Tabu Search with Strategic Oscillation for the Maximally
Diverse Grouping Problem

MICAEL GALLEGO
Departamento de Ciencias de la Computacion, Universidad Rey Juan Carlos, Spain.
Micael.Gallego@urjc.es

MANUEL LAGUNA
Leeds School of Business, University of Colorado at Boulder, USA
laguna@colorado.edu

RAFAEL MARTI
Departamento de Estadistica e Investigacidon Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

ABRAHAM DUARTE
Departamento de Ciencias de la Computacién, Universidad Rey Juan Carlos, Spain.
Abraham.Duarte@urjc.es

ABSTRACT

We propose new heuristic procedures for the maximally diverse grouping problem (MDGP). This NP-
hard problem consists of forming maximally diverse groups —of equal or different size— from a given
set of elements. The most general formulation, which we address, allows for the size of each group to
fall within specified limits. The MDGP has applications in academics, such as creating diverse teams of
students, or in training settings where it may be desired to create groups that are as diverse as possible.
Search mechanisms, based on the tabu search methodology, are developed for the MDGP, including a
strategic oscillation that enables search paths to cross a feasibility boundary. We evaluate construction
and improvement mechanisms to configure a solution procedure that is then compared to state-of-the-
art solvers for the MDGP. Extensive computational experiments with medium and large instances show
the advantages of a solution method that includes strategic oscillation.

Keywords: Diversity problems, metaheuristics, strategic oscillation.

Version: September 15, 2011

Gallego, etal. — 2

1. Introduction

The maximally diverse grouping problem (MDGP) consists of grouping a set of M elements into G
mutually disjoint groups in such a way that the diversity among the elements in each group is
maximized. The diversity among the elements in a group is calculated as the sum of the individual
distance between each pair of elements, where the notion of distance depends on the specific
application context. The objective of the problem is to maximize the overall diversity, i.e., the sum of
the diversity of all groups. Feo and Khellaf (1990) proved that the MDGP is NP-hard.

The MDGP is called the k-partition problem in Feo et al. (1992) and the equitable partition problem in
O’Brien and Mingers (1995). It arises in a wide range of real world settings; such as the design of VLSI
circuits (Chen 1986; Feo and Khellaf 1990) or the storage of large programs onto paged memory (Kral,
1965), where the subroutines of a program have to be partitioned onto pages of available memory. In
this particular application, the objective is to maximize the data transfer between subroutines on the
same page (minimizing in this way the data transfers between different pages). One of the most
popular MDGP applications appears in the academic context when forming student groups (Weitz and
Jelassi, 1992). Specifically, in business schools is nowadays common to create diverse student
workgroups or training teams in order to provide students a diverse environment (Weitz and
Lakshminarayanan, 1998). The MDGP also applies to forming diverse groups of peer reviewers in
scientific publications or project evaluation in scientific funding agencies (Hettich and Pazzani, 2006).
Finally, workforce diversity is an increasing phenomenon in organizations. Creating diverse groups, in
which people with different background work together, is a way to deal with this heterogeneity and
facilitate their understanding and communication (Bhadury et al., 2000).

In order to formulate the MDGP in mathematical terms, we assume that each element can be
represented by a set of attributes. Let s;, be the state or value of the k" attribute of element i, where
k=1,...,Kandi=1,..,M. Then, the distance dij between element i and j may be simply defined by

the Euclidean calculation:

We have identified two variants of the MDGP. The first one (MDGP1) is the better known and forces all
groups to have the same number S of elements, with S = M /G. The second variant (MDGP2) allows the
size Sg of each group g to be in the interval [ag,bg], where ag < bg forg=1,..,G. Clearly, MDGP1 is
a special case of the MDGP2 for which Sy = a4 = b, for all g. Our procedure is designed for the
MDGP2 but tested on both MDGP1 and MDGP2. In the remainder, MDGP will refer to the general case
MDGP2. Both variants can be formulated as quadratic integer programs with binary variables x;, that
take the value of 1 if element i is in group g and O otherwise. A quadratic integer programming
formulation of MDGP1 is:

Gallego, etal. — 3

G
Maximize Z Z ijXigXjg

M-1 M

g=1i=1 j>i
G
subject to Z Xig =1 i=12,...M
g=1
M
Drg=5 g=12..6
i=1
xl-ge{O,l} i=1,..Mg=1,..,G

The objective function adds the distance of all pairs of elements that belong to the same group. The
first set of constraints forces the assignment of each element to a group. The second set of constraints
forces the size of all groups to be equal to S. In the more general case, MDGP2, the second set of
constraints is replaced with:

M
agstigsbg g=12,..,G
i=1

In terms of the mathematical formulation, both problems (MDGP1 and MDGP2) are equivalent.
However, the generalization that allows groups of different sizes has implications with respect to
developing search procedures because the search space is larger for MDGP2. In particular, procedures
for the MDGP1 can focus on the area of the solution space for which all groups are of the same size.

The next section summarizes the most relevant MDGP literature. It is followed by a description of four
proposed methods for constructing feasible solutions, two of which are based on memory mechanisms
and two on Greedy Randomized Adaptive Search Procedures (GRASP). The proposed tabu search with
strategic oscillation is described in Section 3, followed by computational experiments with both
instances from the literature and new larger instances with M = 480 and M = 960. Statistical analysis
shows the merit of the approach when compared to existing methods.

