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Abstract 

Different methodologies have been introduced in recent years with the aim of 
approximating unknown functions.  Basically, these methodologies are general 
frameworks for representing non-linear mappings from several input variables to 
several output variables.  Research into this problem occurs in applied mathematics 
(multivariate function approximation), statistics (nonparametric multiple regression) 
and computer science (neural networks).  However, since these methodologies have 
been proposed in different fields, most of the previous papers treat them in isolation, 
ignoring contributions in the other areas.  In this paper we consider five well known 
approaches for function approximation.  Specifically we target polynomial 
approximation, general additive models (Gam), local regression (Loess), multivariate 
additive regression splines (Mars) and artificial neural networks (Ann). 
 
Neural networks can be viewed as models of real systems, built by tuning parameters 
known as weights.  In training the net, the problem is to find the weights that optimize 
its performance (i.e. to minimize the error over the training set).  Although the most 
popular method for Ann training is back propagation, other optimization methods based 
on metaheuristics have recently been adapted to this problem, outperforming classical 
approaches.  In this paper we propose a short term memory tabu search method, 
coupled with path relinking and BFGS (a gradient-based local NLP solver) to provide 
high quality solutions to this problem.  The experimentation with 15 functions 
previously reported shows that a feed-forward neural network with one hidden layer, 
trained with our procedure, can compete with the best-known approximating methods.  
The experimental results also show the effectiveness of a new mechanism to avoid 
overfitting in neural network training. 
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1. Introduction 
The term function approximation encompasses a wide range of methodologies from 
computer science to statistics.  It basically refers to adjusting a model that represents a 
mapping (generally non-linear) from several input variables to one or more output 
variables.  In this paper we restrict our attention to mappings with one output variable.  
In mathematical terms, the goal is to model the dependence of the response variable y 
on one or more predictor variables x1, …, xn from a set of data observations E={yi, x1i, …, 
xni} (i = 1,…, T ) generated with an unknown function f.  The aim is to use the data to 
construct a function g that approximates f over the domain of interest. 
 
In the process of adjusting the model (constructing g), the problem is to find the values 
of the parameters p that minimize the error across the set E of input/output 
observations (named training set).  The error measure is typically the root mean 
squared difference between the predicted output g(x,p) and the actual output value f(x) 
for all the elements x in E (RMSE); therefore, the adjusting process can be viewed as an 
unconstrained nonlinear optimization problem, where the decision variables are the 
parameters and the objective is to reduce the fitting error error(E,p) according to the 
expression: 
 

E

pxgxf
pEerrorMin Ex

p

∑
∈

−
=

2)),()((
),(  

 
The main goal in the fitting process is to obtain a model which makes good predictions 
for new inputs (i.e. to provide good generalization).  Therefore g must represent the 
systematic aspects of E rather than its specific details.  The standard way to measure 
the generalization provided by g consists of considering a second set of points called 
validation set V, in the domain of f.  Once the fitting has been performed and the 
parameters have been set to minimize the error in E (p=p*), the error across V, 
error(V,p*), is computed.  The model must exhibit a good fit between the target f-values 
and the output (prediction) in the E as well as in V.  If the RMSE in V is significantly 
higher than that in E, we will say that the model has over-fitted the data. 
 
In this article we present some methods that may be used to identify the relationship 
between the input data and the outcome. These are selected from the more flexible 
statistical and mathematical methods.  Specifically, in the second section we consider a 
first approach to the prediction problem called polynomial approximation and we 
illustrate the over-fitting problem.  Section three is devoted to neural networks and our 
proposal for training (adjusting the net’s parameters) and over-fitting prevention.  In 
section four we target three modern statistical models, general additive models (Gam), 
local regression (Loess), and multivariate additive regression splines (Mars).  The paper 
finishes with a computational comparison of 15 instances of the five models previously 
introduced and the associated conclusions. 
 
