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Abstract: Tabu Search is a meta-heuristic that guides a local heuristic search procedure 
to explore the solution space beyond local optimality.  One of the main 
components of Tabu Search is its use of adaptive memory, which creates a 
more flexible search behavior.  Memory-based strategies are therefore the 
hallmark of tabu search approaches, founded on a quest for “integrating 
principles,” by which alternative forms of memory are appropriately combined 
with effective strategies for exploiting them.  In this chapter we address the 
problem of training multilayer feed-forward neural networks.  These networks 
have been widely used for both prediction and classification in many different 
areas.  Although the most popular method for training these networks is back 
propagation, other optimization methods such as tabu search have been 
applied to solve this problem.  This chapter describes two training algorithms 
based on the tabu search.  The experimentation shows that the procedures 
provide high quality solutions to the training problem, and in addition 
consume a reasonable computational effort. 

Key words: Intelligent Problem Solving, Memory Structures, Adaptive Memory 
Programming. 

1. INTRODUCTION 

The basic form of Tabu Search (TS) is founded on ideas proposed by 
Fred Glover (1977, 1986).  The method is based on procedures designed to 
cross boundaries of feasibility or local optimality, instead of treating them as 
barriers.  Early examples of these procedures, derived from surrogate 
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constraint methods and cutting plane approaches, systematically impose and 
released constraints to permit exploration of otherwise forbidden regions.  

TS is based on the premise that problem solving, in order to qualify as 
intelligent, must incorporate adaptive memory and responsive exploration.  
The adaptive memory feature of TS allows the implementation of procedures 
that are capable of searching the solution space economically and 
effectively.  Since local choices are guided by information collected during 
the search, TS contrasts with memoryless designs that heavily rely on semi-
random processes that implement a form of sampling.  The emphasis on 
responsive exploration (and hence purpose) in tabu search, whether in a 
deterministic or probabilistic implementation, derives from the supposition 
that a bad strategic choice can often yield more information than a good 
random choice, and therefore provides a basis for progressively improved 
strategies that take advantage of search history.  TS can be directly applied 
to virtually any kind of optimization problem.  We focus here on the non-
linear problem with continuous variables that arises in the context of neural 
network training. 

In the remainder of the chapter, we first introduce in Section 2 the basic 
tabu search methodology, and then in Section 3 describe the neural network 
training application we are interested in examining. Section 4 describes two 
TS methods that have been developed for solving this problem, one by 
Sexton et al. (1998) and the other by El_Fallahi et al. (2005).  Section 5 is 
devoted to computational experiments that compare outcomes from these 
two methods, and shows the advantages these methods yield over a state-of-
the-art variant of the classical back-propagation approach. The chapter 
finishes with relevant conclusions. 

2. TABU SEARCH METHODOLOGY 

In its best known form, tabu search can be viewed as beginning in the 
same way as ordinary local or neighborhood search, proceeding iteratively 
from one point (solution) to another until a chosen termination criterion is 
satisfied.  Each solution x has an associated neighborhood ( ) XxN ⊂ , and 
each solution ( )xNx ∈′  is reached from x by an operation called a move. 

We may contrast TS with a simple descent method where the goal is to 
minimize f(x).  Such a method only permits moves to neighbor solutions that 
improve the current objective function value and ends when no improving 
solutions can be found.  The final x obtained by a descent method is called a 
local optimum, since it is at least as good as or better than all solutions in its 
neighborhood.  The evident shortcoming of a descent method is that such a 
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local optimum in most cases will not be a global optimum, i.e., it usually 
will not minimize f(x) over all x ∈X . 

Tabu search permits moves that deteriorate the current objective function 
value and selects the moves from a modified neighborhood N*(x).  Short and 
long term memory structures are responsible for the specific composition of 
N*(x).  In other words, the modified neighborhood is the result of 
maintaining a selective history of the states encountered during the search.  
In TS strategies based on short term considerations, N*(x) characteristically 
is a subset of N(x), and the tabu classification serves to identify elements of 
N(x) excluded from N*(x).  In TS strategies that include longer term 
considerations, N*(x) may also be expanded to include solutions not 
ordinarily found in N(x), such as solutions found and evaluated in past 
search, or identified as high quality neighbors of these past solutions.  
Characterized in this way, TS may be viewed as a dynamic neighborhood 
method.  This means that the neighborhood of x is not a static set, but rather 
a set that can change according to the history of the search. 

