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Abstract — We describe the development and testing of a metaheuristic procedure, 

based on the scatter search methodology, for the problem of approximating the efficient 

frontier of nonlinear multiobjective optimization problems with continuous variables.  

Recent applications of scatter search have shown its merit as a global optimization 

technique for single-objective problems.  However, the application of scatter search to 

multiobjective optimization problems has not been fully explored in the literature.  We 

test the proposed procedure on a suite of problems that have been used extensively in 

multiobjective optimization.  Additional tests are performed on instances that are an 

extension of those considered classic.  The tests indicate that our extension of the basic 

scatter search framework is a viable alternative for multiobjective optimization. 

 

Keywords: Multiobjective Metaheuristics, Non-Linear Multiobjective Optimization, 

Evolutionary Multiobjective Optimization. 
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1. Introduction 

Most decision problems in the real world require the simultaneous optimization of more 

than one criterion.  That is, decision makers are not able to base their decisions on a 

single criterion in order to identify one or more attractive courses of action.  Moreover, 

real decision problems are such that often conflicting criteria are used to evaluate 

alternative solutions.  Multiobjective Programming is the branch of Mathematical 

Programming that deals with problems for which more than one objective function is 

required to evaluate the merit of alternative decisions.  Formally, the problem is stated 

as follows: 

 

( ) ( ) ( )( )
Xx

xfxfxf p

∈s.t.

,,,Max 11 K
 

where 

( )nxxxx ,,, 21 K=  are the decision variables 

X is the set of feasible solutions 

( )xfy ii =  is the ith objective function (or decision criterion) 

( )XfY =  is the objective function space 

 

Comparing alternative solutions to a given problem is one of the first difficulties 

encountered when moving from single-objective optimization to multiobjective 

optimization.  In other words, how do we know that one solution is better than another 

when performance is measured by more than one objective function value?  Given that 

the merit of a solution is represented by a vector of objective function values, it is not 

always possible to determine when a vector is strictly larger or smaller than another.  

Generally, there is no complete order in Y.  Multiobjective optimization introduces the 

concept of efficiency, developed by Vilfredo Pareto in 1896.  Essentially, efficiency 

means that a solution to a multiobjective function is such that no single objective can 

be improved without deteriorating another one.  Assuming that we want to maximize all 

objective functions, the Pareto order can be defined mathematically as: 

 

Given two points Yyy ∈′, , we say that y is preferred to y ′  if 

piyy ii ,,1K=∀′≥  and there exists at least one { }pj ,,1K∈  such that 

jj yy ′> . 

 



SSPMO — 3 — Molina, et al. 

Clearly, the Pareto order is a partial one and therefore it is not possible to select a 

solution that is preferred over all other solutions, that is, it is not possible to find “an 

optimal solution”.  Hence, the concept of optimality must be generalized in such a way 

that more than one solution can be considered ideal (optimal) in problems with multiple 

objectives.  This generalization follows from the definition of the Pareto order and is 

known as Pareto efficiency: 

 

A solution Xx ∈*  is efficient if there is no other solution Xx ∈  such 

that ( )xf  is preferred to ( )*xf  according to the Pareto order.  That is, 

Xx ∈*  is efficient if there is no solution Xx ∈  such that 

( ) ( ) pixfxf ii ,,1* K=∀≥  and at least one { }pj ,,1K∈  such that 

( ) ( )*xfxf jj > . 

 

Most multiobjective programming techniques focus on finding the set of efficient points 

(E) for a given problem or, in the case of heuristic procedures, an approximation of the 

efficient set ( Ê ).  In this paper, we describe the development and testing of a 

metaheuristic procedure for multiobjective optimization problems for which ( )xf i , for 

i = 1, …, p, are nonlinear functions and x are continuous and bounded variables.  Since 

our approach is not exact, our goal is to search for the best Ê .  Metaheuristics have 

been applied to this problem, so before discussing our proposed procedure, we review 

the approaches that are relevant to our current investigations. 

2. Metaheuristics for Multiobjective Optimization 

Most exact techniques for multiobjective optimization deal with continuous and discrete 

linear problems. The application of these techniques to complex multiobjective 

optimization problems has been considered impractical.  We refer to complex problems 

to those with nonlinearities in the objective function and/or constraints, with a large 

number of discrete variables or uncertainty in key data.  To deal with these difficulties, 

which are not unusual in real settings, researchers and practitioners have relied on 

metaheuristic procedures, as indicated in the survey articles by Ehrgott and 

Gandibleux (2000) and Jones, Mirrazavi and Tamiz (2002).   