2. Polynomial Approximation 
A first approach to the approximation problem is the well-known polynomial fitting.  If 
we want to approximate a two-variable function y=f(x1, x2) with a polynomial of order 
two we will use the following expression: 
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The coefficients are computed with the least square method to minimize the RMSE 
across the set of observations E.  As expected, the larger the order of the polynomial the 
better the fitting.  On the other hand, when we are trying to approximate an unknown 
mapping with an expression with a large number of independent terms, in particular a 
polynomial, we can find that many of them do not have a great effect on the prediction 
of the dependent variable.  Therefore, in this context it can be desirable to choose a 
subset that parsimoniously predicts the dependent variable from among such terms or 
variables. 
 
There are different methods for selecting the best subset of variables in order to obtain 
the adequate regression model.  Specifically, we have considered the implementation of 
the leaps method given in the well-known R software package to select those terms that 
are relevant in the approximation from a generic polynomial.  The R-function leaps 
evaluates all possible models and produces the best subset of independent variables 
based on the choice of a non-monotonic criterion.  We have considered the R-squared 
criterion which is equivalent to the RMSE described above. 
 
As mentioned in the introduction, one of the main problems when approximating a 
mapping is over-fitting.  We will use the polynomial approximation to illustrate it in a 
simple case.  Figure 1 shows a diagram with two sets of 10 observations in each one.  
The 10 bigger points constitute the training set E used for adjusting the function, while 
the 10 smaller points form the validation set V. 
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Figure 1.  Training and validation data 
 
Figure 2 shows the RMSE of six polynomial approximations, from order 5 to 10.  As is 
known, since E contains 10 points the polynomial of order 10 fits them perfectly.  
However, in this case significant over-fitting (poor generalization) occurs.  This figure 
depicts the RMSE (y-axis) across the training set (bottom line) as well as across the 
validation set V, for the different polynomial considered (the x-axis represents the 
order).  We observe that both training and validation error decrease as the order 
increases, but when a certain level of accuracy is reached (order 6 in the figure), the 
validation error starts to increase (overfitting).  Therefore, in this diagram, the best 
approximation (in terms of validation error) is obtained with the polynomial of order 6. 
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Figure 2.  RMSE in E and V 
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We do not present the polynomial approximation as a competitive method, but as a 
baseline for future experiments as well as a first try that can provide good results in 
some cases.  It is important to point out that we face the problem of approximating a set 
of data from an unknown function and we cannot reject this fitting method a priori. 
 
3. Artificial Neural Networks 
In this section we consider a different paradigm for function approximation: Neural 
networks.  We briefly describe the network architecture, a method for training 
(adjusting the net’s weights) and a proposal to prevent over-fitting in this context.  
Although some studies claim that any function can be approximated with a neural 
network (Hornik et al. 1989), in practice the picture is rather different, as the quality of 
the approximation depends on many different factors.  We refer the reader to the book 
by Bishop (1995) for a deeper study of this methodology. 
 
3.1 Architecture 

We have considered the most widely-used architecture for prediction and classification: 
a multilayer feed-forward network with a single hidden layer.  In particular, we target a 
two layer feed-forward network, with sigmoid activation function in the hidden nodes 
and linear activation in the output node. 
 
Let NN=(N, A) be an ANN where N is the set of nodes (neurons) and A is the set of arcs.  
N is partitioned into three subsets: NI, input nodes, NH, hidden nodes and NO, output 
nodes.  We assume that there are n variables in the function that we want to predict or 
approximate, therefore |NI|= n.  The neural network has m hidden neurons (|NH|= m) 
with a bias term in each hidden neuron and a single output neuron (as mentioned in 
the introduction, in this paper we restrict our attention to real mappings f: ℜ→ℜn ). 
There is an arc, with an associated weight, from each node in NI to each node in NH, and 
from each node in NH to the output node. 
 