The structure of a neighborhood in tabu search differs from that used in 
local search in an additional manner, by embracing the types of moves used 
in constructive and destructive processes (where the foundations for such 
moves are accordingly called constructive neighborhoods and destructive 
neighborhoods).  Such expanded uses of the neighborhood concept reinforce 
a fundamental perspective of TS, which is to define neighborhoods in 
dynamic ways that can include serial or simultaneous consideration of 
multiple types of moves. 

TS uses attributive memory for guiding purposes (i.e., to compute N*(x)).  
Instead of recording full solutions, attributive memory structures are based 
on recording attributes.  This type of memory records information about 
solution properties (attributes) that change in moving from one solution to 
another.  The most common attributive memory approaches are recency-
based memory and frequency-based memory. 

Recency-based memory is the most common memory structure used in 
TS implementations.  As its name suggests, this memory structure keeps 
track of solutions attributes that have changed during the recent past.  To 
exploit this memory, selected attributes that occur in solutions recently 
visited are labeled tabu-active, and solutions that contain tabu-active 
elements, or particular combinations of these attributes, are those that 
become tabu.  This prevents certain solutions from the recent past from 
belonging to N*(x) and hence from being revisited.  Other solutions that 
share such tabu-active attributes are also similarly prevented from being 
visited.  Although the tabu classification strictly refers to solutions that are 
forbidden to be visited, by virtue of containing tabu-active attributes (or 
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more generally by violating certain restriction based on these attributes), 
moves that lead to such solutions are also often referred to as being tabu. 

Frequency-based memory provides a type of information that 
complements the information provided by recency-based memory, 
broadening the foundation for selecting preferred moves.  Like recency, 
frequency often is weighted or decomposed into subclasses that can refer to 
particular subregions of the search space.  Also, frequency can be integrated 
with recency to provide a composite structure for creating penalties and 
inducements that modify move evaluations. 

A key element of the adaptive memory framework of tabu search is to 
create a balance between search intensification and diversification.  
Intensification strategies are based on modifying choice rules to encourage 
move combinations and solution features historically found good.  They may 
also initiate a return to attractive regions to search them more thoroughly.  
Diversification strategies, on the other hand, seek to incorporate new 
attributes and attribute combinations that were not included within solutions 
previously generated. In one form, these strategies undertake to drive the 
search into regions dissimilar to those already examined. It is important to 
keep in mind that intensification and diversification are not mutually 
opposing, but are rather mutually reinforcing. 

Most types of intensification strategies require a means for identifying a 
set of elite solutions as basis for incorporating good attributes into newly 
created solutions.  Membership in the elite set is often determined by setting 
a threshold that is connected to the objective function value of the best 
solution found during the search.  Two simple variants for elite solution 
selection have proved quite successful.  One introduces a diversification 
measure to assure the solutions recorded differ from each other by a desired 
degree, and then erases all short term memory before resuming from the best 
of the recorded solutions.  The other keeps a bounded length sequential list 
that adds a new solution at the end only if it is better than any previously 
seen, and the short term memory that accompanied this solution is also 
saved. 

A degree of diversification is automatically created in TS by short term 
memory functions, but effective diversification is particularly supported by 
certain forms of longer term memory.  TS diversification strategies are often 
based on modifying choice rules to bring attributes into the solutions that are 
infrequently used.  Alternatively, they may introduce such attributes by 
periodically applying methods that assemble subsets of these attributes into 
candidate solutions for continuing the search, or by partially or fully 
restarting the solution process.  Diversification strategies are particularly 
helpful when better solutions can be reached only by crossing barriers or 
“humps” in the solution space topology. 
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A TS process based strictly on short term strategies may allow a solution 
x to be visited more than once, but it is likely that the corresponding reduced 
neighborhood N*(x) will be different each time.  The inclusion of longer term 
considerations effectively removes the risk of duplicating a previous 
neighborhood upon revisiting a solution and more generally of making 
choices that repeatedly visit only a limited subset of X.   

An extensive description of the TS methodology can be found in Glover 
and Laguna (1997) and the integration of evolutionary methods with tabu 
search memory is treated in Laguna and Martí (2003). 

2.1 Advanced Designs 

There are many forms in which a simple tabu search implementation can 
be improved by adding long term elements.  We restrict our attention to two 
of the most commonly used methods, namely strategic oscillation and path 
relinking, which constitute the core of many adaptive memory programming 
algorithms. 