 

Evolutionary algorithms are the most visible and common metaheuristic technique in 

the realm of multiobjective optimization.  These procedures, known as MOEA 
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(multiobjective evolutionary algorithms), dominate the multiobjective optimization 

research whose focal point is not the development of exact procedures1.  VEGA (Vector 

Evaluated Genetic Algorithm) by Schaffer (1985) has become a classic method in the 

MOEA literature.  Since the development of VEGA, many other alternative procedures 

have been developed.  One of the most complete references for MOEA is the book by 

Coello, Van Veldhuizen and Lamont (2002).  Chapter 4 (MOEA Testing and Analysis) of 

this book provides a brief description of 11 MOEA procedures, although experimental 

results for only 4 of these MOEA variants (MOGA, MOMGA, NPGA and NSGA) are 

presented.  The testing was done over a set of 6 unconstrained nonlinear multiobjective 

problems with bounded continuous variables.  These procedures plus one more (SPEA) 

were recommended as the best MOEA implementations in Van Veldhuizen and Lamont 

(2000), where brief descriptions can be found.  Zitzler, Laumanns and Thiele (2001) 

developed SPEA2, an updated version of SPEA that consists of adding (1) a fine-grained 

fitness assignment strategy, (2) a density estimation technique (which we also use in 

our work as a solution quality measurement) and (3) an enhanced archive truncation 

method. 

 

Most tabu search (Glover and Laguna, 1997) applications to multiobjective optimization 

employ the so-called independent sampling technique.  This technique is based on 

aggregating the objective functions by assigning a weight to each of them.  Each sample 

consists of solving the single-objective optimization problem that results from applying 

a given set of weights.  To obtain an approximation of the efficient frontier ( Ê ) the 

procedure must be run as many times as the desired number of points, using different 

weight values.  The performance of implementations based on independent sampling 

deteriorates as the need for generating more efficient solutions increases, since this is 

directly proportional to the number of times that the procedure must be executed.  

Tabu search implementations based on independent sampling are due to Hertz, et al. 

(1994), Dahl, et al. (1995), Gandibleux, et al. (1997), Hansen (1997), Ben Abdelaziz, et 

al. (1999), Alves and Climaco (2000), and Gandibleux and Freville (2000).  For the most 

part, these procedures do not use advanced tabu search strategies for diversification 

and intensification. 

 

The method developed by Caballero, Gandibeux and Molina (2004) is, to the best of our 

knowledge, the only tabu search implementation that employs Pareto-sampling instead 

                                                 
1 Jones, Mirrazavi and Tamiz (2002) estimate that about 70% of the metaheuristic applications to 
multiobjective optimization reported in the literature are evolutionary algorithms, while 24% are 
based on simulated annealing and only 6% are based on tabu search. 
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of independent sampling in the context of multiobjective combinatorial optimization. 

Also, this procedure, known as MOAMP (Multiobjective Metaheuristic using an Adaptive 

Memory Procedure), is the only implementation that is capable of including any solution 

visited during the search (if it qualifies) into the final approximation of the efficient 

frontier.  MOAMP separates itself from the other tabu search implementations by 

looking for efficient points with an intensification process (second phase of this 

procedure) around an initial set of efficient points (first phase of this procedure).  To 

build this initial set of efficient points, MOAMP carries out a series of linked tabu 

searches (linked means that the last point of one search becomes the initial point of the 

next search) where each point visited could be included in the final Ê .  This is achieved 

by checking the dominance criteria for each solution around its neighbourhood.  

Solutions that are not dominated are declared “possibly efficient” and are added to a list 

used to update Ê . 

 

The second phase of MOAMP exploits the proximate optimality principle (POP), which 

stipulates that good solutions at one level are likely to be found close to good solutions 

at an adjacent level.  The POP concept may be viewed as a heuristic counterpart of the 

so called Principle of Optimality in dynamic programming (see section 5.5 of Glover and 

Laguna, 1997).  The interpretation of POP within multiobjective optimization is that 

efficient points are “connected” by a curve inside the efficient set.  This is why the 

second phase of MOAMP intensifies the search around the initial set of efficient points 

found in the first phase. 

 

Our current interest and the purpose of this paper is to extend the basic scatter search 

methodology (Glover, Laguna and Martí, 2000) to tackle nonlinear multiobjective 

optimization problems. Some applications of scatter search to multiobjective 

optimization problems have been developed in recent years.  Gomes da Silva, Clímaco 

and Figueira (2004) described a scatter search method with surrogate constraints for 

solving multi-dimensional knapsacks with two criteria. Garcia, et al. (2002) applied 

scatter search to a multiobjective location problem.  Beausoleil (2005) developed MOSS 

(Multiobjective Scatter Search), a tabu/scatter search hybrid for nonlinear 

multiobjective optimization problems.  We address the differences between MOSS and 

our own scatter-tabu search hybrid in section 3.3. 
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3. Scatter Tabu Search Procedure for Multiobjective Optimization 
(SSPMO) 

Our solution method (SSPMO) consists of a scatter/tabu search hybrid that includes 

two different phases: 

 

− Generation of an initial set of efficient points through various tabu searches 

− Combination of solutions and updating of Ê  via a scatter search 

 

A detailed description of the single-objective scatter search methodology is not included 

because this information has been published widely in journal articles, book chapters, 

and conference proceedings.  For a complete description, we refer the interested reader 

to the book by Laguna and Martí (2003).  Hence, it suffices to indicate that a scatter 

search consists of constructing and then maintaining a reference set (RefSet) of 

solutions (obtained from a larger source set P) through the application of five methods: 

diversification generation, subset generation, combination, improvement, and reference 

set update. 

