
Chapter 4

TABU SEARCH

Fred Glover1 and Rafael Martí2
1 Leeds School of Business, University of Colorado, Campus Box 419, Boulder, CO 80309;
2 Dpto. de Estadística e Investigación Operativa, Universidad de Valencia, Dr. Moliner 50,
46100 Burjassot (Valencia) Spain

Abstract: Tabu Search is a meta-heuristic that guides a local heuristic search procedure
to explore the solution space beyond local optimality. One of the main
components of Tabu Search is its use of adaptive memory, which creates a
more flexible search behavior. Memory-based strategies are therefore the
hallmark of tabu search approaches, founded on a quest for “integrating
principles,” by which alternative forms of memory are appropriately combined
with effective strategies for exploiting them. In this chapter we address the
problem of training multilayer feed-forward neural networks. These networks
have been widely used for both prediction and classification in many different
areas. Although the most popular method for training these networks is back
propagation, other optimization methods such as tabu search have been
applied to solve this problem. This chapter describes two training algorithms
based on the tabu search. The experimentation shows that the procedures
provide high quality solutions to the training problem, and in addition
consume a reasonable computational effort.

Key words: Intelligent Problem Solving, Memory Structures, Adaptive Memory
Programming.

1. INTRODUCTION

The basic form of Tabu Search (TS) is founded on ideas proposed by
Fred Glover (1977, 1986). The method is based on procedures designed to
cross boundaries of feasibility or local optimality, instead of treating them as
barriers. Early examples of these procedures, derived from surrogate

2 Chapter 4

constraint methods and cutting plane approaches, systematically impose and
released constraints to permit exploration of otherwise forbidden regions.

TS is based on the premise that problem solving, in order to qualify as
intelligent, must incorporate adaptive memory and responsive exploration.
The adaptive memory feature of TS allows the implementation of procedures
that are capable of searching the solution space economically and
effectively. Since local choices are guided by information collected during
the search, TS contrasts with memoryless designs that heavily rely on semi-
random processes that implement a form of sampling. The emphasis on
responsive exploration (and hence purpose) in tabu search, whether in a
deterministic or probabilistic implementation, derives from the supposition
that a bad strategic choice can often yield more information than a good
random choice, and therefore provides a basis for progressively improved
strategies that take advantage of search history. TS can be directly applied
to virtually any kind of optimization problem. We focus here on the non-
linear problem with continuous variables that arises in the context of neural
network training.

In the remainder of the chapter, we first introduce in Section 2 the basic
tabu search methodology, and then in Section 3 describe the neural network
training application we are interested in examining. Section 4 describes two
TS methods that have been developed for solving this problem, one by
Sexton et al. (1998) and the other by El_Fallahi et al. (2005). Section 5 is
devoted to computational experiments that compare outcomes from these
two methods, and shows the advantages these methods yield over a state-of-
the-art variant of the classical back-propagation approach. The chapter
finishes with relevant conclusions.

2. TABU SEARCH METHODOLOGY

In its best known form, tabu search can be viewed as beginning in the
same way as ordinary local or neighborhood search, proceeding iteratively
from one point (solution) to another until a chosen termination criterion is
satisfied. Each solution x has an associated neighborhood () XxN ⊂ , and
each solution ()xNx ∈′ is reached from x by an operation called a move.

We may contrast TS with a simple descent method where the goal is to
minimize f(x). Such a method only permits moves to neighbor solutions that
improve the current objective function value and ends when no improving
solutions can be found. The final x obtained by a descent method is called a
local optimum, since it is at least as good as or better than all solutions in its
neighborhood. The evident shortcoming of a descent method is that such a

4. Tabu Search 3

local optimum in most cases will not be a global optimum, i.e., it usually
will not minimize f(x) over all x ∈X .

Tabu search permits moves that deteriorate the current objective function
value and selects the moves from a modified neighborhood N*(x). Short and
long term memory structures are responsible for the specific composition of
N*(x). In other words, the modified neighborhood is the result of
maintaining a selective history of the states encountered during the search.
In TS strategies based on short term considerations, N*(x) characteristically
is a subset of N(x), and the tabu classification serves to identify elements of
N(x) excluded from N*(x). In TS strategies that include longer term
considerations, N*(x) may also be expanded to include solutions not
ordinarily found in N(x), such as solutions found and evaluated in past
search, or identified as high quality neighbors of these past solutions.
Characterized in this way, TS may be viewed as a dynamic neighborhood
method. This means that the neighborhood of x is not a static set, but rather
a set that can change according to the history of the search.