Strategic oscillation operates by orienting moves in relation to a critical 
level, as identified by a stage of construction or a chosen interval of 
functional values.  Such a critical level or oscillation boundary often 
represents a point where the method would normally stop.  Instead of 
stopping when this boundary is reached, however, the rules for selecting 
moves are modified, to permit the region defined by the critical level to be 
crossed.  The approach then proceeds for a specified depth beyond the 
oscillation boundary, and turns around.  The oscillation boundary again is 
approached and crossed, this time from the opposite direction, and the 
method proceeds to a new turning point (see Figure 1). 

Figure 4-1. Strategic Oscillation 

The process of repeatedly approaching and crossing the critical level 
from different directions creates an oscillatory behavior, which gives the 
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method its name.  Control over this behavior is established by generating 
modified evaluations and rules of movement, depending on the region 
navigated and the direction of search.  The possibility of retracing a prior 
trajectory is avoided by standard tabu search mechanisms, like those 
established by the recency-based and frequency-based memory functions. 

When the level or functional values in Figure 1 refer to degrees of 
feasibility and infeasibility, a vector-valued function associated with a set of 
problem constraints can be used to control the oscillation.  In this case, 
controlling the search by bounding this function can be viewed as 
manipulating a parameterization of the selected constraint set.  A preferred 
alternative is often to make the function a Lagrangean or surrogate constraint 
penalty function, avoiding vector-valued functions and allowing tradeoffs 
between degrees of violation of different component constraints. 

Path Relinking, as a strategy of creating trajectories of moves passing 
through high quality solutions was first proposed in connection with tabu 
search in Glover (1989). The approach was then elaborated in greater detail 
as a means of integrating TS intensification and diversification strategies, 
and given the name path relinking (PR), in Glover and Laguna (1993).  PR 
generally operates by starting from an initiating solution, selected from a 
subset of high quality solutions, and generating a path in the neighborhood 
space that leads toward the other solutions in the subset, which are called 
guiding solutions.  This is accomplished by selecting moves that introduce 
attributes contained in the guiding solutions. 

Path relinking can be considered an extension of the Combination 
Method of Scatter Search (Glover and Laguna, 1993; Laguna and Martí, 
2003).  Instead of directly producing a new solution when combining two or 
more original solutions, PR generates paths between and beyond the selected 
solutions in the neighborhood space.  The character of such paths is easily 
specified by reference to solution attributes that are added, dropped or 
otherwise modified by the moves executed.  Examples of such attributes 
include edges and nodes of a graph, sequence positions in a schedule, 
vectors contained in linear programming basic solutions, and values of 
variables and functions of variables. 

The approach may be viewed as an extreme (highly focused) instance of 
a strategy that seeks to incorporate attributes of high quality solutions, by 
creating inducements to favor these attributes in the moves selected.  
However, instead of using an inducement that merely encourages the 
inclusion of such attributes, the path relinking approach subordinates other 
considerations to the goal of choosing moves that introduce the attributes of 
the guiding solutions, in order to create a “good attribute composition” in the 
current solution.  The composition at each step is determined by choosing 
the best move, using customary choice criteria, from a restricted set — the 
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set of those moves currently available that incorporate a maximum number 
(or a maximum weighted value) of the attributes of the guiding solutions.  
(Exceptions are provided by aspiration criteria, as subsequently noted.) The 
approach is called path relinking either by virtue of generating a new path 
between solutions previously linked by a series of moves executed during a 
search, or by generating a path between solutions previously linked to other 
solutions but not to each other. 

To generate the desired paths, it is only necessary to select moves that 
perform the following role: upon starting from an initiating solution, the 
moves must progressively introduce attributes contributed by a guiding 
solution (or reduce the distance between attributes of the initiating and 
guiding solutions).  The roles of the initiating and guiding solutions are 
interchangeable; each solution can also be induced to move simultaneously 
toward the other as a way of generating combinations.  First consider the 
creation of paths that join two selected solutions x′ and x″, restricting 
attention to the part of the path that lies ‘between’ the solutions, producing a 
solution sequence x′ = x(l), x(2), …, x(r) = x″.  To reduce the number of 
options to be considered, the solution x(i + 1) may be created from x(i) at 
each step by choosing a move that minimizes the number of moves 
remaining to reach x″.  The relinked path may encounter solutions that may 
not be better than the initiating or guiding solution, but that provide fertile 
“points of access” for reaching other, somewhat better, solutions.  For this 
reason it is valuable to examine neighboring solutions along a re-linked path, 
and keep track of those of high quality which may provide a starting point 
for launching additional searches. 