 

Scatter search orients its explorations systematically relative to a set of reference points 

that typically consist of good solutions obtained by prior problem solving efforts, where 

the criteria for “good” are not restricted to objective function values, and may apply to 

sub-collections of solutions rather than to a single solution, as in the case of solutions 

that differ from each other according to certain specifications.  The reference set is a 

collection of both high quality solutions and diverse solutions that are used to generate 

new solutions by way of applying a combination method.  In single-objective 

optimization, diversity is measured with reference to the solution space (i.e., diversity 

increases when solutions that have different structural properties are included in the 

reference set), whereas the aim of multiobjective metaheuristics is to find solutions that 

are diverse in the objective function space.  Deb et al. (2000) emphasize this distinction 

by stating that the necessary conditions to convert a single-objective evolutionary 

method into a multiobjective method are both assigning fitness to population members 

based on non-dominated sorting and preserving diversity among solutions of the same 

non-dominated front. The following subsections describe how our implementation deals 

with both conditions within the scatter search framework. 
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3.1 Initial Phase 

Our procedure starts with the application of the first phase of MOAMP (Caballero, 

Gandibeux and Molina, 2004).  This phase consists of linking p+1 tabu searches.  The 

first tabu search starts from an arbitrary point and attempts to find the optimal 

solution to the problem with the single objective ( )xf1 .  Let 1x  be the last point visited 

at the end of this search.  Then, a tabu search is applied again to find the best solution 

to the problem with the single-objective ( )xf 2  using 1x  as the initial solution. This 

process is repeated until all the single-objective problems associated with the p 

objectives have been solved. Then, we solve again the problem with the first objective  

( )xf1  starting from px , to finish a cycle around the efficient set. This phase yields the p 

points that approximate the best solutions to the single-objective problems that result 

from ignoring all but one objective function.  Additional efficient solutions may be found 

during this phase because all visited points are checked for inclusion in Ê . 

 

Still within the MOAMP framework, we launch several tabu searches using a global 

criterion method.  In this step, the aim is to minimize a function that measures the 

distance to the ideal point.  The ideal point maxf  is that for which each criterion i (for i 

= 1, …, p) achieves its maximum value max
if .  Similarly, the anti-ideal point minf  is 

that for which each criterion i (for i = 1, …, p) achieves its minimum value min
if .  We 

approximate maxf  and minf  with the maximum and minimum values, respectively, 

that each objective achieves in the current Ê .  Note that with all likelihood each 

objective achieves its maximum in a different point of the solution space.  Hence, the 

purpose of determining maxf  is not searching for an efficient solution in X but for an 

ideal value in the image space in order to measure the quality of solutions generated 

during this step.  This global criterion method follows the notion of compromise 

programming (Duckstein, 1984; Yu, 1973; Zeleny, 1973).  Given that the ideal point 

consists of the optimal (or best known) values of the individual objective functions, 

compromise programming assumes that it is logical for the decision maker to prefer a 

point that is closer to the ideal point over one that is farther away.  An essential element 

of compromise programming is therefore the notion of distance between points in an 

Euclidian space.  The Lq metric (1 ≤ q ≤ ∞), a generalization of the Euclidian distance 

(q = 2), is commonly used in compromise programming.  A characteristic of the Lq family 

is that a larger weight is given to the maximum deviation as q increases.  L1 and ∞L  are 
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the only linear metrics out of the entire family. ∞L  is often preferred because it has 

been shown to lead to balanced efficient solutions.  The ∞L  metric results in a min-max 

global criterion: 
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The motivation for using this metric for the global criterion tabu searches is that a 

solution x is efficient for a given set of weights w if it minimizes ( )xL∞ .  In general, a 

point that minimizes an qL  distance to maxf  is an efficient point.  The set of all points 

obtained in this way is called the compromise set.  Compromise solutions have the 

characteristic of providing a good balance among the values of the p objective functions.  

It has been shown that the best balance is achieved when using the ∞L  metric, and 

hence our choice.  MOAMP’s first phase generates random weights until InitPhase 

consecutive searches fail to produce a new efficient point in Ê .  Through 

experimentations, we have determined that the final Ê  obtained in this initial phase 

contains a diverse set of efficient points (where diversity is measured in the objective 

function space). 

