
December 1998 4-1

Chapter 4
ABEL-HDL Design

ABEL-HDL is a hardware description language that supports a variety
of behavioral input forms, including high-level equations, state
diagrams, and truth tables.

The DesignDirect ABEL-HDL compiler and supporting software
functionally verify ABEL-HDL designs through simulation. The
compilers then implement the designs in a programmable IC. ABEL-
HDL designs can also be transferred to other design environments
through standard format design transfer files.

This chapter covers information on the following topics:

• A description of ABEL-HDL and an overview of its basic
structure and syntax

• Design issues to consider

• The need to specify pin-to-pin attributes for declared signals

• Pin-to-pin vs. detailed description methods

• Using automatic polarity control

• Writing detailed equations that stimulate the inputs of alternate
flip-flops

• Specifying feedback paths with "dot" extensions

• Using Don't Care optimization to reduce logic

• Using XOR attributes for architecture-independence

• Guidelines to help make state diagrams easy to read and maintain

• Describing a design using truth tables

• Using a template to create an ABEL-HDL source

Vantis DesignDirect-CPLD User Guide

4-2 December 1998

What is ABEL-HDL?
ABEL-HDL is a hierarchical logic description language. ABEL-HDL design
descriptions are contained in an ASCII text file in the ABEL Hardware Description
Language (ABEL-HDL). For example, the ABEL-HDL code in Figure 1describes a one-
bit counter block.

 Figure 1: Example ABEL-HDL code with descriptions

Header:
The Module statement names the
module and indicates if dummy
arguments are used. In lower-level
modules, it can be followed by an
interface declaration.
The Title statement can be used to give
a title or description for the module.

ABEL-HDL Module

Module source3
Title ‘Example of a Source File’

Declarations
 in1, in2, in3, clk PIN ;
 all, none, other PIN ISTYPE ‘reg’;
 in = [in1..in3] ;
 out = [all,none,other] ;

Equations
 out.clk = clk ;
 all := in1 & in2 & in3 ;
 none := !in1 & !in2 & !in3 ;
 other := (!in1 # !in2 # !in3) &
 (in1 # in2 # in3)

Test_Vectors
 ([in,clk] -> [out]
 ([7, c] -> 4 ;
 ([3, C] -> 1 ;

End source3

Declarations:
Declarations declare lower-level
modules, and associate names with
functional block instances devices,
pins, nodes, constants, macros and
sets. They also assign attributes with
istype.

Logic Description:
You can use Equations, a
State_diagram, or a Truth_table to
describe your logic design. This
example uses equations.

Test Vectors:
Test_vectors are used in JEDEC
simulation for designs mapped to
programmable logic devices.

End:
The End statement ends the module.

ABEL-HDL Design Vantis

December 1998 4-3

Language Structure
This section provides an overview of the basic structure and syntax of a design
description in ABEL-HDL.

Note: A detailed description of the ABEL language is in the online Help system.

Basic Structure

ABEL-HDL source files can contain independent modules. Each module contains a
complete logic description of a circuit or subcircuit. Any number of modules can be
combined into one source file and processed at the same time

This section covers the basic elements that make up an ABEL-HDL source file module.
A module can be divided into five sections, which are:

• Header

• Declarations

• Logic Description

• Test Vectors

• End

The elements of the source file are shown in the template in the figure following below.
There are also directives that can be included in any of the middle three sections. The
sections are presented briefly below, and then each element is introduced.

Structure Rules

The following rules apply to module structure:

• A module must contain only one header (composed of the MODULE statement and
optional TITLE and OPTIONS statements).

• All other sections of a source file can be repeated in any order. However,
declarations must immediately follow either the header or the DECLARATIONS
keyword.

• No symbol (identifier) can be referenced before it is declared.

Header

The Header Section can consist of the following elements:

Module - The MODULE statement is required. It defines the beginning of the module
and must be paired with an END statement. The MODULE statement also indicates
whether any module arguments are used.

Title - The optional TITLE statement can be used to give a title or description for the
module.

Vantis DesignDirect-CPLD User Guide

4-4 December 1998

Declarations

The Declarations section specifies the names and attributes of signals used in the design;
defines constants, macros, and states; declares lower-level modules and schematics; and
optionally declares a device. Each module must have at least one Declarations section,
and declarations affect only the module in which they are defined.