3.2. Training 

Martí and El-Fallahi (2004) proposed a training algorithm based on tabu search (TS) 
methodology (Glover, 1989) to train a neural network.  The authors performed a 
computational study of 12 different methods for neural network training to compare the 
best existing procedures, including the well-known backpropagation method (BP).  The 
experiments show that some functions cannot be approximated with a reasonable level 
of accuracy when training the network for a limited number of iterations.  The 
experimentation also shows that the Scatter Search approach by Laguna and Martí 
(2002) as well as the proposed TS method provide the best performance in terms of 
solution quality.  We will use the core of their TS approach, called TSProb, to generate 
the initial set of solutions in our algorithm. 
 
In the process of training the net, the search takes place in the space of weights.  An 
iteration of TSProb begins by randomly selecting a weight from the current solution w.  
The probability of selecting weight  at iteration t, is proportional to the absolute value 

of the partial derivative of the RMSE on E with respect to .  These derivative values 
can be efficiently computed with the first phase of the BP method.  The neighborhood 
consists of solutions that are reached from w

t
iw

t
iw

t by modifying the value of the selected 
weight .  Specifically, three solutions are considered with the following expression: t

iw
 

wit+1 = wit + α β wit  ;  wjt+1 = wjt  , ∀ j≠i 
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The method selects the best solution from among the three considered (given 
appropriate α values), and labels it as wt+1.   Note that the move is executed even when 
the error of wt+1 is greater than the error of wt, thus resulting in a deterioration of the 
current value of the objective function.  The moved weight becomes tabu-active for 
TabuTenure iterations, and therefore it cannot be selected during this time.  The factor 
β scales the change in the selected weight according to the status of the search 
(reducing its value from 1 as long as the current solution is close to a local optimum).  
Starting from a random initial solution, the TSProb method finishes after a number of k 
consecutive iterations with no improvement.  The search parameters have been set to 
the values recommended by the authors: TabuTenure= n(m+1)/3,α=(0.3, 0.5, 0.8), 
β∈[0,1], k=500. 
 
Our procedure is based on the Path Relinking methodology (Laguna and Martí, 2003).  
It starts with the creation of the Reference Set (RefSet), which contains the b elite 
solutions found during the application of the TSProb method.  These b solutions must 
be different and they must be far enough apart to ensure that the BFGS improvement 
method (Smith and Lasdon, 1992) starting from any two solutions will converge to 
different final solutions.  Therefore, a solution is admitted to RefSet if its Euclidean 
distance from each solution already in the set is larger than a pre-specified threshold 
th_d.  The improvement method is applied to the b/2 best solutions in RefSet and the 
improved solutions are ordered according to quality (i.e., to their error(E,w) value). 
 
At each iteration of the path relinking algorithm, the set NewPairs is constructed with 
all pairs of solutions in RefSet that include at least one new solution (in the first 
iteration it contains (b2-b)/2 pairs, but in successive iterations this number is usually 
significatively smaller). For each pair (w′, w″) in NewPairs a path is initiated from w′ to 
w″, and the best solution found in the path is added to the set PRSol.  Once all the pairs 
in NewPairs have been subjected to the path relinking method, the BFGS algorithm is 
applied to the best b solution in PRSol.  For each newly created solution we test whether 
it improves upon the worst solution currently in RefSet, in which case the new solution 
replaces the worst and RefSet is reordered.  Then, if RefSet contains a new solution we 
perform another iteration of the path relinking algorithm, starting with the creation of 
the set NewPairs; otherwise, the algorithm terminates. 
 
Finally, we describe the path relinking method, which constructs a path to join two 
solutions u and v.  Considering the m neurons in the hidden layer in a given order, we 
construct a path with m solutions from solution u to solution v by performing moves 
that transform u into v.  In the first step we create the first solution in the path, w1, by 
replacing in u the values of the weights in the arcs from the n input neurons to the first 
hidden neuron with their values in v.  Similarly, in the second step we create the 
solution w2 by replacing in w1 the values of the weights in the arcs from the n input 
neurons to the second hidden neuron with their values in v.  We proceed in this way 
until we obtain solution wm, which only differs from solution v in the values associated 
with the weights from the hidden layer to the output neuron. 
 
