
Approximating Unknown Mappings:
An Experimental Evaluation

Rafael Martí #, Francisco Montes, Abdellah El-Fallahi
Departamento de Estadística e Investigación Operativa

Universitat de València, 46100 Burjassot (Valencia), Spain

Abstract

Different methodologies have been introduced in recent years with the aim of
approximating unknown functions. Basically, these methodologies are general
frameworks for representing non-linear mappings from several input variables to
several output variables. Research into this problem occurs in applied mathematics
(multivariate function approximation), statistics (nonparametric multiple regression)
and computer science (neural networks). However, since these methodologies have
been proposed in different fields, most of the previous papers treat them in isolation,
ignoring contributions in the other areas. In this paper we consider five well known
approaches for function approximation. Specifically we target polynomial
approximation, general additive models (Gam), local regression (Loess), multivariate
additive regression splines (Mars) and artificial neural networks (Ann).

Neural networks can be viewed as models of real systems, built by tuning parameters
known as weights. In training the net, the problem is to find the weights that optimize
its performance (i.e. to minimize the error over the training set). Although the most
popular method for Ann training is back propagation, other optimization methods based
on metaheuristics have recently been adapted to this problem, outperforming classical
approaches. In this paper we propose a short term memory tabu search method,
coupled with path relinking and BFGS (a gradient-based local NLP solver) to provide
high quality solutions to this problem. The experimentation with 15 functions
previously reported shows that a feed-forward neural network with one hidden layer,
trained with our procedure, can compete with the best-known approximating methods.
The experimental results also show the effectiveness of a new mechanism to avoid
overfitting in neural network training.

KeyWords: Data Mining, Prediction, Metaheuristics, Statistical regression.

Corresponding author. Rafael.Marti@uv.es

Approximating Unknown Mappings / 2

1. Introduction
The term function approximation encompasses a wide range of methodologies from
computer science to statistics. It basically refers to adjusting a model that represents a
mapping (generally non-linear) from several input variables to one or more output
variables. In this paper we restrict our attention to mappings with one output variable.
In mathematical terms, the goal is to model the dependence of the response variable y
on one or more predictor variables x1, …, xn from a set of data observations E={yi, x1i, …,
xni} (i = 1,…, T) generated with an unknown function f. The aim is to use the data to
construct a function g that approximates f over the domain of interest.

In the process of adjusting the model (constructing g), the problem is to find the values
of the parameters p that minimize the error across the set E of input/output
observations (named training set). The error measure is typically the root mean
squared difference between the predicted output g(x,p) and the actual output value f(x)
for all the elements x in E (RMSE); therefore, the adjusting process can be viewed as an
unconstrained nonlinear optimization problem, where the decision variables are the
parameters and the objective is to reduce the fitting error error(E,p) according to the
expression:

E

pxgxf
pEerrorMin Ex

p

∑
∈

−
=

2)),()((
),(

The main goal in the fitting process is to obtain a model which makes good predictions
for new inputs (i.e. to provide good generalization). Therefore g must represent the
systematic aspects of E rather than its specific details. The standard way to measure
the generalization provided by g consists of considering a second set of points called
validation set V, in the domain of f. Once the fitting has been performed and the
parameters have been set to minimize the error in E (p=p*), the error across V,
error(V,p*), is computed. The model must exhibit a good fit between the target f-values
and the output (prediction) in the E as well as in V. If the RMSE in V is significantly
higher than that in E, we will say that the model has over-fitted the data.

In this article we present some methods that may be used to identify the relationship
between the input data and the outcome. These are selected from the more flexible
statistical and mathematical methods. Specifically, in the second section we consider a
first approach to the prediction problem called polynomial approximation and we
illustrate the over-fitting problem. Section three is devoted to neural networks and our
proposal for training (adjusting the net’s parameters) and over-fitting prevention. In
section four we target three modern statistical models, general additive models (Gam),
local regression (Loess), and multivariate additive regression splines (Mars). The paper
finishes with a computational comparison of 15 instances of the five models previously
introduced and the associated conclusions.