2. Previous Methods

The MDGP has been the subject of study for at least 21 years, beginning with the multistart algorithm
introduced by Arani and Lotfi (1989). This procedure consists of a random construction followed by an
improving phase that partially deconstructs the random solution and scans all possible reconstructions
to select the best one. This process is repeated until the solution does not change between
reconstructions (i.e., when the current solution cannot be improved). Feo and Khellaf (1990) proposed
several heuristics based on graph theory for the special case of even-sized groups, odd-sized groups and
2! sized groups. The authors also show that the values obtained by their heuristics are within a bounded
percentage of the optimal solution. The most recent solution procedure introduced to the OR literature

Gallego, etal. — 4

is a memetic algorithm due to Fan et al. (2011). Chen et al. (2011) apply this procedure to a practical
application of the MDGP known as the Reviewer Group Construction problem. Weitz and
Lakshminarayanan (1998) carried out extensive experimentation to compare all heuristics for the MDGP
known at the time in addition to the new ones that they introduced in their work. They identified the
Lotfi-Cerveny-Weitz (LCW) heuristic as the best. The LCW is an improvement method that may be
initiated from a random solution or a solution generated with the Weitz-Jelassi (WJ) construction
procedure, as tested by Weitz and Lakshminarayanan (1998). The authors did not find significant
differences in solution quality when LCW was started from a random solution and when the WJ
construction method was used to initiate the search. They do, however, report a significant difference
in computational time, with WJ taking considerably longer than a random starting point. Therefore for
purpose of comparison with previous methods, we have implemented the LCW improvement method,
which we start from a random solution.

The LCW is a modified version of the Lofti-Cerveny (LC) method, originally published by Lofti and
Cerveny (1991) as a part of a comprehensive method for scheduling final exams with the objective of
minimizing (instead of maximizing) the diversity in each group. Weitz and Lakshminarayanan (1996)
discovered and corrected a number of errors in the LC method. The adaptation of the LC method to the
MDGP is presented by Weitz and Lakshminarayanan (1998) and summarized in Figure 1.

Construct and initial solution
do {
for(i=1,..,M){
1. Identify group g for which diversity is maximized when adding element i
2. Find the element j in g for which a switch of group assignments between elements
i and j results in the largest increase in the objective function value
3. Iftheincrease in the objective function is strictly positive, make the switch
}

} while at least one switch is made

Figure 1. LC method

LCW is a variation of LC in which the search for element j is not limited to group g, as identified in step 1
of Figure 1. The motivation behind step 1 in LC is to minimize the search for element j, because the
contributions of each element to the diversity of any group g is pre-calculated at the beginning of the
procedure, updated after step 3 if a switch is made and stored in a matrix labeled R. Instead, LCW
considers all groups when searching for element j, except for the group to which element i is currently
assigned. The LCW method is summarized in Figure 2.

Gallego, etal. — 5

Construct and initial solution
do {
for(i=1,..,M){
1. Find the element j in any group for which a switch of group assignments between
elements i and j results in the largest increase in the objective function value
2. Iftheincrease in the objective function is strictly positive, make the switch

}

} while at least one switch is made

Figure 2. LCW method

Weitz and Jelassi (1992) developed a basic constructive heuristic. Its philosophy is to avoid the
assignment of very similar elements to the same group. WIJ starts with the random assignment of an
element to the first group. The heuristic then selects the element with the smallest distance to the
previously selected element and assigns it to the next group. When a sweep of all groups has been
completed, the procedure goes back to the first group. The construction finishes when all the elements
have been assigned. Figure 3 summarizes this procedure.

1. Randomly select a starting element, and assign it to group 1.
From those elements still unassigned, select the element most similar to the last assigned
element, where ties are broken arbitrarily. Assign this element to the next group, where the
next group after group G is group 1.

3. Stop if all elements have been assigned; otherwise go to step 2.

Figure 3. WJ method

Fan et al. (2011) present a hybrid genetic algorithm (LSGA) for the solution of the MDGP. LSGA
combines a genetic algorithm and a local search procedure, thus creating a hybrid method. This
hybridization is usually known as a memetic algorithm (MA) and has been previously suggested for other
problems (see for example Miller et al. 1993 and Vasko et al. 2005). The genetic aspect of LSGA is based
on the encoding scheme for grouping problems proposed by Falkenauer (1998). The local search within
LSGA implements a best improvement strategy based on exchanging elements between groups. To the
best of our knowledge, Fan et al.’s (2011) is the first publication that describes a method for the general
version of the MDGP, which allows for different group sizes. The basic structure of the memetic
algorithm is shown in Figure 4.

Extensive experiments were conducted in Fan et al. (2011) to compare the relative merit of LSGA with a
pure genetic algorithm (i.e., without local search) and LCW from random initial points (labeled R+LCW).
Their experiments showed the effectiveness of LSGA when solving MDGP instances with equal and
different group sizes.

Gallego, etal. — 6

1. Start with a randomly generated population of populationSize solutions.

Calculate the objective function of each solution in the population.

3. Repeat the following steps until populationSize offspring have been created:

a. Select a pair of parent solutions from the current population, with the probability of
selection being an increasing function of the solution value. Selection is done “with
replacement,” meaning that the same solution can be selected more than once to
become a parent.

b. Combine the selected parents to create a new solution.

c. Mutate the new offspring with probability mp (the mutation probability or mutation
rate).

d. Repair the solution if it is not feasible.

e. Improve the solution with an improvement method.

4. Create a new population with the best populationSize solutions in the original population
and offspring population.
5. Gotostep?2.

Figure 4. LSGA Memetic Algorithm

We have identified two main limitations of previous approaches that became the motivation for
developing a new procedure to tackle the MDGP. First, all previous procedures with the exception of
the one by Fan et al. (2011) were designed for the special version of the problem for which all groups
are required to be of the same size (i.e., they were designed to solve MDGP1). Even Fan et al.’s (2011)
MA limits the local search to solutions for which the size of each group is preserved by constricting the
neighborhoods to those defined by swap moves. Solutions with different group sizes are found by their
construction procedure and the crossover mechanisms but the local search preserves the sizes of the
trial solution to which it is applied. Second, previous procedures preserve feasibility during the search.
Once again, the exception is Fan et al.’s (2011) MA. Both the first stage of their initialization procedure
(i.e., the procedure that builds the initial population) and the crossover operator allow for the violation
of the group size restrictions. The infeasible solutions, however, are immediately repaired by their so-
called group size adjustment algorithm. We overcome these limitations by designing a procedure for
the general problem that can also be applied to the special case for which all groups have the same size.
Our procedure searches the solution space both from within and coming from outside the feasible
region, as described next.