The effectiveness of adding a local search exploration from some of the generated 
solutions within the relinking path has been well documented (Laguna and Marti, 
2003).  In the context of neural network training, the application of the BFGS as the 
improvement method is a time-consuming operation, so we have limited it to the best 
solution found in the path, as described above. 
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3.3. Prevention of Overfitting  

In order to prevent overfitting (a significantly larger error in the validation set V than the 
error in the training set E), we divide E into two subsets E1 and E2.  We use E1 as a 
classical training set, i.e. to compute the error during the training in order to guide the 
search.  But when we want to measure the quality of the current solution to check 
whether it improves the best solution found, we compute the error in E2 and ignore the 
value of the error in E1.  So, although the search is conducted to reduce the error in E1, 
we store the solution with a minimum error in E2 as the best.  The interplay between 
these two sets induces a subtle effect to identify solutions with good generalization 
properties (that present similar error values across different data sets), thus avoiding 
overfitting.  As a result, this method is able to find solutions with similar RMSE values 
in E1, E2 as well as in V (and note that V was not used at all in the training process). 
 
4. Modern Statistical Methods 
In this section we consider recent regression procedures that make no assumption 
about the underlying functional relationship between the dependent and independent 
variables.  Specifically we target GAM, Loess and MARS, providing brief descriptions of 
these methods.  Further details can be found in the excellent book by Chambers and 
Hastie (1991). 
 
4.1 Generalized Additive Models (GAM) 

Generalized additive models extend linear models such as those described in the 
previous section.  To this end, they replace the linear combination of variables with a 
linear combination of functions of these variables as: 
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where gj is a non-parametric smooth function. 
 
Given the set of data observations E={yi, x1i, …, xni} (i = 1,…, T ), the functions gj are 
computed to minimize the penalized residual sum of squares PRSS given by the 
expression:  
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The integral in the second additive term of the expression above measures the 
wiggliness of the gj functions, and the λj are non-negative smoothing parameters that 
must be set in order to reach an equilibrium between the goodness of the fit (measured 
by the first additive term) and the wiggliness of the function.  Smoother gj are obtained 
with larger λj values. 
 
The minimization of the PRSS leads to an additive cubic spline model in which each gj is 
a cubic spline in xj.  Specifically, the expression of the gj is obtained with the backfitting 
algorithm as described in Hastie et al. (2001).  In the computational experiments we will 
use the gam() function given in the R software package to apply this method. 
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4.2 Local Regression (LOESS) 

A classical smoothing method in time series is the well-known moving average in which 
each value is replaced with the average of some close values.  These values are typically 
selected in a symmetrical neighborhood N(x0) around the value x0 to be replaced.  A first 
improvement over this generic scheme, called the kernel methods, consists of replacing 
this simple average with a weighted average by using kernel weighting.  This kernel 
function Kλ(x0,xi), where xi∈N(x0), assigns a weight to xi based on its distance from x0.  
The parameter λ in the kernel specifies the width of the neighborhood.  Nevertheless, 
this technique still has problems on the boundaries of the domain because of the 
asymmetry of the kernel. A way to overcome this limitation is given by the local 
regression.  It consists of adjusting straight lines rather than the weighted average 
described above.  
 
Loess implements a nonparametric method for estimating local regression surfaces 
(Cleveland, 1979).  In the loess method, the weighted least squares method is used to fit 
linear functions of the predictors at the centers of neighborhoods of each x according to 
the expression: 
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Note that we only use the fitted linear regression to evaluate the point x0 to be replaced.   
 
