
Scatter Search for the Minimum Leaf
Spanning Tree Problem

Yogita Singh Kardam, Kamal Srivastava∗

Department of Mathematics, Dayalbagh Educational Institute, Agra, India

Pallavi Jain

Indian Institute of Technology Jodhpur, India

Rafael Martí
Department of Statistics and Operations Research, University of Valencia, Spain

Abstract

Given an undirected connected graphG, the Minimum Leaf Spanning Tree Prob-

lem (MLSTP) consists in finding a spanning tree T of G with minimum number

of leaves. This is an NP-hard problem with applications in communications and

water supply networks. In this paper, we propose a heuristic algorithm to pro-

vide high-quality solutions (spanning trees with low number of leaves) for an

input graph. Our heuristic is based on the scatter search methodology, and it

combines different elements to perform an efficient search of the solution space.

In particular, it applies both randomized and deterministic strategies in the con-

struction methods to generate an initial set of solutions. A combination method

specifically designed for trees coupled with two local searches with a diversity

evaluation function, provides a good balance between search intensification and

diversification. Experiments conducted on a large set of graphs indicate that

our algorithm is able to generate spanning trees with a lower number of leaves

than previous methods. Additionally, it is able to match the optimal solution in

∗Corresponding author.
Email address: yogita.singh27@gmail.com (Y.S. Kardam), kamal.sri@dei.ac.in (K.

Srivastava), pallavi@iitj.ac.in (P. Jain), rafael.marti@uv.es (R. Martí) (Yogita
Singh Kardam)

Preprint submitted to Journal of LATEX Templates November 1, 2021

most of the instances for which it is known, outperforming the existing methods.

Keywords: Spanning Tree, Metaheuristics, Scatter Search

1. Introduction

Spanning tree problems constitute an important field in optimization due

to their numerous applications in graphs and networks. Different objective

functions have been defined to model a given problem, giving rise to a vari-

ety of spanning tree optimization problems, such as the well-known Minimum5

Weighted Spanning Tree Problem, in which we minimize the total edge weight

in a spanning tree; the Minimum Diameter Spanning Tree Problem, where we

minimize the maximum distance between the pairs of vertices in a spanning tree

[1], or the Minimum Congestion Spanning Tree Problem, where we minimize the

maximum congestion over all edges in a spanning tree [2], to name a few.10

Some real world problems, especially in the area of networking, involve re-

strictions on the degree of vertices leading to degree based spanning tree prob-

lems. In this paper, we study the Minimum Leaf Spanning Tree Problem (ML-

STP), which consists in minimizing the number of degree one vertices (leaves)

in the spanning tree of a given undirected connected graph. This problem is15

a natural generalization of the well-studied Hamiltonian Path Problem, given

the characterization that a graph has a Hamiltonian path if and only if it has

a spanning tree with exactly two leaves [3]. On the other hand, MLSTP is

the complement of the Maximum Internal Spanning Tree Problem (MISTP)

that finds a spanning tree of an input graph with maximum number of internal20

(non-leaf) nodes. From an optimization point of view, MLSTP and MISTP are

NP-hard [4] equivalent problems, though they are different from an approxima-

tion and parametrization point of view [5].

MLSTP has applications in communication [6] and water supply networks

[7, 8], and it is relevant in designing cost effective optical networks [9]. In a25

communication network, the nodes (terminals) communicate through optical

fibre cables through its spanning tree. The network nodes connected to more

2

than two nodes require costly switch devices to be placed. Thus, to reduce the

associated cost, a spanning tree of the network having minimum number of such

nodes is needed. Network nodes and fibre cables between them are respectively30

mapped into vertices and edges of a graph G. Then, the number of switches to

be placed on each branch vertex (vertex with degree greater than two) of the

spanning tree ST depends on its degree. Hence, not only the number of branch

vertices but also the degree of each branch vertex needs to be minimized since

the exact number of switches needed on each branch vertex v in the spanning35

tree is its degree minus two.

The literature on the MLSTP is scarce. Several approaches have been pro-

posed for the MISTP, including approximation algorithm, but little attention

has been paid to the MLSTP, with the exception of a Memetic Algorithm (MA)

designed to tackle three degree related spanning tree problems [9]. We will40

include MA in our computational experimentation.

In this paper, we propose a heuristic algorithm based on the Scatter Search

methodology (SS) for the MLSTP. SS is a metaheuristic that operates on a

small set of solutions, called the Reference Set (RS), by applying combination

and improvement operators. RS collects and evolves the best solutions found so45

far (both in terms of quality and diversity) initially selected from a large pop-

ulation generated with a constructive method. One of its main characteristics

is that their methods, namely solution generation, improvement, and combina-

tion, are based on problem dependent elements and strategies to perform an

efficient search exploration. This is an important difference with other popula-50

tion based methods, such as the well-known Genetic Algorithms, mostly based

on randomization.

In our SS algorithm for the MLSTP, we propose several construction heuris-

tics to generate the initial population. Based on their performance, we consider

a proportion of solutions to be constructed with each of these heuristics. We55

combine problem dependent strategies with random elements to construct so-

lutions of relatively good quality and diversity. On the other hand, we propose

two procedures to create the reference set, one having diversity as primary ob-

3

jective and the other one balancing elitism and diversity of solutions. These

methods are coupled with a new combination method and two local improve-60

ment operators. The effectiveness of these operators is empirically evaluated in

our computational testing.

As it is customary in heuristic papers, our experimentation is divided into

two parts, scientific and competitive testing. The first set of experiments is

designed to decide the strategy for generating initial population and reference65

set formation. After this, the best combination of these strategies is put to-

gether in the SS algorithm, and further experiments are performed on a large

set of instances to compare its performance with the existing state of the art

metaheuristic. The experiments have been conducted on four sets of public-

domain graphs. The comparison shows that our algorithm outperforms the70

existing method for MLSTP. Additionally, we believe that the SS designs pro-

posed here can be extended to other settings, thus providing valuable lessons to

the researchers interested on this methodology.

The paper is organized as follows. In this introduction we briefly describe

the problem and our contributions; then, in Section 2 we provide background75

to the readers by introducing mathematical notation and previous work on this

problem. Section 3 is the core of the paper, where we describe our SS algo-

rithm. As it is customary in heuristic papers, this is followed by a section with

experimental results. Section 4 details our extensive experimentation, and the

paper finishes in the following section with the associated conclusions.80

2. Background

In this section, we first introduce some basic definitions and notations to

model the problem in mathematical terms, and then describe the previous

method proposed for this problem.

2.1. Preliminaries and Definitions85

Let G = (V,E) be an undirected graph, where V (G) = {v1, v2, . . . , vn} is

the set of vertices, and E(G) = {(u, v) : u, v ∈ V (G)} is the set of edges

4

(E(G) ⊂ V (G)× V (G)). The size of graph G is defined as |V (G)| = n. The set

of adjacent vertices (neighbours) of a vertex v ∈ V (G) is defined as NG(v) =

{u ∈ V (G) : (u, v) ∈ E(G)}, and its degree as degG(v) = |NG(v)|.90

Given a graph G = (V,E), a spanning tree ST is a subgraph with set of

vertices V (ST) and edges E(ST) that is a tree and includes all the vertices in

G (i.e., V (ST) = V (G)). In a partial spanning tree PT , V (PT) ⊆ V (G).

A vertex v ∈ V (G) is a leaf in ST if degST (v) = 1, and it is a branch

vertex if degST (v) > 2. Non-leaf vertices are called internal vertices. An edge95

(u, v) ∈ E(G)\E(ST) is a chord for the spanning tree ST .

Let φ(G) be the set of all spanning trees of graph G. The Minimum Leaf

Spanning Tree Problem (MLSTP) can be simply stated as finding the spanning

tree in φ(G) with minimum number of leaves. To formulate it in mathemati-

cal terms, we define nLeaf(ST) as the number of leaves of spanning tree ST

(nLeaf(ST) = |{v ∈ V (ST) : degST (v) = 1}|). Then, the MLSTP can be

formulated as:

min
∀ST∈φ(G)

{nLeaf(ST)}.

Throughout this paper, a solution to the problem refers to a spanning tree

ST of the input graph G, and its cost refers to the number of leaves in it,

nLeaf(ST). The optimal solution ST ∗ is then the spanning tree with minimum

nLeaf -value:

ST ∗ = argminST∈Φ(G) nLeaf(ST).

2.2. Related Work

As mentioned, the Minimum Leaf Spanning Tree Problem (MLSTP) is equiv-

alent in optimization terms to the Maximum Internal Spanning Tree Problem

(MISTP). In this section we comment on both problems.100

Lu and Ravi [10] proved that the MLSTP has no constant approximation

factor, unless P = NP , while the MISTP has several constant factor approxima-

tion algorithms. As a matter of fact, parametric [11, 12] and weighted versions

[13, 14] of MISTP have been proposed in literature, together with exact expo-

5

nential algorithms [8]. For a detailed survey on MISTP we refer the reader to105

the excellent work by Salamon [5].