The structure of a neighborhood in tabu search differs from that used in
local search in an additional manner, by embracing the types of moves used
in constructive and destructive processes (where the foundations for such
moves are accordingly called constructive neighborhoods and destructive
neighborhoods). Such expanded uses of the neighborhood concept reinforce
a fundamental perspective of TS, which is to define neighborhoods in
dynamic ways that can include serial or simultaneous consideration of
multiple types of moves.

TS uses attributive memory for guiding purposes (i.e., to compute N*(x)).
Instead of recording full solutions, attributive memory structures are based
on recording attributes. This type of memory records information about
solution properties (attributes) that change in moving from one solution to
another. The most common attributive memory approaches are recency-
based memory and frequency-based memory.

Recency-based memory is the most common memory structure used in
TS implementations. As its name suggests, this memory structure keeps
track of solutions attributes that have changed during the recent past. To
exploit this memory, selected attributes that occur in solutions recently
visited are labeled tabu-active, and solutions that contain tabu-active
elements, or particular combinations of these attributes, are those that
become tabu. This prevents certain solutions from the recent past from
belonging to N*(x) and hence from being revisited. Other solutions that
share such tabu-active attributes are also similarly prevented from being
visited. Although the tabu classification strictly refers to solutions that are
forbidden to be visited, by virtue of containing tabu-active attributes (or

4 Chapter 4

more generally by violating certain restriction based on these attributes),
moves that lead to such solutions are also often referred to as being tabu.

Frequency-based memory provides a type of information that
complements the information provided by recency-based memory,
broadening the foundation for selecting preferred moves. Like recency,
frequency often is weighted or decomposed into subclasses that can refer to
particular subregions of the search space. Also, frequency can be integrated
with recency to provide a composite structure for creating penalties and
inducements that modify move evaluations.

A key element of the adaptive memory framework of tabu search is to
create a balance between search intensification and diversification.
Intensification strategies are based on modifying choice rules to encourage
move combinations and solution features historically found good. They may
also initiate a return to attractive regions to search them more thoroughly.
Diversification strategies, on the other hand, seek to incorporate new
attributes and attribute combinations that were not included within solutions
previously generated. In one form, these strategies undertake to drive the
search into regions dissimilar to those already examined. It is important to
keep in mind that intensification and diversification are not mutually
opposing, but are rather mutually reinforcing.

Most types of intensification strategies require a means for identifying a
set of elite solutions as basis for incorporating good attributes into newly
created solutions. Membership in the elite set is often determined by setting
a threshold that is connected to the objective function value of the best
solution found during the search. Two simple variants for elite solution
selection have proved quite successful. One introduces a diversification
measure to assure the solutions recorded differ from each other by a desired
degree, and then erases all short term memory before resuming from the best
of the recorded solutions. The other keeps a bounded length sequential list
that adds a new solution at the end only if it is better than any previously
seen, and the short term memory that accompanied this solution is also
saved.

A degree of diversification is automatically created in TS by short term
memory functions, but effective diversification is particularly supported by
certain forms of longer term memory. TS diversification strategies are often
based on modifying choice rules to bring attributes into the solutions that are
infrequently used. Alternatively, they may introduce such attributes by
periodically applying methods that assemble subsets of these attributes into
candidate solutions for continuing the search, or by partially or fully
restarting the solution process. Diversification strategies are particularly
helpful when better solutions can be reached only by crossing barriers or
“humps” in the solution space topology.

4. Tabu Search 5

A TS process based strictly on short term strategies may allow a solution
x to be visited more than once, but it is likely that the corresponding reduced
neighborhood N*(x) will be different each time. The inclusion of longer term
considerations effectively removes the risk of duplicating a previous
neighborhood upon revisiting a solution and more generally of making
choices that repeatedly visit only a limited subset of X.

An extensive description of the TS methodology can be found in Glover
and Laguna (1997) and the integration of evolutionary methods with tabu
search memory is treated in Laguna and Martí (2003).

