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Abstract Given an undirected graph, the Minimum Stretch Spanning Tree
Problem (MSSTP) deals with finding a spanning tree such that the maxi-
mum distance in the tree for adjacent nodes in the original graph, called the
stretch, is minimum. This is an NP-hard problem with many applications in
transportation and communication networks. We propose a General Variable
Neighborhood Search (GVNS) algorithm based on a balance between solution
generation and improvement. To achieve this balance, we consider different
construction heuristics and neighborhood strategies to efficiently explore the
search space. To assess the merit of our proposal, we perform extensive ex-
perimentation on various classes of graphs consisting of 214 instances. A com-
parison in terms of solution quality and execution time with the best previous
method, namely an Artificial Bee Colony (ABC) algorithm, shows the superi-
ority of GVNS. Results are compared using statistical tests to draw significant
conclusions.

Keywords General Variable Neighborhood Search · Artificial Bee Colony ·
Spanning trees · Minimum Stretch Spanning Tree Problem

1 Introduction

Minimum Stretch Spanning Tree Problem (MSSTP) is based on two well-
known problems, finding a spanning tree of a given graph, and finding a short-
est path between pairs of nodes in a graph. The former has significance in
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networking problems [1, 2, 3] whereas the latter is relevant in operations re-
search, transportation, and VLSI design [4, 5, 6, 7]. A spanning tree of a graph
is a subgraph that includes all the vertices in the original graph and is a tree
(i.e., a connected acyclic graph). The MSSTP consists of finding a spanning
tree of a graph in which the maximum distance in the tree for adjacent nodes
in the original graph is minimized.

Given an undirected connected graph G = (N,A), where N is the set of
nodes, with |N | = n, and A ⊆ {(u,w) : u,w ∈ N} is the set of arcs, the
MSSTP is formally defined as follows:

Let

Θ(G) = {S T : S T is spanning tree of G}

Then, MSSTP consists in finding a spanning tree S T ∗ ∈ Θ(G) such that

Stretch(G,S T ∗) = min
∀S T∈Θ(G)

{Stretch(G,S T )}

where,

Stretch(G,S T ) = max
∀(u,w)∈A

DS T (u,w)

and DS T (u,w) is the distance (path length) between u and w in S T .

Let (u,w) ∈ A, then a path between the nodes u and w in S T is critical if
DS T (u,w) is maximum over all pairs of adjacent nodes of G; i.e., DS T (u,w)
= Stretch(G,S T ). Note that a spanning tree can have more than one critical
path. Throughout this paper, a solution S T to the problem is a spanning
tree of the input graph G, and Stretch(S T ) or simply Stretch refers to its
objective value.

Fig. 1 Stretch in spanning tree S T of a graph G

Figure 1 shows the Stretch in the spanning tree S T of a given graph G.
Here, DS T (1, 4) = 3, DS T (2, 6) = 2, DS T (3, 4) = 5, DS T (5, 8) = 2 and for
the remaining arcs of G it is 1. Since the Stretch is the maximum distance
between two adjacent nodes in G, then in this example the Stretch = 5, and
the critical path is (3, 2, 1, 8, 7, 4) (shown with green color arcs).
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It is worth to mention that the MSSTP is a particular case of the tree
t-spanner problem, which involves arc weighted graphs. This problem has ap-
plications in various areas such as distributed systems, parallel machine ar-
chitectures, and communication networks [9]. As an example [10], consider a
distributed network of processors in which it is required to route a message
between any two processors. This system can be represented as a graph by
considering the processors in a network as nodes and the links between them
as arcs. As one of the factors on which the cost of routing a message depends
is number of arcs between the source and destination, the length of the path
(number of arcs) along which the messages traverse has to be minimized. Find-
ing an optimal solution to this problem becomes too expensive for large sized
systems. Hence, the problem is to find an efficient routing scheme for large
scale communication networks such that the routing cost is minimum. The
efficiency of a routing scheme can be measured in terms of the stretch factor,
which can be defined as the maximum ratio between the length produced by
the routing scheme and the shortest path between the two processors.

The tree t-spanner problem has been extensively studied, but only a few
approaches are proposed for the MSSTP. The tree t-spanner was initially de-
fined for constructing network synchronizers [16] in distributed systems, net-
work design and communication networks [17]. Graph theoretic, algorithmic
and complexity issues pertaining to tree spanners are studied in [18], and a
mixed integer programming formulations with a branch and cut in [19]. In
terms of metaheuristics, we can find a Genetic Algorithm (GA) and an ABC
algorithm for the weighted tree t-spanner problem [9], where the ABC obtains
better results than the GA. Thus, we adapted this ABC for the MSSTP to
compare our algorithm over a wide spectrum of instances.

It is a well established area of research in many optimization problems to
find optimal solutions for special classes of graphs. That is also the case of
the MSSTP, where optimal results have been proved for some specific graphs,
such as Peterson graph, complete k-partite graphs, split graphs and rectan-
gular grids [23]. A recent addition to this work includes optimal results for
hypercubes, cartesian product of different classes of graphs, hamming graphs
and higher-dimensional grids [24, 25]. Some approximation algorithms have
also been developed for the problem. In [26], an algorithm which computes
a spanning tree with Stretch O(opt4) in time O(n log n) is developed for the
special case of grids and unit disk graphs. However, the scope of our approach
is completely different. In particular, we develop a general solving method that
can be applied to any instance of this NP-hard problem. Our approach is based
on a well-known metaheuristic methodology, the GVNS [27]. This method is
based on its efficient search of the solution space in changing the pre-defined
neighborhoods in a systematic manner [12]. To the best of our knowledge no
other metaheuristic for general graphs has been previously proposed for the
MSSTP.

The contribution of this paper is twofold, since we propose a heuristic to
outperform the best previous method, and we also propose alternative designs
to learn about search strategies in the context of graph problems. In partic-
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ular, some spanning tree generating procedures are adapted to the MSSTP
which serve as the five construction heuristics for generating initial solutions.
The VNS metaheuristic is primarily based on a systematic exploration and
exploitation of neighborhoods, therefore strategies balancing between diversi-
fication and intensification are developed which form our six different neigh-
borhoods.

The remaining paper is organized as follows. Section 2 presents the pro-
posed GVNS and implementation details of its components for MSSTP. The
adapted version of ABC algorithm for MSSTP is given in Section 3. The re-
sults obtained by GVNS algorithm and two variants of the ABC algorithm for
MSSTP over a large range of graphs have been discussed in Section 4. Section
5 provides the conclusions of the paper.