2. Polynomial Approximation
A first approach to the approximation problem is the well-known polynomial fitting. If
we want to approximate a two-variable function y=f(x1, x2) with a polynomial of order
two we will use the following expression:

2
25

2
142132211021),,(xpxpxxpxpxpppxxg +++++=

Approximating Unknown Mappings / 3

The coefficients are computed with the least square method to minimize the RMSE
across the set of observations E. As expected, the larger the order of the polynomial the
better the fitting. On the other hand, when we are trying to approximate an unknown
mapping with an expression with a large number of independent terms, in particular a
polynomial, we can find that many of them do not have a great effect on the prediction
of the dependent variable. Therefore, in this context it can be desirable to choose a
subset that parsimoniously predicts the dependent variable from among such terms or
variables.

There are different methods for selecting the best subset of variables in order to obtain
the adequate regression model. Specifically, we have considered the implementation of
the leaps method given in the well-known R software package to select those terms that
are relevant in the approximation from a generic polynomial. The R-function leaps
evaluates all possible models and produces the best subset of independent variables
based on the choice of a non-monotonic criterion. We have considered the R-squared
criterion which is equivalent to the RMSE described above.

As mentioned in the introduction, one of the main problems when approximating a
mapping is over-fitting. We will use the polynomial approximation to illustrate it in a
simple case. Figure 1 shows a diagram with two sets of 10 observations in each one.
The 10 bigger points constitute the training set E used for adjusting the function, while
the 10 smaller points form the validation set V.

-2 0 2 4 6
1

1.5

2

2.5

3

Figure 1. Training and validation data

Figure 2 shows the RMSE of six polynomial approximations, from order 5 to 10. As is
known, since E contains 10 points the polynomial of order 10 fits them perfectly.
However, in this case significant over-fitting (poor generalization) occurs. This figure
depicts the RMSE (y-axis) across the training set (bottom line) as well as across the
validation set V, for the different polynomial considered (the x-axis represents the
order). We observe that both training and validation error decrease as the order
increases, but when a certain level of accuracy is reached (order 6 in the figure), the
validation error starts to increase (overfitting). Therefore, in this diagram, the best
approximation (in terms of validation error) is obtained with the polynomial of order 6.

20

15

10

5

Figure 2. RMSE in E and V

5 6 7 8 10
0

9

Approximating Unknown Mappings / 4

We do not present the polynomial approximation as a competitive method, but as a
baseline for future experiments as well as a first try that can provide good results in
some cases. It is important to point out that we face the problem of approximating a set
of data from an unknown function and we cannot reject this fitting method a priori.

3. Artificial Neural Networks
In this section we consider a different paradigm for function approximation: Neural
networks. We briefly describe the network architecture, a method for training
(adjusting the net’s weights) and a proposal to prevent over-fitting in this context.
Although some studies claim that any function can be approximated with a neural
network (Hornik et al. 1989), in practice the picture is rather different, as the quality of
the approximation depends on many different factors. We refer the reader to the book
by Bishop (1995) for a deeper study of this methodology.

3.1 Architecture

We have considered the most widely-used architecture for prediction and classification:
a multilayer feed-forward network with a single hidden layer. In particular, we target a
two layer feed-forward network, with sigmoid activation function in the hidden nodes
and linear activation in the output node.

Let NN=(N, A) be an ANN where N is the set of nodes (neurons) and A is the set of arcs.
N is partitioned into three subsets: NI, input nodes, NH, hidden nodes and NO, output
nodes. We assume that there are n variables in the function that we want to predict or
approximate, therefore |NI|= n. The neural network has m hidden neurons (|NH|= m)
with a bias term in each hidden neuron and a single output neuron (as mentioned in
the introduction, in this paper we restrict our attention to real mappings f: ℜ→ℜn).
There is an arc, with an associated weight, from each node in NI to each node in NH, and
from each node in NH to the output node.

