

GRASP and Path Relinking for the
Two-dimensional Two-staged Cutting Stock Problem

Ramón Alvarez-Valdes1, Rafael Martí1, Antonio Parajón2 and Jose M. Tamarit1

1 Departamento de Estadística e I.O. Universidad de Valencia. Dr. Moliner 50, 46100
Burjassot, Valencia. Spain.

2 Departamento de Matemáticas. Universidad Nacional Autónoma de Nicaragua, UNAN-
Managua. ENEL Central 2 Km Sur, Managua. Nicaragua.

ABSTRACT

In this paper, we develop a greedy randomized adaptive search procedure (GRASP) for the constrained
two-dimensional two-staged cutting stock problem. This is a special cutting problem in which the cut is
performed in two phases. In the first phase, the stock rectangle is slit down its width into different
vertical strips and in the second phase, each of these strips is processed to obtain the final pieces. We
propose two different algorithms based on GRASP methodology. One is “piece oriented” while the other
is “strip oriented”. Both procedures are fast and provide solutions of different structures to this cutting
problem. We also propose a path relinking algorithm, which operates on a set of elite solutions obtained
with both GRASP methods, to search for improved outcomes. We perform extensive computational
experiments with well-known instances which have been previously reported, first to study the effect of
changes in critical search parameters and then to compare the efficiency of alternative solution
procedures. The experiments establish the effectiveness of our procedure in relation to approaches
previously identified as best, especially in large-scale instances.

Key Words: Cutting, Packing, Heuristics, GRASP, Path Relinking.

Two-staged two-dimensional cutting 2

1. Introduction

The two-dimensional cutting problem (TDC) consists of cutting a stock rectangle S into rectangular
pieces of n different types. The dimensions of S are LxW and of piece i are lixwi. The number of
appearances of piece i in the cutting is limited by its demand bi. If bi = / i iLW lw⎢ ⎥⎣ ⎦ (a trivial bound), for all

i, the problem is unconstrained. If, for any piece i, bi < / i iLW lw⎢ ⎥⎣ ⎦, the problem is constrained. Each
piece has a value ci and the objective is to maximize the total values of pieces cut. If ci = liwi, for all i,
maximizing the value is equivalent to minimizing the non-used area of S. In this case, the problem is un-
weighted. If, for any piece i, ci ≠ liwi, reflecting some other piece characteristics besides its area, the
problem is weighted. In this paper we develop algorithms for the more general weighted constrained
TDC problem from which the other versions can be considered particular cases.

We also impose some additional conditions on the TDC problem. Specifically, we consider that pieces
have a fixed orientation, that is, a piece of dimensions lxw is not the same as a piece of dimensions wxl.
We only use guillotine cuts, that is -cuts going from one edge of the current rectangle to the opposite
edge. We also limit the number of stages in the cutting process to two. In the two-staged two-dimensional
cutting problem (2-TDC), the stock rectangle S is first cut into a set of horizontal (vertical) strips and then
in the second stage these strips are cut vertically (horizontally) into the required pieces. We will allow the
trimming of the strips, i.e., supplementary horizontal (vertical) cuts within each rectangle obtained in the
second stage to produce the pieces. This version of the problem is called the non-exact case, to
distinguish it from the exact case in which trimming is not allowed. Note that trimming introduces
flexibility in the cutting of the strips (first stage) since pieces of different widths can be allocated in the
same strip.

Figure 1. Example of trimming

Figure 1 shows a stock rectangle S (on the left hand side) in which we want to cut the two pieces shown
below it. We show a strip without trimming (in the center of the figure) and another with trimming (on
the right hand side). This figure clearly shows that if no trimming is allowed we can obtain a relatively
large amount of waste in the strip; while trimming permits the fitting of smaller pieces to complete the
strip in a more efficient way.

The cutting stock problem has generated a considerable amount of research interest over the years, as
documented in Dyckhoff (1990) or Sweeney and Paternoster (1992). It has many practical applications in
the paper, textile and other industries. In particular, 2-TDC problems are very common in some
applications, as in the timber industry, in which the structure of the saws and other handling
considerations impose a cutting process in two-stages (Morabito and Garcia (1998)). The 2-TDC problem
had already been considered by Gilmore and Gomory (1961, 1965) in their seminal work on cutting
problems, where an exact dynamic programming approach was proposed. More recently, exact and
approximate solution procedures have been developed. Beasley (1985) proposes a dynamic programming
procedure. Hifi (2001) and Hifi and Roucairol (2001) develop branch and bound algorithms, while Lodi
and Monaci (2003) propose integer linear programming formulations. Belov and Scheithauer (2003)
combine both approaches into a branch and cut and price algorithm. Heuristic procedures appear in the
work by Beasley (1985), who proposes heuristically reducing the state-space of his dynamic
programming procedure, and Hifi and Roucairol (2001) who solve a series of bounded knapsack
problems for the strips and combine the solutions into a complete solution for the sheet by solving a
packing problem. More recently, Hifi and M’Hallah (2003) have proposed some new procedures in which
they improve the Hifi and Roucairol algorithm and combine it with local search methods.

S

Strip without trimming Strip with trimming

Pieces

Two-staged two-dimensional cutting 3

In this paper we develop a heuristic solution procedure for two-staged two-dimensional cutting problems.
Our solution procedure is based on constructing, improving and then combining solutions within the
framework of GRASP methodology as well as the evolutionary approach known as Path Relinking. The
algorithm is designed to solve the more complex, non-exact problem, but it can be easily adapted to the
exact case. Section 2 presents the Bottom-Left Procedure, a constructive algorithm which will be used as
a building block in the more complex algorithms proposed in the following sections. Section 3 describes
two GRASP algorithms, one based on pieces and the other based on strips. Section 4 explores a
combination of solutions according to the Path Relinking methodology. Finally, Section 5 contains the
computational results and the paper ends with the associated conclusions.

