
Multi-objective Memetic Optimization for the
Obnoxious p-Median Problem

J. M. Colmenar josemanuel.colmenar@urjc.es
Dept. de Ciencias de la Computación, Universidad Rey Juan Carlos, Móstoles, 28933
(Madrid), Spain

R. Martı́ rafael.marti@uv.es
Dept. de Estadı́stica e Investigación Operativa, Universidad de Valencia, Burjassot,
46100 (Valencia), Spain

A. Duarte abraham.duarte@urjc.es
Dept. de Ciencias de la Computación, Universidad Rey Juan Carlos, Móstoles, 28933
(Madrid), Spain

Abstract

Location problems have been extensively studied in the optimization literature, being
probably the p-median one of the most tackled models. The Obnoxious p-median is an
interesting variant that appears in the context of hazardous location. The aim of this
paper is to formally introduce a bi-objective optimization model for this problem, in
which a solution consists of a set of p locations, and two conflicting objectives arise.
On the one hand, the sum of the minimum distance between each client and its nearest
open facility and, on the other hand, the dispersion among facilities. Both objective
values should be kept as large as possible for a convenient location of dangerous facil-
ities.

We propose a Multi-Objective Memetic Algorithm (MOMA) to obtain high-quality ap-
proximations to the efficient front of the bi-objective obnoxious p-median problem (Bi-
OpM). In particular, we introduce efficient crossover and mutation mechanisms. Ad-
ditionally, we present several multi-objective local search methods. All the strategies
are finally incorporated in a memetic algorithm, which limits the search to the feasible
region, thus performing an efficient exploration of the solution space. Our experimen-
tation includes two well established multi-objective methods, NSGA-II and SPEA2,
favors the proposed memetic algorithm.

Keywords

Memetic algorithms, local search, multi-objective optimization, combinatorial prob-
lems, obnoxious p-median.

1 Introduction

Multi-objective optimization aims at simultaneously optimizing several conflicting ob-
jectives. For such kind of problems, a single optimal solution may not exist, and the
optimization search must deal with all the objectives at the same time. Thus, with-
out any loss of generality, we can assume the following formulation of the m-objective
maximization problem:

c©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

J. M. Colmenar, R. Martı́, A. Duarte

Maximization

y = f(x) = [f1(x), f2(x), ..., fm(x)]

Subject to

x = (x1, x2, . . . , xn) ∈ X

y = (y1, y2, . . . , ym) ∈ Y

where x is the vector of n decision variables, f is the vector of m objective functions, X
is the feasible region in the decision space, and Y is the feasible region in the objectives
space.

Comparing alternative solutions to a given problem is one of the first difficulties
encountered when moving from single-objective optimization to multi-objective opti-
mization. In other words, how do we know that one solution is better than another
when the performance is evaluated by using more than one objective function value?
Given that the merit of a solution is represented by a vector of objective function val-
ues, it is not always possible to determine when a vector is strictly larger or smaller
than another. Multi-objective optimization considers the concept of efficiency, intro-
duced by Vilfredo Pareto in 1896 (Pareto, 1896). Essentially, efficiency means that a
solution to a multi-objective function is such that no single objective can be improved
without deteriorating another one.

A solution x1 ∈ X is said to dominate another solution x2 ∈ X (denoted as x1 �
x2) if the following two conditions are satisfied when considering the maximization of
the objectives:

∀i ∈ {1, 2,,m}, fi(x1) ≥ fi(x2)

∃j ∈ {1, 2,,m}, fj(x1) > fj(x2)

If there is no solution which dominates x ∈ X it is said that x is a non-dominated
or efficient solution. The non-dominated set of the entire feasible search space X is the
Pareto Optimal Set (POS). The image of the POS in the objective space is the Pareto Opti-
mal Front (POF) of the multi-objective problem at hand. A multi-objective optimization
problem is solved when the entire POS is found.

In this paper we deal with the bi-objective Obnoxious p-median problem (Bi-OpM)
(Belotti et al., 2007), which can be formally described as follows. Let I be a set of clients,
let J be a set of facilities, let dc(i, j) be a distance function between the client i ∈ I and
the facility j ∈ J , and let df (j1, j2) be a distance function between each pair of facilities
(j1, j2 ∈ J). Any subset S of size p from the set J is a feasible solution. Facilities in S are
called open facilities, while facilities in J \S are known as closed or unopened facilities.
It is worth mentioning that in this problem each client is assigned to the nearest facility
in S.

Associated to each solution, we define two objective functions. The first one, f1,
represents the distance from clients to the obnoxious facilities and it is computed as the
sum of the minimum distances between each client and the nearest facility in S. More
formally:

f1 =
∑
i∈I

min{dc(i, j) : j ∈ S} (1)

2 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

The second objective function, f2, represents the dispersion of the facilities, which
is computed as the sum of the minimum distances from each facility to the rest of the
facilities in S. In mathematical terms:

f2 =
∑
j1∈S

min{df (j1, j2) : j2 ∈ S} (2)

As stated before, one of the goals of this paper is to propose a formal bi-objective
optimization model for the OpM problem. Hence, after all the definitions and features
of the problems detailed above, we are able to define the model in the following way:

Maximize

f1 =
∑
i∈I

min{dcij : j ∈ S}

f2 =
∑
j1∈S

min{dfj1j2 : j2 ∈ S}

Subject to
S ⊆ J
|S| = p

In this paper, we propose a Multi-Objective Memetic Algorithm (MOMA) to deal
with this problem. In particular, we introduce different multi-objective local search
approaches, as well as specific crossover and mutations operators to assure that indi-
viduals represent feasible solutions for Bi-OpM . These elements are then integrated in
our memetic implementation. One of the main objectives of this paper is to evaluate
the effect of different multi-objective local search methods in the performance of the
corresponding MOMA. We therefore compare each MOMA variant with two classi-
cal algorithms: the Non-dominated Sorting Genetic Algorithm II, NSGA-II (Deb et al.,
2002); and the Strength-Pareto Evolutionary Algorithm 2, SPEA2 (Zitzler et al., 2002).
In order to isolate the effect of the local search method, NSGA-II and SPEA2 are con-
figured with the proposed specific crossover and mutation operators. Additionally, the
set of parameters were tuned through the iterated race method (López-Ibáñez et al.,
2011).

The rest of the paper is organized as follows. In Section 2 related works are de-
scribed. In Section 3 we present three multi-objective local search methods for the Bi-
OpM problem. Section 5 is devoted to detail the internal strategies of the memetic
algorithm we propose. The experimentation and the analysis of results are detailed in
Section 6. Finally, conclusions and future work are drawn in Section 7.

2 Related works

Among the wide number of facility location problems (FLP), where both location and
customer strategies are considered, we can find the uncapacited facility location prob-
lem (UFLP) as the most studied model. The UFLP involves locating a number of facili-
ties to minimize the sum of the cost of the links between the facilities and the customers.
This problem isNP-complete, as proven in (Krarup and Pruzan, 1983). The warehouse
location problem (WLP), also known as (simple) facility or plant location problem, is
an uncapacited optimization problem, which can be modeled as a Linear Programming
problem (Balinski, 1965) or a network problem (Drezner and Hamacher, 2004; Melkote

Evolutionary Computation Volume x, Number x 3

J. M. Colmenar, R. Martı́, A. Duarte

and Daskin, 2001). It is a site-selecting location-allocation model with a min-sum ob-
jective. More precisely, given a number of potential facility or warehouse sites, the
set of costumers has to be completely serviced, minimizing the total fixed site-costs
(location) plus the total variable customer assignment costs (allocation). The WLP is
also NP-hard (Garey and Johnson, 1979; Papadimitriou and Yannakakis, 1991) and, as
such, has been in the focus of researchers interested in developing heuristic approaches
to provide high-quality solutions.