Compared to classical parametric approaches, local regression substantially increases 
the domain of surfaces that can be estimated without distortion.  This method also 
increases the flexibility compared with traditional modeling tools because it can be used 
in situations in which we do not know a suitable parametric for the regression surface. 
We will use the implementation loess() given in the R software in our computational 
testing. 
 
4.3 Multivariate Adaptive Regression Splines (MARS) 

MARS is a spline regression model. The basic principle of splines is to divide the space 
of data into different regions and to approximate the function in each one by linear, 
quadratic or cubical regression.  The main problem with this method, called curse of 
dimensionality, arises when there are several regions associated to each variable, when 
a large number of regions in the solutions space makes the method inapplicable. 
 
MARS uses a specific class of linear splines to deal with the curse of dimensionality 
problem.  This class C is formed with the functions 
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in which b(x-t) takes the value x-t when x<t and 0 otherwise.  Symmetrically, we define 
functions b(t-x). 
 
The model-building strategy is like a forward stepwise linear regression, but instead of 
using the original input we use M functions from the class C of splines considered.  The 
model has the form 
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where gj(x) belongs to the class C in the first step.  In any step, new basis functions are 
created by means of products between the gj(x) functions already in the model and the 
original functions in C.  
 
MARS is one of the most flexible nonparametric regression modeling techniques that 
attempts to overcome the limitations presented in other classical regression models.  It 
can be viewed either as a generalization of the recursive partitioning regression strategy, 
or as a generalization of the additive modeling approach of Friedman and Silverman 
(1989).  We will use the implementation mars() given in the R software in our 
computational testing. 
 
5.  Computational Experiments 
For our computational testing, we implemented in C the most relevant previous training 
methods and the procedure described in section 3.  We have also considered the 
statistical methods described in sections 2 and 4 as they are implemented in the R 
sofware package (1.8.1, 2003).  Specifically, we consider the leaps() function for 
selective polynomial approximation and the gam(), loess() and mars() functions.  All the 
experiments have been performed on a Pentium IV 2.8 Ghz personal computer. 
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Figure 3.  Testing Functions 
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Sexton et al. (1998) perform a computational study over 5 functions with 2 variables.  
Laguna and Martí (2000) use the same set of instances.  We have extended this set, 
adding 10 more functions of 2 variables from the literature.  Figure 3 shows the 15 
functions used to compare the performance of the methods under consideration.  It 
should be noted that the new functions, from 6 to 15, present more complex 
expressions than the five previously reported.  All functions have multiple local minima, 
and hence are difficult to fit. 
 
The training set E consists of 200 observations with data randomly drawn from [-100, 
100] for x1 and [-10,10] for x2.  The validation set V consists of 100 observations drawn 
from the same uniform distributions.  In all the methods presented in this section, we 
use the same set E to adjust the parameters of the model, and the same set V to 
compute the error on an independent set not used in the adjustment. 
 
In our first experiment we have considered the polynomial approximation.  Table 1 
shows the RMSE on E (EE) and V (EV) in two different cases, polynomials of order 3 and 
5.  As described in section 2 we use the leaps() function in which the best subset of the 
terms in the polynomial is selected. 
 
 

 Np Order 3 Order 5  
  EE EV EE EV  
 1 0.00 0.00 0.00 0.00  
 2 0.00 0.63 0.00 0.06  
 3 4.53 7.06 15.15 30.48  
 4 0.00 1.03 0.00 1.03  
 5 0.00 98.21 0.00 98.21  
 6 5.09E8 1.94E9 4.76 1.3E6  
 7 0.32 1.04 0.34 1.04  
 8 0.00 0.00 0.00 0.00  
 9 1.20E17 2.10E17 1.44E16 1.75E17  
 10 26.24 31.33 26.24 31.33  
 11 2.34E8 7.32E8 1.02E8 4.08E8  
 12 0.00 5.04 0.00 5.04  
 13 0.00 0.25 0.00 0.25  
 14 1.32E10 5.46E10 2.21E9 2.22E10  
 15 18.56 43.93 9.28 21.47  