2. Bottom-Left Procedures

The Bottom-Left procedure (BLP) is a simple and well known method for allocating a set of pieces in a
stock rectangle. Basically, the method consists of allocating the pieces in the rectangle following a pre-
established order. The first piece is positioned in the bottom-left corner of the rectangle. At each
iteration, the next piece in the ordering is selected and moved down and left as far as possible. Then, for
each initial ordering of the pieces, the algorithm produces a solution. We now propose some variants of
the BLP in order to use them as a baseline for comparison in our experiments, as well as to form part of
more complex methods.

In our implementation, we order the pieces by non-increasing width wi. In the first iteration, we select the
piece with largest w-value, decrease its demand b by one unit, and allocate it in the bottom-left corner of
the rectangle. Note that considering the 2-stage constraint of our problem, the width of this first piece
defines the width of the first strip.

In the second iteration, we select the first piece in the ordering with a positive demand, decrease its
demand by one unit, and allocate it in the first strip, next to the previously allocated piece. Note that the
width of the current piece is lower than or equal to the width of the previous-iteration piece; therefore it is
lower than or equal to the width of the strip. We continue in this way until the length l of the selected
piece exceeds the remaining length of the strip rs (the difference between L and the sum of the lengths of
the pieces added in previous iterations to this strip). The new piece is then allocated in a new strip. The
algorithm terminates when all the demands have been satisfied or there is no room for a new strip.

Figure 2 shows an example in which the BLP is constructing a solution. In the first iteration, piece 3 has
been selected and cut (bottom-left corner). If we consider that b3=2, then in the second iteration, we
select the second unit of piece 3 and put it in the same strip, next to the previous unit. Suppose that the
next piece in the ordering is number 7 and b7 =3, so in iteration 3, a unit of this piece is allocated in strip
1. In iteration 4, the second unit of piece 7 is selected, but there is no room for it in the first strip, so we
allocate this unit in a second strip. We would continue in this way with the rest of the pieces.

3 3 7

7 7

3 3 7

7 7

Figure 2. BLP example

It should be noted that the BLP starts a new strip each time that the next piece in the ordering does not fit
in the current strip (its length is larger than the remaining strip’s length rs). However, another piece i in a
posterior position in the ordering could fit in the current strip if li ≤ rs. Next, before starting a new strip,
we will resort to the REMAIN procedure in order to fill this gap. This procedure searches for the first
piece i in the ordering with positive demand bi, satisfying li ≤ rs and allocates it in the strip. Then, bi and
rs are updated (bi=bi-1, rs=rs-li) and the method continues to fill the remaining gap until no piece i
satisfying li ≤ rs is found.

Two-staged two-dimensional cutting 4

A pseudo-code of the BLP to produce a solution to the problem appears in Figure 3. The pseudo-code is
written using general mathematical notation. However, the actual implementation takes advantage of
efficient data structures and quick updating mechanisms that are hard to represent mathematically. It also
implements a tie breaking rule for piece selection that is based on the cost/surface ratio. The rule is used
when more than one piece has the same width and there is a tie in the ordering of the pieces. The tie is
then resolved according to the ratio, where the piece with the highest ratio enters first.

Initialization
Order the pieces according to wi (resolve ties according to ci / (li x wi))
Create the first strip in the bottom of the stock rectangle
Add the first piece i in the ordering to the strip. bi =bi -1
Let Value be the objective function value of the solution. Value= ci
Let Wfree be the rectangle’s width without strips: Wfree = W - wi
rs=L-li

While (A piece i with bi>0 exists)
{
 Let i be the next piece in the ordering with bi>0
 If(li ≤ rs)
 Add piece i to the strip. bi =bi -1
 Value = Value + ci
 rs= rs -li
 Else
 Call REMAIN procedure
 Let i be the first piece in the ordering with bi>0 and wi ≤ Wfree
 If(Such a piece i exists)
 Create new strip
 Wfree = Wfree - wi
 Add piece i to begin the strip. bi =bi -1
 Value = Value + ci
 rs= L - li
 Else
 STOP
}

REMAIN procedure
{
 R={ pieces j / bj>0 , lj ≤ rs }
 While (R ≠ φ)
 Select the first piece i in the ordering / i∈ R
 Add i to the strip
 bi =bi -1. rs= rs -li

 Value = Value + ci

 R = R –{i}
}

Figure 3. Pseudo-code of the Bottom-Left Procedure

This BLP method is based on the fact that the initial ordering of pieces, according to w, guarantees that
the piece selected in an iteration can be allocated within the strip created with a previously selected piece.
However, with a minor modification, we can adapt this method to construct a solution from any initial
ordering. We just need to replace the condition “ (li ≤ rs) “ in the outer If statement with the condition
“(li ≤ rs and wi ≤ Wstrip)“, where Wstrip is the width of the strip, defined as the width of the first piece in
the strip. Now, when we select the next piece in the ordering, if it cannot be allocated in the current strip
under construction (because of its length or its width), we start a new strip with this piece, but first we
resort to the REMAIN routine to complete the current strip. We will refer to this general BLP method as
GBLP.

The GBLP method constructs a solution from a given initial ordering. So, a simple optimization scheme
consists of performing several iterations with GBLP, each one from a random initial ordering. We can
improve this basic scheme using a “context-independent” optimizer to generate the initial orderings.

Two-staged two-dimensional cutting 5

Specifically, we have considered the OptQuest Callable Library1 (OCL) in order to search the space of the
orderings in a more efficient way than the random sampling. OCL is a generic optimizer that overcomes
the deficiency of black box systems and successfully embodies the principle of separating the solver
method from the optimization model (Laguna and Martí, 2002). OCL uses the value of the GBLP output
to measure the merit of the initial ordering. On the basis of both current and past evaluations, the
optimization procedure within OCL generates a new permutation. The optimization procedure is
designed to carry out a special “strategic search,” based on the scatter search methodology, where
successively generated orderings produce varying evaluations, not all of them improving, but which over
time provide a highly efficient trajectory to the best solutions.