The p-median problem, pMP (Hakimi, 1964), is very similar to WLP but it presents
two different aspects: (1) there are no fixed site-costs involved and (2) the number of
opened sites, p, is no longer a decision variable, but it becomes included in the model.
For fixed values of p, the pMP can be solved in polynomial time, but it is stronglyNP-
hard for variable values of p (Current et al., 2004). Consequently, any pMP is a special
case of the general class of WLPs. Therefore, many approaches to solve the later have
been proposed to tackle the former. More recently, the pMP was approached by using
dispersion, population and equity criteria in (Batta et al., 2014).

The obnoxious p-median problem, OpM , (Church and Garfinkel, 1978; Erkut and
Neuman, 1989) deals with situations in which there exist several kinds of facilities
presenting obnoxious or semi-obnoxious features. A facility is called undesirable or
obnoxious if its influence in the surrounding area is negative. Such facilities may be
involved when dealing with hazardous materials, waste disposal, water treatment, nu-
clear power, or chemical plants. Similarly, large public facilities like airports or railway
stations, can also fall in this category. In these cases, facilities may cause lower quality
of life, having also an adverse effect on the standard living and the environment, just to
mention two associated issues (Segal, 2003). Therefore, the goal in this context is to re-
duce the negative effect of obnoxious facilities by selecting which ones will be opened
in a given scenario. As in pMP, the number of facilities to be opened, p, is included in
the model, whereas the number of clients, which correspond to towns or cities, is fixed.
A deeper description of the problem can be found in (Colmenar et al., 2016), where
the objective function is to maximize the sum of the minimum distances between each
open facility and its nearest client.

(Tralhão et al., 2010) studied the problem of distributing containers in cities by
using a multi-objective approach. The objective function consists of the total invest-
ment cost, the average distance from dwellings to the respective multi-compartment
container, the number of individuals too close to any container, and the number of
dwellings too far from the respective multi-compartment container. The authors pro-
posed a Mixed Integer Linear Program (MILP) approach to obtain an interactive deci-
sion support system, where a human expert is responsible of selecting the most suitable
solution. Their proposal is complex and it is not easily generalized to other problem
scenarios, given the complexity of the model. The same authors published later in
(Coutinho-Rodrigues et al., 2012) a simplification of their MILP approach, taking into
account only two objectives: the container investment cost and a weighted average
customer dissatisfaction.

Another work related to an obnoxious bi-objective location scenario is described in
(Fernandes et al., 2014), where a waste transfer station siting problem is taken as an ex-
ample. Again, a MILP technique is applied in order to generate the non-dominated set
of solutions for their interactive decision support system. Additionally, their approach
incorporates a multi-attribute analysis module (to allow the decision-maker to proceed
with a more detailed analysis of a subset of solutions) and selected from the first in-
teractive phase. Finally, the MILP is tested over case study of a real world problem

4 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

applied to waste transfer station siting.
Recently, a genetic algorithm (GA) was developed to deal with hazardous materi-

als (Ardjmand et al., 2016). Specifically, the cost of transportation is considered to be of
a stochastic nature. The objective function minimizes the total cost and risk of locating
facilities and transportation of hazardous materials. The proposed GA obtains results
in fast computation times, but it only considers a weighted fitness function where the
risk and cost factors are combined linearly.

The aim of this paper is to formally introduce a bi-objective optimization model for
the bi-objective Obnoxious p-median problem (Bi-OpM). As it is indicated in (Belotti
et al., 2007), the OpM does not consider the dispersion of the opened facilities, which
would result in an improved model. Then, good solutions might contain two (ore more)
very close facilities. Decision makers usually advise against this kind of solutions. For
example, when facilities represent nuclear plants it is important to separate them from
population centers. However it is also important to separate, as much as possible, the
set of nuclear plants from each other.

3 Multi-objective local search methods

The use of multi-objective local search methods has not been extensively treated in
the context of multi-objective optimization problems. As far as we know, the first
multi-objective memetic algorithm, known as the multi-objective genetic local search
(MOGLS), was presented in (Ishibuchi and Murata, 1998). However, the MOGLS used
a weighted sum function for parent selection and local search. The dominance was
only used for maintaining a population archive.

Another multi-objective memetic algorithm is described in (Cheng et al., 2009).
There, a local search is coupled with NSGA-II, but the local search is applied only to
one solution, which is selected through a weighted aggregation function generated at
random.

In (Li et al., 2013) another hybridization between NSGA-II and a local search is
presented. Specifically, the proposed method tackled the environmental power unit
commitment problem, where two objectives are considered, minimizing the emissions
and the generation costs. As shown by the authors, the solutions have more quality
than those obtained with the traditional NSGA-II.

In this work we propose three different local search algorithms for the Bi-OpM .
These three methods differ in how each one explores the neighborhood, which is the
same for the three of them. Specifically, it is based on the exchange of one selected
facility (belonging to the current solution) with one of the non-selected facilities. We
denote this operation as exchange, and it is defined as follows: given a feasible solution
S, a facility j1 ∈ S, and a facility j2 ∈ J \S, this operation produces a neighbor solution
S′ such that S′ = S \ {j1} ∪ {j2}. For the sake of clarity, we represent this operation as:

S′ ← exchange(S, j1, j2)

All local search methods are implemented by using the first improvement strategy,
which tries to reduce the computational effort to explore the whole neighborhood by
performing the first improving move encountered. In this kind of scanning, the order
in which the neighbors are inspected can have a significant influence on the efficiency
of the search. To add a diversification component in our exploration, the selection of
both facilities is performed at random.

The first local search algorithm is based on the concept of dominance since it only
performs moves that lead to solutions not dominated by the current one. Let us il-

Evolutionary Computation Volume x, Number x 5

J. M. Colmenar, R. Martı́, A. Duarte

lustrate the search strategy with an example. In Figure 1, we show a solution S in a
bi-dimensional space where f1 and f2 are the objective functions. Considering that the
Bi-OpM is a maximization problem, the position of S might define four different re-
gions in this space. Solutions in DS are strongly dominated by S since those solutions
presents lower values in both objective functions. Regions ND1 and ND2 contain so-
lutions that are not dominated by S. Specifically, any solution S1 ∈ ND1 verifies that
f1(S1) ≥ f1(S) and f2(S1) ≤ f2(S). Similarly, any solution S2 ∈ ND2 verifies that
f2(S2) ≥ f2(S) and f1(S2) ≤ f2(S). Finally, any solution in ND12 dominates S in both
objective functions.

Figure 1: Dominance regions for a given solution S.