A Declarations section can consist of the following elements:

• Declarations Keyword

• Interface and Functional Block Declarations

• Signal Declarations (pin and node numbers optional)

• Constant Declarations

• Macro Declarations

• Library Declarations

• Device Declaration (one per module)

Logic Description

You can use one or more of the following elements to describe your design.

• Equations

• Truth Tables

• State Diagrams

• Fuses

• XOR Factors

In addition, dot extensions (like ISTYPE attributes in the Declarations section) enable
you to more precisely describe the behavior of a circuit in a logic description that may be
targeted to a variety of different devices.

Test Vectors Section

Test vectors are only used for Equation or JEDEC Simulation. A Test_Vectors section
can consist of the following elements:

• Test Vectors

• Trace Statement

• Test Script

End Statement

The END statement ends (closes) the module, and is required.

Other Elements

Directives can be placed anywhere you need them.

Basic Syntax

The basic syntax of an ABEL-HDL source file includes the following:

ABEL-HDL Design Vantis

December 1998 4-5

• Supported ASCII characters

• Identifiers and keywords

• Constants

• Blocks

• Comments

• Numbers

• Strings

• Operators, expressions, and equations

• Logical operators

• Arithmetic operators

• Relational operators

• Assignment operators

• Expressions

• Equations

• Sets and set operation

• Arguments and argument substitution

Syntax Rules

Each line in an ABEL-HDL source file must conform to the following syntax rules and
restrictions:

• A line can be up to 150 characters long.

• Lines are ended by a line feed (hex 0A), by a vertical tab (hex 0B), or by a form feed
(hex 0C). Carriage returns in a line are ignored, so common end-of-line sequences,
such as carriage return/line feed, are interpreted as line feeds. In most cases, you
can end a line by pressing RETURN.

• Keywords, identifiers, and numbers must be separated by at least one space.
Exceptions to this rule are lists of identifiers separated by commas, expressions
where identifiers or numbers are separated by operators, or where parentheses
provide the separation.

• Neither spaces nor periods can be imbedded in the middle of keywords, numbers,
operators, or identifiers. Spaces can appear in strings, comments, blocks, and actual
arguments. For example, if the keyword MODULE is entered as MOD ULE, it is
interpreted as two identifiers, MOD and ULE. Similarly, if you enter 102 05
(instead of 10205), it is interpreted as two numbers, 102 and 5.

• Keywords can be uppercase, lowercase or mixed-case.

• Identifiers (user-supplied names and labels) can be uppercase, lowercase or mixed-
case, but are case sensitive: the identifier, output, typed in all lowercase letters, is
not the same as the identifier, Output.

Vantis DesignDirect-CPLD User Guide

4-6 December 1998

Supported ASCII Characters

All uppercase and lowercase alphabetic characters and most other characters on
common keyboards are supported. Valid characters are listed or shown below.

a - z (lowercase alphabet)
A - Z (uppercase alphabet)
0 - 9 (digits)
<space>
<tab>
! @ # $? + & * () -

_ = + [] { } ; : ' "

` \ | , < > . / ^ %

Identifiers

Identifiers are names that identify the following items:

• Devices

• Device pins or nodes

• Functional blocks

• sets

• Input or output signals

• Constants

• Macros

• Dummy arguments

All of these items are discussed later in this chapter. The rules and restrictions for
identifiers are the same regardless of what the identifier describes

Identifier Rules
The rules governing identifiers are listed below:

• Identifiers can be up to 31 characters. Longer names are flagged as an error.

• Identifiers must begin with an alphabetic character or with an underscore.

• Other than the first character, identifiers can contain upper- and lowercase
characters, digits, tildes (~), and underscores.

• You cannot use spaces in an identifier. Use underscores or uppercase letters to
separate words.

• Except for Reserved Identifiers (Keywords), identifiers are case sensitive: uppercase
letters and lowercase letters are not the same.

• You cannot use periods in an identifier, except with a supported dot extension.

Constants

You can use constant values in assignment statements, truth tables, and test vectors. You
can assign a constant to an identifier, and then use the identifier to specify that value
throughout a module. Constant values can be either numeric or one of the non-numeric
special constant values. The special constant values are listed below in Table 1.