In the computational section we will show the results obtained with these three variants of bottom-left
procedures; the original BLP, the GBLP from random initial orderings, and the combination of GBLP and
OCL.

3. GRASP

GRASP, greedy randomized adaptive search procedure, is a multi-start or iterative process in which each
iteration consists of two phases: construction and local search. The construction phase builds a feasible
solution, whose neighborhood is explored until a local optimum is found after the application of the local
search phase. The best local optimum is reported as the best overall solution found. Performing multiple
GRASP iterations may be interpreted as a means of strategically sampling the solution space. Based on
empirical observations, it has been found that the sampling distribution generally has a mean value that is
inferior to the one obtained by a deterministic construction, but the best solution over all trials dominates
the deterministic solution with a high probability. Resende and Ribeiro (2001) present a comprehensive
review of GRASP and an extensive survey of GRASP literature can be found in Festa and Resende
(2001).

The construction phase plays a critical role with respect to providing high-quality starting solutions for
the local search. In this section, we propose two different iterative methods to construct solutions. In
each iteration, the first method adds a piece to the solution, while the second one adds an entire strip. As
will be shown in the computational section, these two methods provide solutions with different structures.

At each iteration of the construction phase, GRASP maintains a set of candidate elements that can be
feasibly added to the partial solution under construction. All candidate elements are evaluated according
to a greedy function in order to select the next element to be added to the construction. The greedy
function represents the marginal increase in the cost function from adding the element to the partial
solution. The evaluation of the elements is used to create a restricted candidate list (RCL). RCL consists
of the best elements, i.e. those with the smallest incremental cost. This is the greedy aspect of the
method. The element to be added into the partial solution is randomly selected from those in the RCL.
This is the probabilistic aspect of the heuristic. Once the selected element is added to the partial solution,
the candidate list is updated and the incremental costs are recalculated. This is the adaptive aspect of the
heuristic.

The solutions generated by a greedy randomized construction are not necessarily optimal, even with
respect to simple neighborhoods. The local search phase usually improves upon the constructed solution
and terminates when no better solution is found in the neighborhood. Since the constructive methods
obtain solutions of different characteristics, we propose a different local search method for each
constructive procedure. The first one is based on a piece replacement while the other tries to replace a
strip. The following sub-sections describe in detail our GRASP implementations for the TDC problem.

1 OptQuest is a registered trademark of OptTek Systems, Inc. (www.opttek.com).

Two-staged two-dimensional cutting 6

3.1 A GRASP based on Pieces

Construction Phase

In the construction phase, we distinguish two stages. The first one selects a suitable width to create a new
strip, while the second one fills an existing strip with pieces. Each time a strip is completed, we resort to
the first stage to select the width of a new strip.

In the first stage, we consider the values w of the widths of all pieces. Let Wfree be the rectangle’s width
with no strips. Initially, Wfree is equal to W, but when a strip of width w is created, then Wfree = Wfree –
w. Let CL1 be the candidate list of widths in the first stage, which includes all the widths w ≤ Wfree.

For each width w∈ CL1, we define the set of pieces Pw with a width lower than or equal to w. We
calculate value(w) as a measure of the attractiveness of this width to create a new strip (of w width).

∑
∑

∈

∈=

w

w

Pi
i

Pi
ii

b

bc
wvalue)(

The largest attractiveness value of all the widths in CL1 is multiplied by the α parameter. This final value
represents a threshold that is used to build the RCL1 of the first stage. In particular, RCL1 consists of all
the widths in CL1 whose attractiveness measure is at least as large as the threshold value. The procedure
randomly selects the next width to construct a strip from the RCL1. Let w* be the selected width. We fill
the strip now, in stage two, with pieces from Pw*.

As in the BLP method, we define the remaining length rs of the strip as the difference between L and the
sum of the lengths of the pieces added in previous iterations to this strip. When we initiate stage two, rs is
equal to L. Then the candidate list in stage two, CL2, consists of all the pieces in Pw* with a positive
demand and a length lower than or equal to rs.

For each piece i ∈ CL2, we consider its cost ci as a measure of its attractiveness. The largest
attractiveness value of all the pieces in CL2 is multiplied by the α parameter. RCL2 consists of all pieces
in CL2 whose cost is at least as large as the threshold value. The procedure randomly selects the next
piece i to be allocated in the current strip from the RCL2. After this assignment, the demand of i and the
remaining length of the strip s are updated (bi=bi-1, rs=rs-li). Then CL2 and RCL2 are computed and
another piece is selected for assignment. Stage-two continues to fill the remaining strip until no piece i
satisfying li ≤ rs is found. Then we create a new strip with the stage one method described above. The
procedure terminates when no new strip can be created.

Improvement Phase

Each step of the improvement phase consists of selecting each piece to be considered for a move. We
scan the pieces in a solution in the order given by the strips. We start with the first strip (the bottom one)
and continue up to the last one (the “top” strip). In each strip, we select each piece and try to replace it
with another piece with positive demand. The move value is the difference between the cost of the
removed piece and the new one. We perform the move with maximum positive value. If no
improvement is possible, then the piece is not moved. Note that when piece i is removed from the strip,
the remaining length becomes rs+li. We then find the piece for insertion in the move by scanning all the
pieces with a positive demand and a length lower than or equal to rs+li.

An improvement step terminates when all pieces have been considered for replacement, with the
exception of the last strip, which is re-computed from scratch in a greedy fashion (according to the cost
values). More steps are performed as long as at least one piece is replaced (i.e., as long as the current
solution keeps improving).

We have considered an extended version of the improvement phase. In this variant, when a move fails to
find a piece for replacement, we try to replace one piece with two pieces. Although this move is more
time consuming than the simple one, we only resort to this “one-to-two” move if the “one-to-one” move

Two-staged two-dimensional cutting 7

fails. Note that piece i can be replaced with two pieces if the sum of their lengths is lower than or equal
to rs+li . As in the simple move, we only perform positive moves.

