from the best value of the experiment. 
• #Best: The number of times that the best solution was reached by this method. 
• Time: The average computing time of each method in seconds. 

6.2 The Extended MaxSum  

In this section we first compare the two CMSA variants, to choose the best one of our proposals, and 
then compare the best one with the previous methods.  

6.2.1 Scientific testing 

We consider the CMSA method described in Section 4, and the reduced variant, CMSA2, which skips 
the binary search and only applies the MaxSum mathematical model in the Solve step. Table 1 shows 
the results of this comparison. 

  MaxSum       MaxMin         
 Value DevB   #Best   Value DevB  #Best   Time 
CMSA 100124.0 0.11% 419  65.79 0.01% 492  220.69 
CMSA2 100359.8 0.02% 466  65.78 0.06% 440  218.31 

Table 1. CMSA variants 

Results in Table 1 have to be carefully read. In terms of the MaxMin, the CMSA obtains better results 
than the reduced version CMSA2, with 492 best solutions of the former method versus 440 of the 
latter one. In terms of the MaxSum, CMSA seems worse than CMSA2, with 419 best solutions of the 
former method versus 466 of the latter one. However, considering that these methods solve the 
MaxSum model restricted to the distances larger than or equal to the best MaxMin value 𝑑𝑑∗ found, 
we may say that this comparison is somehow unfair. If we compare the MaxSum value only in the 
instances in which both methods obtain the same MaxMin value, we will measure their ability to find 
good MaxSum values under similar conditions. According to this, both methods present similar results, 
since CMSA is able to obtain 319 best solutions and CMSA2 328. This fact together that both methods 
present similar running times, makes us to select the CMSA for the rest of our experimentation. 

 
Figure 3. CMSA search profile 
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In our second experiment of this section we evaluate the contribution of the main elements of the 
CMSA method. Figure 3 shows the evolution of the best solution over a standard run on a 
representative instance with 𝑛𝑛 = 250. In this diagram the 𝑥𝑥-axis represents iterations, and the 𝑦𝑦-axis 
optimal value deviations. Since we know the optimal solution for this instance, we represent the 
deviation of both values, MaxSum (%MS) and MaxMin (%MM), of the best solution so far, the 
incumbent solution, with respect to the optimal values. It must be noted that the optimal values 
correspond to the output of the exact method that computes the best MaxSum value over the set of 
the optimal MaxMin values.  Therefore, a solution with a worse (lower) MaxMin value could exhibit a 
better (larger) MaxSum value than the reference optimal solution. In this figure, C_i refers to the best 
solution of the Construct step at iteration 𝑖𝑖. Similarly, S_MM_i represents the best solution obtained 
with the application of the MaxMin optimization in the Solve step at iteration 𝑖𝑖 (with the binary search 
method), and S_MS_i the best solution obtained with the application of the MaxSum optimization 
(with the restricted mathematical model). This diagram clearly shows the evolution of the best 
solution found, and the contribution of the optimizations performed in the CMSA method.  

Figure 3 shows that during the initial iterations, the best solution significantly improves both values, 
MaxSum and MaxMin, by means of the combination of the optimizations applied in the Construct and 
Solve steps. Then, the method stagnates, and it is not able to improve the solutions for several 
iterations (from 8 to 18). However, after that period, it is able to marginally improve the MaxSum 
objective without deteriorating the MaxMin one, reaching the reference optimal solution (identified 
with an exact method in significantly larger running time). 

We finish this section by showing the CMSA solution of the instance represented in Figure 1. As we 
can see in Figure 4, this solution (represented with red circles) maximizes the total dispersion while 
avoiding the selection of close points, and compares favorably with the optimal MaxSum solution 
depicted in Figure 1, in which two elements were very close.  

 

Figure 4. CMSA solution 

6.2.2 Comparative testing 

In our final experiment, we compare our CMSA method with the previous Tabu Search heuristic, TS 
(Porumbel et al., 2011), and a truncated exact method, Exact. This method first applies the binary 
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search by Sayyady and Fathi (2016) to obtain the MaxMin optimal solution value 𝑑𝑑∗, and then solves 
with CPLEX the MaxSum formulation with the additional constraint that excludes the pairs of elements 
with distance lower than 𝑑𝑑∗.  We run CPLEX for a maximum of 3,600 seconds, which results in an early 
termination in the large instances, and therefore the output solution is not guaranteed to be optimal. 