3. THE NEURAL NETWORK MODEL EXAMINED 

Artificial neural networks (ANNs) have been widely used for both 
classification and prediction.  The classification or recognition problem 
consists of the identification of the class to which a given object belongs.  
The input of the net is a description of the object to be recognized, while the 
output is a discrete value identifying its class.  The prediction problem 
consists in approximating unknown functions.  In this chapter we restrict our 
attention to this latter problem; in particular we focus on the approximation 
of real mappings (f: ℜ→ℜn ). 

We consider the most widely-used architecture for prediction and 
classification: a multilayer feed-forward network with a single hidden layer.  
In particular, we target a two layer feed-forward network, with sigmoid 
activation function in the hidden nodes and linear activation in the output 
node.  Let NN=(N, A) be an ANN where N is the set of nodes (neurons) and 
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A is the set of arcs.  N is partitioned into three subsets: NI, input nodes, NH, 
hidden nodes and NO, output nodes.  We assume that there are n variables in 
the function that we want to predict or approximate, therefore |NI|= n.  The 
neural network has m hidden neurons (|NH|= m) with a bias term in each 
hidden neuron and a single output neuron. There is an arc, with an associated 
weight, from each node in NI to each node in NH, and from each node in NH 
to the output node. 

The net’s input is given by the values of the function variables and the 
output is the estimation of the function image.  We focus on the prediction-
approximation problem, therefore, the output of the net for a given input, 
should be as close as possible to the value of a given function for this input.  
In mathematical terms, given a real function f: ℜ→ℜn  and a neural net NN, 
the objective is to find appropriate values for the arc weights w of the net, 
such as its output NN(x,w) from an input vector x, approximates the value 
f(x).  We refer the reader to the excellent book by Bishop (1995) for a 
comprehensive review of ANNs. 

The most common error measure used to report the quality of the 
network performance is the Root Mean Squared Error (RMSE).  Let E={x1, 
x2,..xt} be a random sample of points in the domain of f (usually called the 
training set), and suppose that the value of f(x) is known for all x in E.  Given 
the weights w, for each x in E the error can be computed as: 
 

error(x,w) = [ f(x) - NN(x,w) ]2, 
 
and the RMSE across all the elements in the training set E is given by: 
 

Error(E,w) =
t

wxerror
t

i

i∑
=1

),(
. 

 
Therefore, training the neural network can be formulated as the following 

non-linear unconstrained optimization problem: 
 

w
min  Error(E, w). 

 
Back-propagation (BP) is the most widely used optimization method for 

accomplishing this training.  It is an effective algorithm based on the steepest 
descent direction.  Several modifications and improvements to the original 
method have been proposed, as it is the case of the “momentum” term where 
each new search direction is computed as a weighted sum of the current 
gradient and the previous search direction.  Recently, metaheuristics such as 
simulated annealing (SA), genetic algorithms (GA) and tabu search (TS) 



4. Tabu Search 9
 
have been proposed to solve this optimization problem.  In this chapter we 
focus on the tabu search methodology and its applications to solve the neural 
network training problem. 

4. TABU SEARCH TRAINING METHODS 

In this section we describe the two tabu search implementations we will 
be examining for the purpose of minimizing error when training a neural 
network: the extended tabu search method by Sexton et al. (1998) and the 
tabu search approach with path relinking by El-Fallahi et al. (2005). 

4.1 The Extended Tabu Search Method 

The Extended Tabu Search method by Sexton et al. (1998) is mainly 
based on a random sampling around the best solution found.  The authors 
propose two methods, the first one, called “preliminary” TS, is used as a 
baseline for comparison with the second one, Extended Tabu Search (ETS), 
which is the main contribution of the paper.  A description of the extended 
method follows.  Since the training set E is fixed, from now on we simplify 
the notation Error(E,w) and use plainly E(w). 