As mentioned earlier, GRASP consists of a construction phase and an improvement phase. The method
alternates both phases until a maximum number of iterations is reached. The value of α is a search
parameter. In Section 5, we perform a set of experiments to test the effect of different α values on
solution quality, speed, and the number of iterations. We will refer to this method as GRASP_Piece for
the initial improvement phase, and as GRASP_PieceExt for the extension with the “one-to-two”
movements.

3.2 A GRASP based on Strips

Construction Phase

We can build efficient strips by solving a series of bounded knapsack problems. For a given width w, the
best strip of length L and width w is given by the optimal solution of the following problem:

*

(,)

max

. .

 , integer,

w

w

w i i
i P

L w i i
i P

i i í w

z c x

KP s t l x L

x b x i P

∈

∈

⎧ =
⎪
⎪= ≤⎨
⎪
⎪ ≤ ∈⎩

∑

∑

where { }w jP j w w= ≤

This idea is by no means new. It has been used by several authors on several cutting problems. In
particular, for the problem considered here, Hifi and Roucairol (2001) propose algorithms in which the
first phase consists of solving a series of knapsack problems, one for each different piece width. The
strips obtained in the first phase are then combined into a complete solution by solving a packing
problem. We propose a different strategy. Instead of solving the knapsack problems just once, taking the
original demands as upper bounds, we develop an iterative procedure in which at each iteration we solve
one knapsack problem for each width with positive residual demand of its associated pieces. The best
strip obtained is added to the partial solution and the residual demands are updated. The process finishes
when all the pieces have been cut or no new strip can be fitted into the sheet. A pseudo-code of the
procedure appears in Figure 3. We assume that among the n piece types there are r different widths,

1 2, , , rw w w .

Initialization
Let Value be the objective function value of the solution: Value=0
Let Wfree be the rectangle’s width without strips: Wfree = W
Let M ={

kw | a piece i with iw w= k and bi>0 exists}
Order by decreasing M kw

While()≠ ∅M {
 * * *

max max maxLet 0; 0; 0.z x w= = =
 For each

kw ∈ M {

 Solve the problem (,).kL wKP Let *
kwz the optimal value and *

kwx the optimal solution

 * * * * * * *
max max max maxIf , then ; ; .

k k kw w w kz z z z x x w< = = w=

 }
 *

maxIf (0) z ≠
 , , *

maxValue Value z= + *
maxb b x= − *

maxWfree Wfree w= −
 { }If, for some , all pieces with have 0, then k i k iw i w w b= = M = M - kw

 { }If, for some , > , then k k kw w Wfree wM = M -

 Else
 STOP
}

Figure 4. Pseudo-code of the Constructive Phase of the GRASP based on Strips

Two-staged two-dimensional cutting 8

Note that at each iteration the procedure selects the strip with maximum absolute value of the knapsack
problems. An alternative way of selecting the strip to be added to the partial solution could be based on
the maximum relative value: *

kwz / krw . The solution obtained by this procedure consists of a list of strips,
in the order of inclusion in the sheet plus, maybe, an empty strip of waste at the end of the list.

The basic procedure described in Figure 4 can be enhanced in two ways. First, the number of knapsack
problems required to be solved can be reduced. Consider, for instance, the first iteration in which r
problems, one for each krw are solved, but only one strip is added to the solution. Therefore, updating the
demands does not modify some of these demands substantially. At the second iteration, when we consider
the problem associated to a width krw , if the optimal solution of that problem in the previous iteration

*
kwx is lower than or equal to the residual demand b, the problem does not need to be solved. A second

way of improving the procedure is based on the following argument. If we are considering the problem
associated to a width krw , but { } min |k iw Wfree w w> − ∈ Mi

, no other strip would fit into the stock

rectangle if a strip of width krw is added. Therefore, when updating , all widths M krw such that

{ }min | k i iw w w Wfr+ ∈ >M ee can be replaced in by a unique value Wfree. M

This deterministic procedure is used in the GRASP algorithm in a similar way to that described in Section
3.1. The candidate list at each iteration k, CLk, contains all the widths currently in M . The restricted
candidate list RCLk ={ }* *

max |
kk ww z zα∈ ≥M . From RCLk a width is selected at random and the

corresponding strip is added to the partial solution.

Improvement Phase

At each step of an improvement move we select a strip to be removed from the current solution. The
emptied space, merged with the strip of waste if it exists, is filled again by applying the deterministic
constructive algorithm (BLP) on this new strip with the residual demands updated. Note that the removed
strip can be replaced by one or more new strips.

This improvement move is used in a standard local search procedure. Given a solution, we consider every
one of its strips, one at a time, and study the associated move. The solution obtained by the move
producing the largest improvement is taken as the new solution and the procedure starts from it again. If
no improvement is found, the local search stops. We will refer to this method in which both phases are
repeated until a stopping criteria is met as GRASP_Strip.

In Figure 5 we show an example of the construction and improvement of a solution. Let us suppose we
are given a stock sheet (13 x 18) from which we have to cut two types of pieces A (4 x 6) and B (5 x 4)
with demands 6 for both types. In the constructive phase for selecting the first strip we solve two
knapsack problems with solution value 72 and relative solution value 12, and with
solution value 40 and relative solution value 10. We choose the first strip of width 6, update Wfree=12
and d

(13,6)KP (13,4)KP

A = 3. For the second strip we would have to solve the same two knapsacks again, but the solutions
obtained in the previous iteration are still valid and we use them again to choose the strip one, updating
Wfree=6 and dA = 0. In the third iteration there is just one possible strip of width 4 and the complete
solution with value 184 appears in Figure 5 (a). In the improvement phase, we eliminate the first strip,
obtaining the situation in Figure 5 (b) in which a region of (13 x 8) has to be filled with demands dA=3
and dB=4, but the strip recently eliminated is not considered for inclusion again. Therefore, we add a strip
of width 4 twice, producing the improved solution of value 192 which appears in Figure 5 (c).