To analyze the results in Table 2, we focus on solution quality, as measured by average deviation from 
the best (DevB) and number of best solutions found (Best). The results in this table show the 
advantage of our CMSA over the previous TS heuristic and the truncated Exact method. In particular, 
CMSA exhibits a remarkable 0.49% average percentage deviation on the MaxMin and 0.17% on the 
MaxSum, while TS obtains 0.55% and 0.35% respectively. On the other hand, the truncated Exact 
method obtains 1.05% and 0.65% respectively, although it requires significantly larger running times 
(1616.59 seconds on average versus 218.31 for CMSA and 151.88 for TS). The numbers of best 
solutions found with each method are in line with these results, confirming the superiority of the 
CMSA over its competitors. 

    MaxSum       MaxMin         
Method Instances Value DevB Best   Value DevB Best   Time 
CMSA GKD 78564.2 0.05% 231  73.77 0.35% 218  92.31 
 MDG 181592.4 0.22% 65  150.32 0.07% 76  137.83 
 SOM 94763.4 0.35% 106  6.61 0.96% 145  424.78 
  All 100124.0 0.17% 402  65.79 0.49% 439  218.31 
TS GKD 78044.7 0.30% 184  73.76 0.42% 200  49.85 
 MDG 180688.9 0.37% 46  150.34 0.03% 77  37.01 
 SOM 94651.1 0.41% 94  6.61 1.06% 145  368.78 
  All 99665.9 0.35% 324  65.79 0.55% 422  151.88 
Exact GKD 78527.6 0.13% 216  73.81 0.02% 249  774.01 
 MDG 181487.7 0.29% 52  149.69 1.14% 48  1797.80 
 SOM 94691.8 1.76% 63  6.39 2.83% 111  2277.95 
  All 100065.9 0.65% 331  65.64 1.05% 408  1616.59 

Table 2. Performance comparison 

We applied the non-parametric Friedman test for multiple correlated samples to the best solutions 
obtained by each of the 3 methods in Table 2.  This test computes, for each instance, the rank value 
of each method according to solution quality (where rank 3 is assigned to the best method and rank 1 
to the worst one). Then, it calculates the average rank values of each method across all the instances 
solved.  If the averages differ greatly, the associated 𝑝𝑝-value or significance will be small.  We apply 
this test for the two objectives in the resulting solutions of the 3 methods. The 𝑝𝑝-value of 0.00 of the 
Friedman test clearly establish that, in general terms, the algorithms produce different solutions, and 
thus CMSA obtains better results than the previous methods. 

6.3 The Extended MinDiff 

In this section we first perform an analysis to disclose the contribution of the different elements of 
our heuristic, and to set the appropriate values for its parameters for the MinDiff problem. Then, in 
the second subsection, we compare the best variant of our method with the previous GRASP for the 
MinDiff problem. 
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6.3.1 Scientific testing 

Our first experiment with the MinDiff problem undertakes to choose the best values of the parameters 
of the algorithms. For the MinDiff GRASP introduced in Duarte et al. (2015), we selected the 
constructive method C2 and the local search LS2 with 𝛼𝛼2 = 0.5, as suggested by the authors. For the 
MaxMin GRASP, we selected 𝛼𝛼3 = 0.9 as proposed by Resende et al (2010). In order to calibrate 𝛽𝛽 for 
our improved version of the GRASP (Section 5), we tried three values : 0.25, 0.5, and 0.75: 

  MinDiff       MaxMin         
β Value DevB #Best   Value DevB #Best   Time 
0.25 347.42 29% 29  50.27 7% 82  1632.12 
0.5 310.77 21% 33  43.63 21% 35  1657.21 
0.75 271.49 10% 72   40.28 26% 23   1556.82 

Table 3. GRASP calibration 

The results in Table 3 show that the minimum deviation is reached with 𝛽𝛽 = 0.75 for the MinDiff, and 
with 𝛽𝛽 = 0.25 for the MaxMin. Since the global objective of our extended problem is to achieve a 
balance between the MaxMin and the MinDiff, we select 𝛽𝛽 = 0.5 since it exhibits the best tradeoff 
between the both objectives. 