3.2. Training

Martí and El-Fallahi (2004) proposed a training algorithm based on tabu search (TS)
methodology (Glover, 1989) to train a neural network. The authors performed a
computational study of 12 different methods for neural network training to compare the
best existing procedures, including the well-known backpropagation method (BP). The
experiments show that some functions cannot be approximated with a reasonable level
of accuracy when training the network for a limited number of iterations. The
experimentation also shows that the Scatter Search approach by Laguna and Martí
(2002) as well as the proposed TS method provide the best performance in terms of
solution quality. We will use the core of their TS approach, called TSProb, to generate
the initial set of solutions in our algorithm.

In the process of training the net, the search takes place in the space of weights. An
iteration of TSProb begins by randomly selecting a weight from the current solution w.
The probability of selecting weight at iteration t, is proportional to the absolute value

of the partial derivative of the RMSE on E with respect to . These derivative values
can be efficiently computed with the first phase of the BP method. The neighborhood
consists of solutions that are reached from w

t
iw

t
iw

t by modifying the value of the selected
weight . Specifically, three solutions are considered with the following expression: t

iw

wit+1 = wit + α β wit ; wjt+1 = wjt , ∀ j≠i

Approximating Unknown Mappings / 5

The method selects the best solution from among the three considered (given
appropriate α values), and labels it as wt+1. Note that the move is executed even when
the error of wt+1 is greater than the error of wt, thus resulting in a deterioration of the
current value of the objective function. The moved weight becomes tabu-active for
TabuTenure iterations, and therefore it cannot be selected during this time. The factor
β scales the change in the selected weight according to the status of the search
(reducing its value from 1 as long as the current solution is close to a local optimum).
Starting from a random initial solution, the TSProb method finishes after a number of k
consecutive iterations with no improvement. The search parameters have been set to
the values recommended by the authors: TabuTenure= n(m+1)/3,α=(0.3, 0.5, 0.8),
β∈[0,1], k=500.

Our procedure is based on the Path Relinking methodology (Laguna and Martí, 2003).
It starts with the creation of the Reference Set (RefSet), which contains the b elite
solutions found during the application of the TSProb method. These b solutions must
be different and they must be far enough apart to ensure that the BFGS improvement
method (Smith and Lasdon, 1992) starting from any two solutions will converge to
different final solutions. Therefore, a solution is admitted to RefSet if its Euclidean
distance from each solution already in the set is larger than a pre-specified threshold
th_d. The improvement method is applied to the b/2 best solutions in RefSet and the
improved solutions are ordered according to quality (i.e., to their error(E,w) value).

At each iteration of the path relinking algorithm, the set NewPairs is constructed with
all pairs of solutions in RefSet that include at least one new solution (in the first
iteration it contains (b2-b)/2 pairs, but in successive iterations this number is usually
significatively smaller). For each pair (w′, w″) in NewPairs a path is initiated from w′ to
w″, and the best solution found in the path is added to the set PRSol. Once all the pairs
in NewPairs have been subjected to the path relinking method, the BFGS algorithm is
applied to the best b solution in PRSol. For each newly created solution we test whether
it improves upon the worst solution currently in RefSet, in which case the new solution
replaces the worst and RefSet is reordered. Then, if RefSet contains a new solution we
perform another iteration of the path relinking algorithm, starting with the creation of
the set NewPairs; otherwise, the algorithm terminates.

Finally, we describe the path relinking method, which constructs a path to join two
solutions u and v. Considering the m neurons in the hidden layer in a given order, we
construct a path with m solutions from solution u to solution v by performing moves
that transform u into v. In the first step we create the first solution in the path, w1, by
replacing in u the values of the weights in the arcs from the n input neurons to the first
hidden neuron with their values in v. Similarly, in the second step we create the
solution w2 by replacing in w1 the values of the weights in the arcs from the n input
neurons to the second hidden neuron with their values in v. We proceed in this way
until we obtain solution wm, which only differs from solution v in the values associated
with the weights from the hidden layer to the output neuron.