Two-staged two-dimensional cutting 9

13 x 8

 (a) (b) (c)

 Figure 5. Improvement move

4. Path Relinking

Path relinking (PR) was originally suggested as an approach to integrate intensification and
diversification strategies in the context of tabu search (Glover, 1994; Glover and Laguna, 1997). This
approach generates new solutions by exploring trajectories that connect high-quality solutions, by starting
from one of these solutions, called an initiating solution, and generating a path in the neighbourhood
space that leads toward the other solutions, called guiding solutions. This is accomplished by selecting
moves that introduce attributes contained in the guiding solutions.

Path relinking can be considered an extension of the Combination Method of scatter search. Instead of
directly producing a new solution when combining two or more original solutions, PR generates paths
between and beyond the selected solutions in the neighborhood space. The character of such paths is
easily specified by reference to solution attributes that are added, dropped or otherwise modified by the
moves executed. Examples of such attributes include edges and nodes of a graph, sequence positions in a
schedule, vectors contained in linear programming basic solutions, and values of variables and functions
of variables.

The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to
incorporate attributes of high quality solutions, by creating inducements to favor these attributes in the
moves selected. However, instead of using an inducement that merely encourages the inclusion of such
attributes, the path relinking approach subordinates other considerations to the goal of choosing moves
that introduce the attributes of the guiding solutions, in order to create a “good attribute composition” in
the current solution. The composition at each step is determined by choosing the best move, using
customary choice criteria from a restricted set — the set of those moves currently available that
incorporate a maximum number (or a maximum weighted value) of the attributes of the guiding solutions.
A survey of this methodology can be found in Laguna and Martí (2003). Path relinking in the context of
GRASP was first introduced by Laguna and Martí (1999) as a form of intensification.

We combine solutions obtained from the GRASP_PieceExt and the GRASP_Strip. As will be shown,
these procedures produce solutions with different structures. While solutions from GRASP_Strip tend to
be of higher quality, solutions from GRASP_PieceExt exhibit more diversity. The combination of these
two characteristics, quality and diversity, can be very fruitful in the search for solutions of even higher
quality. We build a set of elite solutions by taking the m best solutions from each procedure. This set of
2m solutions is ordered by non-increasing value, and each one is used as a guiding solution for all the
initiating solutions behind it in the ordered set. We take each strip from the guiding solution and add it at
the beginning of the strip list of the initiating solution. In order to accommodate the enlarged solution into
the stock sheet, one or more strips from the end of the list are eliminated. Moreover, this double move
inclusion-elimination may produce a solution in which some of the demands are exceeded. In this case,
the strips of the original initiating solution containing pieces that produce an excess of the demands are
also eliminated. All the empty space produced in these moves is merged into a waste strip which is filled

Two-staged two-dimensional cutting 10

again by using the BLP method. At the end of this process, the strip list of the guiding solution will have
been imposed on the initiating solution, but the intermediate steps, in which the solutions will have a
blend of strips from both solutions, can be better than any of them.

5. Computational Experiments

We use two sets of test problems in our experimentation. On the one hand, we have the set composed of
38 medium size instances which have appeared in literature and have been collected and used by Hifi and
Roucairol (2001). The optimal solutions are known and can be used as a reference for the quality of
heuristic procedures. On the other hand, we have the set composed by the 20 large constrained test
problems generated by Alvarez-Valdes et al (2002). Most of the optimal solutions for these problems
have been recently obtained by Belov and Scheithauer (2003). The study of alternatives and parameter
tuning in Tables 1 to 5 is performed on the first set of 38 instances for the case in which the first cut is
horizontal. The final algorithm will be tested on both test sets and in both cases of horizontal and vertical
first cutting stage. All the algorithms are coded in C++ and run on a Pentium IV at 3 Ghz.

5.1. Bottom-Left procedures

Table 1 shows the comparison on the first set of test problems between the standard Bottom-Left
Procedure (BLP), the Generalized BLP, in which the pieces are randomly ordered before going into BLP
(GBLP), and the OptQuest Callable Library (OCL). We report the results of the GBLP from 1000 and
100000 random initial orderings. The first row contains the average solution value, the second is the
average deviation from optimum (in percentage), the third is the number of optimal solutions, out of 38
instances, and the fourth row is the average computing time.

 BLP GBLP (1000) GBLP (100000) OCL
Value 8373.39 9370.86 9578.55 9618.81
Deviation 15.69% 2.37% 0.80% 0.49%
Num. of Opt. 1 13 16 18
CPU seconds <0.01 <0.01 0.016 0.35

Table 1. Comparison of Bottom-Left Procedures

Table 1 shows that the OCL implementation provides the best solutions in terms of quality. However, it
takes much more running time than the other methods. The BLP procedure achieves relatively good
results considering its simplicity. GBLP can be considered as a good bottom-left procedure since it
presents a good trade-off between solution quality and computing time.

5.2. GRASP_Piece algorithm

In our next experiment we consider the influence of the parameter α used to define the Restricted
Candidate List in the constructive phase of the GRASP_Piece algorithm. Specifically, Table 2 compares
the values 0.25, 0.50, 0.75 and 0.90 for this parameter, when running the construction phase for 2000
iterations (no improvement phase is applied in this experiment).

 α
 0.25 0.50 0.75 0.90

Value 9136.32 9298.61 9353.68 9345.18
Deviation 4.35% 3.34% 3.13% 3.32%

Num. of Opt. 7 6 8 8
CPU seconds 0.028 0.028 0,030 0.027

Table 2. GRASP_Piece Constructions (2000 iterations)

Table 2 shows that α=0.75 provides the best solutions. A tendency is observed in which the greater the
α–value, the better the results, up to one point (found at α=0.75) in which no further improvement is

Two-staged two-dimensional cutting 11

possible (it seems that the Restricted Candidate List becomes too restrictive with higher values).
Therefore, α is set to 0.75 in the following experiments.