2 General Variable Neighborhood Search

The GVNS proposed for the MSSTP is sketched in Algorithm 1. It starts
by generating an initial solution S T (Step 2) using a construction heuristic
described in Section 2.1. The S Tbest maintains the best solution found at any
step of the algorithm. Step 7 performs the Shake procedure. It is done by
randomly generating a neighbor S T ′ of S T in NBHDi (described in Section
2.2) of S T . In Step 8, a local minimum solution S T ′′ is obtained from S T ′

using the Variable Neighborhood Descent (B-VND) method [11]. S Tbest is
updated if the Stretch of S T ′′ is better than that of S Tbest (Steps 9-11).
Now, Stretch of the two solutions S T and S T ′′ are compared (Step 12) and
S T is replaced with S T ′′ if it improves S T (Step 13). In this case, i is set
to 1 (Step 14) i.e. the new solution will be explored starting again with the
first neighborhood. If S T ′′ fails to improve S T in the current neighborhood,
then the search is moved to the next neighborhood (Step 16). Steps 7-17 are
repeated until all the neighborhoods (1 to nbdmax) are explored. The search
continues until the stopping criterion is met i.e. iterinit reaches the maximum
number of iterations itermax. We refer the reader to the excellent chapters
on VNS [28] and VND [29] in the Handbook of Heuristics [30] for a detailed
description about these two methodologies.

Algorithm 2 outlines the procedure B-VND used in GVNS to find a local
minimum after exploring all the neighborhoods of a given solution. It starts by
finding a best neighbor S T ′

1 of solution S T1 in its j-th neighborhood using the
function Find Best Nbr (Step 3). Then, neighborhood is changed accordingly
by comparing the solutions S T1 and S T ′

1 (Steps 4-9). S T1 keeps improving
in a similar way until all the neighborhoods of S T1 are explored.

Algorithm 3 presents the function Find Best Nbr used in B-VND. In Steps
5-13, neighbor S T ′′

2 of the solution S T2 in the neighborhood NBHDk is gen-
erated. If S T ′′

2 improves S T2 then S T ′′
2 replaces S T2 and the process is

repeated in this neighborhood. If no improvement is there then the last ob-
tained solution is compared with the original one. This original solution is
replaced by a better solution. The process (Steps 4 to 19) is repeated until no
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Algorithm 1 General Variable Neighborhood Search Algorithm for MSSTP
(GVNS)

1: Initialize number of neighborhoods (nbdmax) and number of iterations (itermax)
2: S T ← generate initial solution
3: S Tbest ← S T
4: while iterinit ≤ itermax do
5: i← 1
6: while i ≤ nbdmax do
7: S T ′← NBHDi(S)
8: S T ′′← B-VND(S T ′, nbdmax)
9: if Stretch(S T ′′) < Stretch(S Tbest) then
10: S Tbest ← S T ′′

11: end if
12: if Stretch(S T ′′) < Stretch(S T ) then
13: S T ← S T ′′

14: i← 1
15: else
16: i← i + 1
17: end if
18: end while
19: iterinit ← iterinit + 1
20: end while
21: return S Tbest

Algorithm 2 B-VND(S T1, nbdmax)
1: j ← 1
2: while j ≤ nbdmax do
3: S T ′

1← Find Best Nbr(S T1, j)
4: if Stretch(S T ′

1) < Stretch(S T1) then
5: S T1 ← S T ′

1
6: j ← 1
7: else
8: j ← j + 1
9: end if
10: end while
11: return S T1

further improvement is obtained. The different construction heuristics and the
neighborhood strategies used in GVNS are discussed below.

2.1 Initial Solution Generation

The initial solution is generated using a construction heuristic selected ran-
domly from the five construction heuristics namely-

– Random Prim
– Random Kruskal
– Random Dijkstra′s
– Max degree BFS
– Random BFS
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Algorithm 3 Find Best Nbr(S T2, k)
1: flag1 ← 0
2: flag2 ← 0
3: while flag1 ̸= 1 do
4: S T ′

2← S T2

5: while flag2 ̸= 1 do
6: S T ′′

2 ← NBHDk(S T2)
7: if Stretch(S T ′′

2 ) < Stretch(S T2) then
8: S T2 ← S T ′′

2
9: flag2 ← 0
10: else
11: flag2 ← 1
12: end if
13: end while
14: if Stretch(S T2) < Stretch(S T ′

2) then
15: flag1 ← 0
16: flag2 ← 0
17: else
18: flag1 ← 1
19: end if
20: end while
21: return S T ′

2

Random Prim (described in Section 3),Random Kruskal andRandom −
Dijkstra′s construct spanning tree using well known Prim’s, Kruskal’s and
Dijkstra’s algorithms [8] respectively by selecting arcs randomly and consider-
ing the unit weights on the arcs. The other two heuristics Max degree BFS
and Random BFS produce spanning trees using the well known Breadth First
Search (BFS) algorithm. Max degree BFS explores all the nodes of the graph
starting from a maximum degree node as root. The neighbor nodes are also
traversed in decreasing order of their degrees. The process continues until
all nodes are traversed. Preferring higher degree nodes helps in keeping the
neighbors close and hence may lead to a spanning tree with lower Stretch. In
Random BFS a spanning tree is produced by visiting neighbors randomly.

2.2 Neighborhood Strategies

We have designed six neighborhood strategies for generating a neighbor of a
given solution as detailed below.

1. Method 1 (NBHD1): In this method neighbors of solutions are generated
based on the cycle exchange. An arc (u,w) ∈ A(G)\A(S T ) is randomly
selected, and added to S T creating a cycle Cyc. Now, (u′, w′) ∈ Cyc\(u,w)
is picked up randomly and removed from Cyc resulting in a neighbor S T ′.
This method helps in diversification as the arcs to be added and deleted
are chosen randomly (see Algorithm 4).
Figure 2 illustrates this process. An arc (4, 6) belonging to G is added to its
spanning tree S T which forms a cycle in S T . Now the arc (4, 7) appearing
in this cycle is removed from S T producing a neighbor S T ′.
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Algorithm 4 NBHD1 (S T )

1: select (u,w) randomly from A(G)\A(S T )
2: S T ← S T ∪ (u,w)
3: Cyc← cycle obtained by adding arc (u,w) to S T
4: (u′, w′)← select randomly such that (u′, w′) ∈ A(Cyc)
5: S T ′← S T\(u′, w′)
6: return S T ′

Fig. 2 (a) Graph G and its (b) Spanning tree S T with its neighbor S T ′ obtained from
NBHD1

2. Method 2 (NBHD2): This method generates a neighbor of a spanning
tree by replacing one of its subtree with another subtree of the graph (see
Algorithm 5). Initially, a critical path C P in S T is randomly selected and
a subgraph G′ of G induced by the nodes of C P is formed. A spanning tree
P T of G′ is then generated using the heuristic Random Prim described
in Section 2.1. Now with the help of partial tree P T and the given S T ,
a neighbor S T ′ is obtained by adding those arcs of S T to P T which are
not in C P . This method favors the intensification as one of the critical
paths is chosen for the replacement and hence may provide an improved
solution.