A simplified and faster version of Salamon’s algorithm for weighted and

un-weighted MISTP with better approximation ratio has been given in [6] on

general graphs. Later on, a 4/3-approximation algorithm for MISTP was de-

vised, which is an improvement over the Salamon’s algorithm [15]. In [16], it is110

proved that MISTP can be solved in polynomial time on interval graphs. For

this, an O(n2) algorithm is presented on these graphs, which finds a spanning

tree with number of internal vertices equal to the number of edges in a maxi-

mum path cover of the graph minus one. Improved versions of parameterized

algorithm (with kernel of size 2k vertices) and approximation algorithm (with115

approximation ratio 1.5) for MISTP are proposed in [17] using deeper local

search. This approximation ratio is further reduced to 13/17 in [18] by develop-

ing an algorithm which explores much deeper structure of MISTP as compared

to the previous algorithms. However, in spite of this abundant literature on

approximation methods, no metaheuristic has been proposed for this problem.120

Chen et al. [19] recently proposed an algorithm based on a novel relationship

between maximum weight internal spanning tree and maximum weight match-

ing for the weighted version of MISTP. The authors proved that their method

has an approximation ratio of 1/2. Additionally, a 7/12-approximation algo-

rithm is also designed for claw-free graphs in [19]. In [20], the parameterized125

complexity of MLSTP for independency and cliquy trees has been characterised.

Parameterized algorithms for MISTP are well summarized in the survey paper

[21]. In [22], some bounds on the minimum leaf count for the spanning trees of

connected cubic graphs and 2-connected graphs are proved which are improve-

ments over the previous best known bounds ([23, 24]). Two algorithms have130

been proposed for maximum weight internal spanning tree problem which im-

prove the existing approximation factors for cubic and claw-free graphs of degree

at least three [25]. The most recent work on MISTP includes an approximation

algorithm [26] with a performance ratio of 4/3.

6

2.3. A Memetic Algorithm for the MLSTP135

In our revision of the literature for MLSTP, we only found a metaheuristic

algorithm. The memetic algorithm (MA) by Cerrone et al. [9] is essentially

a genetic algorithm encompassing the usual features of tournament selection,

binary crossover, and mutation, applied iteratively and coupled with a local

improvement. MA starts with a randomly generated population Pop of p_size140

solutions (spanning trees of the input graph G), and then performs consecutive

iterations as briefly described below.

The first step of the iterations is the application of the crossover operator

to a pair of solutions randomly selected from the population as follows. A set

with x solutions randomly selected from Pop is formed, and the best solution of145

this set becomes the first parent P1. Now x/2 solutions are randomly selected

from Pop\{P1} to form another set, and the best member of this set becomes

the second parent P2. The rationale behind this selection is to involve at least

one “good" quality parent in the crossover procedure. Unlike classical crossover

operators, this crossover operator is not a recombination of parent solutions. It150

tries to construct a child C that inherits “good" characteristics from its parents.

This is accomplished by assigning weights to each edge of the input graph G

such that the edges belonging to a path (vertices with degree less than 3 in

the chains remaining after removing all the edges incident on branch vertices)

in a parent solution are promoted, whereas the edges incident on the internal155

vertices of these paths (connected to chains) are penalized since they create

new branch vertices. Edges of G which are incident on the branch vertices in a

parent are also promoted. Promotion of an edge is accomplished by assigning

negative weights, whereas positive weights indicate penalties. The union of

these weighted trees results in an edge weighted graph Gw, which contains the160

edges from the parents P1 and P2 and the weight on each edge is the sum of the

weights assigned to the tree edges. It is to be mentioned here that initially each

edge is assigned zero weight. The offspring is obtained by finding a minimum

weight spanning tree of Gw.

Mutation is now performed on the solution C obtained with crossover to165

7

obtain a new solution C ′. MA implements two mutation operators M1 and M2.

In M1, a leaf l in C is randomly selected and it is connected to a randomly se-

lected vertex v through the edge (l, v) of G. Now the resulting cycle is randomly

broken to generate a new spanning tree C ′. M2 on the other hand, tries to elim-

inate branch vertices. To do it, edges are randomly selected and deleted from170

C for a fixed number of iterations, resulting in three components connected by

two edges, which are randomly selected to obtain a new tree. In the mutation

phase of the algorithm, M1 is always executed on C while M2 is executed after

M1 with some probability.

The iterative phase of MA finishes with the application of a local search175

to the solution C ′ previously obtained. In this phase, one edge of the current

solution is switched with a new one, but instead of selecting edges randomly

(as mutation M1 does), the edges are switched in a way that leads to an im-

provement of the original tree. In this method, the introduction of new nodes of

degree at most two is promoted and the introduction of new branch vertices is180

penalized. The local search performs iterations as long as an improvement move

is found in the neighborhood of the current solution. The resulting solution C∗

is inserted into Pop, replacing the worst solution from a set of y randomly se-

lected solutions from Pop. The algorithm terminates when no improvement is

observed for Max_iter consecutive iterations.185

It is worth mentioning that the implementation proposed in [9] involves a

large number of parameters: four in the main block and five in the weight

functions of crossover and local search phases, which need to be tuned in order

to have an efficient performance.

3. Scatter Search for the MLSTP190

Scatter Search (SS) is a population based metaheuristic which was first intro-

duced in 1977 by Fred Glover [27]. It is one of the widely applied metaheuristic

methodologies for finding high-quality solutions to NP-hard combinatorial op-

timization problems [28, 29, 30, 31].

8

SS starts by generating an initial population of solutions and improving195

them using a local search method. Next, a reference set (RefSet) is created to

extract a diverse set from these improved solutions. Now, a collection of subsets

of reference set is built. The members of each subset combine to produce new

solutions, which are in turn submitted to a local improvement phase. The refer-

ence set is continuously updated using these improved solutions. The process is200

repeated until no further improvement is observed in the reference set updating.

The initialization of our SS algorithm for the MLSTP is outlined in Algorithm

1, and the iterative procedure SS_Iter is given in Algorithm 2.

Algorithm 1 Scatter Search initialization
1: Initialize (pop_size), RefSet size (rs), and (max_iter)

2: pop← Generate initial solutions

3: pop′ ← Improvement1(pop)

4: pop′′ ← Improvement2(pop′)

5: Sbest ← Best solution of pop′′

6: RefSet← Generate RefSet from pop′′

7: Init_Div ← Div_eval(RefSet)

8: Algorithm2(max_iter, Ref_Set, Sbest, Init_Div)

Algorithm 1 starts by generating an initial population pop consisting of

pop_size solutions (Line 2). To accomplish this, we apply four construction205

heuristics described in Section 3.1. In Lines 3 and 4, the solutions of this pop-

ulation are sequentially submitted to two local improvement methods, namely

Improvement1 and Improvement2, resulting in an improved set of solutions

pop′′ (discussed in Section 3.3). The best solution obtained so far is stored in

Sbest (Line 5). Now, rs = |RefSet| solutions are selected from pop′′ based on a210

certain criterion to populate the new RefSet (Line 6). We have designed and im-

plemented two procedures for building the RefSet, which are explained in detail

in Section 3.4. The diversity of the RefSet is measured with the Div_eval func-

tion detailed out in Section 3.5, and the method finishes by calling Algorithm 2

(Line 8) that performs the scatter search iterations.215

Algorithm 2 iterates over the RefSet to improve its solutions. It takes as

9

the input the initial RefSet generated with the initialization, and returns as the

output the best solution in the final RefSet. In particular, it first creates its

rs(rs − 1)/2 subsets of pairs of solutions (Line 4), denoted as Ref_Subsets.

Now, solutions within each subset are submitted to the combination method,220

Combine (Line 6), described in Section 3.2. The combination of a pair of solu-

tions (C1, C2) ∈ Ref_Subsets results in two new solutions, S1 and S2, which

are further improved in Lines 8 and 9. The best of these two improved solutions

S′′ (Line 11) is now used to update the RefSet. The solution S′′ replaces the

worst solution (Sworst) in the RefSet if it is better than it.225

The best solution in the RefSet, Sbest is updated whenever any new incum-

bent solution improves it. The diversity of the updated reference set is again

computed (Line 22). As maintaining diversity of the reference set is a key strat-

egy of the method, if it decreases in a 50% of its initial value, then rs/2 new

solutions are randomly generated (Line 24), with a method described in Sec-230

tion 3.1. The new solutions replace the worst ones in RefSet, thus increasing

its diversity without deteriorating its quality. The algorithm terminates after a

specified number of iterations with no improvement.