2.1 Advanced Designs

There are many forms in which a simple tabu search implementation can
be improved by adding long term elements. We restrict our attention to two
of the most commonly used methods, namely strategic oscillation and path
relinking, which constitute the core of many adaptive memory programming
algorithms.

Strategic oscillation operates by orienting moves in relation to a critical
level, as identified by a stage of construction or a chosen interval of
functional values. Such a critical level or oscillation boundary often
represents a point where the method would normally stop. Instead of
stopping when this boundary is reached, however, the rules for selecting
moves are modified, to permit the region defined by the critical level to be
crossed. The approach then proceeds for a specified depth beyond the
oscillation boundary, and turns around. The oscillation boundary again is
approached and crossed, this time from the opposite direction, and the
method proceeds to a new turning point (see Figure 1).

Figure 4-1. Strategic Oscillation

The process of repeatedly approaching and crossing the critical level
from different directions creates an oscillatory behavior, which gives the

Iterations
1 2 30

Oscillation Boundary

Depth

Le
ve

l o
r F

un
ct

io
na

l V
al

ue

6 Chapter 4

method its name. Control over this behavior is established by generating
modified evaluations and rules of movement, depending on the region
navigated and the direction of search. The possibility of retracing a prior
trajectory is avoided by standard tabu search mechanisms, like those
established by the recency-based and frequency-based memory functions.

When the level or functional values in Figure 1 refer to degrees of
feasibility and infeasibility, a vector-valued function associated with a set of
problem constraints can be used to control the oscillation. In this case,
controlling the search by bounding this function can be viewed as
manipulating a parameterization of the selected constraint set. A preferred
alternative is often to make the function a Lagrangean or surrogate constraint
penalty function, avoiding vector-valued functions and allowing tradeoffs
between degrees of violation of different component constraints.

Path Relinking, as a strategy of creating trajectories of moves passing
through high quality solutions was first proposed in connection with tabu
search in Glover (1989). The approach was then elaborated in greater detail
as a means of integrating TS intensification and diversification strategies,
and given the name path relinking (PR), in Glover and Laguna (1993). PR
generally operates by starting from an initiating solution, selected from a
subset of high quality solutions, and generating a path in the neighborhood
space that leads toward the other solutions in the subset, which are called
guiding solutions. This is accomplished by selecting moves that introduce
attributes contained in the guiding solutions.

Path relinking can be considered an extension of the Combination
Method of Scatter Search (Glover and Laguna, 1993; Laguna and Martí,
2003). Instead of directly producing a new solution when combining two or
more original solutions, PR generates paths between and beyond the selected
solutions in the neighborhood space. The character of such paths is easily
specified by reference to solution attributes that are added, dropped or
otherwise modified by the moves executed. Examples of such attributes
include edges and nodes of a graph, sequence positions in a schedule,
vectors contained in linear programming basic solutions, and values of
variables and functions of variables.

The approach may be viewed as an extreme (highly focused) instance of
a strategy that seeks to incorporate attributes of high quality solutions, by
creating inducements to favor these attributes in the moves selected.
However, instead of using an inducement that merely encourages the
inclusion of such attributes, the path relinking approach subordinates other
considerations to the goal of choosing moves that introduce the attributes of
the guiding solutions, in order to create a “good attribute composition” in the
current solution. The composition at each step is determined by choosing
the best move, using customary choice criteria, from a restricted set — the

4. Tabu Search 7

set of those moves currently available that incorporate a maximum number
(or a maximum weighted value) of the attributes of the guiding solutions.
(Exceptions are provided by aspiration criteria, as subsequently noted.) The
approach is called path relinking either by virtue of generating a new path
between solutions previously linked by a series of moves executed during a
search, or by generating a path between solutions previously linked to other
solutions but not to each other.

To generate the desired paths, it is only necessary to select moves that
perform the following role: upon starting from an initiating solution, the
moves must progressively introduce attributes contributed by a guiding
solution (or reduce the distance between attributes of the initiating and
guiding solutions). The roles of the initiating and guiding solutions are
interchangeable; each solution can also be induced to move simultaneously
toward the other as a way of generating combinations. First consider the
creation of paths that join two selected solutions x′ and x″, restricting
attention to the part of the path that lies ‘between’ the solutions, producing a
solution sequence x′ = x(l), x(2), …, x(r) = x″. To reduce the number of
options to be considered, the solution x(i + 1) may be created from x(i) at
each step by choosing a move that minimizes the number of moves
remaining to reach x″. The relinked path may encounter solutions that may
not be better than the initiating or guiding solution, but that provide fertile
“points of access” for reaching other, somewhat better, solutions. For this
reason it is valuable to examine neighboring solutions along a re-linked path,
and keep track of those of high quality which may provide a starting point
for launching additional searches.