An initial solution w0 is randomly drawn from a uniform distribution in 
the range [-10,10] and the current best solution wbest is initialised to w0.  
Solutions are randomly generated in this range for a given number of 
iterations.  When generating a new point wnew, aspiration level and tabu 
conditions are checked.  If E(wnew)<E(wbest), the point is automatically 
accepted and both wbest and E(wbest) are updated; otherwise the tabu 
conditions are tested.  If there is one solution wi in the tabu list (TL) such as 
E(wnew) ∈ [E(wi)-0.01*E(wi), E(wi)+0.01*E(wi)], then the complete test is 
applied to wnew and wi; otherwise the point is accepted.  The test checks if all 
the weights in wnew are within ±0.01 from wi, in this case the point is 
rejected, otherwise the point is accepted and wnew  and E(wnew) are entered 
into TL.  This process continues for 1000 iterations of accepted solutions.  
Then, another cycle of 1000 iterations of random sampling begins.  These 
cycles will continuously repeat while E(wbest) improves. 

When the random sampling ends, the process of intensification starts by 
performing a search from the best solution found wbest.  The new points are 
drawn by modifying the wbest by a small step value, where: 

 
step=((0.1*wbest)-(0.2*wbest)*random)/change.  (1) 
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Each cycle of the intensification phase generates 1000 new points.  This 
phase makes a maximum of 20 cycles as long as there is at least one 
reduction in the E(wbest).  Once this phase finishes, the diversification 
process begins in order to expand the search area.  The step value is now 
computed as: 

 
step=((0.1*wbest)-(0.2*wbest)*random)*change  (2) 

 
This diversification phase generates new points by modifying wbest with 

step value (2).  As in the intensification phase, cycles of 1000 iterations are 
performed up to a maximum of 20.  Both phases, intensification and 
diversification, are alternated for a maximum of 5 consecutive iterations.  
The random variable is a random number drawn from a uniform distribution 
in the range [0, 1], the change variable is initialised to one, and is increased 
in one after each intensification phase.  The whole process consists of 10 of 
these global iterations. 

It is important to point out that in both this method and the one described 
in the next subsection, the search takes place only over the weights from the 
input to the hidden layer and the bias factor of the hidden neurons.  Weights 
from the hidden layer to the output neuron, wn+j,s as well as the bias factor of 
node s, ws, are obtained with linear regression to minimize the sum of 
squares associated with Error(E,w).  The advantage of this search scheme is 
that the number of weights that the training procedure needs to adjust is 
reduced by m+1.  The disadvantage, on the other hand, is that the regression 
model needs to be solved every time any of the first m(n+1) weights is 
changed in order to calculate the mean squared error. 

4.2 The Tabu Search Method with Path Relinking 

The tabu search algorithm by El-Fallahi et al. (2005) operates in a 
somewhat different manner. In this approach the short term memory is 
implemented in a beginning phase called TSProb.  An iteration of TSProb 
begins by randomly selecting a weight from the current solution w.  The 
probability of selecting weight t

iw  at iteration t, is proportional to the 
absolute value of the partial derivative of the RMSE on E with respect to t

iw .  
These derivative values can be efficiently computed with the first phase of 
the BP method.  The neighborhood consists of solutions that are reached 
from wt by modifying the value of the selected weight t

iw .  Specifically, 
three solutions are considered with the following expression: 
 

wi
t+1 = wi

t + α β wi
t  ;  wj

t+1 = wj
t  , ∀ j≠i 
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The method selects the best solution from among the three considered 
(given appropriate α values), and labels it as wt+1.   Note that the move is 
executed even when the error of wt+1 is greater than the error of wt, thus 
resulting in a deterioration of the current value of the objective function.  
The moved weight becomes tabu-active for TabuTenure iterations, and 
therefore it cannot be selected during this time.  The factor β scales the 
change in the selected weight according to the status of the search (reducing 
its value from 1 as long as the current solution is close to a local optimum).  
Starting from a random initial solution, the TSProb method finishes after a 
number of k consecutive iterations with no improvement.  The search 
parameters have been set to the values recommended by the authors: 
TabuTenure= n(m+1)/3, α=(0.3, 0.5, 0.8), β∈[0,1] and k=500. 

The foregoing method is coupled with a Path Relinking phase, which is a 
form of TS strategy that is finding increasing use in applications.  It starts 
with the creation of the Reference Set (RefSet), which contains the b elite 
solutions found during the application of the TSProb method.  These b 
solutions must be different and they must be far enough apart to ensure that 
the BFGS improvement method (Smith and Lasdon, 1992) will converge to 
different final solutions.  Therefore, a solution is admitted to RefSet if its 
Euclidean distance from each solution already in the set is larger than a pre-
specified threshold th_d.  The improvement method is applied to the b/2 best 
solutions in RefSet and the improved solutions are ordered according to 
quality (i.e., to their error(E,w) value). 