  MinDiff       MaxMin         
p Value DevB #Best   Value DevB #Best   Time 
5 385.42 53% 18  49.37 15% 46  537.65 
10 338.24 33% 28  48.43 16% 45  1046.40 
15 335.10 16% 40  51.43 14% 39  1216.39 
20 319.93 7% 63   51.64 12% 44   1340.18 

Table 4. Elite set size 

In our second experiment, we undertake to study the elite set of the Extended GRASP, composed with 
the 𝑝𝑝 best solutions found with the GRASP that solves the MaxMin problem. Thus, we calibrate the 
best value for 𝑝𝑝 (i.e., how many of the good solutions found when solving the MaxMin are used to 
populate the elite set). Table 4 shows the results of the Extended GRASP with different values of 𝑝𝑝. As 
we can see in this table, there is a marginal improvement in terms of both MaxMin and MinDiff while 
increasing the value of 𝑝𝑝. On the other hand, lower values of 𝑝𝑝 create smaller elite sets that result in 
lower computing times. We therefore select 𝑝𝑝 =  5 considering that the difference between running 
times is more significant than the change of MaxMin and MinDiff values. 

We evaluate now the contribution of each phase of our GRASP for the Extended MinDiff, EXG, to the 
quality of its output solution. As described in Section 5, EXG has two phases, a first one, in which we 
compute a set of elite MaxMin solutions, and a second one, in which we solve the MinDiff over the 
subset of points contained in these elite solutions. Considering that the second phase of EXG takes 
into account both the MaxMin and MinDiff, we want to evaluate if it is necessary to apply the first 
phase, or we could directly apply the second phase to the original problem. In this experiment, we 
compare the EXG method described in Section 5, with a simplified version, EXG2, in which only the 
second phase is applied. 
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  MinDiff       MaxMin         
Method Value DevB #Best   Value DevB #Best   Time 
EXG2 287.15 0% 477  39.99 12% 274  1887.42 
EXG 366.26 148%   56   43.28 14% 304   628.48 

Table 5. Contribution of EXG phases 

Table 5 shows that EXG2 obtains very good results considering its simplicity; however, it requires very 
long running times. Comparing EXG and EXG2 results we can see that the selection of candidates in 
the elite set performed by EXG results in a significant reduction of the total running time, but also in 
a slight deterioration of the MinDiff final value. Both points are to be expected since in EXG we are 
solving the MinDiff problem over a small set of points (compared with EXG2) which clearly involves 
lower running times. At the same time, this reduction may result in missing some good candidate 
points not identified in the elite set. We select EXG as our final method considering its good balance 
between quality and CPU time. 

 

Figure 5. EXG solution  

To show the structure of the solution obtained with the EXG method, we represent a Euclidean 
instance. Figure 5 shows the EXG solution of the instance with 𝑛𝑛 = 25 and 𝑚𝑚 = 3 depicted in Figure 
2. As we can see in this solution, EXG selects three disperse and equidistant points, as indicated by the 
new MinDiff extended model, which makes more sense than the selection of three close points of the 
optimal original MinDiff solution represented in Figure 2. 

6.3.2 Comparative testing 

In this section we compare our EXG heuristic with the previous GRASP (Duarte et al., 2015). We also 
include in this comparison an exact method to obtain, if possible, the optimal solution. In particular, 
we apply a binary search to solve the MaxMin problem (Sayyady and Fathi, 2016) and collect all its 
optimal solutions. Then, we select the best MinDiff solution in this set of optimal MaxMin solutions. 
This exact algorithm returns the solution that has minimum MinDiff value in this set as its output. The 
average results of the three methods, EXG, GRASP, and Exact, over the MDPLIB are shown in Table 6.  
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    MinDiff       MaxMin         
Method Instances Value DevB #Best   Value DevB #Best   Time 
GRASP GKD 134.71 0% 265  47.36 56% 27  739.28 
 MDG 470.12 0% 78  14.40 94% 4  116.04 
 SOM 113.96 5% 125  0.21 82% 0  968.73 
  All 182.63 1% 468   27.74 68% 23   708.09 
Exact GKD 849.25 763% 10  73.81 0% 265  465.68 
 MDG 2139.20 355% 0  149.69 0% 80  1805.20 
 SOM 421.72 207% 30  6.39 0% 150  2633.31 
  All 928.17 523% 40   65.64 0% 495   1339.03 
EXG GKD 386.34 438% 13  63.57 28% 66  935.61 
 MDG 676.10 45% 2  54.54 66% 0  58.49 
 SOM 165.54 43% 15  1.42 67% 28  389.86 
  All 366.26 253% 30   43.28 45% 94   628.48 