Table 3 shows the contribution to the quality of solutions of the two versions of the improvement phase of
the GRASP_Piece algorithm. Specifically, this Table shows the results obtained with three variants: the
GRASP construction phase without improvement (GRASP_Piece Construction), the GRASP method
considering construction and improvement as described in Section 3.1 (GRASP_Piece) and the GRASP
method with the extended improvement method also described in Section 3.1 (GRASP_PieceExt). These
three methods are run for 2000 iterations for each of the 38 problems considered in these preliminary
experiments.

 GRASP_Piece
Construction

GRASP_Piece

GRASP_PieceExt

 Value 9353.68 9445.08 9462.11
 Deviation 3.13% 2.24% 1.97%
 Num. of Opt. 8 10 14
 CPU seconds 0,030 0,037 0,048

Table 3. Comparison of GRASP variants (2000 iterations)

Table 3 shows that the extended improvement procedure significantly decreases the average deviation
from optimum (and increases the number of optima) with respect to the construction phase, with a modest
increment in running times. If the iteration limit is increased to 200,000 iterations, the average deviation
of the GRASP with the GRASP_PieceExt improvement procedure achieves an average deviation from
optimum of 0.59% and is able to match 23 optimum solutions out of 38.

5.3. GRASP_Strip algorithm

Table 4 shows the performance of several alternatives for the constructive procedures of the
GRASP_Strip algorithm. We have studied two possibilities for selecting the best strip, according to the
maximum absolute value and the maximum relative value. We have also considered the possibility of
solving the knapsack problems heuristically, using the greedy algorithm by Martello and Toth (1990).

 Heuristic Exact
 Absolute Relative Absolute Relative

Value 7674,47 8410,89 8818,05 9315,53
Deviation 21.67% 16.68% 10,69% 3.44%

Num. of Opt. 0 0 2 13
CPU seconds < 0.01 < 0.01 < 0.01 < 0.01

Table 4. Comparison of deterministic constructive procedures for GRASP_Strip

Table 4 shows that solving the knapsack problem exactly and selecting the best strip according to the
maximum relative value criterion provides much better solutions than the other alternatives considered.
Since the exact method takes extra running time (not reflected in Table 4 because it shows a single run of
the methods), we set the number of iterations to 200 in the GRASP_Strip algorithm.

 α (Constructive phase) GRASP_Strip
 0.25 0.50 0.75 0.90
Value 9625.42 9625.55 9625.92 9651.71 9659.45
Deviation 0.33% 0.33% 0.35% 0.25% 0.22%
Optima 31 31 30 34 35
CPU time 0.09 0.09 0.10 0.10 0.18

Table 5. GRASP_Strip results (200 iterations)

Table 5 compares different values of the parameter α used to define the Restricted Candidate List in the
constructive phase of the GRASP_Strip algorithm and shows the results of the complete GRASP_Strip in

Two-staged two-dimensional cutting 12

the last column. It is clearly shown that the GRASP_Strip method outperforms the GRASP_Piece
algorithm although it consumes longer running times.

5.4. Combining GRASP_Piece and GRASP_Strip

In the following experiment, we have compared both GRASP methods. In order to apply the path
relinking strategy we need a set of elite solutions with both quality and diversity. Therefore, we compare
both characteristics in GRASP_Piece and GRASP_Strip. We have created a measure of diversity for a set
of solutions P, which is calculated as follows:

1. Calculate the average frequency afreq(i) of each piece i in the solutions in P.
2. Calculate the distance of each solution in P with respect to the “average solution” in which

each piece i appears afreq(i) times. (Note that this can be an unfeasible solution). This
distance is the Euclidean distance between the frequency vectors of both solutions.

We have generated a set of 1000 solutions with each GRASP method, and computed the objective
function value and the distance value (w.r.t. the “average solution”) for each one. This experiment
confirms that GRASP_Strip produces solutions of better quality than GRASP_Piece. However, the latter
method presents a wider range of diverse solutions. Moreover, we have found that the solutions of both
methods are of different structure. Therefore, we will consider the solutions obtained with both methods
in the elite set of the path relinking phase. We do not reproduce tables for this experiment here; we only
show one example in Figure 6.

0

1.000

2.000

3.000

4.000

5.000

6.000

0 1000 2000 3000 4000 5000 6000

Función objetivo

D
is

ta
nc

ia

Figure 6.1 GRASP_Strip (α=0.25)

0

1.000

2.000

3.000

4.000

5.000

6.000

0 1000 2000 3000 4000 5000 6000

Función objetivo

D
is

ta
nc

ia

Figure 6.2 GRASP_Strip (α=0.75)

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

0 1000 2000 3000 4000 5000 6000

Función objetivo

D
is

ta
nc

ia

Figure 6.3 GRASP_Piece (α=0.25)

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

0 1000 2000 3000 4000 5000 6000

Función Objetivo

D
is

ta
nc

ia

Figure 6.4 GRASP_Piece (α=0.75)

Figure 6 shows the diagram of the population obtained with both GRASP methods (and two values of the
parameter α) in example CW3. Specifically, it depicts for each solution the objective function value (x-
axis) and the distance value (y-axis). It shows that both methods provide solutions of different structure
and how the procedure depends on the α−value. The average objective function of the 1000 solutions is
2611.26 and 2746.97 for the GRASP_Piece (α=0.25 and α=0.75), and 4539.54 and 4695.72 for the
GRASP_Strip (α=0.25 and α=0.75). On the other hand, the average distance is 2.46 and 2.42 for the
GRASP_Piece (α=0.25 and α=0.75) and 2.94 and 2.79 for the GRASP_Strip (α=0.25 and α=0.75).

Two-staged two-dimensional cutting 13

5.5. Path Relinking

Finally we present the results of the complete algorithm. First, algorithms GRASP_Piece and
GRASP_Strip run separately with iteration limits of 2000 and 200 respectively. Then, the best 10
solutions provided by each algorithm form the set of elite solutions upon which the Path Relinking
procedure acts. The results on the first test set of 38 problems appear in Table 6. We will refer to this
complete procedure in which the three methods are run as PathRelink. This table compares this procedure
with the best results published up to now for these problems: H&R (Hifi & Roucairol, 2001) for both
types of first cut, and ESGA (Hifi & M’Hallah, 2003) for the case in which the first cut is horizontal. On
this set of problems all the methods require very low computing times (below 0.5 seconds).