ABEL-HDL Design Vantis

December 1998 4-7

 Table 1: Special constants

Constant Description
.C. Clocked input (low-high-low transition)
.D. Clock down edge (high-low transition)
.F. Floating input or output signal
.K. Clocked input (high-low-high transition)
.P. Register preload
.SVn. n = 2 through 9. Drive the input to super voltage 2 through 9.
.U. Clock up edge (low-high transition)
.X. Don't care condition.
.Z. Tristate value

When you use a special constant, it must be entered as shown in the above table.
Without the periods, .C. is an identifier named C. You can enter special constants in
upper- or lowercase.

Blocks

Blocks are sections of text enclosed in braces, { and }. Blocks are used in equations,
state diagrams, macros, and directives. The text in a block can be on one line or it can
span many lines. Some examples of blocks are shown below.

{ this is a block }
{ this is also a block, and it
spans more than one line. }

{ A = B # C;
D = [0, 1] + [1, 0];
}

Blocks can be nested within other blocks, as shown below, where the block { D = A } is
nested within a larger block:

{ A = B $ C;
 { D = A; }
 E = C; }

Blocks and nested blocks can be useful in macros and when used with directives.

If you need a brace as a character in a block, precede it with a backslash. For example,
to specify a block containing the characters { }, write:

{ \{ \} }

Using Blocks in Logic Descriptions
Using blocks can simplify the description of output logic in equations and state
diagrams, and allows more-complex functions than possible without blocks. Blocks can
also improve the readability of your design.

Vantis DesignDirect-CPLD User Guide

4-8 December 1998

Blocks are supported anywhere a single equation is supported. You can use blocks in
simple equations, When-Then-Else, If-Then-Else, Case, and With statements

When you use equation blocks within a conditional expression (such as If-Then, Case,
or When-Then), the logic functions are logically ANDed with the conditional
expression.

Blocks in Equations
The following expressions, written without blocks, are limited by the inability to specify
more than one output in a When-Then expression without using set notation:

 Example 1: Without blocks

WHEN (Mode == S_Data) THEN Out_data := S_in;
ELSE WHEN (Mode == T_Data) THEN Out_data := T_in;
WHEN (Mode == S_Data) THEN S_Valid := 1;
ELSE WHEN (Mode == T_Data) THEN T_Valid := 1;

With blocks (delimited with braces { }), the syntax above can be simplified. The logic
specified for Out_data is logically ANDed with the WHEN clause:

 Example 2: With blocks

WHEN (Mode == S_Data) THEN { Out_data := S_in;
 S_Valid := 1; }
ELSE WHEN (Mode == T_Data) THEN { Out_data := T_in;
 T_Valid := 1; }

Blocks in State Diagrams
Blocks also provide a simpler way to write state diagram output equations. For example,
the following two state transition statements are equivalent.

 Example 3: Without Blocks

IF (Hold) THEN State1 WITH o1 := o1.fb; o2 := o2.fb;
 ENDWITH
ELSE State2;

 Example 4: With Blocks

IF (Hold) THEN State1 WITH {o1 := o1.fb; o2 := o2.fb;}
ELSE State2;

Using Blocks for State Diagram Transitions
Blocks can be used to nest If-Then and If-Then-Else statements in state diagram
descriptions, simplifying the description of complex transition logic.

ABEL-HDL Design Vantis

December 1998 4-9

Blocks for Transition Logic

 Example 5: Without Blocks

IF (Hold & !Reset) THEN State1;
If (Hold & Error) THEN State2;
If (!Hold) THEN State3;

 Example 6: With Blocks

If (Hold) THEN
{ IF (!Reset) THEN State1;
 IF (Error) THEN State2; }
ELSE State3;

Comments

Comments are another way to make a source file easy to understand. Comments explain
what is not readily apparent from the source code itself, and do not affect the code.
Comments cannot be imbedded within keywords.

Ø You can enter comments two ways:

• Begin with a double quotation mark (") and end with either another double
quotation mark or the end of line.

• Begin with a double forward slash (//) and end with the end of the line. This is
useful for commenting out lines of ABEL source that contain quote-delineated
comments.

Examples of Comments
Examples of comments are shown in boldface below:

MODULE Basic_Logic; "gives the module a name
TITLE 'ABEL-HDL design example: simple gates'; "title
"declaration section"
IC4 device 'P10L8'; "declare IC4 to be a P10L8
IC5 "decoder PAL" device 'P10H8';
//IC5 "decoder PAL" device 'p10h8';

The information inside single quotation marks (apostrophes) is required and is part of
the statement; it is not comments.