8 Yogita Singh Kardam et al.

This procedure is illustrated in Fig. 3. S T in Fig. 3 (a) shows a spanning
tree of G in Fig. 2 (a) which has a critical path {(5, 8, 1, 6, 4, 7) correspond-
ing to Stretch 5. Now, this path (shown with green color arcs) is selected
and a subgraph G′ of G is produced from its nodes. A spanning tree P T
of G′ is created using Random Prim. This P T is transformed into a com-
plete spanning tree S T ′ by adding those arcs (shown with the green color
dotted lines) to it from S T which are not in (5, 8, 1, 6, 4, 7).

Algorithm 5 NBHD2 (S T )
1: C P ← critical path in S T selected randomly
2: N ′← nodes in C P
3: A(C P )← arcs in C P
4: G′← subgraph of G with node set N ′

5: P T ← spanning tree of G′ generated using Random Prim
6: S T ′← P T ∪ {(u,w) : (u,w) ∈ A(S T )\A(C P ) }
7: return S T ′

The remaining methods NBHD3 to NBHD6 are similar to NBHD2, where
the partial tree P T is generated using the heuristicsRandom Kruskal,Rand−
om Dijkstra′s, Max degree BFS and Random BFS respectively.

3 Artificial Bee Colony Algorithm for MSSTP

The ABC algorithm is the best heuristic identified in the related literature
for tree t-spanner problem [9]. We therefore adapted it to the MSSTP. The
basic framework of ABC is inspired from the intelligent foraging behaviour
of honey bees. Based on their behaviour, the bees are divided into three cat-
egories: employed bees, onlooker bees and scout bees. The solutions of the
initial population (popemployed) refers to the food sources whereas the fitness
(quality) of these solutions refer to the nectar amount of the respective food
sources. Now these food sources are exploited by generating neighbors with
the help of employed bees. The role of onlooker bees is to further exploit those
food sources which are rich in nectar amount in order to find the better food
sources (the ones containing more nectar). If a food source is not improved by
the employed bee for a fixed number of iterations, then it is replaced by a new
food source found by the scout bee.

In the context of MSSTP, we first describe the solution generation method
followed by the neighborhood strategies of [9]. For a fairer comparison, we
have used the strategies of [9] for these two procedures. Prim’s algorithm [31]
is adapted to construct a solution by selecting arcs randomly rather than
choosing them according to their weights. Two neighborhoods nbd1 and nbd2
are adapted suitably to locally improve a given solution based on a set of arcs
Ac in the critical path. Note that a path from u to w is critical in the case
of tree t-spanner problem if t = Stretch Factor(G,S T ) whereas for MSSTP,
the critical path is as defined in Section 1.
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Fig. 3 (a) Spanning tree S T of G in Fig. 2 (a) and its (b) subgraph G′ induced by the
vertex set of critical path C P and its spanning tree P T obtained using Random Prim,
(c) neighbor S T ′ of S T obtained from S T and P T using NBHD2

The first local search method is based on the neighborhood nbd1 (see Al-
gorithm 6) in which first an arc (u,w) ∈ Ac from a solution S T1 is deleted
resulting in two disconnected components of S T1. Then, a neighbor S T ′

1 is
produced by joining these components together. For this another solution S T2

is selected randomly from the population and an arc from S T2, which can join
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the two components, is found by checking all the arcs iteratively. In the absence
of such an arc in S T2, the process is repeated with another solution S T2 of
the population. The second local search method, contrasts with the first one
in the way in which the two disconnected components are reconnected. The
arcs required for this purpose are picked up from the graph G resulting in a
better exploitation of the neighborhood (nbd2 in this case).

Algorithm 6 nbd1 (S T1)
1: C P ← critical path in S T1 selected randomly
2: Ac ← arcs in C P
3: Select an arc (u,w) ∈ Ac randomly
4: [P T1, P T2]← {(u1, w1) : (u1, w1) ∈ A(S T1)\(u,w)}
5: joined← 0
6: while joined ̸= 1 do
7: S T2 ← select a solution ∈ popemployed randomly
8: for each arc (u′, w′) ∈ S T2 do
9: if (u′, w′) can join P T1 and P T2 then
10: S T ′

1← P T1 ∪ P T2 ∪ (u′, w′)
11: joined← 1
12: end if
13: end for
14: end while
15: return S T ′

1

In the ABC procedure (outlined in Algorithm 7), Prim’s algorithm is used
to generate m1 number of initial solutions. Each solution of the population is
referred as an employed bee. For the iterative procedure, neighbor of a solution
is obtained by probabilistically selecting one of the local search methods. If
neighbour is better, it replaces the original solution. If after iterlimit number
of iterations, the solution does not improve then the scout bee produces a
new solution which is used to replace the non-improving solution. A Binary
Tournament Selection method (which picks a solution with better fitness from
the two randomly selected solutions) is used to select m2 solutions (acting as
onlooker bees) out of m1 solutions of the population with a probability Pbts.
This is done with an objective to further exploit their neighborhoods using the
two neighborhood strategies of [9]. The complete procedure is repeated until
the termination criterion is met.

For further impartial comparison of GVNS with the ABC approach, we
also implemented ABC with the neighborhood strategies used in GVNS. We
refer this version as ABC Nbr.

4 Experimental Results and Analysis

The two main objectives of our experimentation consist of investigating dif-
ferent search strategies, and then comparing the performance of the three al-
gorithms ABC, ABC Nbr and GVNS for MSSTP in terms of solution quality
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Algorithm 7 Artificial Bee Colony Algorithm for MSSTP (ABC)
1: popemployed ← generate initial solutions S Ti, i = 1 to m1 using Prim’s algorithm
2: S Tbest ← best solution of popemployed

3: while termination criterion is not met do
4: for i = 1 to m1 do
5: if ρ < Pnbd then
6: S T ′

i ← nbd1(S Ti)
7: else
8: S T ′

i ← nbd2(S Ti)
9: end if
10: if Stretch(S T ′

i) < Stretch(S Ti) then
11: S Ti ← S T ′

i
12: else
13: if S Ti does not improve till iterlimit then
14: S Tscout ← generate solution using Prim’s algorithm
15: S Ti ← S Tscout

16: end if
17: end if
18: if Stretch(S Ti) < Stretch(S Tbest) then
19: S Tbest ← S Ti

20: end if
21: end for
22: for i = 1 to m2 do
23: S Toi ← select solution from popemployed using Binary Tournament selection

method
24: if ρ < Pnbd then
25: S Tonlookeri ← nbd1(S Toi )
26: else
27: S Tonlookeri ← nbd2(S Toi )
28: end if
29: end for
30: for i = 1 to m2 do
31: if Stretch(S Tonlookeri ) < Stretch(S Toi ) then
32: S Toi ← S Tonlookeri
33: end if
34: if Stretch(S Tonlookeri ) < Stretch(S Tbest) then
35: S Tbest ← S Tonlookeri
36: end if
37: end for
38: end while

and running time. The three algorithms are implemented in C++ on ubuntu
16.04 LTS machine with Intel(R) Core(TM) i5-2400 CPU @3.10×4 GHz and
7.7 GiB of RAM. For the experiments, we consider two sets of instances as
our test suite - Set A consists of 10 classes of graphs with known optimal re-
sults [23], whereas Set B consists of 70 instances of Harwell- Boeing (HB)
graphs taken from the public domain Matrix Market library (available at
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/) that are mostly
used for the optimization problems in communication networks. Optimal re-
sults are not known for this latter set .