The first improvement strategy is called Dominance-Based Local Search (DBLS). It
starts by considering a feasible solution S. Then, the method scans the neighborhood by
exchanging facilities at random. Neighbor solutions in DS are discarded. Once it finds
an improving move, i.e., a solution S′ in any region ND1, ND2, or ND12, the search
continues from S′. This strategy ends when all neighbor solutions belong to DS which
means that all of them are dominated by the current one. During the search process,
DBLS keeps an archive with the set of non-dominated solutions. Update operations of
this archive are fast when the local search finds solutions in DS since they are directly
discarded. However, the remaining operations involve the exploration of the whole
archive since the inclusion of a non-dominated solution may imply to remove one or
more solutions from it. In order to reduce the associated computing times, the update
operation is run once the DBLS ends.

The second local search follows a different approach. In particular, it considers
either f1 or f2 but not both objectives at the same time. We call it Alternate Objectives
Local Search (AOLS). The alternation of objectives is not guided by any criteria. On the
contrary, it is randomly chosen with the purpose of not biasing the way in which the
solution space is explored by the local search.

Considering again the example shown in Figure 1, AOLS accepts moves to a
neighbor solution belonging to either the region defined by ND1 ∪ND12 (when the
selected objective is f1) or to the region ND2 ∪ND12 (when the selected objective is f2).
Therefore, the search area explored with AOLS at each iteration is smaller than in the
case of DBLS. It is worth mentioning that this fact does not imply that AOLS obtains

6 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

worse results than DBLS. It is well documented in local search methods that the size of
the neighborhood is not necesarily related with the quality of the solution obtained at
the end of the process.

The third approach is based on a composite function of both objective values that
we call Normalized Weighted Sum Local Search (WSLS). Considering that both objectives
are functionally equivalents (i.e., to maximize the sum of a minimum distance), we set
the same weight for both of them. Additionally, we have normalized their values to
avoid the bias of their different orders of magnitude. Specifically, given a solution S its
corresponding evaluation is computed as:

fWS(S) =
f1(S)

maxF1
+

f2(S)

maxF2
(3)

where maxF1 and maxF2 are, respectively, the maximum value of f1 and f2 of any so-
lution visited during the search process. The main idea of WSLS is to guide the search
toward a target or ideal solution S∗ (which may or may not exist) whose coordinates
(in the bidimensional space of the Bi-OpM problem) are S∗ = (maxF1,maxF2). Fig-
ure 2 illustrates this situation by considering a solution S and a target solution S∗.
We have also represented the hyperplane Y that identifies those solutions S′ such that
fWS(S

′) = fWS(S). Therefore, the third local search is able to find solutions S′ verify-
ing fWS(S

′) > fWS(S).

Figure 2: Dominance regions for WSLS.

Considering the three proposed multi-objective local search methods from a the-
oretical point of view, we can conclude that DBLS explores the largest region, which
could drive to long computing times. On the other hand, WSLS scans solutions in a
considerably smaller region, which could mean shorter computing time but also lower
quality. However, as we will observe in the computational experience, these assump-
tions do not apply to the Bi-OpM problem.

4 Global and Local Search Balance

As it is well documented in the related literature, the balance between global (explo-
ration) and local (exploitation) search is still an open question. We found several pro-

Evolutionary Computation Volume x, Number x 7

J. M. Colmenar, R. Martı́, A. Duarte

posals in the literature to control this balance, and we would like to highlight the dis-
cussion we found in (Sudholt, 2012). There, some questions were raised: (1) how often
should be run the local search?; (2) on which solutions should be applied?; (3) how long
should the local search be run?; (4) how efficient does a local search need to be?.

MOMAs mainly focus on the first and third questions by including several param-
eters that active or inhibit strategies to deal with the questions enumerated above. In
particular, the strategy used to answer the first one is to call the corresponding local
search with a fixed frequency or, alternatively, with a given probability. It Hart (1994) it
is investigated the influence of this parameter, denoted as ν, on the performance of the
search. The experimental results showed that evolutionary algorithms with large pop-
ulations are most effective when local search is used infrequently (at least in the context
of continuous optimization). Another relevant experimental conclusion revealed that
a large local search frequency is preferred when the algorithm is not able to identify
promising regions. Finally, the authors concluded that the inclusion of elitism favored,
in general, the degree of exploitation with respect to the exploration. Therefore, in this
situation the evolutionary algorithm is usually configured with a small value of the
frequency.

In the context of the Bi-OpM problem there are two alternatives to set the value
of ν. On the one hand, to tie it to individuals (i.e., by applying the local search to im-
prove only ν individuals within the population) or to generations (i.e., by applying the
local search to improve every ν generations). We have experimentally tested that in the
Bi-OpM problem the local search procedure virtually monopolized the execution time
when it is included in a MOMA template. This fact can be partially explained by the
relatively low quality of the individuals in initial generations. In those cases, the local
search employs a large number of iterations to improve those solutions (i.e., consum-
ing practically the whole budget of evaluations allowed). This behavior is very well
documented in some metaheuristics like GRASP (Feo et al., 1994), where the largest
improvement is obtained at the beginning of the local search application. So, it is clear
that a balance between the global and local search procedure has to be incorporated to
our algorithm. Therefore, we have selected the second approach, considering the run of
the local search on a generation basis. In particular, we will manage ν as the probability
of executing the local search on the current generation of the MOMA.

The third question indicated above is related mainly with the efficiency of the local
search methods. In general, they produce high quality outcomes but consuming a con-
siderable computing time. In the context of MOMAs, this situation can either improve
or deteriorate the performance of the algorithm when considering as stopping criterion
the number of evaluations. There has been proposed several strategies to deal with this
situation. The fist one considers to abort the search before it reaches the corresponding
local optimum. The parameter that controls this strategy is called local search depth,
denoted as τ . In (Ishibuchi et al., 2003) it is described an alternative strategy to reduce
the computing time of the local search (i.e., by reducing the size of the neighborhood
to a some fixed parameter k). This strategy is equivalent to one used in the variable-
neighborhood search algorithms methodology (Mladenović and Hansen, 1997).

According to our empirical experience, the best results are obtained by adjusting
the value of the local search depth according to the fitness landscape. In order to fulfill
this requirement, we stop the search when it performs τ improvement steps. Therefore,
if the corresponding individual within the population is located in a non-promising
region, we allow the search to exhaustively scan the neighborhood to look for an im-
proving direction in the search space. On the other hand, if almost any move within the

8 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

neighborhood produces an improvement, we select a move, according to the particular
local search strategy, to save evaluations of the objective function. It is important to re-
mark that, at the end of the process, the entire population is composed by local optima
since there are not improvement moves available in the corresponding neighborhood.

It is worth mentioning that the strategies to balance global and local search de-
scribed above are not exhaustive. We have only considered those ones that are directly
applicable to the Bi-OpM problem. In particular, we only study the local search fre-
quency (ν) and the local search depth (τ) as the most typical mechanisms. These two
parameters should not be analyzed in isolation, since there is a strong dependency be-
tween both parameters. In (Sudholt, 2012) is pointed out that setting the value of a
parameter ignoring the other one often does not make much sense. Indeed, there are
some theoretical results to determine these parameters (see (Sudholt, 2012)). However,
the existence of no free lunch theorems (Igel and Toussaint, 2005) justifies the use of
an experimental setting to design an algorithm as much adapted to the optimization
problem as possible.