Table 1. Polynomial approximation 
 
As expected, some functions can be satisfactorily approximated with a polynomial while 
others present large error values.  Examples 1, 2, 4, 5, 12 and 13, in which the data 
have been generated with polynomials of order lower than 5 (see Figure 3), present very 
low training and validation errors, except for example 5 where the validation error is 
several orders of magnitude larger than the training error (over-training).  It should be 
noted that examples 7 and 8 also present good approximations although their data have 
been generated with a highly non-linear expression.  Finally, note that examples 9, 11 
and 14 generated by a polynomial of order larger than 5 have not been correctly 
approximated. 
 
In our second experiment we compare the three statistical methods described in Section 
4.  Table 2 shows the EE and EV values for each of the 15 instances considered.  This 
table shows that GAM and MARS methods are of a modest quality while Loess presents 
a better performance.  If we compare the validation error of these methods with the 
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polynomial approximation (order 5), Loess is able to obtain the lowest RMSE values in 
the validation set in 11 out of 15 instances, while the polynomial approximation, GAM 
and MARS, obtain the best results in 7, 4 and 5 cases respectively.  Note that none of 
the methods can approximate examples 9, 11 and 14 satisfactorily.  We perform a 
Friedman test for paired samples and obtain a p-value of 0.0001 which indicates that 
there are significant differences among the methods. 
 

 Training Error (EE) Validation Error (EV) 
Np GAM Loess MARS GAM Loess MARS 
1 0.00 0.00 0.00 5.52 0.00 0.05 
2 30.77 0.07 31.48 44.25 0.05 29.37 
3 0.92 0.69 0.94 1.73 1.16 1.5 
4 2.57 113.8 17.08 60.13 75.68 20.57 
5 2.75 49.45 23.09 91.23 50.54 20.53 
6 120.58 24.22 124.25 222.8 23.25 138.13 
7 0.34 0.32 6.52 19.26 0.36 8.19 
8 0.00 0.01 0.00 0.00 0.005 0.00 
9 3.50E+10 3.66E+10 6.01E+09 1.34E+10 6.74E+09 8.20E+09 

10 96.01 377.5 96.09 688.01 385.6 102.45 
11 3.31E+06 3.18E+06 5.80E+06 6.76E+12 4.90E+06 7.74E+06 
12 175.87 6.88E-08 185.22 229.75 8.37E-08 1.82E+02 
13 163.33 1.71E-09 172.79 389.99 2.03E-09 172.68 
14 3.89E+03 2.62E+04 6.79E+04 1.03E+05 2.97E+04 7.80E+04 
15 48.55 0.69 222.4 410.07 0.74 231.34 

Table 2. Statistical Methods 
 
In the third experiment we are going to compare the training methods in neural 
networks.  Specifically, we consider our training method based on tabu search and path 
relinking methodologies (TS_PR), the Back-Propagation method (BP), the extended tabu 
search method, ETS, of Sexton et al. (1998) and the Scatter Search method, SS, of 
Laguna and Martí (2002).  SS implements the nonlinear Simplex method (Press et al., 
1992) as the local search optimizer.  BP and TS_PR are implemented with the method to 
avoid the overfitting described in section 3.3.  It should be mentioned that our 
adaptation of the back-propagation algorithm (BP) includes the momentum term and 
compares favorably with commercial implementations and with that given in the R 
software package. 
 