The effectiveness of adding a local search exploration from some of the generated
solutions within the relinking path has been well documented (Laguna and Marti,
2003). In the context of neural network training, the application of the BFGS as the
improvement method is a time-consuming operation, so we have limited it to the best
solution found in the path, as described above.

Approximating Unknown Mappings / 6

3.3. Prevention of Overfitting

In order to prevent overfitting (a significantly larger error in the validation set V than the
error in the training set E), we divide E into two subsets E1 and E2. We use E1 as a
classical training set, i.e. to compute the error during the training in order to guide the
search. But when we want to measure the quality of the current solution to check
whether it improves the best solution found, we compute the error in E2 and ignore the
value of the error in E1. So, although the search is conducted to reduce the error in E1,
we store the solution with a minimum error in E2 as the best. The interplay between
these two sets induces a subtle effect to identify solutions with good generalization
properties (that present similar error values across different data sets), thus avoiding
overfitting. As a result, this method is able to find solutions with similar RMSE values
in E1, E2 as well as in V (and note that V was not used at all in the training process).

4. Modern Statistical Methods
In this section we consider recent regression procedures that make no assumption
about the underlying functional relationship between the dependent and independent
variables. Specifically we target GAM, Loess and MARS, providing brief descriptions of
these methods. Further details can be found in the excellent book by Chambers and
Hastie (1991).

4.1 Generalized Additive Models (GAM)

Generalized additive models extend linear models such as those described in the
previous section. To this end, they replace the linear combination of variables with a
linear combination of functions of these variables as:

)(),(0 j
j

j xgppxg ∑+= ,

where gj is a non-parametric smooth function.

Given the set of data observations E={yi, x1i, …, xni} (i = 1,…, T), the functions gj are
computed to minimize the penalized residual sum of squares PRSS given by the
expression:

jj

T

i

n

j
jj

n

j
jijin dttgxgpyggpPRSS 2

1 1

2

1
010)()(),...,,(∑ ∑ ∫∑

= ==

′′+
⎭
⎬
⎫

⎩
⎨
⎧

−−= λ

The integral in the second additive term of the expression above measures the
wiggliness of the gj functions, and the λj are non-negative smoothing parameters that
must be set in order to reach an equilibrium between the goodness of the fit (measured
by the first additive term) and the wiggliness of the function. Smoother gj are obtained
with larger λj values.

The minimization of the PRSS leads to an additive cubic spline model in which each gj is
a cubic spline in xj. Specifically, the expression of the gj is obtained with the backfitting
algorithm as described in Hastie et al. (2001). In the computational experiments we will
use the gam() function given in the R software package to apply this method.

Approximating Unknown Mappings / 7

4.2 Local Regression (LOESS)

A classical smoothing method in time series is the well-known moving average in which
each value is replaced with the average of some close values. These values are typically
selected in a symmetrical neighborhood N(x0) around the value x0 to be replaced. A first
improvement over this generic scheme, called the kernel methods, consists of replacing
this simple average with a weighted average by using kernel weighting. This kernel
function Kλ(x0,xi), where xi∈N(x0), assigns a weight to xi based on its distance from x0.
The parameter λ in the kernel specifies the width of the neighborhood. Nevertheless,
this technique still has problems on the boundaries of the domain because of the
asymmetry of the kernel. A way to overcome this limitation is given by the local
regression. It consists of adjusting straight lines rather than the weighted average
described above.

Loess implements a nonparametric method for estimating local regression surfaces
(Cleveland, 1979). In the loess method, the weighted least squares method is used to fit
linear functions of the predictors at the centers of neighborhoods of each x according to
the expression:

[]2
0100

)(

1
0)(),(

)()(),(min
0

0100
ii

xn

i
ixpxp

xxpxpyxxK −−∑
=

λ .

Note that we only use the fitted linear regression to evaluate the point x0 to be replaced.