 

Figure 1 shows a pseudo-code that summarizes the steps in Phase 1 of our procedure.   
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Input Parameters: InitPhase 

 

1. Generate an initial point 

2. While number of searches without change < InitPhase do 

2.1 Choose one of the p functions to optimize (or construct a compromise 

function) 

2.2 Last point visited is becomes the new initial point 

2.3 Launch a tabu eearch to optimize the selected function starting from the 

selected initial point (initial_point) 

2.4 Check if any change in the number of efficient points found 

 

Choosing the function to be optimized 

 

1. All the objective functions of the problem are selected in sequence (and the first one 

is selected again after the pth one) 

 

2. For the remaining of the search, a random vector of weights is generated and a 

compromise function is constructed 

 

Tabu Search 

 

Input Parameters: TabuIter, TabuTenure 

 

1. current_point = initial_point 

2. For TabuIter iterations do 

2.1. Generate the neighborhood of current_point. 

2.2 If any of the neighbors is non-tabu, feasible and better than the 

current_point, then stop exploring the current neighborhood and choose 

this point as the next current_point. Go to step 2.4.  

2.3  If current_point was not dominated by any of its neighbors, then add it to 

the list of efficient points 

2.4 Choose the non-tabu feasible neighbor with the best objective function 

value as the next current_point 

2.5 The former current_point is declared tabu for the next TabuTenure 

iterations 

 

Figure 1. Phase 1 Pseudo-Code 
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3.2 Scatter Search Phase 

The reference set (RefSet) is at the core of scatter search implementations.  For single-

objective problems, the RefSet contains a mixture of high-quality and diverse solutions, 

where quality is measured with reference to the single objective function and diversity is 

measured (using the Euclidian distances) in the solution space.  We have modified the 

role of RefSet to deal with the special characteristics of multiobjective optimization.  In 

particular, solution quality is measured considering p objective functions and solution 

diversity is measured in the objective function space.  Note that since most 

multiobjective optimization problems consist of conflicting objective functions, it is 

reasonable to expect that diversity in the solution space will induce diversity in the 

solution space. 

 

The main search mechanism in this phase of our procedure is the combination of 

solutions that are currently considered efficient and therefore belong to Ê .  The 

solutions to be combined are selected from the reference set, where RefSet ⊂ Ê .  RefSet 

consists of b solutions (b > p) and is initially constructed as follows: 

 

1. Select the best solution in Ê  for each of the p objective functions and add them 

to RefSet.  (Note that it is possible, but unlikely, to select fewer than p solutions 

in this step if a solution happens to be best for more than one objective 

function.) 

2. Select b-p solutions from Ê \RefSet that maximize the distance between them 

and those solutions already in RefSet.  Since the solutions are selected 

sequentially, the distance measure is updated after each selection.  Because we 

look for diversity in the objective function space, distance is measured with a 

normalized ∞L  metric. 

 

The construction of the initial RefSet reveals that in our multiobjective implementation 

of scatter search P = Ê .  This is an expanded role for P (when compared to single-

objective optimization) because it not only supports the diversification of RefSet but also 

acts as a repository of efficient solutions.  The experiments reported in section 4 show 

that efficient solutions provide enough diversification in the search, making 

unnecessary the addition of non-efficient solutions to RefSet. 
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A list of solutions that have been selected as reference points is kept to prevent the 

selection of those solutions in future iterations.  Therefore, every solution that is added 

to RefSet is also added to TabuRefSet.  The size of TabuRefSet increases as the search 

progresses because this memory function is an explicit record of past reference 

solutions.  The motivation for creating and maintaining TabuRefSet is that we would 

like to obtain a final Ê  of adequate density.  That is, we would like to encourage a 

uniform generation of points in the efficient frontier and avoid gaps that may be the 

result of generating too many points in one region while neglecting other regions.  

 

A linear combination method is used to combine reference solutions.  All pairs of 

solutions in RefSet are combined and each combination yields four new trial solutions.  

Let ix  and jx  be the reference solutions being combined, then four trial solutions kx  

are obtained with the following line search: 

 

( ) jik xxx λ−+λ= 1          λ = -1/3, 1/3, 2/3 and 4/3 

 

The selection of this combination method follows the suggestions made by Glover (1994) 

in connection with non-linear optimization of single-objective problems.  This method 

does not rely in randomization and includes both convex and non-convex combinations 

of the reference solutions.  The rational behind this choice is that it generates two non-

convex combinations and two convex ones.  Also, two of the trial solutions generated 

are close to one of the reference solutions and the other two trial solutions are close to 

the second reference solution.  Both of these characteristics make the method 

appropriate within the philosophy of the scatter search framework. 