Numbers

All numeric operations in ABEL-HDL are performed to 128-bit accuracy, which means
the supported numeric values are in the range 0 to 2128 minus 1. Numbers are
represented in any of five forms. The four most common forms represent numbers in
different bases. The fifth form uses alphabetic characters to represent a numeric value.

When one of the four bases other than the default base is chosen to represent a number,
the base used is indicated by a symbol preceding the number. Table 2 lists the four bases
supported by ABEL-HDL and their accompanying symbols. The base symbols can be
upper- or lowercase

Vantis DesignDirect-CPLD User Guide

4-10 December 1998

 Table 2: Number representation in different bases

Base Name Base Symbol
Binary 2 ^b
Octal 8 ^o
Decimal 10 ^d (default)
Hexadecimal 16 ^h

When a number is specified and is not proceeded by a base symbol, it is assumed to be in
the default base numbering system. The normal default base is base 10. Therefore,
numbers are represented in decimal form unless they are preceded by a symbol
indicating that another base is to be used.

You can change the default number base. Examples of supported number specifications
are shown below in Table 3.

 Table 3: Supported base numbers

Specification Decimal Value
T4 = 75 75
^h75 117
^b101 5
^o17 15
^h0F 15

Note: The carat (^) is a keyboard character. It is not part of a control-key sequence.

You can also specify numbers by strings of one or more alphabetic characters, using the
numeric ASCII code of the letter as the value. For example, the character a is decimal
97 and hexadecimal 61 in ASCII coding. The decimal value 97 is used if a is specified
as a number.

Sequences of alphabetic characters are first converted to their binary ASCII values and
then concatenated to form numbers. Some examples are shown below in Table 4.

 Table 4: Different number formats

Specification Hex Value Decimal Value
a ^h61 97
b ^h62 98
abc ^h616263 6382203

Strings

Strings are series of ASCII characters, including spaces, enclosed by apostrophes.
Strings are used in the TITLE, MODULE, and OPTIONS statements, and in pin, node,
and attribute declarations, as shown below:

'Hello'
' Text with a space in front'

ABEL-HDL Design Vantis

December 1998 4-11

' '
'The preceding line is an empty string'
'Punctuation? is allowed !!'

You can include a single quote in a string by preceding the quote with a backslash, (\).

'It\'s easy to use ABEL and DesignDirect'

You can include backslashes in a string by using two of them in succession.

'He\\she can use backslashes in a string'

Note: The grave accent (`) is also accepted as a string delimiter and can be used
interchangeably with the apostrophe (').

Operators, Expressions, and Equations

Items such as constants and signal names can be brought together in expressions.
Expressions combine, compare, or perform operations on the items they include to
produce a single result. The operations to be performed (addition and logical AND are
two examples) are indicated by operators within the expression.

You can use the set operator (..) in expressions and equations.

ABEL-HDL operators are divided into four basic types: logical, arithmetic, relational,
and assignment. Each of these types are discussed separately below, followed by a
description of how they are combined into expressions. Following the descriptions is a
summary of all the operators and the rules governing them and an explanation of how
equations use expressions

Logical Operators
Logical operators are used in expressions. ABEL-HDL incorporates the standard logical
operators listed in Table 5 below. Logical operations are performed bit by bit.

 Table 5: Logical Operators

Operator Description
! NOT: ones complement
& AND
OR
$ XOR: exclusive OR
!$ XNOR: exclusive NOR

Arithmetic Operators
Arithmetic operators define arithmetic relationships between items in an expression.
The shift operators are included in this class because each left shift of one bit is
equivalent to multiplication by 2 and a right shift of one bit is the same as division by 2.
Table 6 lists the arithmetic operators.

Vantis DesignDirect-CPLD User Guide

4-12 December 1998

 Table 6: Arithmetic Operators

Operator Example Description
- -A twos complement (negation)
- A-B subtraction
+ A+B addition
Not Supported for Sets:
* A*B multiplication
/ A/B unsigned integer division
% A%B modulus: remainder from /
<< A<<B shift A left by B bits
>> A>>B shift A right by B bits

Note: A minus sign has a different significance, depending on its usage. When used with
one operand, it indicates that the twos complement of the operand is to be formed. When
the minus sign is found between two operands, the twos complements of the second
operand are added to the first.