3.1. Construction Heuristics

Construction heuristics play an important role in population based meta-235

heuristics. Quality and diversity are recommended to create a good set of initial

solutions. On one hand, we need relatively good solutions, but it is also true

that without a certain level of diversity, evolutionary methods easily get trapped

in sub-optimal solutions. To achieve a good balance between quality and diver-

sity in the initial population that results in an efficient exploration of the search240

space, we consider five construction heuristics, avoiding in this way a premature

convergence, and at the same time, keeping the running time relatively low.

• H1. In this constructive method, spanning trees are constructed using the

well-known DFS procedure. The selection of the vertex to be visited at

each step is based on the degree of the vertices, where priority is given to245

10

Algorithm 2 Scatter Search iterations
1: iter ← 1

2: while iter ≤ max_iter do

3: Update← 0

4: Ref_Subsets← Generate subsets of RefSet

5: for each (C1, C2) ∈ Ref_Subsets do

6: [S1, S2]← Combine(C1, C2)

7: for i← 1 to 2 do

8: S′i ← Improvement1(Si)

9: S′′i ← Improvement2(S′i)

10: end for

11: S′′ ← Best of S′′1 , S′′2

12: Sworst ← Worst solution of RefSet

13: if S′′ /∈ Ref_Set and cost(S′′) < cost(Sworst) then

14: RefSet← (RefSet\{Sworst}) ∪ S′′

15: Update← 1

16: end if

17: if cost(S′′) < cost(Sbest) then

18: Sbest ← S′′

19: iter ← 0

20: end if

21: end for

22: Final_Div ← Div_eval(RefSet)

23: if Final_Div < Init_Div/2 then

24: new_sol← Generate new solutions with H5

25: RefSet← Modify RefSet with new_sol

26: end if

27: if Update == 0 or iter 6= 0 then

28: iter ← iter+ 1

29: end if

30: end while

31: return Sbest

11

lower degree vertices. This may lead to a spanning tree with more depth

and may result in fewer leaves. Thus, minimum degree vertex is chosen as

the root vertex, and ties are randomly broken. From any current vertex

the search proceeds towards an adjacent unvisited vertex with minimum

degree.250

• H2. This heuristic constructs a spanning tree of a given graph using the

well known Prim’s algorithm. Initially, a random vertex u is placed in U ,

then a neighbor v of this vertex from V is selected randomly and added

to U . The remaining vertices of V which are adjacent to the vertices of U

are added in a similar fashion until all the vertices of V are placed in U .255

The set of these edges forms a spanning tree.

• H3. This method is inspired by Kruskal’s algorithm that forms a spanning

tree of a graph based on the edges weights. Initially, an empty set of edges

is taken, then an edge with the smallest weight in the input graph is added

to this set iteratively as long as its addition produces no cycles. However,260

since in our case the underlying graph is unweighted, the selection of edges

is completely random. This process is iterated until |V | − 1 edges have

been added.

• H4. This heuristic implements the Dijkstra’s algorithm by considering

unit weight on each edge. The vertices from set V are added to the set265

U (initially empty) on the basis of their distance from a fixed vertex u

randomly chosen. At every step of the algorithm, a vertex not included in

U and having minimum distance from u is obtained and added to U . The

whole process is repeated until all vertices of V are included in U . Note

that the output of Dijkstra’s algorithm is an arborescence (i.e., a directed270

tree with a root), so we transform the solution in a tree by considering

the arcs of the solution as undirected edges, and ignoring the root.

• H5. This heuristic generates the spanning tree by applying a Depth First

Search algorithm. In this, all the vertices of the input graph are traversed

12

moving from one vertex to its un-visited adjacent vertex. At each step of275

the heuristic, vertices are randomly selected. Therefore this is a completely

random constructive method.

3.2. Combination Method

Producing new solutions by combining two or more existing solutions is an

effective method to explore the search space. We have developed a new combina-280

tion method, Combine, (outlined in Algorithm 3) that takes two spanning trees

ST1, ST2 as the input, and produces two new solutions by combining them.

Specifically, two vertices are initially selected at random, say vi and vj . Then,

two partial spanning trees PT1 and PT2 are created by finding the path from

vi to vj in ST1 and ST2 respectively. Now, the partial tree PT1 is transformed285

into a complete spanning tree ST ′1 by adding the remaining edges sequentially

(following the canonical order) from ST2. In the same manner, ST ′2 is formed

using PT2 and ST1. ST ′1 and ST ′2 are referred as the children trees. The process

of adding the remaining edges from the spanning tree ST to the partial tree PT

is given in the procedure Generate_Child (see Algorithm 4).290

To illustrate the combination method, consider the graph in Figure 1(a)

where v1 = 5 and v2 = 4. Let PT1 and PT2 be partial trees (see Figure 1(c))

obtained from the spanning trees ST1 and ST2 shown in Figure 1(b). PT1 and

PT2 are the paths from 5 to 4 in the spanning trees ST1 and ST2 respectively.

Here, PT1 = {(5, 3), (3, 1), (1, 4)} and PT2 = {(5, 2), (2, 1), (1, 7), (7, 4)}.295

The child tree ST ′1 of Fig. 2(a) is obtained from the partial vertex set

PV = {5, 3, 1, 4} and V ′(G) = V (G)\PV = {2, 6, 7}. First consider vertex

2 ∈ V ′(G) since it is the first one in the canonical order, NST2(2) = {1, 5},

degPT1(1) = 2 and degPT1(5) = 1. Since vertex 5 has the least degree, vertex 2

is added to PV through the edge (2, 5) and hence PV = {5, 3, 1, 4, 2} and PT1 =300

{(5, 3), (3, 1), (1, 4), (2, 5)}. We next consider vertex 6, which has neighbor 3 in

PV . So, 6 is added to PV through edge (3, 6). Thus, PV = {5, 3, 1, 4, 2, 6}

and PT1 = {(5, 3), (3, 1), (1, 4), (2, 5), (3, 6)}. Similarly, vertex 7 is added to PV

and the complete spanning tree is ST ′1 = {(5, 3), (3, 1), (1, 4), (2, 5), (3, 6), (4, 7)}.

13

Figure 1: (a) A graph G, (b) spanning trees ST1 and ST2 of the graph G, (c) partial trees

PT1 and PT2 obtained from spanning trees ST1 and ST2 respectively.

Similarly, the other child tree ST ′2 is obtained as shown in Fig. 2(b). In Fig. 2,305

edges added to the paths PT1 and PT2 are shown by dotted lines.

It is important to mention here that choosing minimum degree vertex in the

partial spanning tree while a new vertex is being added to it helps in keeping

the leaf count low.

Time Complexity : In Lines 2 and 3 of Algorithm 3, the path is found using310

a DFS algorithm, which takes O(|V |) time. In Lines 4 and 5, Algorithm 4

Generate_Child is called. In our implementation, we have used a 2 × (n -1)

matrix to store the edges of spanning tree. Since the size of PT can be at most

|V |-1, Line 1 of this algorithm takes O(|V |) time. The time required by Lines

2, 4 and 7 is O(|V |). Lines 5 and 6 take O(1) time. Lines 4-7 are performed315

O(|V |) times. Therefore, time required by this algorithm is O(|V |2).

14

Figure 2: Child spanning trees (a) ST ′1 obtained from ST2 and PT1 and (b) ST ′2 obtained

from ST1 and PT2

Algorithm 3 Combine(ST1, ST2)

1: Generate two random numbers i, j ∈ {1, 2, . . . , n}

2: PT1 ← path in ST1 from vi to vj

3: PT2 ← path in ST2 from vi to vj

4: ST ′1 ← Generate_Child(PT1, ST2)

5: ST ′2 ← Generate_Child(PT2, ST1)

6: return ST ′1, ST
′
2

15

Algorithm 4 Generate_Child(PT, ST)

1: PV ← vertices in PT

2: V ′(G)← V (G)\PV

3: for v ∈ V ′(G) such that PV ∩ NST (v) 6= ∅ do

4: Find u ∈ PV ∩NST (v) with the lowest degree in PT

5: PT ← PT ∪ (u, v)

6: PV ← PV ∪ {v}

7: V ′(G)← V ′(G)\{v}

8: end for

9: Child_Tree← PT

10: return Child_Tree

3.3. Local Improvement Methods

We propose two local improvement operators that are applied successively

to a solution in order to improve its quality. The rational behind both methods

is to reduce the leaf count by making leaves as internal vertices and, at the same320

time, decreasing the degree of branch vertices. This is accomplished by suitable

cycle exchanges. Since both are iterative procedures, a number of new solutions

are generated during the process. Thus, the search is further enhanced through

these exploratory procedures.