 

Each of the new trial solutions is subjected to an improvement method.  Tabu search is 

the mechanism used to improve new trial solutions.  This is the same tabu search used 

in the initial phase (described in section 3.1).  The objective function that guides the 

search for an improved solution is the ∞L  metric with wi = 1 for i = 1, .., p.  The max
if  

and min
if  are calculated considering only the reference points ix  and jx  whose 

combination resulted in the trial point kx  currently being improved.  We set the 

weights to 1 because this drives the search to focus on the compromise area that we are 

trying to explore.  Solutions generated during this improvement phase are tested for 

possible inclusion in Ê .  Note that any addition to Ê  may cause some previously 

efficient points to become dominated and therefore expelled from the set.  Figure 2 is a 
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graphical representation of the improvement phase within the scatter search.  By 

creating the ideal point from the reference points that originated the four new trial 

solutions, the procedure attempts to find efficient points that “fill the gap” between ix  

and jx . 

 

Ideal (xi , xj)xi

xj

New trial solution

Search area

Efficient frontier

f2

f1

Compromise point
for (xi, xj)

 
Figure 2. Graphical representation of the improvement method 

 

Once all the solution pairs in RefSet are combined and the new trial solutions are 

improved, the procedure updates the reference set in preparation for the next scatter 

search iteration.  The first step in the updating process is to choose the best solutions 

according to each of the objective functions taken separately.  This is the same first step 

as in the construction of the initial reference set.  The step does not consider whether 

these efficient points belong to TabuRefSet.  The remaining b-p reference solutions are 

chosen as follows: 

 

1. For each solution x ∈ Ê \TabuRefSet, a normalized (using the range of each 

function) ∞L  distance is calculated.  The normalization is such that all distances 

are between 0 and 1.  The distance calculations involve x and all the solutions in 

TabuRefSet.  Let the minimum of these normalized distances be ( )xLmin
∞ .  This 

minimum normalized distance is used as the probability that x is declared 

eligible as a reference solution.  This is the probability of being included in the 

list of eligible solutions LES.  Hence, the larger the minimum distance between 

the candidate solution x and all the solutions in TabuRefSet the better the 
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chance for x  of being eligible as a reference solution.  A uniform random 

number is generated and if it is less than ( )xLmin
∞  then x is declared eligible. 

 

2. From the list LES, we choose sequentially the b-p solutions with largest 

minimum distance to TabuRefSet.  The distance is measured against TabuRefSet 

instead of RefSet to move away from areas that have been explored in the past 

by virtue of combining former reference points.  Also, TabuRefSet is updated 

after each selection in order to avoid choosing points that are too close to each 

other. 

 

It is important to point out that the updating procedure describe above is such that it 

attempts to find those solutions that are away from the solutions currently in 

TabuRefSet.  A probabilistic element is included to add flexibility to this process.  The 

scatter search continues until the mean value of ( )xLmin
∞  for the set of eligible solutions 

LES in step 2 above falls below a pre-specified threshold MeanDist.  The pseudo-code in 

Figure 3 summarizes the steps in the scatter search phase of our procedure. 

 

Input Parameters: MeanDist, b 
 

1. Build the list of eligible solutions LES from Ê . Compute MVL, the mean value of 

( )xLmin
∞  for LES.  If MVL is less than MeanDist, stop.  Otherwise, continue to step 2. 

2. Select the best solution in LES for each of the p objective functions and add them to 

RefSet.  Also add these solutions to TabuRefSet.  

3. Select the b-p solutions from LES\TabuRefSet that maximize the distance between 

them and the solutions in TabuRefSet.  Since the solutions are selected sequentially 

(and added to TabuRefSet), the distance measure to TabuRefSet is updated after 

each selection. 

4. Combine pairs of solutions in RefSet, where each combination yields four new trial 

solutions. 

5. Improve each of the new trial solutions, using a tabu search guided by a 

compromise function. 

Figure 3.  Pseudo-code of the scatter search phase 
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3.3 Differences between MOSS and SSPMO 

MOSS (Beausoleil, 2005) is related to SSPMO in the sense that it applies similar 

techniques to the same class of problems.  The tabu search elements included in MOSS 

create restrictions that are used to prevent moves toward solutions that are “too close” 

to previously visited solutions.  The definition of distance is adjusted during the search 

to control the number of solutions that are classified tabu during a given number of 

iterations.  These solutions are not allowed to be combined within the scatter search 

iterations.  A sequential fan candidate list strategy is used to explore solution 

neighborhoods.  A weighted linear function is used to aggregate the objective function 

values and to provide a way of choosing the best move in a neighborhood.  Long term 

memory is used to encourage diversification by giving incentives to sampling neglected 

subranges of values within the feasible range of each decision variable. 

 

Although both MOSS and SSPMO are optimization procedures based on a hybridization 

of scatter and tabu search, there are significant differences between them: 

 

1. MOSS does no utilize a guiding function to direct the tabu searches as SSPMO 

does.  Instead, MOSS employs an aspiration level criterion to avoid moving the 

search to a dominated point.  The guiding functions in SSPMO are both the 

objective functions in the problem and the ∞L compromise functions. 