3. Constructions, Neighborhoods and Strategic Oscillation

The main goal of our work is the development of a procedure for the MDGP that is based on the tabu
search methodology. This section describes the elements of our proposed procedure: 1) construction of
the initial solution, 2) neighborhood search and 3) strategic oscillation. We describe these elements
separately because we later combine them to test several solution methods. A solution method may
consist of simply constructing solutions with one of our construction procedures or both constructing
and improving solutions by in addition applying an improvement method based on one of our
neighborhood searches. Furthermore, the strategic oscillation framework is structured to use any of the
construction or improvement methods. Instead of trying all possible combination, in the next section,

Gallego, etal. — 7

we sequentially evaluate the construction and improvement methods to choose the best to embed in
the strategic oscillation framework.

Our construction method is greedy and accommodates both versions of the problem, namely, the one
for which all groups are of the same size and the one for which the cardinality of each group is bounded.
The method (GC, for greedy construction) starts by randomly selecting G elements and assigning each of
these elements to a separate group. Therefore, at the end of the first step, each group has one element
assigned to it. Then, the procedure performs M — G iterations to assign the remaining unassigned
elements to groups. In order to generate a feasible solution, the iterations are divided into two phases.
In the first phase, the elements are assigned to groups that currently contain fewer elements than the
desired minimum number of elements a,. In the second phase, the remaining elements are assigned to

groups with a number of elements that is smaller than the desired maximum number of elements b,.

Let E; be the set of elements currently assigned to group g. The iterations in each phase start with the
identification of the groups that have either fewer elements than the desired minimum in the first phase
(i.e., all g for which |Eg| < agy) or fewer elements than the maximum allowed in the second phase (i.e.,
all g for which |Eg| < bg). Then, an unassigned element i is selected at random and added to the group
(within the identified set) for which the average distance between element i and all the elements in the
group is maximized. Thatis, i is assigned the group g for which D; 4 is maximized:

oSy
IRl

The first phase finishes when all groups contain at least the desired minimum number of elements (i.e.,

when for each group g, Eg| = ay). The second phase finishes when all elements have been assigned.

Figure 5 summarizes the GC method.

Randomly select G elements and assign one to each group
2. Repeat the following steps until |Eg| = ay for all groups

a. Randomly select an unassigned element i

b. Assign element i to the group g with |Eg| < a4 that maximizes D;4
3. Repeat the following steps until all elements are assigned

a. Randomly select an unassigned element i

b. Assign element i to the group g with |Eg| < b, that maximizes Dy,

Figure 5. GC Method

We developed two GC variants, one (GC-FULL) as a combination of GC and the FULL method proposed
by Mingers and O'Brien (1995) and another one that includes elements from the tabu search
methodology (GC-Tabu). In GC-FULL, instead of the random element selection in steps 2.a and 3.a of
Figure 5, the procedure searches for the (i, g) pair that maximizes D;, in order to make the assignment
of element i to group g. Since the construction procedures are used within a multi-start framework,
GC-Tabu utilizes two memory structures to record relevant information associated with previously

Gallego, etal. — 8

generated solutions and then applies this knowledge to the construction of new solutions. Specifically,
freq(i,J) records the number of times that elements i and j are assigned to the same group in previous
constructions and quality(i,j) records the average quality (i.e., objective function value) of the
previous constructions for which elements i and j belonged to the same group. The distance value D;g
is modified according to the information in both memory structures to favor the assignment to the same
group of pairs of elements with low frequency and high quality values.

Solutions are improved by performing a sequence of steps that are based on examining the
neighborhood of the current solution and selecting the best move to make. The definition of best
depends on the context and is an important design choice when implementing local searches. Fan et al.
(2011), for their local search, use a neighborhood definition proposed by Baker and Powell (2002). The
neighborhood consists of all possible switches (or swaps) of elements i and j belonging to different
groups. The entire neighborhood is calculated at each step and the switch that produces the largest
improvement to the objective function value is selected. That is, the method follows what it is known as
best improvement (Bl) strategy. Because, the procedure is applied as a true local search, it stops when
no improving switch is found and the resulting solution is a local maximum. An alternative to Bl is to
stop the neighborhood search as soon as an improving switch is identified. This is the so-called first
improvement (Fl) strategy. Other possibilities for neighborhood searches are those provided by LC and
LCW. We report experimental results with these four alternatives, that is, local searches defined by
swap neighborhoods with the Bl and Fl strategies, as well as LC and LCW local searches.

All neighborhood searches in the MDGP literature are based on switching (or swapping) the group
assignments of a pair of elements. This is the obvious design to preserve feasibility during the search
when tackling the variant of the MDGP for which all groups must have the same size. For the general
case, however, the neighborhood could be augmented with moves that allow transferring a single
element from its current group to another group. These moves are typically called insertions in the
literature and could be limited to only those for which the resulting solution is feasible. We have added
these moves to the LCW, Bl and Fl neighborhoods described above to create T-LCW, T-Bl and T-Fl. The
“T” in these procedures stands for “Tabu” because in addition to expanding the original neighborhoods
to include insertions, we have added a short-term tabu memory to allow the search to continue beyond
the first local optimum point. Specifically, when the local search reaches a point where no improving
moves are available, the best (according to the specific rules of the procedure) non-improving move is
selected and executed. At this point, elements that are moved from their current group to another are
not allowed to move again for tabuTenure iterations. The process terminates when maxlIter
consecutive iterations have been performed without improving the best solution found during the
search.