3. THE NEURAL NETWORK MODEL EXAMINED

Artificial neural networks (ANNs) have been widely used for both
classification and prediction. The classification or recognition problem
consists of the identification of the class to which a given object belongs.
The input of the net is a description of the object to be recognized, while the
output is a discrete value identifying its class. The prediction problem
consists in approximating unknown functions. In this chapter we restrict our
attention to this latter problem; in particular we focus on the approximation
of real mappings (f: ℜ→ℜn).

We consider the most widely-used architecture for prediction and
classification: a multilayer feed-forward network with a single hidden layer.
In particular, we target a two layer feed-forward network, with sigmoid
activation function in the hidden nodes and linear activation in the output
node. Let NN=(N, A) be an ANN where N is the set of nodes (neurons) and

8 Chapter 4

A is the set of arcs. N is partitioned into three subsets: NI, input nodes, NH,
hidden nodes and NO, output nodes. We assume that there are n variables in
the function that we want to predict or approximate, therefore |NI|= n. The
neural network has m hidden neurons (|NH|= m) with a bias term in each
hidden neuron and a single output neuron. There is an arc, with an associated
weight, from each node in NI to each node in NH, and from each node in NH
to the output node.

The net’s input is given by the values of the function variables and the
output is the estimation of the function image. We focus on the prediction-
approximation problem, therefore, the output of the net for a given input,
should be as close as possible to the value of a given function for this input.
In mathematical terms, given a real function f: ℜ→ℜn and a neural net NN,
the objective is to find appropriate values for the arc weights w of the net,
such as its output NN(x,w) from an input vector x, approximates the value
f(x). We refer the reader to the excellent book by Bishop (1995) for a
comprehensive review of ANNs.

The most common error measure used to report the quality of the
network performance is the Root Mean Squared Error (RMSE). Let E={x1,
x2,..xt} be a random sample of points in the domain of f (usually called the
training set), and suppose that the value of f(x) is known for all x in E. Given
the weights w, for each x in E the error can be computed as:

error(x,w) = [f(x) - NN(x,w)]2,

and the RMSE across all the elements in the training set E is given by:

Error(E,w) =
t

wxerror
t

i

i∑
=1

),(
.

Therefore, training the neural network can be formulated as the following

non-linear unconstrained optimization problem:

w
min Error(E, w).

Back-propagation (BP) is the most widely used optimization method for

accomplishing this training. It is an effective algorithm based on the steepest
descent direction. Several modifications and improvements to the original
method have been proposed, as it is the case of the “momentum” term where
each new search direction is computed as a weighted sum of the current
gradient and the previous search direction. Recently, metaheuristics such as
simulated annealing (SA), genetic algorithms (GA) and tabu search (TS)

4. Tabu Search 9

have been proposed to solve this optimization problem. In this chapter we
focus on the tabu search methodology and its applications to solve the neural
network training problem.

4. TABU SEARCH TRAINING METHODS

In this section we describe the two tabu search implementations we will
be examining for the purpose of minimizing error when training a neural
network: the extended tabu search method by Sexton et al. (1998) and the
tabu search approach with path relinking by El-Fallahi et al. (2005).

4.1 The Extended Tabu Search Method

The Extended Tabu Search method by Sexton et al. (1998) is mainly
based on a random sampling around the best solution found. The authors
propose two methods, the first one, called “preliminary” TS, is used as a
baseline for comparison with the second one, Extended Tabu Search (ETS),
which is the main contribution of the paper. A description of the extended
method follows. Since the training set E is fixed, from now on we simplify
the notation Error(E,w) and use plainly E(w).