The classes of graphs in Set A are listed in Table 1. In the second column of
the table, the size of the graphs (i.e. number of nodes) is shown varying within
the specified range. ‘# inst’ shows the number of instances generated for each
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Table 1 Graphs in Set A

Graphs size # inst optimal
Pt 10 1 4

K1,n−2,1 [4, 120] 10 2, for n ≥ 4
Cn [5, 150] 10 n− 1, for n ≥ 3
Wn [5, 1500] 18 2, for n ≥ 4
Kn [5, 1400] 17 2, for n ≥ 3
Sn [10, 1495] 18 -

Kn1,n2,...,nk [8, 1500] 17 3, if k = 2, n1, n2 ≥ 2 or k ≥ 3, n1 ̸= 1
2, if k ≥ 3, n1 = 1

Tn [10, 1485] 17 ⌈ 2n
3
⌉+ 1, for n ≥ 1

Pm × Pn

(small)
[6, 100] 9 2⌊m

2
⌋+ 1, 2≤ m ≤ n

Pm × Pn

(large)
[104, 1080] 9 same as for small

TRm,n

(small)
[12, 75] 9 m, for 2≤ m ≤ n

TRm,n

(large)
[150, 1500] 9 same as for small

Table 2 Parameter tuning for ABC methods

parameters values tested for tuning values used
m1 25, 50, 100, 150 50
m2 25, 50, 100, 150 100
Pbts 0.75, 0.80, 0.85, 0.90 0.80
Pnbd 0.90, 0.95, 0.98 0.95

iterlimit 50, 100, 150 100

class. The last column gives the optimal values of each of the classes of graphs
except Split graphs whose details are given in [23]. For the preliminary exper-
iments, and to avoid the overtraining of the methods, a representative set of
10 HB graphs consisting of lund a, lund b, steam1, dwt361, bcsstm07, pores3,
dwt592, steam2, fs 680 1 and saylr3 instances is considered as the training
set.

To carry out the experiments, five independent trials are conducted for each
of the three algorithms- ABC, ABC Nbr and GVNS on each instance of the
test suite. Considering that we reimplemented the ABC algorithm to target
the MSSTP, we perform a preliminary experiment to adjust its parameters.
Table 2 shows the values tested for the five search parameters of the method,
and those that achieved the best results in a full-factorial design. We have
empirically found that after 50,000 evaluations the ABC methods do not yield
further improvements. We therefore set this value as the termination criterion
in our experiments.

To investigate the performance of the construction heuristics used in gen-
eration of the initial solution in GVNS, a second experiment is conducted
on the subset of representative instances. For this, five independent runs of
GVNS are performed (a) using Max degree BFS (found to be the best con-
struction heuristic among the five heuristics by our preliminary experiments
aimed to compare their performance) only and (b) by selecting one of the five
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Table 3 Comparison of neighborhood strategies in GVNS

two nbd all nbd
Stretch 15.88 15.84

gbest time 83.49 31.23
tc 428.10 451.37

construction heuristics (see Section 2) randomly. As no significant difference
is found in the results obtained, random selection of construction heuristic is
implemented in our method to have diverse initial solutions in different runs
of GVNS.

The third preliminary experiment is conducted to analyse the performance
of the neighborhood strategies used in GVNS to generate neighbors of a given
solution. For this, GVNS is run (a) using two neighborhood strategies NBHD1

and NBHD2 only (referred as two nbd) and (b) using all the neighborhood
strategies (referred as all nbd). Table 3 shows the average values of Stretch,
gbest time (time to attain global best solution) and tc (completion time) over
five independent runs obtained by GVNS using both methods. From the re-
sults, it can be seen that the performance of GVNS is better when all the
neighborhood strategies are incorporated as compared to using only two neigh-
borhoods. Therefore, GVNS with all neighborhood strategies is used for the
main experiments.

In our final preliminary experiment we study the order in which the neigh-
borhoods are explored. In particular, we consider five different versions of our
GVNS algorithm that only differ in the order in which the neighborhoods are
scanned within the variable neighborhood template. We did not observe sig-
nificant differences in the results and therefore we do not include the results
of this experiment.

We now compare our method, set with the key strategies determined above,
with the best methods identified in the literature. All the three algorithms give
optimal results for Cycle graph, Diamond graph and Peterson graph (classes of
Set A). The results of remaining classes obtained by the three algorithms are
shown in Table 4. In the table, ‘Oa’ is the average of known optimal Stretch
values over the number of instances corresponding to each class. ‘S Tmin’ and
‘S Tavg’ show the minimum and average Stretch values respectively, obtained
by the algorithms in 5 runs, while ‘tavg’ shows the average execution time (in
seconds) to attain the global best solution over same number of runs. ‘#best’
is the number of best solutions of S Tmin among the three algorithms, and
‘#opt’ show the number of optimal values attained by these algorithms for the
instances of Set A. It is to be noted here that the results are the averages of the
values attained by the algorithms for each parameter (i.e S Tmin, S Tavg, tavg,
#best and #opt) over the number of instances for each class of graphs. Table
5 presents the results obtained by these algorithms on HB graphs reporting
the same parameters (except #opt) as given in Table 4. Following result for
general graphs [26] is used to compute the lower bound (LB) for the instances
of HB graphs:
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Stretch(G,S T ∗) ≥ max
∀(u,w)∈A(G)

D′
G(u,w)

where, D′
G(u,w) is the shortest distance between u and w in G\(u,w) and

S T ∗ is an optimal solution. It is observed that for the instances of this class
lower bounds (optimal values) are attained by GVNS, ABC, and ABC Nbr in
9, 7 and 6 cases out of a total of 70 cases respectively. We have categorized HB
graphs based on their sizes as small graphs (|N | ≤ 100), medium graphs (100
< |N | ≤ 500) and large graphs (500 < |N | ≤ 1000) for a fairer comparison
of mean values. In the tables, the results for which the performance of GVNS
is better than that of ABC and ABC Nbr are shown in bold. These compar-
isons consistently show that GVNS outperforms the other two methods, since
GVNS attains optimal and best values in many more instances than ABC and
ABC Nbr. To complement the numerical analysis, comparison graphs depict-
ing (a) minimum Stretch values, (b) average Stretch values and (c) average
time taken by these algorithms over 5 runs for the large Rectangular Grids are
shown respectively in Fig. 4(a), (b) and (c). Similar illustration is given for
large HB graphs in Fig. 5. The comparison clearly indicates the superiority of
GVNS over ABC and ABC Nbr.