Table 6. Performance comparison 

As expected, the fact that the GRASP (Duarte et al., 2015) only targets the MinDiff problem, makes it 
to obtain the best values on this objective (it exhibits a 1% average deviation with respect to the best 
known values in this objective). On the other hand, since this algorithm does not optimize the MaxMin 
objective, those solutions have the worst MaxMin values (68% of average deviation). Symmetrically, 
the Exact algorithm is known to give optimal solutions for the MaxMin problem, and therefore it 
obtains the best solutions in this objective (0% of average deviation); but on the other hand, it presents 
very large MinDiff values (with 523% average deviation), since it is computed on a reduced set 
(consisting on the optimal MaxMin solutions). These results confirm that good MaxMin solutions do 
not usually have good MinDiff values, as also reported in Sandoya et al. (2018).  

When comparing the results of our EXG method with the Exact and the GRASP, we can conclude that 
it provides a good balance between both objectives. On one hand, the average percentage deviation 
of the three methods in the MinDiff objective is: 1% (GRASP), 523% (Exact), and 253% (EXG). On the 
other hand, the average percentage deviation of the three methods in the MaxMin objective is: 68% 
(GRASP), 0% (Exact), and 45% (EXG). The average number of the best solutions found with each 
method confirms this pattern, in which EXG provides an in-between performance on both objectives. 
If we analyze the results in Table 6 on each set of instances, we do not observe important differences, 
and the results seem to be quite robust across the different sets.  

We finally apply in this experiment the Friedman test. The resulting 𝑝𝑝-value of 0.000 obtained for the 
MinDiff in this experiment clearly indicates that there are statistically significant differences among 
the 3 methods tested. When we apply this test to the MaxMin values, we also obtain a 𝑝𝑝-value of 
0.000. 

 



M a r t í ,  e t  a l .  | 20 
 

 

Figure 6. EXG search profile 

Our final experiment has the goal of showing how the best solution obtained with GRASP evolves over 
time. Considering that we have two objectives, we represent in Figure 6 a line with each one. In this 
diagram the 𝑥𝑥-axis represents the global iterations, and the 𝑦𝑦-axis depicts the percentage deviations 
with respect to the best known values. It is easy to identify in this figure that the in first iterations our 
heuristic applies an improvement procedure with respect to the MaxMin, and at a certain point 
(iteration 60) it applies an improvement GRASP for the MinDiff. This clearly explains the evolution 
pattern of both objectives.  Note that in the first 60 iterations, the method is able to improve the 
MaxMin significantly, and when the second part of the heuristic is applied, then it deteriorates this 
value to favor the MinDiff (note that deviations are computed with respect to the best final value, and 
this is why in the first iterations the MaxMin objective has a negative deviation). As a matter of fact, 
this second phase is able to reduce the MinDiff to its final deviation of 0.00%. 

7. Conclusions 

We had a twofold goal for this work, to propose a extended model for two discrete location problems, 
diversity and equity maximization and, to develop state-of-the-art procedures for the two associated 
models. We believe that we have achieved the first goal with the two extended designs. The merit of 
these models is that they overcome the important issues recently identified for the standard MaxSum 
and MinDiff models. The extended models incorporate the well-known MaxMin objective as a sub-
problem to guarantee that the selected points are not too close. Although this adds an extra 
complexity to the standard models, our empirical analysis reveals that they can be efficiently solved 
with heuristic methods. 

In terms of our second goal, the results reported in Tables 2 and 6 are very strong in favor of our 
proposals for the two extended models. On one hand, our adaptation of GRASP, EXG, to the extended 
MinDiff (equity model) improves upon the previous GRASP for the standard MinDiff. On the other 
hand, the CMSA matheuristic that combines a previous tabu search with an exact method, shows that 
this clever combination of both technologies outperforms them when targeting the Extended MaxSum 
(diversity model). We have established benchmarks for the instances of the well-known MDPLIB, and 
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we believe that they will help other researchers test additional search strategies on these interesting 
combinatorial optimization problems. 
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