An initial solution w0 is randomly drawn from a uniform distribution in
the range [-10,10] and the current best solution wbest is initialised to w0.
Solutions are randomly generated in this range for a given number of
iterations. When generating a new point wnew, aspiration level and tabu
conditions are checked. If E(wnew)<E(wbest), the point is automatically
accepted and both wbest and E(wbest) are updated; otherwise the tabu
conditions are tested. If there is one solution wi in the tabu list (TL) such as
E(wnew) ∈ [E(wi)-0.01*E(wi), E(wi)+0.01*E(wi)], then the complete test is
applied to wnew and wi; otherwise the point is accepted. The test checks if all
the weights in wnew are within ±0.01 from wi, in this case the point is
rejected, otherwise the point is accepted and wnew and E(wnew) are entered
into TL. This process continues for 1000 iterations of accepted solutions.
Then, another cycle of 1000 iterations of random sampling begins. These
cycles will continuously repeat while E(wbest) improves.

When the random sampling ends, the process of intensification starts by
performing a search from the best solution found wbest. The new points are
drawn by modifying the wbest by a small step value, where:

step=((0.1*wbest)-(0.2*wbest)*random)/change. (1)

10 Chapter 4

Each cycle of the intensification phase generates 1000 new points. This
phase makes a maximum of 20 cycles as long as there is at least one
reduction in the E(wbest). Once this phase finishes, the diversification
process begins in order to expand the search area. The step value is now
computed as:

step=((0.1*wbest)-(0.2*wbest)*random)*change (2)

This diversification phase generates new points by modifying wbest with

step value (2). As in the intensification phase, cycles of 1000 iterations are
performed up to a maximum of 20. Both phases, intensification and
diversification, are alternated for a maximum of 5 consecutive iterations.
The random variable is a random number drawn from a uniform distribution
in the range [0, 1], the change variable is initialised to one, and is increased
in one after each intensification phase. The whole process consists of 10 of
these global iterations.

It is important to point out that in both this method and the one described
in the next subsection, the search takes place only over the weights from the
input to the hidden layer and the bias factor of the hidden neurons. Weights
from the hidden layer to the output neuron, wn+j,s as well as the bias factor of
node s, ws, are obtained with linear regression to minimize the sum of
squares associated with Error(E,w). The advantage of this search scheme is
that the number of weights that the training procedure needs to adjust is
reduced by m+1. The disadvantage, on the other hand, is that the regression
model needs to be solved every time any of the first m(n+1) weights is
changed in order to calculate the mean squared error.

4.2 The Tabu Search Method with Path Relinking

The tabu search algorithm by El-Fallahi et al. (2005) operates in a
somewhat different manner. In this approach the short term memory is
implemented in a beginning phase called TSProb. An iteration of TSProb
begins by randomly selecting a weight from the current solution w. The
probability of selecting weight t

iw at iteration t, is proportional to the
absolute value of the partial derivative of the RMSE on E with respect to t

iw .
These derivative values can be efficiently computed with the first phase of
the BP method. The neighborhood consists of solutions that are reached
from wt by modifying the value of the selected weight t

iw . Specifically,
three solutions are considered with the following expression:

wi
t+1 = wi

t + α β wi
t ; wj

t+1 = wj
t , ∀ j≠i

4. Tabu Search 11

The method selects the best solution from among the three considered
(given appropriate α values), and labels it as wt+1. Note that the move is
executed even when the error of wt+1 is greater than the error of wt, thus
resulting in a deterioration of the current value of the objective function.
The moved weight becomes tabu-active for TabuTenure iterations, and
therefore it cannot be selected during this time. The factor β scales the
change in the selected weight according to the status of the search (reducing
its value from 1 as long as the current solution is close to a local optimum).
Starting from a random initial solution, the TSProb method finishes after a
number of k consecutive iterations with no improvement. The search
parameters have been set to the values recommended by the authors:
TabuTenure= n(m+1)/3, α=(0.3, 0.5, 0.8), β∈[0,1] and k=500.

The foregoing method is coupled with a Path Relinking phase, which is a
form of TS strategy that is finding increasing use in applications. It starts
with the creation of the Reference Set (RefSet), which contains the b elite
solutions found during the application of the TSProb method. These b
solutions must be different and they must be far enough apart to ensure that
the BFGS improvement method (Smith and Lasdon, 1992) will converge to
different final solutions. Therefore, a solution is admitted to RefSet if its
Euclidean distance from each solution already in the set is larger than a pre-
specified threshold th_d. The improvement method is applied to the b/2 best
solutions in RefSet and the improved solutions are ordered according to
quality (i.e., to their error(E,w) value).