The construction and the improvement methods described above are combined in a straightforward
way. That is, a construction method is executed to create a trial solution to which an improvement
method is applied. The best solution found is kept and this process is performed until a time limit is
reached. Note that the improvement methods labeled BI, FI, LC and LCW have a “natural” termination
(i.e., they finish when no improving solution is found in the neighborhood of the current solution) while

Gallego, etal. — 9

the termination of their “T” counterparts (i.e., T-BIl, T-FI and T-LCW) depends on the maxIter parameter
value. Therefore, for a specified time limit, the number of constructions depends on both the choice of
the improvement method and the value of maxliter.

So far, we have assumed that all neighborhood searches under consideration start from a feasible
solution (i.e., one for which all elements are assigned and a; < |Eg| < b, for all groups) and feasibility is
maintained through the search. An element of the tabu search methodology that has not been explored
as thoroughly as others is the so-called strategic oscillation (SO), which Glover and Laguna (1997)
describe as follows:

“Strategic oscillation operates by orienting moves in relation to a critical level, as
identified by a stage of construction or a chosen interval of functional values. Such a
critical level or oscillation boundary often represents a point where the method would
normally stop. Instead of stopping when this boundary is reached, however, the rules
for selecting moves are modified, to permit the region defined by the critical level to be
crossed.”

The boundary that we intend to cross in the current context is the one defined by the feasibility of the
solutions encountered during the search. While we would like to limit the search to solutions for which
all the elements have been assigned, we would also like to explore a search space that includes solutions
for which the group cardinality restrictions may be violated. Our goal is to design a strategic oscillation
mechanism that we are able to couple with any of the construction and improvement methods
described above (i.e., LC, LCW, Bl and Fl and their tabu variants). The oscillation between feasibility and
infeasibility is defined by an integer parameter k that ranges between 0 and k,,4, and that is applied as
follows:

ag—k <|Ej| <b, +k
This definition means that when k > 0 the search is allowed to visit cardinality-infeasible solutions. To

create the oscillation pattern, the value of k is reset to one after every successful application of the
improvement method, otherwise k is increased by one unit in the manner described in Figure 6.

Repeat until search time expires
1. Construct an initial feasible solution.
2. Set k = 0 and apply an improvement method. Let s be the resulting solution.
3. Setk=1.
while (k < kpay)
4. Make solution s’ the result of applying the improvement method to solution s when
enforcinga; — k < |Eg| < by + k for all groups
5. Repair solution s’ if infeasible and apply the improvement method with k = 0 (i.e.,
with ag < |Ey| < by)
6. Ifsolution s’ is better than s then make s = s’ and set k = 1; otherwise k = k + 1

Figure 6. Strategic Oscillation

Gallego, et al. — 10

The repair mechanism consists of removing elements from groups g for which |Eg| > by and adding
elements to groups g for |Eg| < ag4. The elements are selected at random and the process continues
until the cardinality of the groups is feasible. This is the repair mechanism implemented in LSGA (Fan et
al. 2011). Step 1 in Figure 6 may be performed by applying GC-FULL or GC-Tabu. Also, solutions may be
improved (see steps 2, 4 and 5 in Figure 6) with any of the improvement methods described above.

4. Computational Experiments

This section describes the computational experiments that we performed to test the effectiveness and
efficiency of the procedures discussed above. All methods were implemented in Java SE 6 and we
solved the integer quadratic programming formulations described in Section 1 with Cplex 12.1 and
Gurobi 4.01 using a single processor for each run. All experiments were conducted on an Intel Core 2
Quad CPU Q 8300 with 6 GiB of RAM and Ubuntu 9.04 64 bits OS.

We employed 480 instances in our experimentation. This benchmark set of instances, referred to as
MDGPLIB, is available at http://www.optsicom.es/mdgp. The set is divided into three subsets:

1. RanReal — This set consists of 160 M X M matrices in which the distance values d;; are real
numbers generated using a Uniform distribution U(0,100). The number of elements M, the
number of groups G and the limits of each group a, and by are shown in Table 1. There are
20 instances for each combination of parameters (i.e., each row in Table 1), 10 for instances
with equal group size (EGS) and 10 for instances with different group size (DGS). For the 10
instances in EGS, the group size is equal for all instances and is calculated as a; = by =
M/G. For the 10 instances in DGS, the limits of each group (a4 and b,) for each instance are
generated randomly in the predefined interval. That is, the value of a, is generated in the
interval [ag”" ,ag*®*] and the value of b, is generated in the interval [bg,”i",b;"ax]. This
data set was introduced by Fan et al. (2011) with M ranging from 10 to 240. We have
generated larger instances with M = 480 and M = 960.

M G EGS DGS
ag = bg agun a;nax b;nm b;nax

10 2 3 5 5 7
12 4 3 2 3 3 5
30 5 5 6 6 10
60 6 10 7 10 10 14
120 10 12 8 12 12 16
240 12 20 15 20 20 25
480 20 24 18 24 24 30
960 24 40 32 40 40 48

Table 1. Summary of parameters to generate problem instances

Gallego, et al. — 11

2. Ranint — This set has the same structure and size as RanReal (shown in Table 1) but

distances are generated with an integer Uniform distribution U(0,100).

3. Geo — This set follows the same structure and size as the previous two, however, dij values

are calculated as Euclidean distances between pair of points with coordinates randomly

generated in [0,10]. The number of coordinates for each point is generated randomly in the
2 to 21 range. Glover et al. (1998) introduced this generator for the MDP.

In our first experiment we attempt the solution of some of the problem instances by means of applying

the commercial solvers Cplex 12.1 and Gurobi 4.01 to the integer quadratic programming formulations

of MDGP1 and MDGP2 given in Section 1. For this experiment we employed 48 instances, one from
each subset (RanReal, Ranint and Geo), type (EGS and DGS) and size (M = 10 to M = 960).