 First cut horizontal First cut vertical
Instance Optimum PathRelink H&R ESGA Optimum PathRelink H&R
HH 10689 10689 10545 10689 9246 9141 8298
2 2535 2535 2375 2535 2444 2444 2305
3 1720 1720 1660 1700 1740 1740 1440
A1 1820 1820 1820 1820 1820 1820 1640
A2 2315 2315 1940 2295 2310 2310 2240
STS2 4450 4450 4280 4420 4620 4620 4620
STS4 9409 9409 9263 9409 9468 9468 8531
CHL1 8360 8360 7421 8347 8208 8208 7597
CHL2 2235 2235 2076 2235 2086 2086 2086
CW1 6402 6402 6402 6402 6402 6402 6402
CW2 5354 5354 5354 5354 5159 5159 5032
CW3 5287 4947 4434 4947 5689 5689 5026
Hchl2 9630 9630 9079 9616 9528 9528 9274
Hchl9 5100 5100 4610 5000 5060 5060 4680
2s 2430 2430 2375 2430 2450 2450 2188
3s 2599 2599 2470 2599 2623 2623 2470
A1s 2950 2950 2950 2950 2910 2910 2812
A2s 3423 3423 3423 3423 3451 3451 3445
STS2s 4569 4569 4342 4569 4625 4625 4342
STS4s 9481 9481 9258 9409 9481 9481 8563
OF1 2713 2713 2437 2713 2660 2660 2660
OF2 2515 2515 2307 2515 2522 2522 2442
W 2623 2623 2470 2623 2599 2599 2432
CHL1s 13036 13036 12276 13014 12602 12602 12314
CHL2s 3162 3162 3162 3162 3198 3198 3198
A3 5380 5380 5348 5380 5403 5403 5082
A4 5885 5885 5885 5885 5905 5905 5705
A5 12553 12553 12276 12276 12449 12449 12276
CHL5 363 363 330 363 344 344 344
CHL6 16572 16572 16157 16402 16281 16281 15862
CHL7 16728 16728 16037 16632 16602 16602 16111
CU1 12312 12312 12243 12312 12200 12200 12200
CU2 26100 26100 26100 26100 25260 25260 24750
Hchl3s 11961 11961 11410 11691 11829 11829 10836
Hchl4s 11408 11408 10545 11165 11258 11258 9573
Hchl6s 60170 60170 56105 60170 59853 59853 58121
Hchl7s 62459 62459 60384 61660 62845 62845 60683
Hchl8s 729 715 662 727 791 791 715
Deviation 0,22% 4.68% 0.58% 0,03% 5.07%
#Optima 36 8 22 37 7

Table 6. Comparison of Path Relinking and Hifi &Roucairol algorithm

Table 6 clearly shows that the PathRelinking method outperforms previous approaches, since it is able to
obtain 36 optimal solutions with first cut horizontal and 37 optimal solutions with first cut vertical. This
compares favorably with the other existing methods.

Two-staged two-dimensional cutting 14

Tables 7 and 8 show the results of our three procedures on a set of large scale cutting problems. Instances
from APT 30 to APT39 are unweighted, while those from APT40 to APT 49 are weighted. The second
column, in which the optimal values are shown, has been taken from Belov and Scheithauer (2003). Their
results do not include the optimal solution for instances APT33 with first cut horizontal and APT30 and
APT38 with first cut vertical. In these cases, they give the best solution found when running their exact
procedures with a time limit of 600 seconds (on an AMD K7 Athlon XP 1000Mhz). Our algorithms are
compared with HESGA (Hifi and M’Hallah, 2003), which seems to be the best published heuristic
algorithm. The results of HESGA have been taken from Hifi & M’Hallah (2003) for the case in which the
first cut is horizontal and from Belov and Scheithauer (2003) for the case in which the first cut is vertical.

 First cut horizontal
Instance Optimum GRASP_Piece GRASP_Strip Path Relink HESGA
APT30 140168 134531 140168 140168 140168
APT31* 820260 813752 808597 813935 818512
APT32 37880 36303 37799 37799 37880
APT33 235580 230631 235580 235580 234564
APT34 356159 353063 354219 356159 356159
APT35 614429 595423 607999 612337 613784
APT36 129262 125570 129262 129262 129262
APT37 384478 376052 384478 384478 382910
APT38 259070 247753 258134 258382 258221
APT39 266135 261552 265853 265853 265621
APT40 63945 61539 63945 63945 63945
APT41 202305 192657 202305 202305 202305
APT42 32589 31767 32487 32589 32589
APT43 208998 204869 208998 208998 208571
APT44 70940 63160 70901 70901 70678
APT45 74205 69716 74205 74205 74205
APT46 146402 143305 146402 146402 146402
APT47 144317 136270 144317 144317 143458
APT48 165428 150765 165428 165428 162032
APT49 206965 189471 205946 206965 204574
Deviation 4,06 0,23 0,09 0,30
Optima 0 11 14 9
CPU time 0.17 0.74 1.18 13.53#

 * Optimal solution of APT31 is not known
 # Running times on a UltraSparc10 (250Mhz, 128 Mb of RAM)

Table 7. Comparison of algorithms on large problems (First cut horizontal)

The results show that even for these large problems, the Path Relinking method obtains high quality
solutions in very short computing times and is able to outperform the best previous approach. Note that
for APT30 and APT38 with first cut vertical the Path Relinking method is able to achieve better solutions
than the exact procedure of Belov and Scheithauer, where 600 seconds was the maximum time deployed.