At each iteration of the path relinking algorithm, the set NewPairs is 
constructed with all pairs of solutions in RefSet that include at least one new 
solution. (In the first iteration it contains (b2-b)/2 pairs, but in successive 
iterations this number is usually significaantly smaller.) For each pair (w′, 
w″) in NewPairs a path is initiated from w′ to w″, and the best solution found 
in the path is added to the set PRSol.  Once all the pairs in NewPairs have 
been subjected to the path relinking method, the BFGS algorithm is applied 
to the best b solutions in PRSol.  Each newly created solution is tested to 
determine whether it improves upon the worst solution currently in RefSet, in 
which case the new solution replaces the worst and RefSet is reordered.  
Then, if RefSet contains a new solution we perform another iteration of the 
path relinking algorithm, starting with the creation of the set NewPairs; 
otherwise, the algorithm terminates. 

The path relinking method constructs a path to join two solutions u and v 
generated by the process described above.  Considering the m neurons in the 
hidden layer in a given order, a path containing m solutions is constructed 
from solution u to solution v by performing moves that transform u into v.  
The first step creates the first solution in the path, w1, by replacing in u the 
values of the weights in the arcs from the n input neurons to the first hidden 
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neuron with their values in v.  Similarly, the second step creates the solution 
w2 by replacing in w1 the values of the weights in the arcs from the n input 
neurons to the second hidden neuron with their values in v.  The method 
proceeds in this way until we obtain solution wm, which only differs from 
solution v in the values associated with the weights from the hidden layer to 
the output neuron. 

The effectiveness of adding a local search exploration from some of the 
generated solutions within the relinking path has been well documented 
(Laguna and Marti, 2003).  In the context of neural network training, the 
application of the BFGS procedure as the improvement method is a time-
consuming operation, so we have limited it to the best solution found in the 
path, as described above. 

5. COMPUTATIONAL EXPERIMENTS 

For our computational testing, we have created C implementations of: (1) 
an effective (state-of-the-art) variant of the classical Back-Propagation 
method (BP), (2) the extended tabu search method, ETS, of Sexton et al. 
(1998) and (3) the TS procedure with Path Relinking, TSPR, of El-Fallahi et 
al. (2005).  Figure 2 shows the expression of the 15 functions used to 
compare the performance of the 3 methods under consideration. 

Back-propagation is one of the first methods for neural network training, 
and is the most widely used algorithm in practical applications.  It is a 
gradient descent procedure that computes the derivatives’ values in a very 
efficient way (from the output layer back towards the input layer), and 
modifies the weights according to a parameter known as ‘learning rate’.  The 
original algorithm has been modified in many ways; the most popular 
consists in adding a ‘momentum’ term (Rumelhart and McClelland, 1986) 
when the weights are updated.  The inclusion of this term leads to significant 
improvements, although it introduces a second parameter in the algorithm.  
Jacobs (1988) suggested a different modification called the ‘delta-bar-delta 
rule’ which introduces a separate learning rate for each weight.  It has been 
shown (Bishop, 1995) that this rule increases the convergence of the method 
in some cases, but does not work well in practice across different instances 
due to some stability problems.  Several methods have been proposed to 
compute the learning rate.  Examples are the quickprop method (Fahlman, 
1988) and the Rprop method (Riedmiller and Heinrich, 1993).  However, in 
general, these variants share the limitations associated with first derivative 
based methods.  Our adaptation of the back-propagation algorithm (BP) 
includes the momentum term and compares favorably with commercial 
implementations of this method, as documented by (El-Fallahi, 2002). 
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The training set consists of 200 observations with data randomly drawn 
from [-100, 100] for x1 and [-10,10] for x2.  The validation set consists of 100 
observations drawn from the same uniform distributions that were not used 
in the search process at all.  We use one hidden layer with 9 nodes in all the 
experiments as it is done in previous works. 
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Tables 1 and 2 report, respectively, the training and validation errors 
obtained with the three methods in the 15 problems considered.  In order to 
obtain statistically significant solutions, we run each method 20 times on 
each function and report the average and standard deviation of the 20 runs 
(limiting each run to ten minutes).  In all the cases, we have employed the 
same training and validation sets. 