Then, we will investigate in Section 6.2 the influence of both, ν and τ over the
performance of the algorithm. Notice that, a good trade-off between global and local
search clearly not only depends on the particular optimization problem but also on the
evolutionary algorithm applied to it, e.g., genetic operators, population size, selection
pressure, or the mutation rate (Sudholt, 2012).

5 Multi-objective Memetic Algorithm

Multi-objective programming techniques focus on finding the set of efficient solutions
or Pareto Optimal Set for a given problem or, in the case of heuristic procedures,
an approximation of the efficient set. In this paper, we describe a Multi-Objective
Memetic Algorithm (MOMA) for the Bi-OpM . In particular, our approach is based
on customized elements that take advantage on specific problem information. In other
words, we are not applying a generic evolutionary method that, as a black box solver,
can tackle any problem. On the contrary, we propose a tailored method to solve the
Bi-OpM in an efficient way. In order to address this goal, we propose effective and cus-
tomized mechanisms to create the initial population and to implement the crossover,
mutation, improvement, and update strategies.

In order to have an effective search, genetic operators should be able to keep the
individuals within the feasible space. Considering the nature of the Bi-OpM problem,
each individual represents a complete solution encoded in one chromosome. More pre-
cisely, each individual will store a number of p identifiers corresponding to the opened
facilities, and each gen in the chromosome stores the label that identifies a unique fa-
cility. This label is an integer value that ranges from 1 to |J |. It is worth mentioning
that the assignation of clients to facilities does not require an specific codification since
this assignation is deterministically performed (i.e., each client is assigned to the closest
facility).

The initial population P is created by considering a random generator where each
individual is formed by selecting (without repetition) p different facilities from J . The
number of individuals in P is determined by the input parameter size. The rationale
behind this is to construct a population as much diverse as possible. Therefore, this set
is not improved with any of the local search procedures described in Section 3.

Standard crossover operators may produce infeasible solutions in the tackled opti-
mization problem. For instance, a typical single-point crossover operator may produce
individuals with repetitions of a facility. To illustrate this situation, let us assume that

Evolutionary Computation Volume x, Number x 9

J. M. Colmenar, R. Martı́, A. Duarte

we have |J | = 10 and p = 4. Figure 3 shows two parents that are crossed with the typi-
cal single point implementation. As it can be seen, facility 5 is repeated in Offspring 1,
which results into an infeasible solution. Notice that in this example, Offspring 2 is a
feasible solution since the four facilities are different.

Parent 1: 1 5 8 9

Parent 2: 1 2 5 7

Offspring 1: 1 5 5 7

Offspring 2: 1 2 8 9

(Infeasible)

Figure 3: Typical single-point crossover. Offspring 1 is not a feasible solution for the
Bi-OpM problem.

In order to avoid the aforementioned situation, we have implemented a variant of
the single-point crossover based on the operator described in (Alp et al., 2003). There,
the authors distinguish between the common genes of the parents, called fixed genes,
and the non-common genes, called free genes. In their proposal, a draft individual is
generated, its fitness is computed and then a greedy selection heuristic is applied to
determine the genes that will be finally selected. In our case, we follow the strategy of
maintaining the fixed genes, but we have applied a faster implementation that does not
make use of the greedy heuristic. Algorithm 1 illustrates how our crossover operator
proceeds. Given two parents S1 and S2, it first identifies the fixed genes (Step 1) and
free genes (Step 2). Then, it initializes two offspring solutions by setting them to the set
of fixed genes (Steps 3 and 4). Finally, for each offspring, the method randomly selects
the remaining genes from the free genes list (Steps 6 and 9). The algorithm finishes
when both offspring solutions contains exactly p facilities.

Algorithm 1: Proposed Crossover operator.
1: FixG← S1 ∩ S2

2: FreeG← S1 ∪ S2 \ S1 ∩ S2

3: S′1 ← FixG
4: S′2 ← FixG
5: while (FreeG 6= ∅) do
6: s1 ← rand(FreeG)
7: S′1 ← S′1 ∪ {s1}
8: FreeG← FreeG \ {s1}
9: s2 ← rand(FreeG)

10: S′2 ← S′2 ∪ {s2}
11: FreeG← FreeG \ {s2}
12: end while
13: return (S′1, S

′
2)

If the number of fixed genes is close to p, the crossover operator may produce off-
spring solutions similar to their parents. This fact usually accelerates the convergence
of the algorithm (reducing the computing time) but reducing population diversity. On
the other hand, if the number of fixed genes is close to zero, the selection of facilities is

10 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

almost random, producing the opposite effect that the aforementioned one. As we will
describe in the computational experience, we have detected that one effect balances the
other. Therefore, there is no need to introduce an additional strategy to increase the
diversity or accelerate the convergence.

The crossover operator is applied to pairs of solutions. Each parent in the corre-
sponding pair is selected through a binary tournament operator, which randomly takes
two solutions from the entire population and returns the dominant one. In the case of
two non-dominated solutions, the method returns one of them at random. Therefore,
after applying the crossover operator, a new offspring population P ′ with the same size
than P is generated.

The mutation operator also produces feasible individuals by considering the ex-
change move described in Section 3. In particular, it selects at random a facility j1 ∈ S.
Then, according to the probability of mutation, j1 is removed from S and, simultane-
ously, a facility j2 ∈ J \ S selected also at random is incorporated in S.

The improvement strategy has a significant impact on the number of evaluations.
Then, we must be selective to apply it to a set of promising solutions which, in our case,
are the non-dominated ones. Our method extracts this set by merging P and P ′. For
the sake of clarity, we denote this set as ND ← P ∪P ′. The proposed method improves
the solutions in ND using one of the local search strategies described in Section 3,
generating a new population P ′′ with a size that could be different than size.

The update operator used in our algorithm is based on the crowding distance,
as described in the NSGA-II algorithm (Deb et al., 2002). In particular, this strategy
considers the union of P , P ′, and P ′′, sorts those solution according to the crowding
distances, and returns a number of size best ones. Before starting the next iteration P is
updated with these solutions. These solutions are also stored in a external elite archive,
E, that is processed after reaching the stopping condition of the MOMA. Finally, the
algorithm only returns the non-dominated solutions from E.

Algorithm 2 shows the main steps of the proposed MOMA. It starts by creating a
random population in Step 1. Then, it enters in the main loop until the stopping con-
dition is met (i.e., a maximum number of either evaluations or generations is reached).
Each generation corresponds to one iteration of the algorithm. After the initialization
of the population, which will be stored in P , the crossover and mutation operators
are applied in steps 3 and 4, considering the probabilities of crossover (pCx) and mu-
tation (pMut), respectively. The resulting individuals are stored in P ′. Next, we ob-
tain the non-dominated individuals of both parents and offsprings in Step 5. The local
search method receives the set of non-dominated solutions and the search parame-
ters described in Section 4 (i.e., the frequency of improvement, ν, and the depth of the
search, τ). In particular, with a probability of ν, all individuals in ND are improved
with a local search depth equal to τ (see 6). As a result, we obtain a new set called P ′′.
Then, following the strategy of the classical NSGA-II implementation, we apply the
crowding distance to reduce the number of individuals to size, which is the size of the
population introduced as a parameter in the algorithm. Then, after Step 7, the popula-
tion is updated and the non-dominated individuals of this population are stored in the
elite set E. Once the stopping condition is reached, the final step consists of processing
the solutions in E by discarding the dominated solutions (see Step 10).