Integer Program Cplex Output
nz rows cols LB uB gap time nodes
Geo_n010_ss_01.txt 40 12 20 3660.67 3660.67 0% 0.64 503
Geo_n012_ss_01.txt 96 16 48 716.46 716.46 0% 45.27 701993
Geo_n030_ss_01.txt 300 35 150 13776.34 60354.76 77% 1802.55 5291729
Geo_n060_ss_01.txt 720 66 360 45374.32 268663.1 83% 1800.61 661408
Geo_n120_ss_01.txt 2400 130 1200 99906.5 1044060.53 90% 1800.81 10389
Geo_n240_ss_01.txt 5760 252 2880 185973.83 2280971.91 92% 1811.05 149
Geo_n480_ss_01.txt 19200 500 9600 - - - - -
Geo_n960_ss_01.txt 46080 984 23040 - - - - -
RanInt_n010_ss_01.txt 40 12 20 1292.00 1292.00 0% 0.03 225
Ranint_n012_ss_01.txt 96 16 48 985.00 985.00 0% 25.51 398594
Ranint_n030_ss_01.txt 300 35 150 5324.00 17084.75 69% 1802.57 5511470
Ranint_n060_ss_01.txt 720 66 360 18408.00 83352.74 78% 1800.77 806515
Ranint_n120_ss_01.txt 2400 130 1200 40577.00 355806.92 89% 1800.84 16140
Ranint_n240_ss_01.txt 5760 252 2880 129877.00 1426655.06 91% 1811.47 130
Ranlnt_n480_ss_01.txt 19200 500 9600 - - - - -
Ranint_n960_ss_01.txt 46080 984 23040 - - - - -
RanReal_n010_ss_01.txt 40 12 20 1427.85 1427.85 0% 0.03 221
RanReal_n012_ss_01.txt 96 16 48 956.43 956.43 0% 25.82 398022
RanReal_n030_ss_01.txt 300 35 150 5503.12 16982.96 68% 1802.63 5664732
RanReal_n060_ss_01.txt 720 66 360 18164.17 82653.29 78% 1800.77 813849
RanReal_n120_ss_01.txt 2400 130 1200 42047.6 352947.83 88% 1800.24 16368
RanReal_n240_ss_01.txt 5760 252 2880 128619.53 1424593.19 91% 1812.2 177
RanReal_n480_ss_01.txt 19200 500 9600 - - - - -
RanReal_n960_ss_01.txt 46080 984 23040 - - - - -

Table 2. Cplex 12.1 results of MDGP1 formulation on EGS instances

Tables 2 and 3 report, for each instance the number of rows (rows), columns (cols), and nonzeroes (nz)

of the integer program, the number of nodes generated in the branch and bound tree (nodes), the CPU

Gallego, et al. — 12

time in seconds (time), the lower bound (LB), the upper bound (UB) and the gap (gap). The gap is
computed as the upper bound minus the lower bound (best solution found) —both returned by the
solver when the time limit is reached— divided by the upper bound and multiplied by 100. We limit
each solver run to at most 1800 seconds of CPU time.

Integer Program Cplex Output

File name nz rows cols LB UB gap time nodes

Geo_n010_ds_01.txt 60 14 20 3864.69 3864.69 0% 0.72 912
Geo_n012_ds_01.txt 144 20 48 807.68 807.68 0% 93.21 1433717
Geo_n030_ds_01.txt 450 40 150 14358.40 60152.22 76% 1803.38 8434509
Geo_n060_ds_01.txt 1080 72 360 48163.77 267789.57 82% 1801.18 1481547
Geo_n120_ds_01.txt 3600 140 1200 108971.98 1042936.21 90% 1800.79 20729
Geo_n240_ds_01.txt 8640 264 2880 190288.26 2291376.02 92% 1826.76 246
Geo_n480_ds_01.txt 28800 520 9600 - - - - -
Geo_n960_ds_01.txt 69120 1008 23040 - - - - -
Ranint_n010_ds_01.txt 60 14 20 1325.00 1325.00 0% 0.03 304
Ranint_n012_ds_01.txt 144 20 48 1059.00 1059.00 0% 47.08 739027
Ranint_n030_ds_01.txt 450 40 150 5607.00 17064.49 67% 1803.21 8539329
Ranint_n060_ds_01.txt 1080 72 360 19080.00 83421.05 77% 1801.20 1469352
Ranint_n120_ds_01.txt 3600 140 1200 44589.00 355761.49 87% 1800.82 30723
Ranint_n240_ds_01.txt 8640 264 2880 137150.00 1432488.61 90% 1824.05 311
Ranint_n480_ds_01.txt 28800 520 9600 - - - - -
Ranint_n960_ds_01.txt 69120 1008 23040 - - - - -
RanReal_n010_ds_01.txt 60 14 20 1437.81 143781 0% 0.03 319
RanReal_n012_ds_01.txt 144 20 48 1050.35 105035 0% 45.75 676416
RanReal_n030_ds_01.txt 450 40 150 5595.16 17005.14 67% 1803.29 8907437
RanReal_n060_ds_01.txt 1080 72 360 18967.72 82530.84 77% 1801.19 1505282
RanReal_n120_ds_01.txt 3600 140 1200 43420.36 352789.62 88% 1800.19 31022
RanReal_n240_ds_01.txt 8640 264 2880 133756.40 1430450.46 91% 1807.11 264
RanReal_n480_ds_01.txt 28800 520 9600 - - - - -
RanReal_n960_ds_01.txt 69120 1008 23040 - - - - -

Table 3. Cplex 12.1 results of MDGP2 formulation on DGS instances

Tables 2 and 3 show that Cplex 12.1 is capable of solving only the 12 out of the 48 instances, producing a
gap = 0% for all instances with M < 12. For the remaining 36 instances, the solver produces a large
positive gap that increases with the problem size. For the largest problems (with M = 480 and
M = 960) Cplex is unable to find a single integer solution. The behavior of the solver and the associated
performance is similar in both DGS and EGS instances. Also similar are the results obtained when
applying Gurobi 4.01 to these 48 instances. The only noticeable difference in performance is Gurobi’s
longer running times and larger gaps when tackling small and medium size problems. On the other
hand, Gurobi is capable of finding at least one integer solution to problems with M = 480 and M = 960
when Cplex is not. These experiments show that the use of commercial optimization software to solve

Gallego, et al. — 13

the math programming formulation in section 1 seems to be practical only for small problems. It is
possible, however, that the math formulation could be strengthen with valid inequalities or that the
branch-and-bound process could be improved by rules and strategies that are specialized to the MDGP.
As part of this research project, we did not follow this line of thought and therefore we can’t claim that
finding optimal solutions to larger problems is not possible or practical in general.