The results of GVNS, ABC and ABC Nbr are compared statistically on all
the instances of Set A and B using two-way ANOVA without repetition test
with 5% level of significance for S Tmin, S Tavg and tavg. It shows that there
is a significant difference among the mean values of S Tmin over the three
algorithms, whereas there is no significant difference among the mean values
of S Tavg of these algorithms. A Tukey’s HSD test for pairwise comparison
on S Tmin indicates that the three algorithms are significantly different from
each other. Similar test done on the running times of the algorithms reveal that
there is no significant difference between the mean values of tavg of ABC Nbr
and ABC, while the mean values of tavg are significantly different for the pairs
(ABC, GVNS) and (ABC Nbr, GVNS).

5 Conclusion

In this paper, a General Variable Neighborhood Search (GVNS) is proposed
for MSSTP which uses the well known spanning tree algorithms for generat-
ing initial solutions. Six problem specific neighborhood techniques are designed
which help in an exhaustive search of the solution space. Extensive experiments
are conducted on various types of graphs in order to asses the performance of
the proposed algorithm. Further, the results are compared with the adapted
version of ABC (initially proposed for the tree t-spanner problem in the liter-
ature) and ABC Nbr. Effectiveness of GVNS is clearly indicated through the
results obtained by the three approaches in a majority of instances.

We learnt an interesting lesson from our testing that goes beyond the res-
olution of this specific problem. The variable neighborhood search template
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Fig. 4 Comparison of (a) minimum Stretch values, (b) average Stretch values and (c)
average time taken by ABC, ABC Nbr and GVNS over 5 runs for large Rectangular Grids.
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Fig. 5 Comparison of (a) minimum Stretch values, (b) average Stretch values and (c)
average time taken by ABC, ABC Nbr and GVNS over 5 runs for large HB graphs.
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Table 4 Comparison of results obtained by ABC, ABC Nbr and GVNS for Set A Graphs

Graphs Wn Kn Sn Kn1,n2,...,nk Tn Pm × Pn

(small)
Pm × Pn

(large)
TRm,n

(small)
TRm,n

(large)
size [5, 1500] [5, 1400] [10, 1495] [8, 1500] [10, 1485] [6, 100] [104, 1080] [12, 75] [150, 1500]
Oa 2.0 2.0 2.0 3.0 6.5 5.2 15.7 4.2 20.2

ABC S Tmin

S Tavg

tavg
#opt
#best

14.8
15.47
419.46

2
2

10.2
10.54

1365.04
3
3

7.3
7.42

422.62
4
4

9.7
9.92

711.63
1
1

18.7
19.34
361.59

7
8

8.1
8.29
5.77
3
3

36.1
38.02
866.71

-
1

5.3
5.67
3.43
3
3

32.1
33.64
998.81

-
-

ABC Nbr S Tmin

S Tavg

tavg
#opt
#best

10.8
11.58
393.65

6
6

7.1
7.34

1403.72
6
6

4.9
5.17

437.40
9
9

6.7
6.94

612.22
7
7

18.9
19.66
457.86

6
9

7.9
8.38
5.96
3
3

38.1
40.73

1083.09
-
1

5.2
5.42
3.70
4
4

33.7
35.47

1052.47
-
-

GVNS S Tmin

S Tavg

tavg
#opt
#best

2.0
5.49
0.26
18
18

2.1
4.24
72.00
16
17

2.0
3.39
42.57
18
18

3.0
4.32
39.07
17
17

17.2
19.56
165.90

9
14

5.9
8.87
1.31
7
9

25.9
32.46
265.44

-
9

4.4
5.53
0.58
8
9

27.3
36.62
524.31

-
9

Table 5 Comparison of results obtained by ABC, ABC Nbr and GVNS for HB Graphs

size small (|N | ≤ 100) medium (100 < |N | ≤ 500) large (500 < |N | ≤ 1000)
# inst 15 35 20

ABC S Tmin

S Tavg

tavg
#best

9.2
9.36
5.62
7

17.1
17.81
84.08
3

26.0
27.05
526.22

3
ABC Nbr S Tmin

S Tavg

tavg
#best

8.5
8.64
6.86
8

16.43
17.11
92.95
6

26.3
27.34
570.39

-
GVNS S Tmin

S Tavg

tavg
#best

7.8
8.51
2.12
15

13.5
15.94
46.84
35

21.0
24.79
243.77

19

clearly benefits from a relatively large number of neighbors. We invite re-
searchers in others problems to test this point to advance the knowledge of
the methodology.
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12. Mladenović, N., Hansen, P.: Variable neighborhood search, Comput.
Oper. Res., 24(11), 1097–1100 (1997). https://doi.org/10.1016/S0305-
0548(97)00031-2

13. Sánchez-Oro, J., Pantrigo, J.J., Duarte, A.: Combining intensifica-
tion and diversification strategies in VNS. An application to the Ver-
tex Separation problem, Comput. Oper. Res., 52, 209–219 (2014).
https://doi.org/10.1016/j.cor.2013.11.008

14. Sánchez-Oro, J., Gavara, A.M., Laguna, M., Mart́ı, R., Duarte,
A.: Variable Neighborhood Scatter Search for the Incremental Graph
Drawing Problem, Comput. Optim. Appl., 68(3), 775–797 (2017).
https://doi.org/10.1007/s10589-017-9926-5
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A Appendix

Note- In all the tables the results of instances for which the performance of GVNS is same
as that of ABC or ABC Nbr are shown in bold whereas the values in bold with asterisk
show the improvement of our algorithm over ABC and ABC Nbr.