Two-staged two-dimensional cutting 15

 First cut vertical
Instance Optimum GRASP_Piece GRASP_Strip Path Relink HESGA
APT30* 140067 136735 139774 140197 140007
APT31 821073 795354 809109 814451 818296
APT32 37973 36402 37973 37973 37744
APT33 234670 229482 234670 234670 234538
APT34 357741 347548 354675 354675 353590
APT35 614336 601412 601492 607352 614132
APT36 128814 126687 128814 128814 128814
APT37 385811 370484 383406 385164 385811
APT38* 258812 253414 259028 259028 258040
APT39 266378 256778 265062 265062 265330
APT40 65584 62647 65584 65584 65044
APT41 196559 194551 196559 196559 195453
APT42 33012 31347 33012 33012 32937
APT43 212062 206185 212062 212062 212062
APT44 69784 69571 69474 69784 69732
APT45 69988 69162 69988 69988 69857
APT46 147021 141464 147021 147021 147021
APT47 142935 142199 142935 142935 142935
APT48 162458 153117 162458 162458 160318
APT49 211784 202531 211784 211784 210169
Deviation 2,87 0,30 0,16 0,34
Optima 0 13 15 5
CPU time 0,17 0,89 1,34 14.42#

 * Optimal solutions of APT30 and APT38 are not known
 # Running times on a UltraSparc10 (250Mhz, 128 Mb of RAM)

Table 8. Comparison of algorithms on large problems (First cut vertical)

6. Conclusions

We have presented two GRASP methods for the constrained two-dimensional two-staged cutting stock
problem. A set of elite solutions is constructed with the best solutions of both methods and a Path
Relinking algorithm is applied to this elite set. The combination of these three methods has been shown to
be remarkably efficient in solving a set of well known instances compared with the best previous
approach for this problem. Finally, our experience with the path relinking approach shows that, although
computationally more expensive, this strategy was able to improve the performance of our basic GRASP
implementations.

Acknowledgments
Antonio Parajon’s research is partially supported by the visiting professor fellowship program of the
Agencia Valenciana de Ciencia y Tecnología (Grant Ref. CTESIN/2003/022). Ramon Alvarez-Valdes,
Rafael Marti and Jose Manuel Tamarit are partially supported by the Ministerio de Ciencia y Tecnología
(Grant Refs. TIC2003-C05-01, TIC2002-10886-E, DPI2002-02553) and by the Agencia Valenciana de
Ciencia y Tecnologia (GRUPOS2003/174-189).

Two-staged two-dimensional cutting 16

References
Alvarez-Valdes, R., Parajon, A. and Tamarit, J.M. (2002) “A tabu search algorithm for large-scale

guillotine (un)constrained two-dimensional cutting problems”, Computers and Operations Research,
vol. 29, pp. 925-947.

Beasley, J.E. (1985) “Algorithms for unconstrained two-dimensional guillotine cutting”, Journal of the
Operational Research Society, vol. 36, pp. 297-306.

Belov, G. and Scheithauer, G. (2003) “A branch-and-cut-and-price algorithm for one-dimensional stock
cutting and two-dimensional two-stage cutting”, Technical Report MATH-NM-03, Dresden University.

Belov, G. and Scheithauer, G. (2003) “Models with variable strip widths for two-dimensional two-stage
cutting”, Technical Report, Dresden University.

Dyckhoff, H. (1990) “A typology of cutting and packing problems”, European Journal of Operational
Research, vol 44, pp. 145-159.

Festa, P. and Resende, M.G.C. (2001) “GRASP: An annotated bibliography” in Essays and Surveys in
Metaheuristics, M.G.C. Resende and P. Hansen (Eds.), Kluwer Academic Publishers, Boston, pp. 325-
367.

Gilmore, P.C. and Gomory, R.E. (1961) “A linear programming approach to the cutting stock problem”,
Operations Research, vol. 9, pp. 849-859.

Gilmore, P.C. and Gomory, R.E. (1965) “Multistage cutting problems of two and more dimensions”,
Operations Research, vol 13, pp. 94-119.

Glover, F. (1994) “Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic
Algorithms),” Discrete Applied Mathematics, vol. 49, pp. 231-255.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers, Boston.

Hifi, M. (2001) “Exact algorithms for large-scale unconstrained two and three staged cutting problems”,
Computational Optimization and Applications, vol. 18, pp. 63-88.

Hifi, M and M’Hallah, R.(2003) “Strip generation algorithms for constrained two-dimensional two-staged
cutting problems”, Working paper.

Hifi, M. and Roucairol, C. (2001) “Approximate and exact algorithms for constrained (un)weighted two-
dimensional two-staged cutting stock problems”, Journal of Combinatorial Optimization, vol. 5, pp.
465-494.

Laguna, M. and R. Martí (1999) “GRASP and Path Relinking for 2-Layer Straight Line Crossing
Minimization,” INFORMS Journal on Computing, vol. 11, no. 1, pp. 44-52.

Laguna, M. and R. Martí (2002) “The OptQuest Callable Library,” Optimization Software Class
Libraries, S. Voss and D. L. Woodruff (Eds.), Kluwer Academic Publishers, Boston, pp. 193-218.

Laguna, M. and R. Martí (2003) Scatter Search – Methodology and Implementations in C, Kluwer
Academic Publishers, Boston.

Lodi, A. and Monaci, M. (2003) “Integer linear programming models for 2-staged two-dimensional
knapsack problems”, Mathematical Programming, Series B, vol. 94, pp. 257-278.

Martello, S. and Toth, P. (1990) Knapsack problems. Algorithms and computer implementations, Wiley,
Chichester.

Morabito, R. and Garcia, V. (1998) “The cutting stock problem in the hardboard industry: A case study”
Computers and Operations Research, vol. 25, pp. 469-485.

Resende, M.G.C. and Ribeiro, C.C. (2001) “Greedy Randomized Adaptive Search Procedures” in State-
of-the-art Handbook in Metaheuristics, F. Glover and G. Kochenberger (Eds.), Kluwer Academic
Publishers, Boston, pp. 219-250.

Sweeney, P.E. and Paternoster, E.R. (1992) “Cutting and packing problems: A categorized applications-
oriented research bibliography” Journal of the Operational Research Society, vol. 43, pp. 691-706.