 NP BP ETS SS TS_PR 
 1 1.69 0.00 0.00 0.00 
 2 6.30 1.68 0.01 0.02 
 3 1.82 0.67 0.36 0.08 
 4 148.36 11.45 0.05 0.16 
 5 9.80 14.79 17.54 0.33 
 6 17.79 43.25 89.53 0.25 
 7 64.19 60.63 31.53 0.38 
 8 0.11 0.01 0.02 0.07 
 9 1.22E+10 7.72E+09 3.68E+09 4.87E+09 
 10 13.66 20.13 33.51 20.39 
 11 4.19E+6 6.62E+06 3.75E+06 2.69E+06 
 12 104.34 152.45 0.00 0.06 
 13 3.94 9.03 0.55 0.00 
 14 5.96E+4 4.46E+04 1.87E+04 1.08E+03 
 15 2.14 523.79 79.18 0.12 

Table 3.  Neural Network Validation Errors 
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Tables 3 shows that the best solution quality is obtained with the tabu search method 
with path relinking, TS_PR, in most of the cases.  Considering the validation errors, the 
PR method is able to obtain the best solutions in 8 instances, while the SS method 
obtains 4 best solutions.  BP and ETS obtain results of a lower quality.  This experiment 
also shows that none of the methods can effectively handle problems 9, 11 and 14 as is 
the case with the previous techniques.  If we remove these three instances, the average 
of the RMSE on the testing set E, EE, on the thirteen remaining instances is 28.50, 
78.75, 0.57 and 1.59 for the BP, ETS, SS and TS_PR respectively.  The average of the 
RMSE on the validation set V, EV, on these thirteen instances is 31.18, 69.82, 21.02 
and 1.82 for the BP, ETS, SS and TS_PR respectively.  We can see that in the SS 
method the average error value significantly increases from EE=0.57 to EV=21.02, while 
in the BP and TS_PR it is of a similar magnitude.  We also perform a Friedman test for 
paired samples and obtain a p-value of 0.0001 which indicates that there are significant 
differences among the methods. 
 
If we rank all the methods considered in the paper according to the quality in the 
validation set we see that the neural network trained with our TS_PR implementation is 
able to obtain 9 out of 15 best solutions, followed by the Loess with 6 best results.  The 
polynomial approximation obtains 5 best results and the remaining of the methods 
present lower quality solutions. 
 
In our last experiment we want to measure the effect of the initial solution in the 
performance of the proposed training method TS_PR for neural networks.  Table 4 
reports the average and standard deviation of the RMSE on E and V in 20 independent 
runs of the method. 
 
 

 NP EE EV  
 1 0,00± 0,00 0,00 ± 0,00  
 2 0,00± 0,00 0,01 ± 0,01  
 3 0,00± 0,00 0,15 ± 0,10  
 4 0,00± 0,00 0,30 ± 0,09  
 5 0,00± 0,00 0,41 ± 0,12  
 6 0,09± 0,04 0,26 ± 0,11  
 7 0,25± 0,00 0,39 ± 0,10  
 8 0,00± 0,00 0,05 ± 0,02  
 9 1,37E9±1,6E8 8,5E9±5,6E1  
 10 16,14±1,67 19,14 ± 1,41  
 11 1,8E6±1,36E5 2,93E6±4,36E5  
 12 0,01±0,00 0,13 ± 0,12  
 13 0,00±0,00 0,01 ± 0,02  
 14 1,34E4±8,34E3 5,7E4±5,7E3  
 15 0,02 ± 0,00 0,16 ± 0,04  

Table 4.  20 independent runs for TS_PR 

 
Table 4 shows the robustness of the proposed method given that the standard deviation 
presents relatively low values.  Moreover, the similarity between the EE and EV values 
confirms the effectiveness of the proposed method to avoid overfitting. 
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Conclusions 
A computational comparison of 5 existing methodologies for function approximation has 
been presented.  Experiments with 15 problems were performed to compare the 
procedures.  This experimentation allows us to conclude that Neural Networks trained 
with metaheuristics seem better suited to tackling this problem.  Specifically, our 
implementation based on tabu search methodology (including the path relinking 
strategy) and coupled with the BFGS local solver is able to obtain the best solutions in 
terms of quality.  We have also implemented a new mechanism to prevent overfitting 
that has been proven to be effective in this context. 
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