6 Computational results

In order to assess the performance of the proposed MOMA, we have conducted differ-
ent experiments with two goals. On the one hand, to show the merit of the presented

Evolutionary Computation Volume x, Number x 11

J. M. Colmenar, R. Martı́, A. Duarte

Algorithm 2: Proposed Multi-Objective Memetic Algorithm (MOMA).
1: P ← InitPop(size, p)
2: while not StopCondition() do
3: P ′ ← doCrossover(pCx, P)
4: P ′ ← doMutation(pMut, P ′)
5: ND ← findNonDominated(P ∪ P ′)
6: P ′′ ← runLocalSearch(ND, ν, τ)
7: P ← reduceByCrowding(size, P ∪ P ′ ∪ P ′′)
8: E ← E ∪ findNonDominated(P)
9: end while

10: return findNonDominated(E)

strategies. On the other hand, to tune the relevant search parameters. First of all, we de-
tail the experimental setup (Section 6.1). Then, we study the influence of the frequency
and depth parameters on the performance of the local search procedures (Section 6.2).
Once we have experimentally adjusted these two parameters, we compare the three
proposed multi-objective local search procedures (Section 6.3). Finally, we compare
the best identified MOMA variants with two well-known multi-objective algorithms
(NSGA-II and SPEA2) whose parameter values were tunned using the iterated race
method (Section 6.4).

6.1 Exprimental setup

All the experiments were executed on the same computer, an Intel i5 660 processor run-
ning at 3.3 GHz with 8 Gb of RAM using GNU/Linux. In addition, all the algorithms
were coded in Java, and executed using the version 1.7 of the Java Runtime Environ-
ment.

We have considered 8 instances previously used in the related literature,
where the number of nodes ranges from 400 to 900. In order to facilitate future
comparisons, we make this set publicly available at the following URL: http://
www.optsicom.es/biopm/. Table 1 summarizes the main characteristics of the
set, where n indicates the number of nodes, |I|/|J | represents the number of
clients/facilities, and p the number of facilities required in the solution.

Instance n |I|/|J | p
pmed17-p25 400 200 25
pmed20-p50 400 200 50
pmed22-p62 500 250 62
pmed28-p75 600 300 75
pmed33-p87 700 350 87
pmed36-p100 800 400 100
pmed39-p112 900 450 112
pmed40-p225 900 450 225

Table 1: Instances generated from the OR-Library (Beasley, 1990).

Considering that one of the main objectives of the experimental comparison is
to isolate the effect of relevant parameters and/or strategies, we use the same basic
configuration for all MOMA variants. Specifically, in Table 2 we show the values for

12 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

the MOMA parameters. They were set by considering the guidelines given in (Coello
et al., 2006). In addition, it is suggested that the number of evaluations should be large
enough to ensure a good exploration. Hence, according to these parameter values de-
scribed above, it should be larger than 105. We then set this value to 106.

As we described in Section 5, we propose specific initial population, crossover,
mutation and update strategies directly tailored to the Bi-OpM problem. Therefore, all
MOMA variants use them in the basic configuration.

Parameter Value
Population size 100
Generations 1000
Crossover probability 0.7
Mutation probability 0.1

Table 2: Parameters of the global search of the MOMA.

6.2 Balancing global and local search strategies

The first set of experiments are designed to find a balance between global and local
search strategies within the proposed procedures. For the sake of brevity, we only show
MOMA results that consider the dominance-based local search (DBLS) with several
values for ν (local search frequency interpreted as a probability and τ (local search
depth). See Section 4 for further details. We have experimentally tested that the results
with the other two multi-objective local search methods are equivalents.

We consider 5 different values for each parameter to analyze their influence over
the performance. In particular, ν = {0, 0.25, 0.50, 0.75, 1}, where ν = 0 indicates that
the local search is never used, while ν = 1 means that the local search is applied on
each generation. Similarly, τ = {∞, 10, 5, 1}, where τ =∞ implies the execution of the
local search until it finds a local optimum, τ = 10 indicates that the local search stops
after 10 improvement moves, and so on until τ = 1. In order to have a fair compar-
ison, all MOMA variants are stopped after they reach either the maximum number of
generations (1000) or evaluations (106).

Table 3 shows the hyper-volume indicator (Zitzler and Thiele, 1999), Hyp., the
number of solutions in the approximate Pareto front, #Sols., the computing time, Time,
and the number of evaluations, #Evals.. These results are averaged over 30 indepen-
dent runs and 8 instances and they are normalized with respect to the best performing
algorithm in the corresponding instance. Therefore, the larger the indicator the higher
the value, being 1.0 the largest possible value.

Attending to these results, and in the case of the hypervolume indicator, for any ν
frequency value, the short-depth local search (τ = 1) always obtains better results than
the other values. Besides, given a value for the depth of the local search, the higher the
frequency of the local search, the better the hypervolume results. Therefore, in terms of
hypervolume, the best combination for the depth and frequency of the local search is
ν = 1.0 and τ = 1, which means that the local search is run in all the generations with
the shortest depth.

A similar result is obtained in terms of the number of solutions in the approximate
Pareto front. These results show that the effect of a short local search run on each
generation is able to improve the current non-dominated front increasing its width,
which also may increase the hypervolume of the front.

Evolutionary Computation Volume x, Number x 13

J. M. Colmenar, R. Martı́, A. Duarte

ν τ Hyp. #Sols. Time # Evals.
0.0 0 0.7812 0.1642 0.0409 0.0167
0.25 ∞ 0.4317 0.0127 0.8554 1

10 0.8147 0.1913 0.2472 0.2466
5 0.8485 0.227 0.1809 0.1693
1 0.9278 0.4894 0.102 0.0781

0.5 ∞ 0.424 0.0094 0.8683 1
10 0.8308 0.1685 0.41 0.4436
5 0.8809 0.2798 0.3487 0.3811
1 0.9725 0.6883 0.2089 0.2038

0.75 ∞ 0.413 0.0088 0.8434 1
10 0.841 0.1641 0.5664 0.6482
5 0.892 0.2632 0.484 0.5853
1 0.9873 0.7956 0.3359 0.3515

1.0 ∞ 0.4196 0.008 0.8507 1
10 0.8454 0.1623 0.6604 0.808
5 0.8997 0.2635 0.5997 0.7561
1 0.9937 0.8685 0.4521 0.5092

Table 3: Normalized stats for different values of local search depth parameter.

In terms of execution time and number of evaluations, the shorter the search depth,
the lower the number of evaluations and the shorter the run. In this problem, we see
that reducing the local search depth increases the quality of the solutions due to a better
balance between the global and local explorations. However, the removal of the local
search obtains the worst results in terms of hypervolume, as shown by the ν = 0.0 and
τ = 0 indicators values.

Breaking down the hypervolume results into each one of the instances in our set,
we obtain the box plots displayed in Figure 4. This representation allows us to show
how the executions are distributed. Each box contains 50% of the data, where the upper
and lower ends of the box correspond to the first and third quartile, respectively. The
line inside the box establishes the median of the considered data. Finally, the whiskers
represent the maximum and minimum value of the data. Again, it is clear that the
best results are obtained by those runs with a short local search depth (τ = 1) in all
the instances. And, among them, the best hypervolume value is obtained in the case
of ν = 1.0. For the sake of a clearer display, we have removed from the figure the
executions where τ =∞ because the hypervolume values were too low.