Compared to classical parametric approaches, local regression substantially increases
the domain of surfaces that can be estimated without distortion. This method also
increases the flexibility compared with traditional modeling tools because it can be used
in situations in which we do not know a suitable parametric for the regression surface.
We will use the implementation loess() given in the R software in our computational
testing.

4.3 Multivariate Adaptive Regression Splines (MARS)

MARS is a spline regression model. The basic principle of splines is to divide the space
of data into different regions and to approximate the function in each one by linear,
quadratic or cubical regression. The main problem with this method, called curse of
dimensionality, arises when there are several regions associated to each variable, when
a large number of regions in the solutions space makes the method inapplicable.

MARS uses a specific class of linear splines to deal with the curse of dimensionality
problem. This class C is formed with the functions

+−=−)()(txtxb , , +−=−)()(xtxtb

in which b(x-t) takes the value x-t when x<t and 0 otherwise. Symmetrically, we define
functions b(t-x).

The model-building strategy is like a forward stepwise linear regression, but instead of
using the original input we use M functions from the class C of splines considered. The
model has the form

)(),(
1

0 xgpppxg
M

j
jj∑

=

+= ,

Approximating Unknown Mappings / 8

where gj(x) belongs to the class C in the first step. In any step, new basis functions are
created by means of products between the gj(x) functions already in the model and the
original functions in C.

MARS is one of the most flexible nonparametric regression modeling techniques that
attempts to overcome the limitations presented in other classical regression models. It
can be viewed either as a generalization of the recursive partitioning regression strategy,
or as a generalization of the additive modeling approach of Friedman and Silverman
(1989). We will use the implementation mars() given in the R software in our
computational testing.

5. Computational Experiments
For our computational testing, we implemented in C the most relevant previous training
methods and the procedure described in section 3. We have also considered the
statistical methods described in sections 2 and 4 as they are implemented in the R
sofware package (1.8.1, 2003). Specifically, we consider the leaps() function for
selective polynomial approximation and the gam(), loess() and mars() functions. All the
experiments have been performed on a Pentium IV 2.8 Ghz personal computer.

1.Sexton 1:
21)(xxxf +=

2. Sexton 2:
21*)(xxxf =

3. Sexton 3:
1

)(
2

1

+
=

x
x

xf

4. Sexton 4: 3
2

2
1)(xxxf −=

5. Sexton 5: 2
1

3
1)(xxxf −=

6. Branin: () 10cos
8
111065

4
5)(

2

1
2
122 +⎟

⎠
⎞

⎜
⎝
⎛

π
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛
π

+⎟
⎠

⎞
⎜
⎝

⎛

π
−= ixxxxxf

7. B2: () () 7.04cos4.03cos3.02)(21
2
2

2
1 +π−π−+= xxxxxf

8. Easom: () () () ()()()2
2

2
121 expcoscos)(π−+π−−−= xxxxxf

9. Goldstein: () ()()
() ()()2

2212
2
11

2
21

2
2212

2
11

2
21

2736481232183230

36143141911)(

xxxxxxxx

xxxxxxxxxf

+−++−−+

++−+−+++=

10. Shubert: ()() ()()⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
++= ∑∑

==

5

1
2

5

1
1 1cos1cos)(

jj

jxjjjxjjxf

11. Beal: 23
211

22
211

2
211)625.2()25.2()5.1()(xxxxxxxxxxf +−++−++−=

12. Booth: 2
21

2
21)52()72()(−++−+= xxxxxf

13. Matyas: 21
2
2

2
1 48.0)(26.0)(xxxxxf −+=

14. SixHumpCamelB: 4
2

2
221

6
1

4
1

2
1 44

3
11.24)(xxxxxxxxf +−++−=

15. Schwefel: ()∑
=

−+=
n

i
ii xxnxf

1

sin9829.418)(

Figure 3. Testing Functions

Approximating Unknown Mappings / 9

Sexton et al. (1998) perform a computational study over 5 functions with 2 variables.
Laguna and Martí (2000) use the same set of instances. We have extended this set,
adding 10 more functions of 2 variables from the literature. Figure 3 shows the 15
functions used to compare the performance of the methods under consideration. It
should be noted that the new functions, from 6 to 15, present more complex
expressions than the five previously reported. All functions have multiple local minima,
and hence are difficult to fit.