Table A1 Comparison of results obtained by ABC, ABC Nbr and GVNS for Wheel Graphs

Graphs size Opt
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
W5 5 2 2 2.6 0.95 2 2.4 1.16 2 2.8 0.00
W7 7 2 2 2.6 2.19 2 2.0 1.90 2 2.0 0.01
W10 10 2 3 3.0 2.14 2 2.0 1.94 2 2.0 0.01
W15 15 2 3 3.0 2.71 2 2.0 2.01 2 2.0 0.01
W20 20 2 3 3.6 3.29 2 2.0 3.06 2 2.0 0.01
W30 30 2 4 4.0 5.31 2 2.0 3.09 2 2.4 0.02
W50 50 2 5 5.8 3.42 3 3.2 3.34 2* 2.4 0.02
W70 70 2 6 6.8 4.61 4 4.2 4.65 2* 6.4 0.01
W100 100 2 8 8.2 10.53 3 4.6 10.35 2* 4.2 0.06
W150 150 2 9 9.8 29.50 5 6.0 27.16 2* 6.6 0.07
W200 200 2 11 12.0 24.02 7 8.0 45.31 2* 2.0 0.12
W500 500 2 19 20.0 228.40 16 16.3 220.24 2* 6.7 0.33
W700 700 2 24 25.3 288.25 17 19.7 365.20 2* 8.3 0.46
W900 900 2 28 28.7 815.44 20 20.0 759.71 2* 6.3 0.68
W1080 1080 2 31 32.7 778.47 23 26.0 629.06 2* 7.3 0.80
W1085 1085 2 32 32.7 1465.54 26 26.3 1390.11 2* 16.7 0.58
W1495 1495 2 38 38.7 1728.05 30 31.0 1601.33 2* 13.7 0.75
W1500 1500 2 38 39.0 2157.40 28 30.7 2016.04 2* 5.0 0.67

Table A2 Comparison of results obtained by ABC, ABC Nbr and GVNS for Complete
Graphs

Graphs size Opt
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
K5 5 2 2 2.0 2.79 2 2.0 1.85 2 2.0 0.00
K7 7 2 2 2.0 3.84 2 2.0 1.90 2 2.0 0.00
K9 9 2 2 2.8 4.12 2 2.0 1.95 2 2.0 0.02
K10 10 2 3 3.4 2.37 2 2.0 1.98 2 2.4 0.01
K15 15 2 4 4.0 2.41 2 2.0 2.13 2 2.4 0.08
K20 20 2 4 4.4 4.69 2 2.2 2.81 2 2.8 0.01
K25 25 2 5 5.4 3.23 3 3.0 3.22 2* 2.6 0.11
K30 30 2 6 6.0 5.53 3 3.6 3.61 2* 3.8 1.58
K50 50 2 7 7.8 5.83 4 4.0 5.35 2* 4.3 0.05
K100 100 2 10 10.0 27.42 6 6.2 19.87 4* 5.6 1.67
K500 500 2 16 16.0 550.23 11 11.7 508.67 2* 6.7 10.28
K600 600 2 16 17.0 1172.04 12 12.0 1017.67 2* 5.2 12.06
K900 900 2 18 18.0 2213.86 14 14.0 1912.42 2* 8.0 58.33
K1000 1000 2 19 19.0 3034.78 13 13.7 2735.63 2* 4.7 72.53
K1080 1080 2 19 19.7 3023.04 14 14.3 2709.95 2* 5.3 313.82
K1300 1300 2 19 20.3 6142.52 15 15.0 7237.55 2* 6.3 350.25
K1400 1400 2 21 21.3 7007.04 14 15.0 7696.68 2* 6.0 403.17
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Table A3 Comparison of results obtained by ABC, ABC Nbr and GVNS for Split Graphs

Graphs size Opt
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
S10 10 2 2 2.0 2.49 2 2.0 1.99 2 2.0 0.00
S12 12 2 2 2.0 2.64 2 2.0 0.81 2 2.0 0.00
S12 12 2 2 2.0 2.28 2 2.0 2.02 2 2.0 0.01
S15 15 2 2 2.0 1.43 2 2.0 1.70 2 2.0 0.00
S15 15 2 3 3.0 2.27 2 2.0 2.06 2 2.0 0.03
S20 20 2 3 3.0 2.35 2 2.0 2.21 2 2.2 0.01
S35 35 2 4 4.0 2.70 2 2.0 2.81 2 2.8 0.02
S35 35 2 4 4.0 2.84 2 2.4 6.07 2 2.8 0.04
S50 50 2 4 4.0 3.37 2 2.4 5.10 2 2.8 0.18
S50 50 2 5 5.4 5.09 3 3.6 3.76 2* 3.4 1.66
S100 100 2 6 6.3 8.21 4 4.0 8.71 2* 2.5 2.31
S200 200 2 12 12.0 80.87 8 8.0 83.58 2* 3.5 10.03
S500 500 2 8 8.0 181.87 5 5.7 135.09 2* 2.3 23.82
S600 600 2 13 13.3 378.73 9 9.3 488.85 2* 3.4 45.23
S800 800 2 12 12.0 396.44 7 7.7 400.84 2* 4.6 43.01
S1085 1085 2 19 19.3 2325.29 14 14.0 2208.96 2* 5.3 123.22
S1200 1200 2 16 16.3 2370.40 11 11.3 2158.52 2* 6.7 213.57
S1495 1495 2 15 15.0 1837.80 10 10.7 2360.03 2* 8.7 303.04

Table A4 Comparison of results obtained by ABC, ABC Nbr and GVNS for Complete
k-Partite Graphs

Graphs size Opt
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
K3,2,3 8 3 3 3.0 1.74 3 3.0 1.94 3 3.0 0.00
K5,3,4,6 18 3 4 4.0 3.63 3 3.0 2.33 3 3.0 0.10

K2,2,2,2,2,2,2,2,2,2 20 3 4 4.2 3.92 3 3.0 2.37 3 3.2 0.04
K7,5,9,2 23 3 5 5.2 3.26 3 3.2 2.56 3 3.2 0.06
K2,3,7,4,9 25 3 5 5.2 2.88 3 3.6 3.80 3 3.2 0.67
K5,10,15 30 3 5 5.2 6.30 3 3.6 3.04 3 3.8 1.03

K3,3,3,3,3,3,3,3,3,3 30 3 6 5.8 4.00 3 3.8 3.73 3 3.8 0.02
K5,5,5,5,5,5,5 35 3 6 6.2 7.16 4 4.0 3.28 3* 4.0 0.03
K7,7,7,7,7,7,7 49 3 7 7.0 4.99 4 4.0 7.52 3* 4.2 0.14
K10,10,10,10,10 50 3 7 7.4 9.21 4 4.4 7.91 3* 4.0 0.33

K50,50 100 3 9 10.3 19.02 7 7.0 12.42 3* 4.5 2.56
K80,20,100 200 3 12 12.7 58.18 8 8.0 46.45 3* 4.7 7.13

K100,200,150,50 500 3 16 16.0 527.62 10 11.0 419.01 3* 5.6 12.22
K300,200,100 600 3 17 17.0 646.69 12 12.3 676.04 3* 4.7 40.17