At each iteration of the path relinking algorithm, the set NewPairs is
constructed with all pairs of solutions in RefSet that include at least one new
solution. (In the first iteration it contains (b2-b)/2 pairs, but in successive
iterations this number is usually significaantly smaller.) For each pair (w′,
w″) in NewPairs a path is initiated from w′ to w″, and the best solution found
in the path is added to the set PRSol. Once all the pairs in NewPairs have
been subjected to the path relinking method, the BFGS algorithm is applied
to the best b solutions in PRSol. Each newly created solution is tested to
determine whether it improves upon the worst solution currently in RefSet, in
which case the new solution replaces the worst and RefSet is reordered.
Then, if RefSet contains a new solution we perform another iteration of the
path relinking algorithm, starting with the creation of the set NewPairs;
otherwise, the algorithm terminates.

The path relinking method constructs a path to join two solutions u and v
generated by the process described above. Considering the m neurons in the
hidden layer in a given order, a path containing m solutions is constructed
from solution u to solution v by performing moves that transform u into v.
The first step creates the first solution in the path, w1, by replacing in u the
values of the weights in the arcs from the n input neurons to the first hidden

12 Chapter 4

neuron with their values in v. Similarly, the second step creates the solution
w2 by replacing in w1 the values of the weights in the arcs from the n input
neurons to the second hidden neuron with their values in v. The method
proceeds in this way until we obtain solution wm, which only differs from
solution v in the values associated with the weights from the hidden layer to
the output neuron.

The effectiveness of adding a local search exploration from some of the
generated solutions within the relinking path has been well documented
(Laguna and Marti, 2003). In the context of neural network training, the
application of the BFGS procedure as the improvement method is a time-
consuming operation, so we have limited it to the best solution found in the
path, as described above.

5. COMPUTATIONAL EXPERIMENTS

For our computational testing, we have created C implementations of: (1)
an effective (state-of-the-art) variant of the classical Back-Propagation
method (BP), (2) the extended tabu search method, ETS, of Sexton et al.
(1998) and (3) the TS procedure with Path Relinking, TSPR, of El-Fallahi et
al. (2005). Figure 2 shows the expression of the 15 functions used to
compare the performance of the 3 methods under consideration.

Back-propagation is one of the first methods for neural network training,
and is the most widely used algorithm in practical applications. It is a
gradient descent procedure that computes the derivatives’ values in a very
efficient way (from the output layer back towards the input layer), and
modifies the weights according to a parameter known as ‘learning rate’. The
original algorithm has been modified in many ways; the most popular
consists in adding a ‘momentum’ term (Rumelhart and McClelland, 1986)
when the weights are updated. The inclusion of this term leads to significant
improvements, although it introduces a second parameter in the algorithm.
Jacobs (1988) suggested a different modification called the ‘delta-bar-delta
rule’ which introduces a separate learning rate for each weight. It has been
shown (Bishop, 1995) that this rule increases the convergence of the method
in some cases, but does not work well in practice across different instances
due to some stability problems. Several methods have been proposed to
compute the learning rate. Examples are the quickprop method (Fahlman,
1988) and the Rprop method (Riedmiller and Heinrich, 1993). However, in
general, these variants share the limitations associated with first derivative
based methods. Our adaptation of the back-propagation algorithm (BP)
includes the momentum term and compares favorably with commercial
implementations of this method, as documented by (El-Fallahi, 2002).

4. Tabu Search 13

The training set consists of 200 observations with data randomly drawn
from [-100, 100] for x1 and [-10,10] for x2. The validation set consists of 100
observations drawn from the same uniform distributions that were not used
in the search process at all. We use one hidden layer with 9 nodes in all the
experiments as it is done in previous works.