 
2. The update of the RefSet in MOSS mimics the updating procedure that is 

traditional in scatter search implementations for single-objective problems.  In 

particular, a reference point may stay in the RefSet for several iterations.  In 

contrast, SSPMO updates the RefSet around the best solutions found for each 

objective function. This is achieved by adding all former reference points to 

TabuRefSet. 

 
3. The subset generation method in MOSS considers the Kramer choice function to 

create the solution subsets to be combined. In SSPMO, we take into 

consideration the characteristics of a point according to its ( )xLmin
∞  value.  This 

produces a uniform sampling of the efficient frontier and avoids the selection of 

points for a combination subset that are concentrated in the same area. 
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4. Computational Experiments 

The performance of this solution method depends on the value of three search 

parameters: InitPhase, b and MeanDist.  The InitPhase parameter controls the 

termination of the initial phase of the procedure.  In particular, the initial phase 

terminates after InitPhase consecutive searches fail to produce a new efficient point.  

The most effective value of 3 for InitPhase was determined with a series of tuning 

experiments.  The MeanDist value controls the termination of the scatter search phase.  

The parameter value is a threshold of required average distance at which potential 

reference points must be from the current RefSet.  Since the distance is normalized to 

be between 0 and 1, the MeanDist value also should be within such a range.  MeanDist 

values close to zero make the scatter search phase longer.  We employ a value of 0.1 for 

this parameter because this value provides a good balance between computational effort 

and solution quality.  The tuning experiments (using instances with p ≤ 3) also showed 

that the procedure is insensitive to specific values of b in the (2p, 3p) range.  Hence, we 

have selected b = 2p for our computational tests. 

 

We perform tests on a Pentium 4 at 2.4 GHz with three different sets of problems from 

the literature.  MOAMP, MOSS and SPEA2 were re-implemented in order to compare the 

performance of all the methods on the same computer.  The ZDT and DTLZ instances 

respectively from Zitzler, Deb and Thiele (2000) and Deb, et al. (2002) are well-known, 

standard problems in the multiobjective optimization literature.  We also use instances 

from Deb (1999) that include non-convex and disjoint efficient frontiers as well as non-

uniform distribution of efficient points.  A summary of the characteristics of the 27 

problems in our test set is shown in Table 1. 

 

Table 1. Characteristics of test problems 

Set Number of problems Number of variables Number of objectives 

Deb 18 2 2 

DTLZ 4 12 3 

ZDT 5 10 and 30 2 

 

Detailed description of the instances is not included because this information is 

available in the published articles associated with each problem set.  However, 

computer code for all the problems in our test set is available from 

julian.molina@uma.es. 
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The main goal of our experiments is to show that the proposed procedure is capable of 

creating better approximations of the efficient frontiers than existing methods for 

nonlinear multiobjective optimization.  Specifically, we are interested in comparing the 

performance of SSPMO with MOAMP, SPEA2 and MOSS.  The performance measures 

that we employ are: 

 

1. Number of points: This refers to the ability of finding efficient points.  We assume 

that the decision maker prefers more rather than fewer efficient points. 

 

2. SSC: This metric suggested by Zitzler and Thiele (1999) measures the size of the 

space covered (SSC).  In other words, SSC measures the volume of the 

dominated points.  Hence, the larger the SSC value the better. 

 

3. k-distance: This density estimation technique used by Zitzler, Laumanns and 

Thiele (2001) in connection with the computational testing of SPEA2 is based on 

the kth nearest neighbor method of Silverman (1986) .  The metric is simply the 

distance to the kth nearest efficient point.  We use k = 5 and calculate both the 

mean and the max of k-distance values.  The k-distance value is such that the 

smaller the better in terms of frontier density. 

 

4. *
1M : This metric suggested by Zitzler (1999) consists of calculating an average 

Euclidean distance (L2) between the estimated efficient frontier and the Pareto-

optimal set.  Clearly, smaller values of *
1M  indicate better approximations of the 

Pareto-optimal set. 

 

5. C(A,B): This is known as the coverage of two sets measure (Zizler and Thiele, 

1999).  C(A,B) represents the proportion of points in the estimated efficient 

frontier B that are dominated by the efficient points in the estimated frontier A. 

 

In our first experiment, we compare the solutions found with the initial phase of our 

procedure with the solutions found after the entire procedure has terminated (that is 

after the application of the scatter search phase).  This experiment attempts to measure 

the contribution of each phase of the proposed method toward the quality of the final 

approximation of the efficient set.  Table 2 shows the results of this experiment, where 

SSPMO represents the entire procedure and “Initial Phase” represents the solutions 

obtained after the first phase terminates and before the scatter search initiates. 
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Table 2. Comparison of SSPMO and Initial Phase.  Average and standard deviation 

values of five performance measures over a set of 27 problems. 