325

3.3.1. Improvement1

This operator reduces the leaf count, nLeaf -value, by first adding a chord

(li, lj), where li and lj are leaves in the spanning tree, and then removing a

suitable edge from the tree. Thus, for a given spanning tree, ST , the procedure

finds a pair of leaves li and lj such that (li, lj) ∈ E(G) and there exists v such330

that (v, li), (v, lj) ∈ E(ST). Now, the edge (li, lj) is added to, and the edge (v, li)

is removed from E(ST). This reduces the leaf count by one as the removal of

(v, li) and the addition of (li, lj) make lj as an internal vertex. The process is

repeated until no such pairs of vertices are present in the ST (see Algorithm 5).

16

Figure 3: Applying Improvement1 on ST .

In Fig. 3, leaves 4 and 7 are connected to vertex 1 in ST of the given graph335

G (figure 1(a)). Here, the dashed line shows that 4 and 7 are neighbors in the

graph. The addition of edge (4, 7) and removal of edge (1, 7) in E(ST) results

in the reduction of one leaf in ST ′.

Algorithm 5 Improvement1 (ST)

1: leaves← {v ∈ V (G) : degST (v)=1}

2: for all li, lj ∈ leaves such that (li, lj) ∈ E(G) and NST (li) == NST (lj) do

3: E(ST)← (E(ST) ∪ (li, lj))\(NST (li), li)

4: leaves← leaves\{lj}

5: end for

6: return ST

Time Complexity : The degree of vertices in a ST can be found in O(|V |-1)340

time, therefore Line 1 takes O(|V |) time. In Line 3, removal and addition of

edges to the spanning tree takes O(|V | − 1) time. If the number of leaves in

ST is l, then Line 4 is executed in O(l) time. Lines 3 and 4 are repeated l

times as each time the number of leaves is reduced by one (in Line 2). Since

l is always less than |V |, therefore the time complexity of this method is O(|V |2).345

17

3.3.2. Improvement2

This operator works by first adding a chord (v, l), where l is a leaf, to form

a cycle in ST , and then removing an edge from the cycle to reduce the degree

of branch vertices in the spanning tree, which helps to reduce the leaf count, as350

described in the following cases below. It is an iterative method where in each

iteration the neighbors of a leaf in the given graph are searched. Then, an edge

from one of the neighbors to that leaf is added in the ST , which creates a cycle.

Based on the number of branch vertices present in the newly created cycle, the

following cases arise:355

Case 1: If there are at least two branch vertices which are connected by an

edge in the cycle, then this edge is removed from the ST resulting in reduction in

the degree of branch vertices and subsequently in the number of leaves. Figure

4(b) shows an improvement in a given spanning tree ST of the graph G′ (Fig.360

4(a)) using this method. Solid lines in the figure indicate tree edges whereas the

dotted one represents the edge which will be added to form a cycle. Here, 1 and

5 are two branch vertices in a cycle created by joining the leaf (vertex 3) of the

spanning tree with one of its neighbors (vertex 6) in the graph. Now, removing

the edge (1, 5) and adding (3, 6) results in number of leaves being reduced from365

4 to 2.

Case 2: If there is at least one branch vertex in the cycle, then the edge from

the branch vertex to one of its neighbor in that cycle is removed. This process

may lead to an improvement of ST depending on the degree of the neighboring

vertex. Figures 4(c) and 4(d) illustrate this case, having vertex 1 as the only370

branch vertex in the cycle created after the addition of edge (4, 1) and (4, 5) to

ST in these figures respectively. The spanning tree ST in Fig. 4(c) gives no

improvement after removal of edge (1, 2) as the process ends up with vertex 2 as

a leaf since its degree is decremented by one, while ST in figure 4(d) results into

an improvement when the edge (1, 5) is removed, as degree of vertex 5 remains375

the same as the added edge has 5 as one of its end points.

18

Case 3: If there is no branch vertex in the cycle, then the process is repeated

for another leaf in the tree (see Algorithm 6).

Algorithm 6 Improvement2 (ST)

1: leaves← {v ∈ V (G) : degST (v)=1}

2: for all l ∈ leaves do

3: nbrs← NG(l)

4: mark all v ∈ nbrs as unvisited

5: flag ← 0

6: while flag==0 and ∃ a vertex v ∈ nbrs which is unvisited do

7: Choose an unvisited v ∈ nbrs and mark it as visited

8: if (v, l) /∈ E(ST) then

9: C ← Cycle obtained by adding edge (v, l) to ST

10: br ← {v ∈ V (C) : degST (v) > 2}

11: br′ ← V (C)\br

12: if ∃ bi, bj ∈ br s.t. (bi, bj) ∈ E(C) then

13: E(ST) ← (E(ST) ∪ (v, l))\(bi, bj)

14: flag ← 1

15: else if ∃ p ∈ br, q ∈ br′ s.t. (p, q) ∈ E(C) then

16: E(ST) ← (E(ST) ∪ (v, l)) \(p, q)

17: flag ← 1

18: end if

19: end if

20: end while

21: end for

22: return ST

Time Complexity : Finding leaves in Line 1 takes O(|V |) time. As a vertex

can have maximum |V |-1 number of neighbors, Line 3 takes O(|V |) time. Line380

4 takes O(∆(G)) time, where ∆(G) is maximum degree of a vertex in graph G.

The time required by each Line 7-19 (except the Lines 14 and 17) is O(|V |).

Lines 7-19 are repeated ∆(G) number of times and Lines 3-20 are performed for

19

Figure 4: Applying Improvement2 on ST of (a) a graph G′ (b) when there are two branch

vertices in cycle, (c) and (d) when there is one branch vertex in cycle.

20

all leaves in the ST , so a maximum |V | − 1 number of times. Therefore, time

complexity of this method is O(|V | ∗ (|V | ∗∆(G))).385

3.4. Reference Set Formation

Considering that in SS a small fraction of the population, called the reference

set, takes part in the evolution process; the selection of the solutions that form

this set significantly influences the search process. In other words, the creation

of the reference set is a key component of the algorithm. We have devised two390

methods for generating it.

3.4.1. Method 1 (RM1)

This method for reference set initialization is inspired in [29]. After creating

and improving the initial solutions to obtain population pop′′,the Ref_Set is395

created from this population by considering both the quality and diversity of so-

lutions. To achieve quality, the best rs/2 solutions are selected from the popula-

tion. This operation can be performed inmin(O(pop_size∗(rs/2)), O(pop_size∗

log(pop_size))) time. The remaining rs/2 solutions are selected according to a

distance function designed for MLSTP to maintain the diversity in theRef_Set.400

The distance between a spanning tree ST and the Ref_Set is defined as:

d(ST,Ref_Set) = min
ST ′∈Ref_Set

Count(ST, ST ′)

where,

Count(ST, ST ′) =|{(u, v) ∈ E(ST ′) : (u, v) /∈ E(ST)}∪

{(u, v) ∈ E(ST) : (u, v) /∈ E(ST ′)}|

Clearly, Count(ST, ST ′) gives the number of edges which are not common

in ST and ST ′, and this computation can be performed in O(|V | ∗ log|V |) time

(by sorting one of them in lexicographical order and searching edges of the405

other in this sorted tree using Binary search). For each ST ∈ pop′′\Ref_Set,

we compute d(ST,Ref_Set). It takes O(|V | ∗ log|V |(pop_size − rs/2)rs/2)

21

time. Since solutions which are distant from Ref_Set are preferred for main-

taining the diversity, the best rs/2 solutions (solutions which maximize the

minimum distance from Ref_Set) are added to the Ref_Set. Note that it410

takes O((pop_size− rs/2)rs/2) time. Hence, reference set can be constructed

in O(|V | ∗ log|V |(pop_size− rs/2)rs/2) time.

3.4.2. Method 2 (RM2)

This method is based on the clustering algorithm of NSGA-II [32]. Initially,415

pop_size number of clusters are formed by simply putting each solution of the

population into a separate cluster. Then, for each pair of clusters Ci and Cj ,

where 1≤ i, j ≤ pop_size and i 6= j their distance cdij is computed as:

cdij =
1

|Ci||Cj |
∑

ST∈Ci,ST ′∈Cj

Count(ST, ST ′)

After computing the distance for all the pairs of clusters, the pair with mini-

mum distance is merged (i.e., their clusters are combined into a single one). This420

reduces the number of clusters by one. The distances are again calculated with

pop_size−1 clusters, and the process is repeated until the number of clusters

is rs. Then, a solution is selected from each cluster as a member of reference

set. In particular, the solution with minimum average distance to the other

solutions in that cluster is the one chosen. The time complexity of this method425

is O(pop_size2(rs+ |V | ∗ log|V |)) [32].

3.5. Diversity Evaluation Function

As mentioned above, the convergence of the SS algorithm mainly depends on

the diversity of the reference set. To maintain it during the search process, we

consider a diversity evaluation function, Div_eval, that calculates the diversity430

of reference set after every iteration.