1.Sexton 1:
21)(xxxf +=

2. Sexton 2:
21*)(xxxf =

3. Sexton 3:
1

)(
2

1

+
=

x
x

xf

4. Sexton 4: 3
2

2
1)(xxxf −=

5. Sexton 5: 2
1

3
1)(xxxf −=

6. Branin: () 10cos
8
111065

4
5)(

2

1
2
122 +⎟

⎠
⎞

⎜
⎝
⎛

π
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛
π

+⎟
⎠

⎞
⎜
⎝

⎛

π
−= ixxxxxf

7. B2: () () 7.04cos4.03cos3.02)(21
2
2

2
1 +π−π−+= xxxxxf

8. Easom: () () () ()()()2
2

2
121 expcoscos)(π−+π−−−= xxxxxf

9. Goldstein:

 () ()()
() ()()2

2212
2
11

2
21

2
2212

2
11

2
21

2736481232183230

36143141911)(

xxxxxxxx

xxxxxxxxxf

+−++−−+

++−+−+++=

10. Shubert: ()() ()()⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
++= ∑∑

==

5

1
2

5

1
1 1cos1cos)(

jj

jxjjjxjjxf

11. Beal:
 23

211
22

211
2

211)625.2()25.2()5.1()(xxxxxxxxxxf +−++−++−=

12. Booth: 2
21

2
21)52()72()(−++−+= xxxxxf

13. Matyas: 21
2
2

2
1 48.0)(26.0)(xxxxxf −+=

14. SixHumpCamelB: 4
2

2
221

6
1

4
1

2
1 44

3
11.24)(xxxxxxxxf +−++−=

15. Schwefel: ()∑
=

−+=
n

i
ii xxnxf

1

sin9829.418)(

Figure 4-2. Test Functions

14 Chapter 4

Tables 1 and 2 report, respectively, the training and validation errors
obtained with the three methods in the 15 problems considered. In order to
obtain statistically significant solutions, we run each method 20 times on
each function and report the average and standard deviation of the 20 runs
(limiting each run to ten minutes). In all the cases, we have employed the
same training and validation sets.

Table 4-1. Training Error across different methods
NP BP ETS TSPR
1 1.60 ± 0.26 0.04 ± 0.02 0.00 ± 0.00
2 8.32 ± 4.30 1.79 ± 0.78 0.00 ± 0.00
3 1.63 ± 0.21 0.34 ±0.03 0.00 ± 0.00
4 45.52 ± 7.82 17.66 ±6 0.00 ± 0.00
5 12.62 ± 3.87 18.98 ±5.26 0.00 ± 0.00
6 13.98 ± 1.58 53.28 ±3.94 0.09 ± 0.04
7 16.09 ± 5.80 63.26 ±1.18 0.25 ± 0.00
8 0.20 ± 0.06 0.01 ±0.00 0.00 ± 0.00
9 7.35E+09±1.07E+09 3.30E+09±8.44E+07 1.37E+09±1.61E+08

10 21.40 ± 1.49 22.22± 4.12 16.14 ± 1.67
11 5.28E+06±1.34E+06 4.17E+06±1.28E+05 1.80E+06±1.36E+05
12 107.95 ± 3.01 156.12±5.57 0.01 ± 0.00
13 3.93 ± 1.97 10.13 ± 3.25 0.00 ± 0.00
14 5.58E+0 ± 6.76E+03 4.44E+04±2.48E+03 1.34E+04±8.34E+03
15 2.88 ± 0.5 527.14±3.07 0.02 ± 0.00

Table 4-2. Validation Error across different methods
NP BP ETS TSPR
1 1.50 ± 0.22 0.05 ± 0.05 0.00 ± 0.00
2 7.91± 3.10 2.06 ± 0.85 0.00 ± 0.00
3 1.72 ± 0.21 0.67 ± 0.05 0.00 ± 0.00
4 48.03 ± 8.98 20.91 ± 7.15 0.00 ± 0.00
5 11.60 ± 2.68 21.43 ± 6.55 0.00 ± 0.00
6 15.09 ± 1.36 53.18 ± 4.80 0.00 ± 0.00
7 17.63 ± 5.87 61.2 ± 1.85 0.00± 0.00
8 0.20 ± 0.06 0.00 ± 0.00 0.00 ± 0.00
9 1.01E+10±1.75E+09 7.41E+09±3.59E+08 2.15E+09±4.58E+01

10 17.22 ± 2.9 25.59 ± 0.3 20.7 ± 0.64
11 3.83E+06±2.42E+05 5.89E+06±2.57E+05 3.29E+06±5.01E+05
12 112.09 ± 5.13 162.47 ± 7.34 0.00 ± 0.00
13 4.72 ± 2.74 10.52 ± 0.41 0.01 ± 0.00
14 5.20E+04±5.54E+03 4.38E+04±2.96E+03 1.44E+04±7.78E+03
15 2.78 ± 0.46 528.26±18.48 0.03 ± 0.00