Methods N. of points k-distance 
(mean) 

k-distance 
(max) 

SSC *
1M  

SSPMO 1622.185 0.006 0.149 0.534 0.061 
 1708.762 0.007 0.188 0.287 0.160 
Initial Phase 187.370 0.086 0.280 0.314 0.262 
 314.395 0.185 0.270 0.295 0.363 
 

For each method (SSPMO and Initial Phase), Table 2 shows the average (first row) and 

the standard deviation (second row) of the 5 measurements described above.  The 

statistics are calculated over the 27 instances summarized in Table 1.  The results in 

this table indicate that the scatter search phase is a major contributor to the quality of 

the solutions obtained by the entire SSPMO.   

 

We use the same scheme to compare the four methods that we have implemented.  In 

this case, however, we have added a “Time” column to show the average and standard 

deviation of the CPU seconds associated with each procedure.  Table 3 summarizes the 

results of our second experiment. 

 

Table 3. Comparison of 4 methods for multiobjective optimization.  Average and 

standard deviation values of six performance measures over a set of 27 problems. 

Methods N. of points k-distance 
(mean) 

k-distance 
(max) 

SSC *
1M  Time 

SSPMO 1622.185 0.006 0.149 0.534 0.061 22.926 
 1708.762 0.007 0.188 0.287 0.160 25.859 
MOAMP 764.963 0.032 0.144 0.482 0.095 6.111 
 1011.204 0.036 0.119 0.291 0.236 10.467 
SPEA2 68.889 0.232 0.450 0.507 0.073 12.519 
 92.696 0.274 0.327 0.273 0.187 13.791 
MOSS 83.111 0.055 0.527 0.498 0.066 237.630 

 28.860 0.031 0.347 0.303 0.168 446.714 
 

The results in Table 3 indicate that SSPMO is capable of finding efficient frontiers with 

a large number of points and high density, as indicated by the small k-distance values.  

The number of points is not an input parameter of SSPMO.  SSPMO’s termination 

criteria allow it to find a large number of points while improving on the density of Ê .  

This is not the case for MOAMP, which can construct efficient frontiers with a fair 

amount of points but at the same time is not capable of identifying gaps that ultimately 

result in sparse areas of the frontiers.  The SSC and *
1M  values also show a superior 
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performance of SSPMO over the competing approaches.  Regarding execution time, it is 

clear that the large number of efficient points that SSPMO is able to generate makes the 

procedure slower than MOAMP and SPEA2.  The tradeoff, however, still favors SSPMO if 

we consider the time per point in the final efficient set. 

 

Another way of analyzing the results of the same experiment is to count the number of 

times that each procedure performs best according to each performance measure.  

Table 4 shows the summary of such computation. 

 

Table 4. Number of “wins” for each method over the 27 problems 

Methods N. of points k-distance 
(mean) 

k-distance 
(max) 

SSC *
1M  Time 

SSPMO 25 22 15 15 5 1 
MOAMP 2 5 11 9 15 21 
SPEA2 0 0 0 1 5 3 
MOSS 0 0 1 2 2 2 
 

The values in Table 4 confirm the merit of SSPMO according to most of the standard 

performance measures.  SSPMO is inferior to MOAMP only in execution time and 

number of best *
1M  values.  It is interesting to note that although MOAMP achieves the 

best *
1M  values 15 times, the average *

1M  value still favors SSPMO (as shown in Table 

3).  

 

The C(A,B) measure allows us to make a comparison according to the dominance of one 

efficient frontier over another.  Table 5 shows the average C(A,B) values over the entire 

set of test problems.  The values in Table 5 show that the efficient points generated by 

SSPMO tend to dominate those generated by other methods.  That is, C(SSPMO, -) > 

C(-, SSPMO) except in the case of C(MOAMP, SSPMO). 

 

Table 5. Coverage of two sets 

A/B SSPMO MOAMP SPEA2 MOSS 
SSPMO 0.000 0.160 0.261 0.197 
MOAMP 0.230 0.000 0.196 0.181 
SPEA2 0.106 0.140 0.000 0.113 
MOSS 0.115 0.111 0.093 0.000 
 

To conclude this section on computational experiments, we examine the results 

obtained by SSPMO, MOAMP (the method closest to SSPMO in terms of overall 

performance) and MOSS (a similar scatter/tabu search hybrid) on two problem 
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instances in the Deb set (see Table 1).  We chose these two problems to gain additional 

insight on the strengths and weakness of each approach.  In particular, we would like 

to address the issue of finding efficient frontiers that are dense and whose points are 

uniformly distributed.  This is possible only by including mechanisms that can detect 

gaps in the approximation and dynamically adapt the search.  First, we examine the 

second problem in section 4.1 of Deb (1999).  The approximations of the efficient 

frontier obtained by SSPMO, MOAMP and MOSS are shown in Figures 4 and 5. 
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Figure 4. SSPMO and MOAMP approximations of the efficient frontier of the second 

problem in section 4.1 of Deb (1999) 
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Figure 5. SSPMO and MOSS approximations of the efficient frontier of the second 

problem in section 4.1 of Deb (1999) 