The training set E consists of 200 observations with data randomly drawn from [-100,
100] for x1 and [-10,10] for x2. The validation set V consists of 100 observations drawn
from the same uniform distributions. In all the methods presented in this section, we
use the same set E to adjust the parameters of the model, and the same set V to
compute the error on an independent set not used in the adjustment.

In our first experiment we have considered the polynomial approximation. Table 1
shows the RMSE on E (EE) and V (EV) in two different cases, polynomials of order 3 and
5. As described in section 2 we use the leaps() function in which the best subset of the
terms in the polynomial is selected.

 Np Order 3 Order 5
 EE EV EE EV
 1 0.00 0.00 0.00 0.00
 2 0.00 0.63 0.00 0.06
 3 4.53 7.06 15.15 30.48
 4 0.00 1.03 0.00 1.03
 5 0.00 98.21 0.00 98.21
 6 5.09E8 1.94E9 4.76 1.3E6
 7 0.32 1.04 0.34 1.04
 8 0.00 0.00 0.00 0.00
 9 1.20E17 2.10E17 1.44E16 1.75E17
 10 26.24 31.33 26.24 31.33
 11 2.34E8 7.32E8 1.02E8 4.08E8
 12 0.00 5.04 0.00 5.04
 13 0.00 0.25 0.00 0.25
 14 1.32E10 5.46E10 2.21E9 2.22E10
 15 18.56 43.93 9.28 21.47

Table 1. Polynomial approximation

As expected, some functions can be satisfactorily approximated with a polynomial while
others present large error values. Examples 1, 2, 4, 5, 12 and 13, in which the data
have been generated with polynomials of order lower than 5 (see Figure 3), present very
low training and validation errors, except for example 5 where the validation error is
several orders of magnitude larger than the training error (over-training). It should be
noted that examples 7 and 8 also present good approximations although their data have
been generated with a highly non-linear expression. Finally, note that examples 9, 11
and 14 generated by a polynomial of order larger than 5 have not been correctly
approximated.

In our second experiment we compare the three statistical methods described in Section
4. Table 2 shows the EE and EV values for each of the 15 instances considered. This
table shows that GAM and MARS methods are of a modest quality while Loess presents
a better performance. If we compare the validation error of these methods with the

Approximating Unknown Mappings / 10

polynomial approximation (order 5), Loess is able to obtain the lowest RMSE values in
the validation set in 11 out of 15 instances, while the polynomial approximation, GAM
and MARS, obtain the best results in 7, 4 and 5 cases respectively. Note that none of
the methods can approximate examples 9, 11 and 14 satisfactorily. We perform a
Friedman test for paired samples and obtain a p-value of 0.0001 which indicates that
there are significant differences among the methods.

 Training Error (EE) Validation Error (EV)
Np GAM Loess MARS GAM Loess MARS
1 0.00 0.00 0.00 5.52 0.00 0.05
2 30.77 0.07 31.48 44.25 0.05 29.37
3 0.92 0.69 0.94 1.73 1.16 1.5
4 2.57 113.8 17.08 60.13 75.68 20.57
5 2.75 49.45 23.09 91.23 50.54 20.53
6 120.58 24.22 124.25 222.8 23.25 138.13
7 0.34 0.32 6.52 19.26 0.36 8.19
8 0.00 0.01 0.00 0.00 0.005 0.00
9 3.50E+10 3.66E+10 6.01E+09 1.34E+10 6.74E+09 8.20E+09