Therefore, the remaining experiments consider ν = 1.0 and τ = 1 for the frequency
and depth in the local search, respectively. The MOMA configured with this parameters
exhibits the best compromise between global and local search in terms of both quality
(according to the hyper-volume) and execution time.

6.3 Multi-objective local search performance

In the next experiment we compare the performance of the three multi-objective local
search methods described in Section 3 when they are included in a MOMA scheme. We
depict in Figure 5 the non-dominated front for the three local search procedures after
30 runs on each one of the studied instances. The represented Pareto fronts come from
the union (maintaining only non-dominated solutions) of each independent execution

14 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

(a) pmed17.p25 (b) pmed20.p50

(c) pmed22.p62 (d) pmed28.p75

(e) pmed33.p87 (f) pmed36.p100

(g) pmed39.p112 (h) pmed40.p225

Figure 4: Hypervolume boxplots for the combination of τ (local search depth) and ν
(local search frequency as a probability). X-axis shows the parameter values as (τ ,ν).
Evolutionary Computation Volume x, Number x 15

J. M. Colmenar, R. Martı́, A. Duarte

of the MOMA. In a first sight, it can be seen that the MOMA with DBLS and AOLS
obtain similar fronts in all instances. Additionally, these fronts widely cover the search
space since the quantity and density of those efficient sets are large enough. Notice
that we can not obtain relevant conclusions about the coverage, since none of these two
fronts dominates the other one. On the other hand, MOMA with WSLS presents a
completely different behavior. In particular, it obtains a narrower front that seems to
dominate the others in a small region close to the center of the front. This dominance
can be seen more clearly in instances pmed33.p87, pmed36.p100, pmed38.p112,
and pmed40.p225. It can be partially explained by the fact that this MOMA variant
performs a larger number of evaluations, increasing the exploitation around a located
search area. In addition, it could be also produced by the fact that WSLS is directed
toward the reference solution, which corresponds to the maximum objective values, as
explained in Section 3.

We finish the analysis of the multi-objective local search methods by evaluating the
average time of the executions by considering the same limit of function evaluations.
Table 4 shows that MOMA with DBLS is the fastest algorithm. Specifically, its com-
putation time is almost 20% and 40% better than the variant with AOLS and WSLS,
respectively.

Instance DBLS AOLS WSLS
pmed17.p25 108.13 211.82 218.80
pmed20.p50 106.10 181.04 364.16
pmed22.p62 177.33 316.21 535.63
pmed28.p75 362.02 620.92 497.59
pmed33.p87 563.38 767.19 1031.17
pmed36.p100 725.84 893.92 1676.28
pmed39.p112 1130.56 1206.04 1993.04
pmed40.p225 2152.30 2223.84 2464.50

Table 4: Time comparison.

From the results in this experiment, we cannot conclude which is the best option
because each method provides alternative features that could be interesting in different
decision-making scenarios. In particular, our experimentation showed that AOLS ob-
tains the best results in terms of hyper-volume. In addition, DBLS obtains the best re-
lation between quality (hyper-volume) and computing time. On the other hand,WSLS
is the slowest method and produces smaller hyper-volume values than the other two
strategies. However, WSLS produces high quality approximation to the Pareto front
when we look for a compromise between both objectives. Therefore, we compare the
three MOMA variants with the current state of the art in multi-objective optimization.

6.4 Comparison with classical MOEAs

Classical multi-objective algorithms usually perform well in the case of a small num-
ber of objectives, like in our case. Therefore, we compare the results of our memetic
proposals with a baseline given by classical implementations. To this aim, we have se-
lected NSGA-II (Deb et al., 2002) and SPEA2 (Zitzler et al., 2002) as the multi-objective
optimization algorithms we compare with. According to a recent survey (Sayyad and
Ammar, 2013), these two algorithms are the most used nowadays. In fact, it can be
said that the current de facto standard evolutionary algorithm for multi-objective opti-
mization is NSGA-II. This survey states that NSGA-II was used as a single algorithm in

16 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

(a) pmed17.p25 (b) pmed20.p50

(c) pmed22.p62 (d) pmed28.p75

(e) pmed33.p87 (f) pmed36.p100

(g) pmed39.p112 (h) pmed40.p225

Figure 5: Non-dominanted fronts after 30 runs for the selected instances. DBLS,AOLS
and WSLS are shown.

Evolutionary Computation Volume x, Number x 17

J. M. Colmenar, R. Martı́, A. Duarte

53% of the examined papers, positioning the algorithm as one of the most widely used
MOEAs, and obtaining very competitive results, followed by SPEA2.

In order to find the most appropriate settings for the parameters and strategies for
NSGA-II and SPEA2, we have used iRace (López-Ibáñez et al., 2011). This software
implements an iterated race procedure able to find the configuration that obtains the
best results. Its main objective is to automatically configure optimization algorithms by
finding the most appropriate settings given a set of tuning instances of an optimization
problem. In our case, we configure iRace to maximize the hypervolume.

This software package performs an off-line configuration in two phases. In the first
one, it uses a set of tuning instances representative of a particular problem to set an al-
gorithm configuration. In the second phase, the chosen algorithm configuration (i.e.,
parameter values and strategies) is used to solve unseen instances of the same problem.
The goal is to find, during the tuning phase, an algorithm configuration that maximizes
the hypervolumen over the set of instances that will be seen during the second phase.
In other words, the ultimate purpose is that the high-quality configuration of the algo-
rithm found during the tuning phase generalizes to similar but unseen instances.

Table 5 shows the configuration of iRace for both NSGA-II and SPEA2 algorithms,
corresponding to the parameters of the procedures that were tunned, and to the range
of values where iRace will perform the search. For instance, the value for the number
of generations ranges from 100 to 5000. In the case of real values we stated a precision
of two decimal digits. Besides, a number of 200 runs were executed for each algorithm
using our set of 8 instances of the problem.

Parameter Range NSGA-II result SPEA2 result
Generations (100, 5000) 2966 4998
Population (50, 250) 213 179
Mutation probability (0.100, 0.999) 0.13 0.1
Crossover probability (0.100, 0.999) 0.47 0.54
Estimated number of evaluations - 631758 894642

Table 5: Parameter optimization for NSGA-II and SPEA2 with iRace.

Table 5 shows the resulting values for each parameter of NSGA-II and SPEA2.
As seen, the results are similar for both of them in terms of probabilities of mutation,
probability of crossover, and population size. However, the number of generations
required by SPEA2 is 1.69 times larger than NSGA-II. In addition to these parameter
values, we have included in the table the estimated number of evaluations considering
that all the individuals are evaluated once on each generation. This value gives us a
measure of the global exploration computational effort.