K200,200,200,200 800 3 18 18.0 1699.33 14 14.0 1114.53 3* 5.5 61.45
K150,100,200,400,235 1085 3 19 19.7 3043.76 14 14.0 2806.16 3* 6.4 223.30

K500,500,500 1500 3 21 21.7 6056.08 16 16.0 5294.64 3* 6.6 315.00
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Table A5 Comparison of results obtained by ABC, ABC Nbr and GVNS for Triangular
Grids

Graphs size Opt
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
T3 10 3 3 3.0 2.28 3 3.0 1.94 3 3.0 0.01
T4 15 4 4 4.0 2.18 4 4.0 2.05 4 4.0 0.01
T5 21 5 5 5.0 2.26 5 5.0 2.22 5 5.0 0.01
T6 28 5 5 5.8 2.44 5 5.0 3.20 5 5.0 0.36
T7 36 6 6 6.4 2.87 6 6.2 4.99 6 6.4 0.16
T8 45 7 7 7.4 3.23 7 7.2 5.03 7 7.2 1.04
T9 55 7 7 8.2 4.54 8 8.4 5.20 7 8.4 2.88
T10 66 8 9 9.2 4.86 9 9.4 8.42 8* 9.2 0.53
T11 78 9 10 10.4 7.74 10 10.4 10.35 9* 10.4 3.01
T15 136 11 14 14.0 11.78 13 14.0 24.11 13 15.2 8.93
T20 231 15 18 18.7 26.59 17 18.3 62.91 19 19.3 2.91
T25 351 18 24 24.7 79.23 24 24.7 95.16 19* 22.0 69.82
T30 496 21 29 30.3 148.51 27 28.7 222.77 23* 29.0 52.37
T40 861 28 35 36.3 635.82 37 38.0 779.54 40 44.7 550.32
T45 1081 31 44 44.3 1188.06 43 44.3 1966.39 45 46.7 1093.54
T50 1326 35 47 48.7 1871.75 49 50.7 1473.60 37* 46.0 486.92
T53 1485 37 51 52.3 2152.85 55 57.0 3115.78 43* 51.0 547.42

Table A6 Comparison of results obtained by ABC, ABC Nbr and GVNS for Rectangular
Grids

Graphs size Opt
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
P2 × P3 6 3 3 3.0 1.47 3 3.0 1.15 3 3.0 0.00
P2 × P5 10 3 3 3.0 2.43 3 3.0 1.57 3 3.0 0.00
P2 × P10 20 3 3 3.8 2.45 3 3.0 2.19 3 3.0 0.13
P5 × P10 50 5 9 9.0 3.18 7 8.6 4.89 5* 9.0 2.38
P9 × P11 99 9 13 13.0 8.15 13 13.0 9.01 11* 15.4 3.22
P2 × P50 100 3 7 7.0 8.90 7 7.0 7.39 3* 7.8 0.21
P4 × P25 100 5 11 11.0 8.41 11 11.0 8.54 5* 11.8 0.69
P5 × P20 100 5 11 11.4 9.32 11 12.2 7.68 9* 13.0 2.13
P10 × P10 100 11 13 13.4 7.60 13 14.6 11.18 11* 13.8 3.02
P8 × P13 104 9 13 13.4 11.67 11 13.8 8.14 11 12.3 5.62
P7 × P15 105 7 13 13.0 7.30 13 13.4 8.58 11* 11.8 9.24
P8 × P120 960 9 35 37.4 797.00 35 40.2 1246.35 15* 34.6 30.32
P10 × P100 1000 11 39 41.0 1792.54 43 45.0 1566.63 33* 33.6 340.31
P20 × P50 1000 21 45 47.4 946.43 49 51.4 1067.57 29* 36.2 692.67
P25 × P40 1000 25 45 48.6 995.80 49 51.8 910.49 45 47.8 180.83
P30 × P34 1020 31 49 49.4 993.90 47 49.4 1501.77 39* 48.2 125.96
P15 × P70 1050 15 45 47.0 1280.35 47 50.6 2043.70 27* 32.2 577.65
P12 × P90 1080 13 41 45.0 975.40 49 51.0 1394.62 23* 35.4 426.34
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Table A7 Comparison of results obtained by ABC, ABC Nbr and GVNS for Triangulated
Rectangular Grids

Graphs size Opt
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
TR3,4 12 3 3 3.0 2.40 3 3.0 2.01 3 3.0 0.01
TR4,4 16 4 4 4.0 2.20 4 4.0 2.11 4 4.0 0.02
TR4,5 20 4 5 5.0 2.25 4 4.4 3.88 4 4.2 0.36
TR4,6 24 4 5 5.0 2.38 5 5.0 2.31 4* 5.0 0.01
TR5,5 25 5 5 5.4 2.41 5 5.0 2.37 5 5.0 0.05
TR5,7 35 5 6 6.4 3.31 6 6.2 4.00 5* 6.6 0.07
TR3,15 45 3 5 5.8 3.86 5 5.2 4.00 3* 6.0 0.02
TR5,10 50 5 7 7.4 3.26 7 7.2 4.79 5* 7.2 0.23
TR5,15 75 5 8 9.0 8.83 8 8.8 7.80 7* 8.8 4.47
TR10,15 150 10 15 15.4 14.74 14 15.2 28.06 13* 15.2 17.61
TR11,15 165 11 14 15.4 27.24 16 16.4 27.40 13* 15.6 12.41
TR20,25 500 20 28 28.8 199.20 28 30.0 175.28 24* 31.4 144.72
TR15,40 600 15 29 30.4 419.92 31 31.6 455.46 26* 31.0 161.43
TR20,30 600 20 31 31.8 365.54 30 32.6 647.88 26* 33.8 148.37
TR8,120 960 8 29 31.2 1071.31 32 33.6 1162.95 15* 32.6 552.68
TR33,40 1320 33 46 48.6 1468.93 48 50.4 1922.50 41* 54.2 978.90
TR35,40 1400 35 49 50.2 2662.85 51 53.2 1788.92 43* 61.4 1526.80
TR30,50 1500 30 48 51.0 2759.56 53 56.2 3263.75 45* 54.4 1175.83

Table A8 Comparison of results obtained by ABC, ABC Nbr and GVNS for small HB
graphs