To compute the diversity evaluation we first compute the average diversity

avg_div of reference set over the rs(rs−1)/2 number of possible solution pairs.

In mathematical terms:

22

avg_div =

∑
ST,ST ′∈Ref_Set Count(ST, ST

′)

rs(rs− 1)/2

Then, this value is normalized between 0 and 1 as follows:435

Div_eval =
avg_div
|V | − 1

As shown in Algorithm 2, where the main steps of our SS method are de-

tailed, the Div_eval manages the convergence of the algorithm and therefore

is responsible of its termination.

4. Experiments and Results

This section presents the computational experiments carried out on various440

sets of graphs to test the performance of the proposed SS algorithm. To compare

it with the existing state of the art approach (the MA in [9]), we implemented

both algorithms in C++ on ubuntu 16.04 LTS machine with Intel(R) Core(TM)

i5-2400 CPU @3.10×4 GHz and 7.7 GiB of RAM.

The experiments are performed on four classes of graphs given below.445

1. Harwell-Boeing (HB) Graphs: This set contains 62 instances of sparse

matrices taken from the public domain Matrix Market library (available

at https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/) that are

widely used in scientific and engineering problems. The size of graphs

ranges from 24 to 918. Optimal results for these instances are not known.450

2. Cap graphs C[k]: A Cap graph C[k] consists of 3k+1 vertices. It has 4

levels with one vertex at level 1 and k vertices each in the remaining levels

with edges as shown in Fig. 5. In this set, the instances are generated

by varying the value of k between 2 to 4000 with a total of 100 instances.455

The optimal spanning tree for this graph has k leaves [23].

23

Figure 5: Cap graph with 3k+1 vertices, k=5.

3. Type 1 Graphs: Type I graphs were originally generated by Carrabs

et al. [33] to compare the performance of different relaxations for sev-

eral formulations of the minimum branch vertices spanning tree problem.460

To obtain a meaningful comparison, sparse graphs with number of ver-

tices n, and edge density less than 0.2 were generated, where the den-

sity is computed as 2|E|/ [n(n− 1)]. Thus, the graph generator computes

|E| = b(n − 1) + 1.5k
√
nc for k = 1, 2, 3, 4, 5. We consider in our experi-

ments the instances in [9], which were obtained with that generator for 14465

values of n (ranging from 150 to 1000), and generating five instances for

each value of n and k, totalizing 350 graphs. These instances have known

optimal values.

4. Type 2 Graphs: There are 94 instances in this set, generated by Cer-470

rone et al [9] considering challenging scenarios. Specifically, starting with

a cycle graph of four vertices, an instance with n vertices is constructed it-

eratively by adding edges incident on randomly selected non-adjacent ver-

tices (see Figure 6). This set contains graphs with n ranging between 50 to

1500 with optimal values known (except for the instances with n = 1500).475

The last two sets of test instances are also considered in [9] to test MA, the

best method previously published. It is worth to mention here that they have

also given a mathematical formulation of MLSTP and the optimal results of

these instances were obtained with CPLEX, which can only find optimal results480

24

Figure 6: Construction process of Type 2 graphs.

for instances with size (number of nodes) less than 1500.

Our experimentation is divided into two parts: preliminary experiments

(scientific testing) and main experiments (comparative testing). To avoid the

over-training of our algorithm, we perform the preliminary experimentation on

a small set of instances, and the comparison with the previous method on the485

entire set.

4.1. Scientific testing

For the initial set of experiments, 20 instances of HB graphs are considered

to form a representative set. Specifically, it consists of the following graphs

with different densities and sizes: ash85, bcspwr03, bcsstk01, bcsstk05, bus685,490

can_24, can_73, can_715, dwt_66, dwt_162, dwt_245, dwt_310, dwt_503,

dwt_869, gr_30_30, lshp265, lshp577, nos4, nos7, plat362. As we have five

construction heuristics and two reference set generation methods, we perform a

thorough analysis to develop the final configuration of the SS method by using

an appropriate combination of its components.495

4.1.1. Size of Reference Set

This section describes the experiments performed in order to set the size rs

of the RefSet. This is typically taken between 10 and 20 [30], so we test the

values rs = 5, 10, 15, and 20. On the other hand, we set the population size500

25

Table 1: Average results of SS on 20 HB graphs

rs 5 10 15 20

small nLeaf 7.14 6.92 6.75 6.65

time (sec.) 1.86 16.79 85.54 302.38

large nLeaf 17.37 14.64 13.61 12.96

time (sec.) 125.1 302.97 384.8 561.1

pop_size = 100, as recommended in [30]. For each value of rs, 20 independent

runs of SS are performed on each instance. Table 1 reports the associated

results.

The test set is divided into two subsets based on the size of the instances:

small instances (|V | ≤ 300) and large instances (|V | > 300). The results are505

shown in Table 1, where nLeaf represents the average objective function values

(number of leaves in the spanning tree), and time represents the average CPU

time for different values of rs.

We apply a two-way ANOVA with repetition to the data in Table 1, and at

a 5% level of significance, it concludes that there is a significant difference in the510

nLeaf obtained with these values of rs for both large and small instances. We

also apply a pairwise comparison with TUKEY’s HSD test, and it is found that

each pair of means is significantly different (with the exception of rs = 15 and

20). Similar analysis and conclusions is achieved with CPU times. Considering

that the running time substantially increases with rs, we initially set the value515

of rs = 5. However, preliminary experiments on large graphs disclosed that

rs = 5 resulted in a premature convergence of SS, we therefore set rs = 10 for

large graphs.

4.1.2. Comparison of Construction Heuristics520

Our preliminary investigation with SS indicated a sharp decline in the di-

versity even though the process starts with diverse solutions. To overcome this

limitation, we reinitialize the population at suitable intervals. In particular,

26

we apply H5 since it is a completely random process to generate diverse so-

lutions. On the other hand, to have a wide range of solutions, the remaining525

four construction heuristics (described in Section 3.1) are applied for the initial

population.

To statistically analyse the performance of the construction heuristics, we

replicate them 30 times on each instance in our representative set. Table 2 re-

ports the mean value of nLeaf and Div_eval for the four constructive methods530

(H1, H2, H3, and H4). A two-way ANOVA statistical test is applied to these

mean values at a 5% level of significance. It concludes that the heuristics are

significantly different. The TUKEY’s HSD test confirms this conclusion.

A bi-objective analysis of the objective and diversity values shows that the

pairs (0.46, 16.27), (0.60, 109.69) and (0.64, 129.14) are non-dominated points535

that correspond to H1, H2 and H3 respectively. Since the nLeaf value obtained

with H1 is substantially lower than the remaining heuristics, we consider two

different ways to create the initial population:to apply onlyH1, and to use all the

heuristics (in some suitable proportions). To decide the fraction of solutions to

be contributed by each of the heuristic in the population a dense ranking scheme540

is used (see [34]), based on the following formula to determine the proportions:

pHi =
80−RHi∑4

j=1(80−RHj)

where, pHi and RHi are the proportion and rank sum of the heuristic Hi

respectively. With 4 heuristics and 20 instances, the maximum possible rank

sum that a heuristic can have is 80. The 3rd row of Table 2, shows the rank

sum of each heuristic and in the 4th row the corresponding proportion of each545

of these heuristics is given.

4.1.3. Reference Set Diversity Analysis

This section describes the experiments carried out to evaluate the effect of

different combinations of construction heuristics (H1, H2, H3 and H4) and ref-550

erence set formation methods (RM1 and RM2, detailed out in Section 3.4) on

27

Table 2: Comparison of construction heuristics

H1 H2 H3 H4

Div_eval 0.46 0.60 0.64 0.42

nLeaf 16.27 109.69 129.14 179.16

Rank sum 20 57 46 77

pHi (%) 50 19 28 3

the diversity of the reference set. The following four combinations are tested

through the experiments:

(a) COMB1: All construction heuristics and RM1555

(b) COMB2: Construction heuristic H1 and RM1

(c) COMB3: All construction heuristics and RM2

(d) COMB4: Construction heuristic H1 and RM2

For each combination above, a population of 100 solutions is generated using560

the construction heuristics, and a reference set is created from this population

with the reference set formation method. Now, the diversity of this reference set

is computed with the Div_eval function (see Section 3.5). Five independent

runs of this experiment are performed on the instances of the representative

set. For small and large instances the size of reference set is taken as 5 and 10565

respectively (as decided in Section 4.1.1). Fig. 7 shows the average diversity of

reference sets over the 20 instances and 5 trials for all the combinations. The

mean diversities over all the instances of these combinations are given in Table

3. The results show that the diversity is maximum for COMB3 and minimum

for COMB2.570

We perform pairwise comparisons between the following combinations: (COMB1

COMB3) and (COMB2, COMB4) to compare the strategies for reference set

28

Figure 7: Reference set diversity for different combinations of constructions

Table 3: Different combinations of constructions

Combinations Mean Diversity

COMB1 0.58

COMB2 0.44

COMB3 0.59

COMB4 0.46

formation, (COMB1, COMB2) and (COMB3, COMB4) to find out if a sin-

gle construction heuristic or a group of different heuristics are able to produce

diverse solutions for the reference set. The diversity of the reference set is com-575

pared for each of the pairs using a statistical paired two-sample t-test with 5%

level of significance. A t-test is a type of inferential statistic used to determine

if there is a significant difference between the means of two groups. It concludes

in our case that all the pairs are significantly different. We therefore consider

the four variants in our final experiments with SS.580

4.1.4. Termination Criterion

Trials are conducted on the representative set instances to decide the number

of iterations, max_iter. It is observed that if the reference set is not updated

29

Figure 8: Convergence graphs of some HB instances

for 100 consecutive iterations, then the search can be terminated. This observa-585

tion is based on the experiments in which the procedure is allowed to run for up

to 200 iterations. It is seen that during the later part of the iterative procedure

neither the best objective value improves nor an update of reference set takes

place. Some convergence patterns are shown in Fig. 8.

590

4.2. Comparative testing

In this section, we first compare four variants of SS, namely SS1, SS2, SS3,

and SS4, developed by generating the initial population in our SS method with

COMB1, COMB2, COMB3, and COMB4 respectively (discussed in Section

30

4.1.3), and then use the best variant to compare SS with MA, the best previous595

method. Since some instances in our test-bed are very large and difficult to

solve, we limit, if necessary, the execution of all methods to 1 hour of CPU time

on each instance. Note however, that we only check the running time after each

global iteration, and therefore the total elapsed time may be longer than the

specified limit of 1 hour. We report in the tables the total time required by each600

method on each instance.

In our first comparative experiment, we apply the four SS variants on Type

1 graphs. We compare them with a two way-ANOVA as in the preliminary

experiments. The test indicates rejection of the null hypothesis. A pairwise

comparison is done by applying TUKEY’s HSD test which shows that the per-605

formance of pairs (SS1, SS2) and (SS1, SS3) is significantly different. The

mean values of nLeaf obtained by these variants is given in Table 4. The 1st

and 2nd columns in this table report the graph size and number of instances of

that size, respectively. The average of the optimal values for each set is shown

in 3rd column. Columns 4th to 7th give the results obtained with SS1, SS2,610

SS3, and SS4 respectively.

Results in Table 4 indicate that the diversity of the reference set formed

using a single construction heuristic is lower than when it is created using all

the construction heuristics (see Table 3). A diverse population is needed in

SS for creating a reference set, so using all construction heuristics gives better615

performance than a single one. Though, SS1 and SS3 both generate the initial

population using all the construction heuristics but SS1 outperforms SS3 (see

Table 4). SS1 and SS3 differ over the reference set formation strategies. Better

performance of SS1 may be attributed to the fact that reference set in SS1

contains both types of solutions, namely, elite and diverse in equal proportion620

since it employs RM1 for reference set formation while method RM2 focuses only

on the diversity of solutions in the reference set, and hence may not contain the

elite solutions of initial population. Clearly, SS1 invariably gives the lowest

mean value of nLeaf (shown in bold) over all the instances, so the rest of the

experiments is done with this variant. In the remaining part of this paper SS1625

31

Table 4: SS variants on Type 1 graphs

|V | #ins Opt SS1 SS2 SS3 SS4

150 25 50.40 50.40 50.80 50.64 50.68

160 25 55.12 55.12 55.28 55.24 55.32

170 25 58.20 58.36 58.56 58.64 58.52

180 25 64.60 64.72 64.76 64.84 64.80

190 25 70.36 70.48 70.56 70.64 70.60

200 25 72.80 72.84 72.96 72.96 72.92

250 25 97.68 97.72 97.88 97.96 97.88

300 25 123.36 123.52 123.56 123.68 123.64

350 25 146.00 146.12 146.32 146.04 146.12

400 25 174.52 174.56 174.56 174.60 174.60

450 25 197.64 197.68 197.72 197.76 197.72

500 25 226.44 226.48 226.68 226.64 226.60

750 25 437.00 437.00 437.00 437.00 437.00

1000 25 595.00 595.00 595.00 595.00 595.00

avg 169.22 169.29 169.40 169.40 169.39

32

Figure 9: Evolution of the best solution by combination and improvement methods.

will be referred as SS.

Figure 9 shows the evolution of the SS solutions over a standard run. Dur-

ing the initial iterations, the best solution in the RefSet significantly im-

proves by means of the combination and improvement operators. In this figure,

Combine_Best and Loc_Improv_Best refer to the best values of the solutions630

after the application of these operators respectively. This diagram clearly shows

the evolution of the best solution found, and the contribution of the combination

and improvement operators to it.

We now compare the performance of SS with MA on Type 1 and Type 2

graphs. The results of our experiment are reported in Tables 5 and 6 respec-635

tively. Columns ‘Best’ and ‘Avg’ report the mean values of the minimum and

average of nLeaf over 10 runs in each group of instances with the same size

(each row in the table). The number of instances for each group in table 5 is 25.

In Table 6, the number of instances for the group with |V | = 1000 and 1250 is

8 and 6 respectively, whereas for rest of the graphs it is 10. The column ‘time’640

reports the average running time of the algorithms over 10 runs. The last row

of these tables (‘avg’) shows the average of the results over all the instances.

The values in bold show the improvement of SS over MA. From the results, it

33

Table 5: Comparison of SS and MA for Type 1 graphs

|V |
SS MA

Opt Best Avg time Best Avg time

150 50.40 50.40 50.80 4.24 51.08 51.34 155.37

160 55.12 55.12 55.38 3.87 55.88 56.06 183.11

170 58.20 58.36 58.76 5.10 59.36 59.68 214.49

180 64.60 64.72 65.04 5.13 65.52 65.90 249.01

190 70.36 70.48 70.70 5.49 71.52 71.70 287.15

200 72.80 72.84 73.06 5.52 74.20 74.56 329.32

250 97.68 97.72 97.90 8.40 100.56 100.90 604.09

300 123.36 123.52 123.76 10.64 127.76 128.10 1000.97

350 146.00 146.12 146.19 38.58 151.60 151.98 1544.40

400 174.52 174.56 174.62 47.17 181.16 181.78 2261.59

450 197.64 197.68 197.72 48.14 206.00 206.64 3174.78

500 226.44 226.48 226.54 - 237.32 237.88 -

750 437.00 437.00 437.00 - 437.08 437.28 -

1000 595.00 595.00 595.00 - 603.52 603.98 -

avg 169.22 169.29 169.46 - 173.04 173.41 -

is clear that SS performs better than MA for both classes of graphs.

The following experiment is performed on the Cap graphs. In this set of645

instances, SS achieves optimal results in all the instances tested with k = 2 to

500. Further insight into the procedure reveals that these optimal values are

attained after on the initial population, just with the application of improvement

operators. This was further verified by extending the observations for values of

k up to 4000. This shows that our improvement operators are quite effective650

in reducing the number of leaves, especially in Cap graphs. It is important

to remark here that no optimal solution is present in the initial population in

any of the above mentioned instances. Considering that the optimal results are

achieved with just applying the improvement operator to the solutions in the

34

Table 6: Comparison of SS-MLSTP and MA for Type 2 graphs

|V |
SS-MLSTP MA

Opt Best Avg time Best Avg time

50 7.40 7.40 7.73 1.64 7.80 7.97 18.53

100 17.30 17.30 17.91 7.01 17.60 17.80 61.75

200 32.20 32.50 33.67 49.58 32.60 33.07 339.17

300 51.30 51.90 54.03 196.50 52.30 53.13 1024.42

400 65.70 66.60 68.12 1566.10 67.00 68.09 2298.23

500 88.00 89.20 90.43 - 90.90 92.10 -

750 135.20 141.50 143.07 - 144.50 146.20 -

1000 194.75 208.75 210.79 - 217.50 220.29 -

1250 252.83 284.17 285.87 - 358.00 362.28 -

1500 - 333.40 336.47 - 708.70 712.00 -

avg - 123.27 124.81 - 169.69 171.29 -

initial population, we do not report them in our tables to compare SS and MA.655

Tables 7 and 8 report the results of our last experiment on small (|V | ≤ 300)

and large (300 < |V | ≤ 1000) HB graphs respectively. From the 62 instances of

HB graphs tested, SS is able to achieve optimal results in 45 instances, whereas

in MA this value is 25. For the remaining instances, the results of SS are quite

close to the known lower bounds. The comparison of results obtained by both660

algorithms shows that SS outperforms MA in both sets of graphs.