Division is unsigned integer division: the result of division is a positive integer. Use the
modulus operator (%) to get the remainder of a division. The shift operators perform
logical unsigned shifts. Zeros are shifted in from the left during right shifts and in from
the right during left shifts.

Relational Operators
Relational operators compare two items in an expression. Expressions formed with
relational operators produce a Boolean true or false value.

 Table 7: Relational Operators

Operator Description
== equal
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

All relational operations are unsigned. For example, the expression !0 > 4 is true since
the complement of !0 is 1111 (assuming 4 bits of data), which is 15 in unsigned binary,
and 15 is greater than 4. In this example, a four-bit representation was assumed; in
actual use, !0, the complement of 0, is 128 bits all set to 1.

 Table 8: Some examples of relational operators in expressions

Expression Value
2 == 3 False
2 != 3 True
3 < 5 True

ABEL-HDL Design Vantis

December 1998 4-13

-1 > 2 True
False

The logical values true and false are represented by numbers. Logical true is -1 in twos
complement, so all 128 bits are set to 1. Logical false is 0 in twos complement, so all
128 bits are set to 0. This means that an expression producing a true or false value (a
relational expression) can be used anywhere a number or numeric expression could be
used and -1 or 0 will be substituted in the expression depending on the logical result.

For example,

A = D $ (B == C);

means that:

• A equals the complement of D if B equals C

• A equals D if B does not equal C.

When using relational operators, always use parentheses to ensure the expression is
evaluated in the order you expect. The logical operators & and # have a higher priority
than the relational operators (see the priority table later in this chapter).

The following equation:

Select = [A15..A0] == ^hD000 # [A15..A0] == ^h1000;

needs parentheses to obtain the desired result:

Select = ([A15..A0] == ^hD000) # ([A15..A0] == ^h1000);

Without the parentheses, the equation would have the default grouping

Select = [A15..A0] == (^hD000 # [A15..A0]) == ^h1000;

which is not the intended equation.

Assignment Operators
Assignment operators are used in equations rather than in expressions. Equations assign
the value of an expression to output signals.

There are four assignment operators (two combinational and two registered).
Combinational or immediate assignment occurs, without any delay, as soon as the
equation is evaluated. Registered assignment occurs at the next clock pulse from the
clock associated with the output.

 Table 9: Assignment Operators

Operator Set Description
= ON (1) Combinational or detailed assignment
:= ON (1) Implied registered assignment
?= DC (X) Combinational or detailed assignment
?:= DC (X) Implied registered assignment

Vantis DesignDirect-CPLD User Guide

4-14 December 1998

Caution: The := and ?:= assignment operators are used only when writing pin-to-pin
registered equations. Use the = and ?= assignment operators for registered equations
using detailed dot extensions.

These assignment operators allow you to fully specify outputs in equations. For example,
in the following truth table, the output F is fully specified:

TRUTH_TABLE ([A,B]->[F]);
 [1,1]-> 0 ; "off-set
 [1,0]-> 1 ; "on-set
 [0,1]-> 1 ; "on-set

The equivalent functionality can be expressed in equations:

@DCSET
F = A & !B # !A & B; "on-set
F ?= !A & !B; "dc-set

Note: Specifying both the on-set and the don't-care set conditions enhances optimization.

Caution: With equations, @DCSET or ISTYPE 'dc' must be specified or the ?= equations
are ignored.

Expressions
Expressions are combinations of identifiers and operators that produce one result when
evaluated. Any logical, arithmetic, or relational operators may be used in expressions.

Expressions are evaluated according to the particular operators involved. Some
operators take precedence over others, and their operation is performed first. Each
operator has been assigned a priority that determines the order of evaluation. Priority 1
is the highest priority, and priority 4 is the lowest. Table 10 summarizes the logical,
arithmetic, and relational operators, presented in groups according to their priority.