Graphs size LB
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
can24 24 2 5 5.0 2.34 4 4.0 4.69 4 4.0 0.12

bcspwr01 39 12 12 12.0 1.63 12 12.0 1.74 12 12.0 0.01
bcsstk01 48 3 8 8.0 3.27 7 7.2 4.07 6* 6.8 1.01
bcspwr02 49 7 7 7.0 3.35 7 7.0 2.65 7 7.0 0.03
dwt59 59 6 10 10.0 3.65 10 10.0 4.04 10 10.0 1.97
can61 61 2 7 7.4 4.26 5 5.2 5.35 3* 3.8 0.21
can62 62 9 9 9.0 4.00 9 9.0 4.13 9 9.0 0.05
dwt66 66 2 4 4.6 5.04 4 4.0 7.29 4 4.8 2.73

bcsstk02 66 2 8 8.2 15.59 4 4.8 15.98 2* 4.8 6.92
dwt72 72 15 15 15.0 3.75 15 15.0 4.12 15 15.0 0.09
can73 73 4 9 9.6 5.45 9 9.4 9.08 9 9.2 1.28
ash85 85 2 10 10.2 9.48 10 10.0 12.85 8* 9.6 2.31
dwt87 87 3 8 8.0 5.54 7 7.4 7.93 6* 7.0 2.73
can96 96 2 16 16.0 6.28 16 16.0 7.69 15* 15.6 6.73
nos4 100 3 10 10.4 10.65 8 8.6 11.24 7* 9.0 5.66



Title Suppressed Due to Excessive Length 25

Table A9 Comparison of results obtained by ABC, ABC Nbr and GVNS for medium HB
graphs

Graphs size LB
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
bcspwr03 118 9 9 9.2 8.57 9 9.2 17.67 9 9.2 6.14
bcsstk04 132 3 11 11.0 23.26 8 8.2 35.40 5* 6.6 3.68
can144 144 2 25 25.0 18.20 24 24.0 14.60 24 24.0 2.16
lund a 147 2 11 11.6 25.11 10 10.2 24.72 8* 9.4 11.29
lund b 147 2 11 11.8 15.47 10 10.8 17.10 8* 9.0 7.74
bcsstk05 153 3 11 11.6 16.90 10 10.0 21.91 7* 7.8 1.74
can161 161 2 16 16.8 27.42 17 17.0 16.86 15* 16.4 13.60
dwt162 162 2 29 29.0 15.17 29 29.0 17.39 29 29.0 9.05
can187 187 2 31 31.0 20.02 30 30.8 27.92 30 30.6 33.39
dwt193 193 2 12 12.6 40.47 10 10.6 33.53 6* 7.2 15.32
dwt209 209 5 14 14.4 27.32 14 14.2 32.22 11* 12.4 22.97
dwt221 221 2 16 16.6 36.45 16 16.0 87.40 13* 14.6 29.14
can229 229 5 18 19.0 39.66 18 19.2 47.21 16* 18.8 35.18
steam1 240 2 14 14.2 29.58 13 13.0 61.88 7* 11.6 32.47
dwt245 245 10 14 14.0 27.80 12 12.6 81.32 10* 12.2 16.81
can256 256 2 14 14.2 65.79 11 11.0 48.83 6* 9.2 6.35
lshp265 265 2 21 22.4 63.44 21 23.0 108.33 19* 23.0 68.19
can268 268 2 15 15.8 61.31 11 12.0 84.00 7* 9.6 13.29

bcspwr04 274 9 11 11.4 46.87 11 11.2 44.34 10* 10.6 7.71
can292 292 4 14 14.2 60.22 13 13.2 78.09 10* 12.0 128.79
ash292 292 2 16 17.8 80.46 17 17.6 61.27 14* 15.2 50.03
dwt307 307 2 24 25.6 57.35 25 25.4 81.34 23* 26.0 92.39
dwt310 310 2 16 17.4 110.80 16 17.2 93.12 11* 15.8 42.21
dwt361 361 2 21 21.2 179.63 21 21.8 140.46 15* 20.0 55.89
plat362 362 2 17 17.2 79.67 15 15.6 133.41 10* 14.4 64.22
lshp406 406 2 27 28.8 166.76 29 30.2 234.06 26* 30.4 117.82
dwt419 419 3 22 23.8 239.72 23 24.6 188.96 21* 22.6 60.60
bcsstk06 420 3 15 16.6 89.99 15 15.6 191.73 9* 13.2 37.34
bcsstk07 420 3 16 16.6 161.06 15 15.8 181.21 10* 13.2 60.63
bcsstm07 420 3 17 17.4 144.43 14 15.6 152.38 10* 13.2 25.82
bcspwr05 443 11 15 15.4 176.98 14 15.6 155.10 14 16.2 52.31
can445 445 6 22 22.4 94.87 21 22.2 117.21 15* 21.0 125.94
pores 3 456 3 21 22.4 387.93 19 22.0 266.84 17* 19.2 74.01
nos5 468 4 16 16.8 164.19 16 16.4 182.85 11* 15.6 177.71

bus494 494 18 18 18.0 139.99 18 18.2 172.68 18 18.8 137.47
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Table A10 Comparison of results obtained by ABC, ABC Nbr and GVNS for large HB
graphs

Graphs size LB
ABC ABC Nbr GVNS

S Tmin S Tavg tavg S Tmin S Tavg tavg S Tmin S Tavg tavg
dwt503 503 2 23 24.0 278.29 21 22.8 154.38 19* 21.0 96.39
lshp577 577 2 33 34.2 365.73 35 36.4 279.19 29* 32.4 206.65
dwt592 592 2 23 23.8 233.88 24 24.2 495.31 17* 21.8 86.38
steam2 600 2 19 19.8 321.75 17 18.6 568.70 9* 13.4 208.60
can634 634 9 21 23.0 352.50 22 22.6 420.70 16* 20.0 185.77
bus662 662 22 22 22.2 419.03 23 23.4 251.06 22 22.0 115.00
nos6 675 3 35 36.2 610.08 39 41.0 454.56 27* 33.8 181.16

fs 680 1 680 4 14 14.4 591.89 11 12.2 266.94 5* 11.0 20.99
saylr3 681 3 27 27.8 244.69 29 29.4 351.72 25* 30.6 235.42
bus685 685 21 22 22.4 585.63 23 24.2 378.67 22 23.4 290.15
can715 715 9 24 25.2 295.35 21 22.0 301.87 18* 19.8 178.80
nos7 729 3 25 26.2 328.22 25 26.2 304.19 21* 23.4 156.92

dwt758 758 2 22 22.6 473.58 22 22.4 917.91 15* 19.2 93.78
lshp778 778 2 38 40.8 629.72 41 42.0 700.47 39 42.2 606.24
bcsstk19 817 10 20 22.6 639.99 22 23.2 925.46 14* 19.9 95.46
dwt869 869 2 26 27.4 864.70 26 27.0 698.96 20* 23.8 538.90
dwt878 878 2 32 33.2 690.76 33 34.6 1194.86 26* 30.2 470.32
gr 30 30 900 2 34 34.8 870.98 34 35.8 642.80 30* 32.8 174.39
dwt918 918 2 31 31.8 1031.18 30 31.6 1408.65 24* 29.1 471.96
nos3 960 2 28 28.6 696.52 27 27.2 691.43 22* 26.0 462.08