Moving to the heuristic approaches, a series of preliminary experiments were conducted to set the
values of the key search parameters. In each experiment, we compute for each instance the overall best
solution value, BestValue, obtained by the execution of all methods under consideration. Then, for each
method, we compute the relative percentage deviation between the best solution value found by the
method and the BestValue. We report the average of this relative percentage deviation (Dev) across all
the instances considered in each particular experiment. We also report the number of instances (#Best)
for which the value of the best solution obtained by a given method matches BestValue.

With the purpose of fine-tuning our methods, we employed a training set consisting of 10 instances (5
from EGS and 5 from DGS) from each subset of instances with M = 10 to M = 240. Therefore, the
training set has a total of 180 instances, 60 RanReal, 60 from Ranint and 60 from Geo. The fine-tuning
included both finding the most effective combination of construction plus improvement and also
determining the best values for the search parameters tabuTenure, maxIter and k,,,,. All methods
were stopped using a time limit, which varied according to problem size, as specified in Table 4.

M Seconds
<60 1
120 3
240 20
480 120
960 600

Table 4. CPU time limits

The goal of the first preliminary experiment is to identify the best combination of constructive and
improvement methods. Specifically, we couple WJ and the three variants of the greedy-based
construction procedures (GC, GC-FULL and GC-Tabu) with the improvement methods LCW, Bl and Fl as
well as with their tabu counterparts (T-LCW, T-BI and T-Fl). The tabu parameters tabuTenure and
maxIter are set to 0.1M and 0.5M respectively according to the results of a preliminary experiment not
reported here for the sake of brevity. Table 5 summarizes the results, where the construction methods
are in rows and the improvement procedures in columns. The results in bold in Table 5 identify the best
construction/improvement combination with and without memory structures.

The results in Table 5 show that the best outcomes are obtained when the construction method GC is
coupled with T-LCW. This combination results in the smallest average deviation (0.13%) and the largest
number of best solutions (103) among all the combinations considered in the experiment. Moreover,
the results show that the tabu version of the improvement methods outperforms the straight local
search versions, regardless of the construction method used. For example, while GC+LCW achieves an
average percent deviation of 0.84%, GC+T-LCW's deviation is only 0.13%.

Gallego, etal. — 14

Improvement
Without memory With memory

Construction LCW BI FI T-LCW T-BI T-FI
GC Dev 0.84% 0.90% 0.89% 0.13% 0.13% 0.14%

#Best 82 81 82 103 100 99
GC-FULL Dev 0.86% 0.88% 0.87% 0.13% 0.13% 0.15%

#Best 79 82 84 99 100 97
GC-Tabu Dev 0.88% 0.91% 0.90% 0.14% 0.15% 0.16%

#Best 79 79 78 97 97 94
Wl Dev 431% 4.30% 3.69% 0.62% 0.55% 0.20%

#Best 26 28 49 57 58 94

Table 5. Construction plus improvement multi-start methods

The second preliminary experiment studies the effect of the k,,,, parameter associated with the
strategic oscillation method. In particular, building from the results of our previous experiments, we
apply the strategic oscillation procedure employing GC constructions and T-LCW improvements. For the
sake of simplicity, we refer to this procedure as SO. Figure 7 shows the Dev and #Best values for SO with
Kmax = 1, ...,6. The figure shows that SO with k,,,, = 4 obtains the largest number of best solutions
(#Best = 112) and a relatively robust average deviation value (Dev = 0.11%). Based on these results, we
choose k4 = 4 for all remaining experiments involving SO.

0.14% 114

5 2
% 5
s 012% 10 =
D -
£ 0.1% 106 S M #Best
s -4
E 0.08% 102 Er 8= Dev
g S
g 0.06% 98 §
g S
< 0.04% 9 =
1 2 3 4 5 6
K. value

Figure 7. Preliminary experiment with SO

We have obtained the parameters values through preliminary experimentation with a training set of 180
instances, which as indicated before, it consists of a subset of all available instances. To test
performance, we employ the set of 300 instances that we did not use for calibration purposes in the
preliminary experiments reported above. The experiment consists of comparing the following
procedures:

e LSGA: implemented in Java as described by Fan et al. (2011)

e LCW:implemented with random restarts as described by Weitz and Lakshminarayanan (1998)
o T-LCW: GC+T-LCW with tabuTenure = 0.1M and maxIter = 0.5M

e SO: strategic oscillation with GC restarts, T-LCW improvements and k4, = 4

Gallego, et al. — 15

The outcome of this experiment is presented in Tables 6 to 9 and in Figures 8 and 9. Results in these
tables are obtained with 240 of the 300 instances in our test set (5 EGS instances and 5 DGS instances
for M = 10 to 960). Figures 8 and 9 where built with the remaining 60 instances (30 with M = 480 and
30 with M = 960).

Tables 6 to 9 compare the performance of the four procedures listed above on the basis of the values of
Dev and #Best. In addition, we report the Score achieved by each method. As formulated by Ribero et
al. (2002), the Score for a particular set of instances is the number of methods that obtained results that
are strictly better than those obtained by the method being evaluated, and hence, the lower the Score
the better the method. The minimum Score is zero while the maximum Score is given by the product of
the number of instances in the group and the number of competing methods minus one (i.e., the one
being scored). The number of instances in each group is indicated as a reference point to interpret the
Score values. In order to make a fair comparison, all procedures were executed for the same amount of
time, which depends on the problem size, as indicated in Table 4.