 

Figure 4 shows that MOAMP is capable of finding solutions along the entire 

approximation of the efficient frontier but the density is not uniform.  In particular, the 

density of the frontier found by MOAMP decreases in the area that is near the optimum 

for objective function 1.  This unequal density of the frontier produces a k-distance 

measure of 0.0387 for MOAMP while SSPMO achieves a value of 0.0009 for the same 

measure.  Figure 5 shows that MOSS is not capable of identifying neglected areas of the 

efficient frontier.  This produces the gaps that are evident in Figure 5 (in particular 

toward the best solution found for objective function 2).  SSPMO, on the other hand, 

focuses on finding points along the entire frontier by closing gaps generating a total of 

1,660 points versus 99 found by MOSS.   

 

The lack of density of the approximations found by MOAMP and MOSS is more evident 

in problems with a disjoint efficient frontier.  Figure 6 and Figure 7 show the 

approximations found by SSPMO, MOAMP and MOSS for the problem described in 

section 5.1.3 of Deb (1999) with parameters q = 8 and α = 2. 
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Figure 6. SSPMO and MOAMP approximations of the efficient frontier of the problem in 

section 5.1.3 of Deb (1999) with parameters q = 8 and α = 2  
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Figure 7. SSPMO and MOSS approximations of the efficient frontier of the problem in 

section 5.1.3 of Deb (1999) with parameters q = 8 and α = 2 
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The approximations depicted in Figures 6 and 7 correspond to 128 SSPMO points, 14 

MOAMP points and 29 MOSS points.  These figures show that SSPMO visits and fills all 

the disjoint parts of the efficient frontiers because is able to detect the presence of gaps 

and react accordingly.  On the other hand, MOAMP and MOSS are able to achieve good 

approximations only on the extremes of the efficient frontier because they lack a 

mechanism to detect areas with low density and redirect the search.  

4.1 Additional Analysis of Results 

The scatter search phase of SSPMO is designed to address the main problem found in 

the approximation methods for multiobjective optimization that can be found in the 

literature.  Namely, we attempt to find dense efficient frontiers with a sufficient number 

of points that are well-distributed.  As our experiments show, some of the best methods 

in the literature either produce approximations with an insufficient number of points 

(SPEA2) or the approximations contain gaps (MOAMP) or the points are not well-

distributed (MOSS).  These deficiencies are caused by the following design problems:  

 

1. The size of Ê is pre-specified as an input parameter (SPEA2 and MOSS).  This 

entails that the analyst must estimate the number of points needed for a good 

approximation.  In the case of SPEA2, this is not an easy question to answer.  A 

small number results in sparse approximation.  A large number prevents the 

launching of a diversification phase and results in an inferior distribution of 

points in the final approximation of the efficient frontier. 

2. While diversifying criteria are included in some methods (SPEA2, MOSS and 

MOAMP), none of these methods include “filling criteria”.  That is, these methods 

include mechanisms to delete or penalize solutions too close to other solutions, 

but they don’t complement these mechanisms with others that encourage the 

search to intensify around regions with low density of points. 

3. The stopping criteria of the existing methods are not related with density 

estimations or the presence of gaps (SPEA2, MOSS and MOAMP).  This causes 

the search to either stop before neglected areas are visited or continue even after 

a well-distributed approximation has been found.  

 

SSPMO addresses these deficiencies by including three strategies: 1) the search focuses 

on filling the gaps between carefully selected reference points, 2) low density areas are 

visited by moving the search away from previous reference points, and 3) the search 
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terminates only if a measure designed to identify the largest gap falls below a specified 

value. 

5. Conclusions 

We have described the development and implementation of a metaheuristic procedure 

for the optimization of multiobjective non-linear functions.  Our procedure extends the 

application of scatter search in an innovative way by assigning new roles to the 

reference and population sets as well as by strategically including tabu search 

elements.  One of the main goals of our effort has been to test the proposed procedure 

employing all the problem instances available in the literature.  The resulting test set 

consists of 27 instances, with no more than 3 objective functions.  Since SSPMO uses 

the number of objective functions (p) to adjust the size of the reference set, investigating 

the effects on performance for large p values becomes an open question for future 

research. 

 

In order to make a valid comparison against competing procedures, we have used 

several metrics as well as graphical output (when applicable).  Our computational 

experiments show that SSPMO has merit when compared to approximation procedures 

that are also metaheuristic in nature.  Throughout the development of our procedure 

and the ensuing experimentation we have been able to identify three issues that limit 

the performance of exiting procedures.  The identification of these issues (summarized 

in section 4.1) have allowed us to not only design a more robust solution procedure but 

also explain why the procedure performs at a higher level than the ones we have used 

for comparison. 
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