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The library MDPLIB 2.01 contains 770 instances classified in different sub-
sets according to their source. We consider three sets of instances depending on
the type of values in their distance matrices: Euclidean, Real, and Integer. An
extensive description of their characteristics follows.

1. Euclidean instances set. This data set consists of 160 matrices for
which the values were calculated as the Euclidean distances from randomly
generated points with coordinates in the 0 to 10 range. It collects two
subsets, namely GKD-c, and GKD-d:

- GKD-c: Duarte and Mart́ı (2007) generated these 20 matrices with 10
coordinates for each point and n = 500 and m = 50.

- GKD-d: Parreño et al. (2021) generated 70 matrices for which the val-
ues were calculated as the Euclidean distances from randomly generated
points with two coordinates in the 0 to 100 range. For each value of
n = 25, 50, 100, 250, 500, 1000, and 2000, they considered 10 instances with
m = dn/10e and 10 instances with m = 2dn/10e, totalizing 140 instances.
The main motivation of this new set is to include the original coordinates
in the instances files that unfortunately are not publicly available nowa-
days for the other subsets. In this way, researchers may represent the
solutions in line with the work in Parreño et al. (2021).

2. Real instances set. This data set consists of 140 matrices with real
numbers randomly selected according to a uniform distribution.

- MDG-a. This data set contains 60 instances. Duarte and Mart́ı (2007)
generated 40 matrices with real numbers randomly selected in [0, 10] and
called them Random Type I instances, 20 of them with n = 500 and
m = 50, and the other 20 with n = 2000 and m = 200. Parreño et al.
(2021) generated 20 additional matrices with n = 100 and real numbers
randomly selected in [0, 10] that can be solved to optimality.

1Please, cite as: Mart́ı, Duarte, and Mart́ınez-Gavara (2021), The MDPLIB
2.0 Library of Benchmark Instances for Diversity Problems, University of Valencia.
https://www.uv.es/rmarti/paper/mdp.html.
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- MDG-b. This data set contains 60 instances. Originally, Duarte and
Mart́ı (2007) created this set with 40 matrices generated with real numbers
randomly selected in [0, 1000] and called them Random Type II instances.
20 of them have n = 500 and m = 50, and the other 20 have n = 2000
and m = 200. Parreño et al. (2021) generated 20 additional matrices with
n = 100 and real numbers randomly selected in [0, 1000],

- MDG-c. Mart́ı et al. (2013) proposed this data set with very large
instances. It consists of 20 matrices with randomly generated numbers
according to a uniform distribution in the range [0, 1000], and with n =
3000 and m = 300, 400, 500 and 600.

3. Integer instances set. This data set consists of 170 instances where the
distance matrices are integer random numbers generated from an integer
uniform distribution.

- ORLIB: This is a set of 10 instances with n = 2500 and m = 1000 that
were proposed for binary problems (Beasley, 1990). The distances are
integers generated at random in [−100, 100] where the diagonal distances
are ignored.

- PI: Palubeckis (2007) generated 10 instances where the distances are
integers from a [0, 100] uniform distribution. 5 of them are generated with
n = 3000 and m = 0.5n, and 5 with n = 5000 and m = 0.5n. The density
of the distance matrix is 10%, 30%, 50%, 80% and 100%.

- SOM-a. These 50 instances were generated by Mart́ı et al. (2010) with
a generator developed by Silva et al. (2004) with integer random numbers
between 0 and 9 generated from an integer uniform distribution. The
instance sizes are such that for n = 25, m = 2 and 7; for n = 50, m = 5
and 15; for n = 100, m = 10 and 30; for n = 125, m = 12 and 37; and for
n = 150, m = 15 and 45.

- SOM-b. These 20 instances were generated by Silva et al. (2004) with
the same random generator from SOM-a. The instance sizes are such that
for n = 100, m = 10, 20, 30 and 40; for n = 200, m = 20, 40, 60 and 80; for
n = 300, m = 30, 60, 90 and 120; for n = 400, m = 40, 80, 120, and 160;
and for n = 500, m = 50, 100, 150 and 200.

- MGPO: To complement the sets above, Mart́ı et al. (2021) considered 80
large matrices with relatively low m values. Specifically, Mart́ı et al. (2021)
generate 40 instances with n = 1000 and integer numbers randomly se-
lected in [1, 100], 20 of them with m = 50 and 20 with m = 100. Similarly,
we generate 40 matrices with n = 2000 and integer numbers randomly
selected in [1, 100], 20 of them with m = 50, and 20 with m = 100.