Table 6 summarizes the results of the entire experiment. These results show that when considering the
three metrics of Dev, #Best and Score, both T-LCW and SO outperform the existing procedures. It is also
evident that there is a performance difference between T-LCW and SO that indicates the advantage of
the search mechanisms embedded in the SO implementation.

Method Dev #Best Score

LSGA 0.61% 82 339
LCW 1.01% 80 438
T-LCW 0.17% 141 108
SO 0.04% 192 55

Table 6. Summary of results for 240 instances

In order to provide additional insight into the information in Table 6, we calculate the performance
metrics for subsets of the 240 instances according to three different criteria. Specifically, Table 7 shows
the results by problem size; Table 8 summarizes the performance metrics according to problem type
(EGS and DGS); and Table 9 partitions the results according to data set (RanReal, Ranint and Geo).

In Table 7 we observe that differences in performance between the existing methods (LSGA and LCW)
and the proposed procedures (T-LCW and SO) increase with problem size. For instance, in the subset
with the largest instances (M = 480 & 960), SO outperforms the existing procedures by at least an
order of magnitude across all the proposed performance metrics.

Table 8 shows that T-LCW and SO obtain better results than LSGA and LCW on both type of instances
(EGS and DGS). This is an interesting result because both T-LCW and SO are designed to exploit the
MDGP2 characteristic that allows for the size of the groups to vary (see DGS results). However, they
compete well against LCW, a procedure that was originally designed to tackle instances of the MDGP1
for which the groups must have equal size (see EGS results).

Instance Size Method Dev #Best Score
M <60 LSGA 0.08% 82 77
(120 instances) | cw 0.28% 80 110
T-LCW 0.01% 107 16
SO 0.01% 106 17
M =120 & 240 LSGA 1.04% 0 119
(60 instances) LCW 1.91% 0 172
T-LCW 0.30% 19 47
SO 0.08% 41 22
M =480&960 LSGA 1.25% 0 143
(60 instances) LCW 1.58% 0 156
T-LCW 0.34% 15 45
SO 0.06% 45 16

Table 7. Results by problem size

Type Method Dev #Best Score
EGS LSGA 0.37% 43 179
(120 instances) | cw 0.41% 43 191
T-LCW 0.16% 71 57
SO 0.01% 97 25
DGS LSGA 0.85% 39 160
(120 instances) | cw 1.61% 37 247
T-LCW 0.17% 70 51
SO 0.07% 95 30

Table 8. Results by problem type

Data Set Method Dev #Best Score
RanReal LSGA 0.79% 29 111
(80 instances) |cw 1.17% 28 142
T-LCW 0.23% 40 43
SO 0.02% 71 9
Ranint LSGA 0.84% 29 111
(80 instances) |cw 1.20% 28 143
T-LCW 0.26% 38 47
SO 0.01% 75 5
Geo LSGA 0.21% 24 117
(80 instances) |cw 0.66% 24 153
T-LCW 0.01% 63 18
SO 0.08% 46 41

Table 9. Results by data set

Gallego, et al. — 16

Gallego, et al. — 17

Results in Table 9 show the summary of the performance metrics when considering each data set
(RanReal, Ranint and Geo) separately. Interestingly, the dominance that the strategic oscillation variant
exhibits in the results shown in Tables 6-8 is not present when Geo instances are isolated (as shown in
Table 9). This is the only case in which SO does not outperform all other methods, with T-LCW exhibiting
a more robust behavior. This seems to indicate that the solution space of the Geo instances is such that
it favors procedures with a relatively large number of restarts during the allotted execution time. We
point out that for a given solution time, the number of T-LCW restarts is at least an order of magnitude
larger than the SO restarts.

With the goal of supporting our conclusions about the performance of the proposed procedures, we
performed three statistical tests. First, we applied the non-parametric Friedman test for multiple
correlated samples to the best solutions obtained by each of the 4 methods. This test computes, for
each instance, the rank value of each method according to solution quality (where rank 4 is assigned to
the best method and rank 1 to the worst). Then, it calculates the average rank values for each method
across all instances. If the averages differ greatly, the associated p-value or level of significance is small.
The resulting p-value of 0.000 obtained in this experiment clearly indicates that there are statistically
significant differences among the 4 methods. The rank values produced by this test are 3.23 (SO), 3.02
(T-LCW), 2.08 (LSGA) and 1.67 (LCW).

Second, we employed the Wilcoxon test and Sign test to make a pairwise comparison of SO and T-LCW,
which consistently provide the best solutions in our experiments. The results of the Wicoxon test (with
a p-value of 0.000) determined that the solutions obtained by the two methods indeed represent two
different populations. The Sign test (with a p-value of 0.000) indicated that the solutions obtained with
SO tend to be better (i.e., larger) that those obtained with T-LCW.

An interesting feature of the strategic oscillation strategy relates to its ability to add a long term
component to the search. Typically, searches that include strategic oscillation are capable of finding
improved solutions late in the search, while maintaining an aggressive search trajectory early in the
search. In other words, when implemented carefully, the strategic oscillation strategy adds a
diversification component that complements the search intensification that is typical to procedures
based on making moves selected via a thorough exploration of effective neighborhood structures.
Figure 8 shows the progression of the average percent deviation of the best solutions found by four
methods (T-LCW, LSGA, LCW and SO) for 30 problem instances with M = 480 during 120 seconds of
search time. The deviation values are calculated against the best-known solutions and are plotted on a
logarithmic scale. Figure 9 shows a similar plot for 30 instances with M = 960 and 600-second runs.