10 96.01 377.5 96.09 688.01 385.6 102.45
11 3.31E+06 3.18E+06 5.80E+06 6.76E+12 4.90E+06 7.74E+06
12 175.87 6.88E-08 185.22 229.75 8.37E-08 1.82E+02
13 163.33 1.71E-09 172.79 389.99 2.03E-09 172.68
14 3.89E+03 2.62E+04 6.79E+04 1.03E+05 2.97E+04 7.80E+04
15 48.55 0.69 222.4 410.07 0.74 231.34

Table 2. Statistical Methods

In the third experiment we are going to compare the training methods in neural
networks. Specifically, we consider our training method based on tabu search and path
relinking methodologies (TS_PR), the Back-Propagation method (BP), the extended tabu
search method, ETS, of Sexton et al. (1998) and the Scatter Search method, SS, of
Laguna and Martí (2002). SS implements the nonlinear Simplex method (Press et al.,
1992) as the local search optimizer. BP and TS_PR are implemented with the method to
avoid the overfitting described in section 3.3. It should be mentioned that our
adaptation of the back-propagation algorithm (BP) includes the momentum term and
compares favorably with commercial implementations and with that given in the R
software package.

 NP BP ETS SS TS_PR
 1 1.69 0.00 0.00 0.00
 2 6.30 1.68 0.01 0.02
 3 1.82 0.67 0.36 0.08
 4 148.36 11.45 0.05 0.16
 5 9.80 14.79 17.54 0.33
 6 17.79 43.25 89.53 0.25
 7 64.19 60.63 31.53 0.38
 8 0.11 0.01 0.02 0.07
 9 1.22E+10 7.72E+09 3.68E+09 4.87E+09
 10 13.66 20.13 33.51 20.39
 11 4.19E+6 6.62E+06 3.75E+06 2.69E+06
 12 104.34 152.45 0.00 0.06
 13 3.94 9.03 0.55 0.00
 14 5.96E+4 4.46E+04 1.87E+04 1.08E+03
 15 2.14 523.79 79.18 0.12

Table 3. Neural Network Validation Errors

Approximating Unknown Mappings / 11

Tables 3 shows that the best solution quality is obtained with the tabu search method
with path relinking, TS_PR, in most of the cases. Considering the validation errors, the
PR method is able to obtain the best solutions in 8 instances, while the SS method
obtains 4 best solutions. BP and ETS obtain results of a lower quality. This experiment
also shows that none of the methods can effectively handle problems 9, 11 and 14 as is
the case with the previous techniques. If we remove these three instances, the average
of the RMSE on the testing set E, EE, on the thirteen remaining instances is 28.50,
78.75, 0.57 and 1.59 for the BP, ETS, SS and TS_PR respectively. The average of the
RMSE on the validation set V, EV, on these thirteen instances is 31.18, 69.82, 21.02
and 1.82 for the BP, ETS, SS and TS_PR respectively. We can see that in the SS
method the average error value significantly increases from EE=0.57 to EV=21.02, while
in the BP and TS_PR it is of a similar magnitude. We also perform a Friedman test for
paired samples and obtain a p-value of 0.0001 which indicates that there are significant
differences among the methods.

If we rank all the methods considered in the paper according to the quality in the
validation set we see that the neural network trained with our TS_PR implementation is
able to obtain 9 out of 15 best solutions, followed by the Loess with 6 best results. The
polynomial approximation obtains 5 best results and the remaining of the methods
present lower quality solutions.

In our last experiment we want to measure the effect of the initial solution in the
performance of the proposed training method TS_PR for neural networks. Table 4
reports the average and standard deviation of the RMSE on E and V in 20 independent
runs of the method.