A final note on the use of instances is its applicability to the different models.
It must be noted that some of them were introduced for the MaxSum model,
and could not be adequate for other diversity models. This is especially true in
the case of some instances in the SOM set that contain so many 0 values that all
feasible solutions have a minimum distance value of 0. The empirical analysis
in Mart́ı et al. (2021) shows that 23 instances in the SOM set have an optimal
MaxMin value of 0, and therefore if we apply a heuristic and obtain a solution
with a value of 0 in the MaxMin objective, this is not a reliable measure of
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its assessment. Researchers have to be very careful when using this set to test
other models than the classic MaxSum. This 23 instances are:

• SOM-a 36 n125 m37, SOM-a 37 n125 m37, SOM-a 38 n125 m37,

SOM-a 39 n125 m37, SOM-a 40 n125 m37, SOM-a 46 n150 m45,

SOM-a 47 n150 m45, SOM-a 48 n150 m45, SOM-a 49 n150 m45,

SOM-a 50 n150 m45.

• SOM-b 3 n100 m30, SOM-b 4 n100 m40, SOM-b 7 n200 m60,

SOM-b 8 n200 m80, SOM-b 10 n300 m60, SOM-b 11 n300 m90,

SOM-b 12 n300 m120, SOM-b 14 n400 m80, SOM-b 15 n400 m120,

SOM-b 16 n400 m160, SOM-b 18 n500 m100, SOM-b 19 n500 m150,

SOM-b 20 n500 m200.

Table 1 summarizes the library MDPLIB 2.0 for the maximum diversity
problems 2. This table shows the number of instances, type, and the range of n
and m in each subset.

Set # Instances Type Range of n Range of m

GKD-c 20
Euclidean

500 50

GKD-d 140 [25, 2000] [3, 400]

MDG-a 60 [100, 2000] [50, 200]

MDG-b 60 Real numbers [100, 2000] [50, 200]

MDG-c 20 3000 [300, 600]

ORLIB 10

Integer numbers

2500 1000

PI 10 {3000, 5000} {1500, 2500}

SOM-a 50 [25, 150] [2, 45]

SOM-b 20 [100, 500] [10, 200]

MGPO 80 [1000, 2000] [50, 100]

Total 470 [25, 5000] [2, 2500]

Table 1: MDPLIB 2.0 benchmark library for MDP.

Constrained benchmark instances

The benchmark set of instances in the constrained dispersion problem is derived
from the original MDPLIB. Specifically, Peiró et al. (2021) and Mart́ınez-Gavara
et al. (2021) select a subset of 50 instances to generate the new benchmark set.
Specifically, they are selected from three sets:

- GKD: this set was originally proposed by Glover (1989) for small-size
instances, and it was extended for medium- and large-size instances in

2without capacity and cost constraints
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Duarte and Mart́ı (2007) and Mart́ı et al. (2010), respectively. In particu-
lar, 10 instances of size 50, 10 of size 150, and 10 of size 500 are selected.

- MDG: this data set was proposed in Duarte and Mart́ı (2007) and it con-
sists of 100 matrices with real numbers randomly selected from a uniform
distribution. In particular, 10 of this set of size 500 are selected.

- SOM: this data set was created by Mart́ı et al. (2010) for the maximum
diversity problem, where the objective function is the sum of the distances.
The matrices of this set are generated with random numbers of an integer
uniform distribution between 0 and 9. In particular, 10 of them of size 50
are selected.

Capacitated Dispersion Problem. In the Capacitated Dispersion Problem
(CDP), for each selected original instance, Peiró et al. (2021) randomly generate
the capacity value of each node in the range [1, 1000]. Then, they compute the
sum of all capacities and set the minimum capacity B as this sum multiplied by a
factor ϕb of 0.2 and 0.3 respectively, thus creating two instances for each original
one. The benchmark for the Capacitated Diversity Problem thus consists in 100
instances. We named the file that contains these 100 instances, Const-(CDP).

Generalized Dispersion Problem. In the Generalized Dispersion Prob-
lem (GDP), Mart́ınez-Gavara et al. (2021) generate the capacity and cost real
numbers with a Uniform distribution. Specifically, as in the (CDP) the capacity
ci of a node i ∈ V is generated by a U(1, 1000), the fix cost ai is generated from
its capacity ci by a U(ci/2, 2 ci), and finally the variable cost bi is generated
by U(min(1, ai),max(1, ai))/100. The minimum capacity B is computed as the
sum of all capacities multiplied by a factor ϕb of 0.2 or 0.3, and the maximum
budget is computed as:

K =


ϕk

∑
i∈V

ai (GDP-f) model,

ϕk

∑
i∈V

(ai + bi ci) (GDP-v) model

where ϕk is a 0.2 or 0.3 factor (see both models in Mart́ınez-Gavara et al.
(2021)). Therefore, each original instance in the MDPLIB produces 4 instances,
thus obtaining a benchmark set of 200. We named the file that contains these
instances 200, Const-(GDP).

We finish the description of the instances for the (CDP) and (GDP), sum-
marizing the library, MDPLIB 2.0 for the constrained problems in Table 2.
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Set #inst. Type n Cap. factor (ϕb) Cost factor (ϕk)
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SOM 40 Integer 50 0.2, 0.3 0.2, 0.3

Table 2: MDPLIB 2.0 benchmark library for (CDP) and (GDP).
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