Table 7: Comparison of SS and MA for small HB graphs

Graphs
SS-MLSTP MA

Best Avg time Best Avg time

|V | ≤ 100 6.47 6.50 7.33 6.60 6.65 30.50

100 < |V | ≤ 200 3.75 3.89 47.83 4.13 4.30 195.00

200 < |V | ≤ 300 10.00 10.36 253.95 9.80 10.51 672.78

avg 6.74 6.92 103.04 6.84 7.15 299.43

35

Table 8: Comparison of SS-MLSTP and MA for large HB graphs

Graphs
SS-MLSTP MA

Best Avg time Best Avg time

|V | ≤ 500 23.75 24.39 - 25.08 25.93 -

500 < |V | ≤ 750 21.89 22.73 - 25.78 27.46 -

750 < |V | ≤ 1000 3.50 5.18 - 21.38 25.85 -

avg 16.38 17.43 - 24.08 26.41 -

Table 9: Summary of results

Type 1 Type 2 HB

SS MA SS MA SS MA

nLeaf 169.29 173.04 123.27 169.69 11.56 15.46

dev - -

n_best 61 31

n_opt

time

The overall comparison of SS and MA on all the instances of three sets of

graphs is shown in Table 9. The first two rows compares the average value

of best nLeaf and average percentage deviation (dev) from the best known/

optimal of the results obtained by both the methods. Since optimal results665

are not available for HB graphs, therefore dev is not computed for this class

of graphs. ‘n_best’ and ‘n_opt’ represent the number of best and optimal

solutions found by the algorithms respectively. The execution time, time, in

seconds is reported in the last row. This table clearly shows that SS on average

obtains better results than MA, thus showing the practical contribution of our670

method.

36

5. Conclusion

In spite of having significant applications in communication networks, the

MLSTP has been tackled with very few approaches. This paper proposes an

efficient solving method based on the Scatter Search methodology for the ML-675

STP. The algorithm generates an initial population of diverse solutions, and

then it explores and exploits this population by means of combination and lo-

cal improvement operators. Emphasis on a good reference set formation has

been given by admitting solutions in such a way that the method keeps a good

balance between the quality and diversity of the population.680

We perform extensive experiments in order to obtain the best configuration

of the SS operators for MLSTP. Preliminary experimentation is performed on

HB graphs, as they are frequently used as benchmarks for similar optimization

problems. These experiments help us to disclose the values of key search pa-

rameters and the best strategies for our final SS method. Final experiments are685

conducted, first on Cap graphs with optimal known, and then on three classes

of graphs namely, Type 1, Type 2 and HB graphs, consisting of 506 instances.

It shows that SS performs better than MA in terms of the objective function

but it requires significantly lower running times.

This study goes beyond the application of a well-established methodology,690

Scatter Search in our case, to solve a difficult problem, the MLSTP. It actually

investigate alternatives to the classic design, proposed in [35] and applied in

many recent papers, such as [36], or [31]. The strategies proposed here, after

tested in other problems, can be the foundations of advanced Scatter Search

designs.695

Acknowledgment

The first author would like to thank University Grants Commission (UGC),

India for providing RGNF fellowship [RGNF-2014-15-SC-UTT-74975] during

the research. Prof. Martí research has been partially supported by the Spanish

37

Ministry of Science, Innovation, and Universities with grant refs. PGC2018-700

0953322-B-C21/MCIU/AEI/FEDER-UE.

References

[1] B. Y. Wu, K. M. Chao, Spanning trees and optimization problems: Discrete

mathematics and its applications, Washington, D.C., 2004.

[2] M. I. Ostrovskii, Minimal congestion trees, Discrete Mathematics 285 (1-3)705

(2004) 219–226. doi:https://doi.org/10.1016/j.disc.2004.02.009.

[3] M. R. Garey, D. S. Johnson, Computers and intractability: A Guide to the

Theory of NP Completeness, W. H. freeman, New York, 1979.

[4] M. S. Rahman, M. Kaykobad, Complexities of some interesting problems

on spanning trees, Information Processing Letters 94 (2) (2005) 93–97.710

doi:https://doi.org/10.1016/j.ipl.2004.12.016.

[5] G. Salamon, A survey on algorithms for the maximum internal span-

ning tree and related problems, Electronic Notes in Discrete Mathematics

36 (2010) 1209–1216. doi:https://doi.org/10.1016/j.endm.2010.05.

153.715

[6] M. Knauer, J. Spoerhase, Better approximation algorithms for the maxi-

mum internal spanning tree problem, Algorithmica 71 (4) (2015) 797–811.

doi:https://doi.org/10.1007/s00453-013-9827-7.

[7] X. LI, D. Zhu, A 4/3-approximation algorithm for the maximum internal

spanning tree problem on graphs without leaves, Journal of Computational720

Information Systems 11 (15) (2015) 5607–5617.

[8] D. B. Raible, H. Fernau, S. Gaspers, M. Liedloff, Exact and parameterized

algorithms for max internal spanning tree, Algorithmica 65 (1) (2013) 95–

128. doi:https://doi.org/10.1007/s00453-011-9575-5.

38

http://dx.doi.org/https://doi.org/10.1016/j.disc.2004.02.009
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2004.12.016
http://dx.doi.org/https://doi.org/10.1016/j.endm.2010.05.153
http://dx.doi.org/https://doi.org/10.1016/j.endm.2010.05.153
http://dx.doi.org/https://doi.org/10.1016/j.endm.2010.05.153
http://dx.doi.org/https://doi.org/10.1007/s00453-013-9827-7
http://dx.doi.org/https://doi.org/10.1007/s00453-011-9575-5

[9] C. Cerrone, R. Cerulli, A. Raiconi, Relations, models and a memetic725

approach for three degree-dependent spanning tree problems, European

Journal of Operational Research 232 (3) (2014) 442–453. doi:https:

//doi.org/10.1016/j.ejor.2013.07.029.

[10] H. Lu, R. Ravi, The power of local optimization: Approximation algorithms

for maximum-leaf spanning tree (draft), in: Proc. 30th Annual Allerton730

Conference on Communication Control and Computing, 1996, pp. 533–542.

[11] E. Prieto, C. Sloper, Either/or: Using vertex cover structure in designing

fpt algorithms the case of k-internal spanning tree, in: Workshop on Algo-

rithms and Data Structures. WADS (Lecture Notes in Computer Science,

vol. 2748), Springer, 2003, pp. 474–483. doi:https://doi.org/10.1007/735

978-3-540-45078-8_41.

[12] E. Prieto, Systematic kernelization in FPT algorithm design, Ph.D. disser-

tation, School of Electrical Engineering and Computer Science, The Uni-

versity of Newcastle, NSW, Australia, 2005.

[13] G. Salamon, Approximation algorithms for the maximum internal spanning740

tree problem, in: Mathematical Foundations of Computer Science. MFCS

Lecture Notes in Computer Science, vol. 4708, L. Kucera and A. Kucera,

Eds., Springer, Berlin/Heidelberg, Germany, 2007, pp. 90–102. doi:https:

//doi.org/10.1007/978-3-540-74456-6_10.

[14] G. Salamon, Approximating the maximum internal spanning tree problem,745

Theoretical Computer Science 410 (50) (2009) 5273–5284. doi:https:

//doi.org/10.1016/j.tcs.2009.08.029.

[15] X. Li, D. Zhu, A 4/3-approximation algorithm for finding a spanning tree

to maximize its internal vertices, arXiv preprint arXiv:1409.3700, 2014.

[16] X. Li, H. Feng, H. Jiang, B. Zhu, A polynomial time algorithm for find-750

ing a spanning tree with maximum number of internal vertices on inter-

val graphs, in: 10th International Workshop on Frontiers in Algorithmics.

39

http://dx.doi.org/https://doi.org/10.1016/j.ejor.2013.07.029
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2013.07.029
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2013.07.029
http://dx.doi.org/https://doi.org/10.1007/978-3-540-45078-8_41
http://dx.doi.org/https://doi.org/10.1007/978-3-540-45078-8_41
http://dx.doi.org/https://doi.org/10.1007/978-3-540-45078-8_41
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74456-6_10
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74456-6_10
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74456-6_10
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2009.08.029
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2009.08.029
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2009.08.029

FAW (Lecture Notes in Computer Science, vol. 9711), D. Zhu and S.

Bereg, Eds., Springer, Qingdao, China, 2016, pp. 92–101. doi:https:

//doi.org/10.1007/978-3-319-39817-4_10.755

[17] W. Li, Y. Cao, J. Chen, J. Wang, Deeper local search for parameterized and

approximation algorithms for maximum internal spanning tree, Information

and Computation 252 (2017) 187–200. doi:https://doi.org/10.1016/

j.ic.2016.11.003.