Once these parameter values were found, we run both NSGA-II and SPEA2 algo-
rithms over the whole set of instances with the configuration provided by iRace. In or-
der to have a fair comparison, we compare these two algorithms with out three MOMA
proposals (see Table 2 for details) by considering an equivalent number of evaluations.
In particular, we limited the number of evaluations to be 630000 in our procedures.
This value is slightly lower than the estimated number of evaluations for NSGA-II, and
considerable lower than the evaluations of SPEA2. Besides, we included another con-
figuration for SPEA2 where we reduced the number of generations to 3520 (to have a
SPEA2 version equivalent to NSGA-II in terms of number of evaluations). We have
called SPEA2* to this limited version of SPEA2.

18 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

Figure 6 plots the non-dominated fronts after 30 executions for each algorithm.
As it can be seen in the figure, and with the exception of the smallest instance,
pmed17.p25, our MOMA approaches obtain fronts that clearly dominate the fronts
obtained by NSGA-II, SPEA2 and SPEA2*. In fact, the larger the problem instance, the
longer the distance between the fronts from the MOMA and the classical algorithms.

Again, WSLS fronts are smaller, but they dominate the other fronts in the central
region of the objective space in all the instances but pmed40.p225. Therefore, we can
state the same conclusions about the resulting fronts compared with DBLS and AOLS
as were discussed in Section 6.3.

Table 6 shows a comparison of the hypervolume values for the six algorithms. In
this case we do not provide normalized values (i.e., assigning 1.0 to the best method) to
facilitate future comparisons. As it can be observed in this table, our methods present
very competitive results in the set of tested instances. In fact, MOMA with WSLS,
which obtains the worst values among our proposals, is better than NSGA-II in all in-
stances but pmed17.p25. Similarly, it presents better results than SPEA2 in the largest
instances (starting with pmed28.p75, which are 5 out of the 8 we are studying).

Instance NSGA-II SPEA2 SPEA2* DBLS AOLS WSLS
pmed17.p25 8692436 8706070 8647530 8706765 8710887 8515768
pmed20.p50 9455493 9852272 9535370 10042017 10020130 9590186
pmed22.p62 10782181 11969641 11441200 12565434 12503057 11881041
pmed28.p75 8552938 9539804 9052460 10360761 10383320 9879425
pmed33.p87 8246628 9263670 8866950 10464880 10496109 9790010
pmed36.p100 9050694 10126465 9631480 11962494 11925733 11282702
pmed39.p112 7925756 9240195 8776820 11301612 11275309 10694895
pmed40.p225 7779073 8427239 8025960 10830924 10750521 9972719
Best. 0 0 0 5 3 0
Avg. Dev. 0.1771 0.1029 0.1385 0.0007 0.0025 0.0534

Table 6: Hypervolume of final non-dominated fronts. Best values are depicted in bold
font.

Overall, DBLS and AOLS obtains the best results, as indicated in the row #Best of
Table 6. DBLS obtains larger values than AOLS in 5 out of the 8 instances. This result
is important because it determines that DBLS is a better choice than AOLS under the
same computational effort, limited by the maximum number of evaluations. Therefore,
the prediction we stated in Section 6.3, about the better performance of DBLS is now
confirmed. Nevertheless, the average deviation of the hypervolume values, displayed
in row Avg. Dev. of the table, is so small between them that we can state that DBLS is
better but AOLS is really close to it.

Table 7 shows a comparison of the computation times for the six algorithms. Once
again, the MOMA variants outperform their competitors in this regard. This result can
be partially explained by the fact that NSGA-II, SPEA2, and SPEA2* executes more fre-
quently time-consuming operations such as the computation of crowding distances or
the management of elitism. As we can observe in this table, the comparison between
DBLS and AOLS favors the first one in 5 out of the 8 instances. On the other hand,
DBLS obtains faster computation times in the smaller instances, whereasAOLS works
faster in the larger ones. Nonetheless, the three MOMA approaches perform in a sim-
ilar way given the nature of their search procedures. This close computation time is

Evolutionary Computation Volume x, Number x 19

J. M. Colmenar, R. Martı́, A. Duarte

(a) pmed17.p25 (b) pmed20.p50

(c) pmed22.p62 (d) pmed28.p75

(e) pmed33.p87 (f) pmed36.p100

(g) pmed39.p112 (h) pmed40.p225

Figure 6: Non-dominanted on 30 runs. NSGA-II and SPEA2 using their iRace configu-
rations, and the rest of them limited to aproximately the same number of evaluations.

20 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

verified by the similar value obtained in the average deviation in relation to the best
computation time, as seen in the row labeled as Avg. Dev. in Table 7.

Instance NSGA-II SPEA2 SPEA2* DBLS AOLS WSLS
pmed17.p25 58.64 239.25 122.67 18.00 21.95 20.14
pmed20.p50 166.51 327.2 162.24 31.13 40.49 33.76
pmed22.p62 266.36 507.93 210.78 47.14 58.94 53.65
pmed28.p75 449.72 567.24 281.33 61.33 78.86 64.84
pmed33.p87 654.64 821.49 367.1 90.23 112.05 102.23
pmed36.p100 917.75 1247.78 475.67 145.59 123.05 129.55
pmed39.p112 991.33 1071.55 602.49 203.32 128.50 204.61
pmed40.p225 3809.53 4259.45 1706.7 381.36 282.53 339.64
Best. 0 0 0 5 3 0
Avg. Dev. 6.1876 9.8107 3.9686 0.1394 0.1622 0.1724
Evals 631758 894642 633599 630000 630000 630000

Table 7: Average execution time in seconds. Best values are depicted in bold font.

7 Conclusions and Future Work

The objective of this study has been to advance the current state of knowledge about im-
plementations of multi-objective memetic algorithms in the context of multi-objective
combinatorial optimization. According to the number of publications, this field has
not received as much attention as its continuous counterpart. In this paper we under-
take to study the multi-objective optimization on the Obnoxious p-median problem,
Bi-OpM , which optimizes two conflicting objectives. On the one hand, maximizing the
sum of the distances to the nearest client to each obnoxious facility and, on the other
hand, maximizing the dispersion of obnoxious facilities. To this aim, we propose a
multi-objective memetic algorithm (MOMA) hybridized with three different improve-
ment strategies. The first one, called dominance-based local search, DBLS, performs
moves toward non-dominated solutions. The second one, AOLS, randomly selects one
of the objectives to determine if the new solution improves the current one. Finally, the
third approach combines the values of both objectives using a normalized weighted
function, and we call it normalized weighted sum local search, WSLS. We addition-
ally investigated the balance between global and local exploration. In particular, each
multi-objective local search is configured with two parameters: frequency of applying
the local search and depth of the corresponding local search. Finally, we introduced
straightforward adaptations for crossover and mutation operators (originally desig-
nated for theOpM), that maintains the algorithm inside the space of feasible solutions,
thus making the search more efficient.

In the extensive experimentation, we have studied a set of problem instances gen-
erated from the well known OR Library. Firstly, we have analyzed the balance between
global and local search procedures by measuring the effect of their parameters over the
performance of the search. Then, we have studied the influence of the three local search
methods when considering non-dominated solutions, hypervolume and computation
time. DBLS and AOLS obtained wider approximation of Pareto fronts, while WSLS
obtained the best compromise solutions.