 Table 10: Operator Priority

Priority Operator Description
1 - negate
1 ! NOT
2 & AND
2 << shift left
2 >> shift right
2 * multiply
2 / unsigned division
2 % modulus
3 ++ add
3 - subtract
3 # OR
3 $ XOR: exclusive OR
3 !$ XNOR: exclusive NOR
4 == equal

ABEL-HDL Design Vantis

December 1998 4-15

4 != not equal
4 < less than
4 < = less than or equal
4 > greater than
4 > = greater than or equal

Operations of the same priority are performed from left to right. Use parentheses to
change the order in which operations are performed. The operation in the innermost set
of parentheses is performed first. The following examples of supported expressions in
Table 11 show how the order of operations and the use of parentheses affect the
evaluated result.

 Table 11: How parentheses affect evaluated work

Expression Result Comments
2 * 3/2 3 operators with same priority
2 * 3 / 2 3 spaces are OK
2 * (3/2) 2 fraction is truncated
2 + 3 * 4 14 multiply first
(2 + 3) * 4 20 add first
2#4$2 4 OR first
2#(4$2) 6 XOR first
2 == ^hA 0
14 == ^hE -1

Equations
Equations assign the value of an expression to a signal or set of signals in a logic
description. The identifier and expression must follow the rules for those elements.

Equations use the assignment operators =, ?= (combinational) and := ?:=, (registered)
described above.

You can use the complement operator (!) to express negative logic. The complement
operator precedes the signal name and implies that the expression on the right of the
equation is to be complemented before it is assigned to the signal. Use of the
complement operator on the left side of equations is provided as an option; equations for
negative logic parts can just as easily be expressed by complementing the expression on
the right side of the equation.

Equation Blocks
Equation blocks let you specify more complex functions and improve the readability of
your equations. An equation block is enclosed in braces { }, and is supported wherever a
single equation is supported. When used within a conditional expression, such as If-
Then, Case, or When-Then, the logic functions are logically ANDed with the
conditional expression that is in effect.

Vantis DesignDirect-CPLD User Guide

4-16 December 1998

Multiple Assignments to the Same Identifier
When an identifier appears on the left side of more than one equation, the expressions
assigned to the identifier are first ORed together, and then the assignment is made. If
the identifier on the left side of the equation is complemented, the complement is
performed after all the expressions have been ORed.

 Table 12:

Equations Found Equivalent Equation
A = B;
A = C; A = B # C;
A = B;
A = C & D; A = B # (C & D);
A = !B;
A = !C; A = !B # !C;
!A = B;
!A = C; A = !(B # C);
!A = B;
A = !C; A = !C #!B;
!A = B;
!A = C;
A = !D;
A = !E; A = !D # !E # !(B # C);

Note: When the complement operator appears on the left side of multiple assignment
equations, the right sides are ORed first, and then the complement is applied.

Sets

A set is a collection of signals and constants. Any operation applied to a set is applied to
each element in the set. Sets simplify ABEL-HDL logic descriptions and test vectors by
allowing groups of signals to be referenced with one name.

For example, you could collect the outputs (B0-B7) of an eight-bit multiplexer into a set
named MULTOUT, and the three selection lines into a set named SELECT. You could
then define the multiplexer in terms of MULTOUT and SELECT rather than individual
input and output bits.

A set is represented by a list of constants and signals separated by commas or the range
operator (..) and surrounded by brackets. The sets MULTOUT and SELECT would be
defined as follows

MULTOUT = [B0,B1,B2,B3,B4,B5,B6,B7]
SELECT = [S2,S1,S0]

The above sets could also be expressed by using the range operator; for example:

MULTOUT = [B0..B7]
SELECT = [S2..S0]

Identifiers used to delimit a range must have compatible names: they must begin with
the same alphabetical prefix and have a numerical suffix. Range identifiers can also
delimit a decrementing range or a range which appears as one element of a larger set as
shown below:

ABEL-HDL Design Vantis

December 1998 4-17

[A7..A0] "decrementing range
[Q1,Q2,.X.,A10..A7] "range within a larger set

The brackets are required to delimit the set. ABEL-HDL source file sets are not
mathematical sets.

Set Indexing
Set indexing allows you to access elements within a set. The following example uses set
indexing to assign four elements of a 16-bit set to a smaller set.

declarations
 Set1 = [f15..f0];
 Set2 = [q3..q0];
equations
 Set2 := Set1[7..4];

The numeric values used for defining a set index refer to the bit positions of the set, with
0 being the least significant (left-most) element in the set. So Set1[7..4] is Set1, values
f8 to f11.