Tables 1 and 2 show that the best solution quality is obtained with the

TSPR method in all cases. This experiment also shows that none of the
methods can effectively handle problems 9, 11 and 14 within the run time
considered, suggesting either that the ANN model itself needs to be modified
in these cases or that the structure of these problems poses an unusual level

4. Tabu Search 15

of difficulty. Considering the average values over the 20 runs, Table 1
shows that the TSPR method is able to obtain the best solutions with respect
to the training error in each of the other 12 instances. Table 2 shows similar
results since TSPR obtains the best solutions in the 12 cases with reasonable
error values. It should be mentioned that our BP algorithm variant obtains
deviation values that are reasonably good, on average, considering its
simplicity.

6. CONCLUSIONS

The focus and emphasis of tabu search have a number of implications for
the goal of designing improved optimization procedures. These
opportunities carry with them an emphasis on producing systematic and
strategically designed rules, rather than following the policy of relegating
decisions to random choices as is often fashionable in evolutionary methods.
The adaptive memory structures underlying tabu search and the excellent
results that they provide, invites the use of TS in other metaheuristic
methods.

We have described different implementations of tabu search for training a
single-layer feed-forward neural network. Two TS methods were compared
with the well known Back-Propagation algorithm. The best results are
obtained by the Tabu Search Path Relinking method coupled with an
improvement phase based on the BFGS optimizer.

ACKNOWLEDGMENTS

Research by Rafael Martí is partially supported by the Ministerio de
Educación y Ciencia (refs. TIN2004-20061-E and TIC2003-C05-01) and by
the Agencia Valenciana de Ciència i Tecnologia (ref. GRUPOS03 /189).

REFERENCES

Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford University Press.
El-Fallahi A. (2002), Entrenamiento de Redes Neuronales, Trabajo de Investigación, Dpto

Estadística e I.O. Universidad de Valencia.
El-Fallahi, A., Martí, R. and Lasdon, L. (2005), Path Relinking and GRG for Artificial Neural

Networks, European journal of operational research, forthcoming
Fahlman, S.E. (1988) "An empirical study of learning speed in back-propagation networks",

In T. J. Sejnowski G. E. Hinton and D. S. Touretzky, editors, Connectionist Models
Summer School, San Mateo, CA, Morgan Kaufmann, pp. 38-51.

16 Chapter 4

Glover, F. (1986) “Future Paths for Integer Programming and Links to Artificial

Intelligence,” Computers and Operations Research, Vol. 13, pp. 533-549.
Glover, F. and Laguna, M., (1997). Tabu Search, Kluwer Academic Publishers, Boston.
Glover, F. and M. Laguna (1993) “Tabu Search,” Modern Heuristic Techniques for

Combinatorial Problems, C. Reeves (ed.), Blackwell Scientific Publishing, Oxford, pp.
70-150.

Glover, F., 1989. Tabu Search, Part I, ORSA Journal on Computing 1 190-206.
Jacobs, R.A., (1988) "Increased Rates of Convergence Through Learning Rate Adaptation",

Neural Networks, 1, pp. 295-307.
Laguna, M., Martí, R., 2003. Scatter Search – Methodology and Implementations in C,

Kluwer Academic Publishers, Boston.
Riedmiller, M. and B. Heinrich (1993) “A Direct Adaptive Method for Faster Back-

propagation Learning: The RPROP Algorithm” Proc. of the IEEE Intl. Conf. on Neural
Networks.

Rumelhart, D.E. and McClelland, J.L. (1986), Parallel distributed processing: explorations in
the microstructure of cognition, Cambridge, MA: The MIT Press.

Sexton, R. S., B. Alidaee, R. E. Dorsey and J. D. Johnson (1998) “Global Optimization for
Artificial Neural Networks: A Tabu search Application,” European Journal of
Operational Research, vol. 106, pp. 570-584.

Smith, S. and L. Lasdon(Winter 1992), "Solving Large Nonlinear Programs Using GRG,"
ORSA Journal on Computing, Vol. 4, No. 1, pp. 2-15.