 NP EE EV
 1 0,00± 0,00 0,00 ± 0,00
 2 0,00± 0,00 0,01 ± 0,01
 3 0,00± 0,00 0,15 ± 0,10
 4 0,00± 0,00 0,30 ± 0,09
 5 0,00± 0,00 0,41 ± 0,12
 6 0,09± 0,04 0,26 ± 0,11
 7 0,25± 0,00 0,39 ± 0,10
 8 0,00± 0,00 0,05 ± 0,02
 9 1,37E9±1,6E8 8,5E9±5,6E1
 10 16,14±1,67 19,14 ± 1,41
 11 1,8E6±1,36E5 2,93E6±4,36E5
 12 0,01±0,00 0,13 ± 0,12
 13 0,00±0,00 0,01 ± 0,02
 14 1,34E4±8,34E3 5,7E4±5,7E3
 15 0,02 ± 0,00 0,16 ± 0,04

Table 4. 20 independent runs for TS_PR

Table 4 shows the robustness of the proposed method given that the standard deviation
presents relatively low values. Moreover, the similarity between the EE and EV values
confirms the effectiveness of the proposed method to avoid overfitting.

Approximating Unknown Mappings / 12

Conclusions
A computational comparison of 5 existing methodologies for function approximation has
been presented. Experiments with 15 problems were performed to compare the
procedures. This experimentation allows us to conclude that Neural Networks trained
with metaheuristics seem better suited to tackling this problem. Specifically, our
implementation based on tabu search methodology (including the path relinking
strategy) and coupled with the BFGS local solver is able to obtain the best solutions in
terms of quality. We have also implemented a new mechanism to prevent overfitting
that has been proven to be effective in this context.

Acknowledgments
This research has been partially supported by the Ministerio de Educación y Ciencia
(Grant Refs. TIC2003-C05-01) and by the Agencia Valenciana de Ciencia y Tecnologia
(Grant Refs. GRUPOS2003/189).

References
Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford University Press,
New York.
Chambers, J. and T. Hastie (1991), Statistical models in S, Wadsworth/Brooks Cole,
Pacific grove, CA.
Cleveland, W.S. (1979) "Robust Locally Weighted Regression and Smoothing
Scatterplots," Journal of the American Statistical Association, Vol. 74, pp. 829-836.
Fahlman, S.E. (1988) "An empirical study of learning speed in back-propagation
networks", In T. J. Sejnowski G. E. Hinton and D. S. Touretzky, editors, Connectionist
Models Summer School, San Mateo, CA, Morgan Kaufmann, pp. 38-51.
Friedman, J. H. and Silverman, B. W. (1989), Flexible parsimonious smoothing and
additive modelling (with discussion), Technometrics, 31, 3-39.
Glover, F. (1989) “Tabu Search-Part 1”, ORSA Journal on Computing, vol 1, pp. 190-
206.
Hastie, T., R. Tibshirami and J. Friedman (2001), The elements of statistical learning,
Springer, New-York.
Hornik, K., M. Stinchcombe and H. White (1989) “Multilayer feedforward networks are
universal approximators”, Neural networks, vol. 2, pp. 359-366.
Jacobs, R.A., (1988) "Increased Rates of Convergence Through Learning Rate
Adaptation", Neural Networks, 1, pp. 295-307.
Laguna, M. and R. Martí (2002) “Neural Network Prediction in a System for Optimizing
Simulations,” IIE Transactions, vol. 34(3), pp. 273-282.
Laguna, M. and R. Martí (2003) Scatter Search: Methodology and Implementations in C,
Kluwer Academic Publishers.
Martí, R. and A. El-Fallahi (2004) “Multilayer neural networks: an experimental
evaluation of on-line training methods” Computers and Operations Research 31, pp.
1491-1513.
Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992) Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press (www.nr.com).

R Development Core Team. (2003), “R: A Language and Environment for Statistical
Computing”, “http://www.R_project.org “.

http://www.nr.com/

Approximating Unknown Mappings / 13

Sexton, R. S., B. Alidaee, R. E. Dorsey and J. D. Johnson (1998) “Global Optimization
for Artificial Neural Networks: A Tabu search Application,” European Journal of
Operational Research, vol. 106, pp. 570-584.
Smith, S. and L. Lasdon (1992), "Solving Large Nonlinear Programs Using GRG," ORSA
Journal on Computing, Vol. 4, No. 1, pp. 2-15.

	Conclusions
	References