[18] Z. Z. Chen, Y. Harada, F. Guo, L. Wang, An approximation algo-760

rithm for maximum internal spanning tree, Journal of Combinatorial

Optimization 35 (2018) 955âĂŞ979. doi:https://doi.org/10.1007/

s10878-017-0245-7.

[19] Z. Z. Chen, G. Lin, L. Wang, Y. Chen, D. Wang, Approximation

algorithms for the maximum weight internal spanning tree problem,765

Algorithmica 81 (2019) 4167–4199. doi:https://doi.org/10.1007/

s00453-018-00533-w.

[20] K. Casel, J. Dreier, H. Fernau, M. Gobbert, P. Kuinke, F. S. Villaamil,

M. L. Schmid, E. J. Leeuwen, Complexity of independency and cliquy

trees, Discrete Applied Mathematics 272 (2020) 2–15, 15th Cologne-Twente770

Workshop on Graphs and Combinatorial Optimization (CTW 2017). doi:

https://doi.org/10.1016/j.dam.2018.08.011.

[21] W. Li, Y. Ding, Y. Yang, R. S. Sherratt, J. H. Park, J. Wang, Parameterized

algorithms of fundamental np-hard problems: a survey, Human Centric

Computing and Information Sciences 10 (2020). doi:https://doi.org/775

10.1186/s13673-020-00226-w.

[22] J. Goedgebeur, K. Ozeki, N. V. Cleemput, G. Wiener, On the minimum leaf

number of cubic graphs, Discrete Mathematics 342 (11) (2019) 3000–3005.

doi:https://doi.org/10.1016/j.disc.2019.06.005.

40

http://dx.doi.org/https://doi.org/10.1007/978-3-319-39817-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-39817-4_10
http://dx.doi.org/https://doi.org/10.1007/978-3-319-39817-4_10
http://dx.doi.org/https://doi.org/10.1016/j.ic.2016.11.003
http://dx.doi.org/https://doi.org/10.1016/j.ic.2016.11.003
http://dx.doi.org/https://doi.org/10.1016/j.ic.2016.11.003
http://dx.doi.org/https://doi.org/10.1007/s10878-017-0245-7
http://dx.doi.org/https://doi.org/10.1007/s10878-017-0245-7
http://dx.doi.org/https://doi.org/10.1007/s10878-017-0245-7
http://dx.doi.org/https://doi.org/10.1007/s00453-018-00533-w
http://dx.doi.org/https://doi.org/10.1007/s00453-018-00533-w
http://dx.doi.org/https://doi.org/10.1007/s00453-018-00533-w
http://dx.doi.org/https://doi.org/10.1016/j.dam.2018.08.011
http://dx.doi.org/https://doi.org/10.1016/j.dam.2018.08.011
http://dx.doi.org/https://doi.org/10.1016/j.dam.2018.08.011
http://dx.doi.org/https://doi.org/10.1186/s13673-020-00226-w
http://dx.doi.org/https://doi.org/10.1186/s13673-020-00226-w
http://dx.doi.org/https://doi.org/10.1186/s13673-020-00226-w
http://dx.doi.org/https://doi.org/10.1016/j.disc.2019.06.005

[23] G. Salamon, G. Wiener, On finding spanning trees with few leaves, Infor-780

mation Processing Letters 105 (5) (2008) 164–169. doi:https://doi.org/

10.1016/j.ipl.2007.08.030.

[24] S. Boyd, R. Sitters, S. V. Ster, L. Stougie, The traveling salesman problem

on cubic and subcubic graphs, Mathematical Programming 144 (2014) 227–

245. doi:https://doi.org/10.1007/s10107-012-0620-1.785

[25] A. Biniaz, Better approximation algorithms for maximum weight inter-

nal spanning trees in cubic graphs and claw-free graphs, arXiv preprint

arXiv:2006.12561, 2020.

[26] X. Li, D. Zhu, L. Wang, A 4/3-approximation algorithm for the maximum

internal spanning tree problem, Journal of Computer and System Sciences790

118 (2021) 131–140. doi:https://doi.org/10.1016/j.jcss.2021.01.

001.

[27] F. Glover, Heuristics for integer programming using surrogate constraints,

Decision Sciences 8 (1) (1977) 156–166. doi:https://doi.org/10.1111/

j.1540-5915.1977.tb01074.x.795

[28] M. A. González, A. Oddi, R. Rasconi, R. Varela, Scatter search with path

relinking for the job shop with time lags and setup times, Computers &

Operations Research 60 (2015) 37–54. doi:https://doi.org/10.1016/j.

cor.2015.02.005.

[29] J. S. Oro, M. Laguna, A. Duarte, R. Martí, Scatter search for the profile800

minimization problem, Networks 65 (1) (2015) 10–21. doi:https://doi.

org/10.1002/net.21571.

[30] F. Glover, M. Laguna, R. Martí, Scatter search and path relinking: Ad-

vances and applications, in: Handbook of metaheuristics (International Se-

ries in Operations Research and Management Science, vol. 57), F. Glover805

and G. Kochenberger (Eds.), New York, NY, USA: Springer, 2003, pp.

1–35. doi:https://doi.org/10.1007/0-306-48056-5_1.

41

http://dx.doi.org/https://doi.org/10.1016/j.ipl.2007.08.030
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2007.08.030
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2007.08.030
http://dx.doi.org/https://doi.org/10.1007/s10107-012-0620-1
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2021.01.001
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2021.01.001
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2021.01.001
http://dx.doi.org/https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
http://dx.doi.org/https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
http://dx.doi.org/https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
http://dx.doi.org/https://doi.org/10.1016/j.cor.2015.02.005
http://dx.doi.org/https://doi.org/10.1016/j.cor.2015.02.005
http://dx.doi.org/https://doi.org/10.1016/j.cor.2015.02.005
http://dx.doi.org/https://doi.org/10.1002/net.21571
http://dx.doi.org/https://doi.org/10.1002/net.21571
http://dx.doi.org/https://doi.org/10.1002/net.21571
http://dx.doi.org/https://doi.org/10.1007/0-306-48056-5_1

[31] J. S. Oro, M. Laguna, R. Martí, A. Duarte, Scatter search for the bandpass

problem, Journal of Global Optimization 66 (4) (2016) 769–790. doi:

https://doi.org/10.1007/s10898-016-0446-0.810

[32] K. Deb, Multi-objective optimization using evolutionary algorithms. Wiley-

Interscience series in systems and optimization, Vol. 16, 2001.

[33] F. Carrabs, R. Cerulli, M. Gaudioso, M. Gentili, Lower and upper bounds

for the spanning tree with minimum branch vertices, Computational Opti-

mization and Applications 56 (2013) 405–438. doi:https://doi.org/10.815

1007/s10589-013-9556-5.

[34] P. Jain, K. Srivastava, G. Saran, Minimizing cyclic cutwidth of graphs

using a memetic algorithm, Journal of Heuristics 22 (6) (2016) 815–848.

doi:https://doi.org/10.1007/s10732-016-9319-4.

[35] M. Laguna, R. Martí, Scatter Search. Methodology and Implementations820

in C, Kluwer Academic Publishers, Springer, 2003.

[36] J. S. Oro, A. M. Gavara, M. Laguna, R. Martí, A. Duarte, Variable

neighborhood scatter search for the incremental graph drawing problem,

Computational Optimization and Applications 68 (3) (2017) 775–797.

doi:https://doi.org/10.1007/s10589-017-9926-5.825

42

http://dx.doi.org/https://doi.org/10.1007/s10898-016-0446-0
http://dx.doi.org/https://doi.org/10.1007/s10898-016-0446-0
http://dx.doi.org/https://doi.org/10.1007/s10898-016-0446-0
http://dx.doi.org/https://doi.org/10.1007/s10589-013-9556-5
http://dx.doi.org/https://doi.org/10.1007/s10589-013-9556-5
http://dx.doi.org/https://doi.org/10.1007/s10589-013-9556-5
http://dx.doi.org/https://doi.org/10.1007/s10732-016-9319-4
http://dx.doi.org/https://doi.org/10.1007/s10589-017-9926-5

	Introduction
	Background
	Preliminaries and Definitions
	Related Work
	A Memetic Algorithm for the MLSTP

	Scatter Search for the MLSTP
	Construction Heuristics
	Combination Method
	Local Improvement Methods
	Improvement1
	Improvement2

	Reference Set Formation
	Method 1 (RM1)
	Method 2 (RM2)

	Diversity Evaluation Function

	Experiments and Results
	Scientific testing
	Size of Reference Set
	Comparison of Construction Heuristics
	Reference Set Diversity Analysis
	Termination Criterion

	Comparative testing

	Conclusion