Figure 8 and 9 show how most improvements on the best solutions are achieved early in the search (i.e.,
within 10 percent of the total search time, corresponding to 12 seconds in Figure 8 and 60 seconds in
Figure 9). After that point, LSGA and LCW stagnate, while T-LCW makes some minor additional progress
toward improving the incumbent solutions. In contrast, SO exhibits an improving trajectory throughout
the entire search horizon.

Gallego, et al. — 18

100.00%
s
8 10.00%
3
a 0,
g 1.00% ——T-LCW
Q
(3]
S 0.10% LSGA
% ﬁ\Q —h—LCW
S 0.01%
3 \ i SO
0.00% - ¥
0 12 24 36 48 60 72 8 96 108 120

Execution Time (seconds)

Figure 8. Best-solution profile for a 120-seconds run on the M = 480 instances

100.00%
c
S
= 10.00%
S
Q
S 1.00% -
= .00% ==T-LCW
Q

—

g 0.10% ¢ * LSGA
s e I
Q
g 0.01% -
g R =S50
<

0-00% T T T T T T T T T 1

0

60 120 180 240 300 360 420 480 540 600
Execution Time (seconds)

Figure 9. Best-solution profile for a 600-seconds run on the M = 960 instances

5. Conclusions

The MDGP is a difficult combinatorial optimization problem and a perfect platform to study the

effectiveness of search mechanisms. Of particular interest in our work has been testing the effect of

expanding search neighborhoods, by including additional moves, and search spaces, by allowing the

search to visit infeasible solutions. Through extensive experimentation, we have been able to determine

the benefits of adding enhanced search strategies to basic procedures. We purposefully added these

mechanisms sequentially in order to measure their effects and studied the combinations that resulted in

effective solution procedures with improved outcomes. We believe that our findings can be translated

to other settings and will help in the development of more robust searches of combinatorial spaces.

Gallego, et al. — 19

Acknowledgments

This research has been partially supported by the Ministerio de Educacion y Ciencia of Spain (Grant Ref.
TIN2009-07516) and by the University Rey Juan Carlos (in the program “Ayudas a la Movilidad 2010”).

References
Arani, T. and V. Lotfi (1989) “A three phased approach to final exam scheduling,” IIE Transactions, vol.
21, pp. 86-96.

Bhadury, J., E. J. Mighty and H. Damar (2000) “Maximizing workforce diversity in project teams: A
network flow approach,” Omega, vol. 28, pp. 143-153.

Chen, C. C. (1986) “Placement and partitioning methods for integrated circuit layout,” Ph.D.
Dissertation, EECS Department, University of California, Berkeley.

Chen, Y., Z. P. Fan, J. Ma, S. Zeng (2011) “A hybrid grouping genetic algorithm for reviewer group
construction problem”, Expert Systems with Applications, vol. 38, pp. 2401-2411.

Falkenauer, E. (1998) Genetic Algorithms for Grouping Problems, Wiley: New York.

Fan, Z. P., Y. Chen, J. Ma and S. Zeng (2011) “A hybrid genetic algorithmic approach to the maximally
diverse grouping problem”, Journal of the Operational Research Society, vol. 62, pp. 92-99.

Feo, T., O. Goldschmidt and M. Khellaf (1992) “One-half approximation algorithms for the k-partition
problem,” Operations Research, 1992, vol. 40, pp. S170-S173.

Feo, T. and M. Khellaf (1990) “A class of bounded approximation algorithms for graph partitioning,”
Networks, vol. 20, pp. 181-195.

Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer Academic Publisher: Boston.

Glover, F., C. C. Kuo and K. S. Dhir (1998) “Heuristic algorithms for the maximum diversity problem,”
Journal of Information and Optimization Sciences, vol. 19, no. 1, pp. 109-132.

Hettich S. and M. J. Pazzani (2006) “Mining for element reviewers: Lessons learned at the national
science foundation,” In: Proceedings of the KDD’06, ACM: New York, NY, pp. 862—-871.

Kral, J. (1965) “To the problem of segmentation of a program,” Information Processing Machines, vol. 2,
pp. 116-127.

Lotfi V. and R. Cerveny (1991) “A final exam scheduling package,” Journal of the Operational Research
Society, vol. 42, pp. 205-216.

Miller, J., W. Potter, R. Gandham and C. Lapena (1993) “An evaluation of local improvement operators
for genetic algorithms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 5, pp.
1340-1351.

Mingers, J. and F. A. O’Brien (1995) “Creating students groups with similar characteristics: a heuristic
approach,” Omega, vol. 23, pp. 313-321.

Gallego, et al. — 20

O’Brien, F. A. and J. Mingers (1995) “The equitable partitioning problem: a heuristic algorithm applied to
the allocation of university student accommodation,” Warwick Business School, Research Paper no.
187.

Ribeiro, C. C., E. Uchoa and R. F. Werneck (2002) “A hybrid GRASP with perturbations for the Steiner
problem in graphs,” INFORMS Journal on Computing, vol. 14, pp. 228-246.

Vasko, F. J., P. J. Knolle and D. S. Spiegel (2005) “An empirical study of hybrid genetic algorithms for the
set covering problem,” The Journal of the Operational Research Society, vol. 56, pp. 1213-1223.

Weitz, R. R. and M. T. Jelassi (1992) “Assigning students to groups: a multi-criteria decision support
system approach,” Decision Sciences, vol. 23, no. 3, pp. 746-757.

Weitz, R. R. and S. Lakshminarayanan (1996) “On a heuristic for the final exam scheduling problem,”
Journal of the Operational Research Society, vol. 47, no. 4, pp. 599-600.

Weitz, R. R. and S. Lakshminarayanan (1997) “An empirical comparison of heuristic and graph theoretic
methods for creating maximally diverse groups, VLSI design, and exam scheduling” Omega, vol. 25,
no. 4, pp. 473-482.

Weitz, R. R. and S. Lakshminarayanan (1998) “An empirical comparison of heuristic methods for creating
maximally diverse groups,” Journal of the Operational Research Society, vol. 49, no. 6, pp. 635-646.