Next, we compared the performance of the MOMA approaches with the classical
multi-objective algorithms NSGA-II and SPEA2, whose parameters were tuned using

Evolutionary Computation Volume x, Number x 21

J. M. Colmenar, R. Martı́, A. Duarte

an iterated race procedure. All the classical and the MOMA algorithms shared the
same basic configuration. Our experimentation disclosed that the MOMA approaches
obtained better non-dominated solutions, better hypervolume values and spent less
execution time, which averages an 80% of savings for the same number of evaluations.

As a conclusion, the MOMA approach seems to be a better heuristic for both qual-
ity of the solutions and execution time in this problem. The specific selection of the
local search will finally depend on the decision maker. If a wide range of solutions is
required, DBLS and AOLS are the best choices, because they provide a higher num-
ber of solutions, many of them close to higher values for the objective functions. On
the contrary, if the aim is to find out solutions with a good compromise between both
objectives, the WSLS is the best choice.

As a future work, we will tackle related problems to take advantage of the perfor-
mance of the memetic approach. In addition, we will study parallelization schemes for
larger problem instances.

Acknowledgements

This research has been partially supported by the Ministerio de Economa y Competi-
tividad of Spain (Grant Refs. TIN2015-65460-C2 and TIN2014-54806-R).

References
Alp, O., Erkut, E., and Drezner, Z. (2003). An efficient genetic algorithm for the p-median prob-

lem. Annals of Operations Research, 122(1-4):21–42.

Ardjmand, E., II, W. A. Y., Weckman, G. R., Bajgiran, O. S., Aminipour, B., and Park, N. (2016).
Applying genetic algorithm to a new bi-objective stochastic model for transportation, location,
and allocation of hazardous materials. Expert Systems with Applications, 51:49 – 58.

Balinski, M. (1965). Integer programming: Methods, uses, computation. Mgt. Sci., 12:253–313.

Batta, R., Lejeuneb, M., and Prasad, S. (2014). Public facility location using dispersion, popula-
tion, and equity criteria. EJOR, 234(3):819–829.

Beasley, J. E. (1990). OR-Library: distributing test problems by electronic mail. Journal of the
Operational Research Society, 41(11):1069–1072.

Belotti, P., Labbé, M., Maffioli, F., and Ndiaye, M. (2007). A branch-and-cut method for the
obnoxious p-median problem. 4OR, 5(4):299–314.

Cheng, H.-C., Chiang, T.-C., and Fu, L.-C. (2009). Multiobjective job shop scheduling using
memetic algorithm and shifting bottleneck procedure. In Computational Intelligence in Schedul-
ing, 2009. CI-Sched ’09. IEEE Symposium on, pages 15–21.

Church, R. and Garfinkel, R. (1978). Locating an obnoxious facility on a network. Trans. Sci.,
12(2):107–118.

Coello, C. A. C., Lamont, G. B., and Veldhuizen, D. A. V. (2006). Evolutionary Algorithms for
Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

Colmenar, J., Greistorfer, P., Martı́, R., and Duarte, A. (2016). Advanced greedy randomized
adaptive search procedure for the obnoxious p-median problem. European Journal of Opera-
tional Research, pages –.

Coutinho-Rodrigues, J., Tralhão, L., and Alçada-Almeida, L. (2012). A bi-objective modeling
approach applied to an urban semi-desirable facilitylocation problem. EJOR, 223(1):203213.

22 Evolutionary Computation Volume x, Number x

MOMA for the Obnoxious p-Median Problem

Current, J., Daskin, M., and Shilling, D. (2004). Discrete network location models. In Drezner,
Z. and Hamacher, H. W., editors, Facility Location: Applications and Theory, Springer series in
operations research, chapter 3, pages 83–120. Springer Science & Business Media.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197.

Drezner, Z. and Hamacher, H. (2004). Facility Location: Applications and Theory. Springer.

Erkut, E. and Neuman, S. (1989). Analytical models for locating undesirable facilities. EJOR,
40(3):275–291.

Feo, T., Resende, M., and Smith, S. (1994). A greedy randomized adaptive search procedure for
maximum independent set. Operations Research, 42:860–878.

Fernandes, S., Captivo, M., and Clmaco, J. (2014). A dss for bicriteria location problems. Decision
Support Systems, 57(1):224–244. cited By 6.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP–Com-
pleteness. W.H. Freeman and Co., New York.

Hakimi, S. (1964). Optimum locations of switching centers and the absolute centers and medians
of a graph. Ops Res., 12(3):450–459.

Hart, W. E. (1994). Adaptive Global Optimization with Local Search. PhD thesis, La Jolla, CA, USA.
UMI Order No. GAX94-32928.

Igel, C. and Toussaint, M. (2005). A no-free-lunch theorem for non-uniform distributions of target
functions. Journal of Mathematical Modelling and Algorithms, 3(4):313–322.

Ishibuchi, H. and Murata, T. (1998). A multi-objective genetic local search algorithm and its
application to flowshop scheduling. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 28(3):392–403.

Ishibuchi, H., Yoshida, T., and Murata, T. (2003). Balance between genetic search and local search
in memetic algorithms for multiobjective permutation flowshop scheduling. Trans. Evol. Comp,
7(2):204–223.

Krarup, J. and Pruzan, P. M. (1983). The simple plant location problem: Survey and synthesis.
European Journal of Operational Research, 12(1):36 – 81.

Li, Y.-F., Pedroni, N., and Zio, E. (2013). A memetic evolutionary multi-objective optimiza-
tion method for environmental power unit commitment. Power Systems, IEEE Transactions
on, 28(3):2660–2669.

López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., and Birattari, M. (2011). The irace package,
iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004,
IRIDIA, Université Libre de Bruxelles, Belgium.

Melkote, S. and Daskin, M. S. (2001). An integrated model of facility location and transportation
network design. Transp. Res. Part A, 35:515–538.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Comput. Oper. Res.,
24(11):1097–1100.

Papadimitriou, C. and Yannakakis, M. (1991). Optimization, approximation and complexity
classes. J. of Computer and System Sciences, 43:425–440.

Pareto, V. (1896). Cours D´Economie Politique. Vols. I and II. F. Rouge, Lausanne, Switzerland.

Sayyad, A. and Ammar, H. (2013). Pareto-optimal search-based software engineering (posbse):
A literature survey. In Realizing Artificial Intelligence Synergies in Software Engineering (RAISE),
2013 2nd International Workshop on, pages 21–27.

Evolutionary Computation Volume x, Number x 23

J. M. Colmenar, R. Martı́, A. Duarte

Segal, M. (2003). Placing an abnoxious facility in geometric networks. Nordic J. of Computing,
10(3):224–237.

Sudholt, D. (2012). Handbook of Memetic Algorithms, chapter Parametrization and Balancing Local
and Global Search, pages 55–72. Springer Berlin Heidelberg, Berlin, Heidelberg.

Tralhão, L., Coutinho-Rodrigues, J., and Alçada-Almeida, L. (2010). A multiobjective modeling
approach to locate multi-compartment containers for urban-sorted waste. Waste Management,
30(12):2418 – 2429.

Zitzler, E., Laumanns, M., and Thiele, L. (2002). SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm for Multiobjective Optimization. In Giannakoglou, K. et al., editors,
Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems
(EUROGEN 2001), pages 95–100. International Center for Numerical Methods in Engineering
(CIMNE).

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Computation,
3(4):257–271.

24 Evolutionary Computation Volume x, Number x