If you are indexing into a set to access a single element, then you can use the following
syntax:

declarations
 out1 pin istype 'com';
 Set1 = [f15..f0];
equations
 out1 = Set1[4] == 1;

In this example, a comparator operator (==) was used to convert the single-element set
(Set1[4]) into a bit value (equivalent to f4).

Set Operations
Most operators can be applied to sets, with the operation performed on each element of
the set, sometimes individually and sometimes according to the rules of Boolean algebra.

Two-set Operations
For operations involving two or more sets, the sets must have the same number of
elements. The expression “[a,b]+[c,d,e]” is not supported because the sets have different
numbers of elements.

For example, the Boolean equation:

Chip_Sel = A15 & !A14 & A13;

represents an address decoder where A15, A14 and A13 are the three high-order bits of
a 16-bit address. The decoder can easily be implemented with set operations. First, a
constant set that holds the address lines is defined so the set can be referenced by name.
This definition is done in the constant declaration section of a module.

The declaration is:

Addr = [A15,A14,A13];

which declares the constant set Addr. The equation

Chip_Sel = Addr == [1,0,1];

Vantis DesignDirect-CPLD User Guide

4-18 December 1998

is functionally equivalent to

Chip_Sel = A15 & !A14 & A13;

If Addr is equal to [1,0,1], meaning that A15 = 1, A14 = 0 and A13 = 1, then Chip_Sel
is set to true. The set equation could also have been written as

Chip_Sel = Addr == 5;

because 101 binary equals 5 decimal.

In the example above, a special set with the high-order bits of the 16-bit address was
declared and used in the set operation. The full address could be used and the same
function arrived at in other ways, as shown below:

 Example 7:

" declare some constants in declaration section
Addr = [a15..a0];
X = .X.; "simplify notation for don't care constant
Chip_Sel = Addr == [1,0,1,X,X,X,X,X,X,X,X,X,X,X,X];

 Example 8:

" declare some constants in declaration section
Addr = [a15..a0];
X =.X.;
Chip_Sel = (Addr >= ^HA000) & (Addr <= ^HBFFF);

Both solutions presented in these two examples are functionally equivalent to the
original Boolean equation and to the first solution in which only the high order bits are
specified as elements of the set:

(Addr = [a15, a14, a13])

Set Assignment and Comparison
Values and sets of values can be assigned and compared to a set. For example,

sigset = [1,1,0] & [0,1,1];

results in sigset being assigned the value, [0,1,0]. The set assignment

[a,b] = c & d;

is the same as the two assignments

a = c & d;
b = c & d;

Numbers in any representation can be assigned or compared to a set. The preceding set
equation could have been written as

sigset = 6 & 3;

When numbers are used for set assignment or comparison, the number is converted to its
binary representation and the following rules apply:

ABEL-HDL Design Vantis

December 1998 4-19

• If the number of significant bits in the binary representation of a number is greater
than the number of elements in a set, the bits are truncated on the left.

• If the number of significant bits in the binary representation of a number is less than
the number of elements in a set, the number is padded on the left with leading
zeroes.

Thus, the following two assignments are equivalent:

[a,b] = ^B101011; "bits truncated to the left
[a,b] = ^B11;

And so are these two:

[d,c] = ^B01;
[d,c] = ^B1; "compiler will add leading zero

 Table 13: Supported Set Operations

Operator Example Description
= A = 5 combinational assignment
:= A := [1,0,1] registered assignment
! !A NOT: ones complement
& A & B AND
A # B OR
$ A $ B XOR: exclusive OR
!$ A!$ B XNOR: exclusive NOR
- -A negate
- A - B subtraction
++ A + B addition
== A == B equal
!= A != B not equal
< A < B less than
<= A <= B less than or equal
> A > B greater than
>= A >= B greater than or equal

Set Evaluation
How an operator is performed with a set may depend on the types of arguments the
operator uses.When a set is written [a , b , c , d], a is the MOST significant bit
and d is the LEAST significant bit.

The result, when most operators are applied to a set, is another set. The result of the
relational operators (==, !=, >, >=, <, <=) is a value: TRUE (all ones) or FALSE (all
zeros), which is truncated or padded to as many bits as needed. The width of the result is
determined by the context of the relational operator, not by the width of the arguments.