Table 4-1. Training Error across different methods 
NP BP ETS TSPR 
1 1.60 ± 0.26 0.04 ± 0.02 0.00 ± 0.00 
2 8.32 ± 4.30 1.79 ± 0.78 0.00 ± 0.00 
3 1.63 ± 0.21 0.34 ±0.03 0.00 ± 0.00 
4 45.52 ± 7.82 17.66 ±6 0.00 ± 0.00 
5 12.62 ± 3.87 18.98 ±5.26 0.00 ± 0.00 
6 13.98 ± 1.58 53.28 ±3.94 0.09 ± 0.04 
7 16.09 ± 5.80 63.26 ±1.18 0.25 ± 0.00 
8 0.20 ± 0.06 0.01 ±0.00 0.00 ± 0.00 
9 7.35E+09±1.07E+09 3.30E+09±8.44E+07 1.37E+09±1.61E+08 

10 21.40 ± 1.49 22.22± 4.12 16.14 ± 1.67 
11 5.28E+06±1.34E+06 4.17E+06±1.28E+05 1.80E+06±1.36E+05 
12 107.95 ± 3.01 156.12±5.57 0.01 ± 0.00 
13 3.93 ± 1.97 10.13 ± 3.25 0.00 ± 0.00 
14 5.58E+0 ± 6.76E+03 4.44E+04±2.48E+03 1.34E+04±8.34E+03 
15 2.88 ± 0.5 527.14±3.07 0.02 ± 0.00 

Table 4-2. Validation Error across different methods 
NP BP ETS TSPR 
1 1.50 ± 0.22 0.05 ± 0.05 0.00 ± 0.00 
2 7.91± 3.10 2.06 ± 0.85 0.00 ± 0.00 
3 1.72 ± 0.21 0.67 ± 0.05 0.00 ± 0.00 
4 48.03 ± 8.98 20.91 ± 7.15 0.00 ± 0.00 
5 11.60 ± 2.68 21.43 ± 6.55 0.00 ± 0.00 
6 15.09 ± 1.36 53.18 ± 4.80 0.00 ± 0.00 
7 17.63 ± 5.87 61.2 ± 1.85 0.00± 0.00 
8 0.20 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 
9 1.01E+10±1.75E+09 7.41E+09±3.59E+08 2.15E+09±4.58E+01 

10 17.22 ± 2.9 25.59 ± 0.3 20.7 ± 0.64 
11 3.83E+06±2.42E+05 5.89E+06±2.57E+05 3.29E+06±5.01E+05 
12 112.09 ± 5.13 162.47 ± 7.34 0.00 ± 0.00 
13 4.72 ±  2.74 10.52 ± 0.41 0.01 ± 0.00 
14 5.20E+04±5.54E+03 4.38E+04±2.96E+03 1.44E+04±7.78E+03 
15 2.78 ± 0.46 528.26±18.48 0.03 ± 0.00 

 
Tables 1 and 2 show that the best solution quality is obtained with the 

TSPR method in all cases.  This experiment also shows that none of the 
methods can effectively handle problems 9, 11 and 14 within the run time 
considered, suggesting either that the ANN model itself needs to be modified 
in these cases or that the structure of these problems poses an unusual level 
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of difficulty.  Considering the average values over the 20 runs, Table 1 
shows that the TSPR method is able to obtain the best solutions with respect 
to the training error in each of the other 12 instances.  Table 2 shows similar 
results since TSPR obtains the best solutions in the 12 cases with reasonable 
error values.  It should be mentioned that our BP algorithm variant obtains 
deviation values that are reasonably good, on average, considering its 
simplicity. 

6. CONCLUSIONS 

The focus and emphasis of tabu search have a number of implications for 
the goal of designing improved optimization procedures.  These 
opportunities carry with them an emphasis on producing systematic and 
strategically designed rules, rather than following the policy of relegating 
decisions to random choices as is often fashionable in evolutionary methods.  
The adaptive memory structures underlying tabu search and the excellent 
results that they provide, invites the use of TS in other metaheuristic 
methods. 

We have described different implementations of tabu search for training a 
single-layer feed-forward neural network.  Two TS methods were compared 
with the well known Back-Propagation algorithm.  The best results are 
obtained by the Tabu Search Path Relinking method coupled with an 
improvement phase based on the BFGS optimizer. 
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