The different contexts of the AND (&) operator and the semantics of each usage are
described below.

Vantis DesignDirect-CPLD User Guide

4-20 December 1998

 Table 14:

signal & signal
a & b

This is the most straightforward use. The expression is TRUE if
both signals are TRUE.

signal & number
a & 4

The number is converted to binary and the least significant bit is
used. The expression becomes a & 0, then is reduced to 0
(FALSE).

signal & set
a & [x, y, z]

The signal is distributed over the elements of the set to become
[a & x, a & y, a & z]

set & set
[a, b] & [x, y]

The sets are ANDed bit-wise resulting in: [a & x, b & y]. An
error is displayed if the set widths do not match.

set & number
[a, b, c] & 5

The number is converted to binary and truncated or padded with
zeros to match the width of the set. The sequence of
transformations is
[a, b, c] & [1, 0, 1]
[a & 1, b & 0, c & 1]
[a, 0, c]

number & number
9 & 5

The numbers are converted to binary, ANDed together, then
truncated or padded.

Example Equations
select = [a15..a0] == ^H80FF

select (signal) is TRUE when the 16-bit address bus has the hex value 80FF. Relational
operators always result in a single bit.

[sel1, sel0] = [a3..a0] > 2

The width of sel and a are different, so the 2 is expanded to four bits (of binary) to
match the size of the a set. Both sel1 and sel2 are true when the value of the four a lines
(taken as a binary number) is greater than 2.

The result of the comparison is a single-bit result which is distributed to both members
of the set on the output side of the equation.

[out3..out0] = [in3..in0] & enab

If enab is TRUE, then the values on in0 through in3 are seen on the out0 through out3
outputs. If enab is FALSE, then the outputs are all FALSE.

Set Operation Rules

Set operations are applied according to Boolean algebra rules. Uppercase letters are set
names, and lowercase letters are elements of a set. The letters k and n are subscripts to
the elements and to the sets. A subscript following a set name (uppercase letter)
indicates how many elements the set contains. So Ak indicates that set A contains k
elements. ak-1 is the (k-1)th element of set A. a1 is the first element of set A.

 Table 15:

Expression Is Evaluated As...
!Ak [!ak, !ak-1, ..., !a1]
-Ak !Ak + 1

ABEL-HDL Design Vantis

December 1998 4-21

Ak.OE [ak.OE, ak-1.OE, ..., a1.OE]
Ak & Bk [ak & bk, ak-1 & bk-1, ..., a1 & b1]
Ak # Bk [ak # bk, ak-1 # bk-1, ..., a1 # b1]
Ak $ Bk [ak $ bk, ak-1 $ bk-1, ..., a1 $ b1]
Ak !$ Bk [ak !$ bk, ak-1 !$ bk-1, ..., a1 !$ b1]
Ak == Bk (ak == bk) & (ak-1 == bk-1) & ... & (a1 == b1)
Ak != Bk (ak != bk) # (ak-1 != bk-1) # ... # (a1 != b1)
Ak + Bk Dk

where:
dn is evaluated as an $ bn $ cn-1
cn is evaluated as (an $ bn) # (an & cn-1) # (bn & cn-1)
c0 is evaluated as 0

Ak - Bk Ak + (-Bk)
Ak < Bk ck

where:
cn is evaluated as (!an & (bn # cn-1) # an & bn & cn-1) != 0
c0 is evaluated as 0

Limitations/ Restrictions on Sets

If you have a set assigned to a single value, the value will be padded with 0s and then
applied to the set. For example,

[A1,A2,A3] = 1

is equivalent to

A1 = 0
A2 = 0
A3 = 1

which may not be the intended result. If you want 1 assigned to each member of the set,
you'd need binary 111 or decimal 7.

The results of using an operator depend on the sequence of evaluation. Without
parentheses, operations are performed from left to right. Consider the following two
equations. In the first, the constant 1 is converted to a set; in the second, the 1 is treated
as a single bit.

 Example 9: Constant 1 is converted to a set

The first operation is [a, b] & 1, so 1 is converted to a set [0, 1].

[x1, y1] = [a, b] & 1 & d
 = ([a, b] & 1) & d
 = ([a, b] & [0, 1]) & d
 = ([a & 0, b & 1]) & d
 = [0 , b] & d
 = [0 & d, b & d]
 = [0, b & d]
 x1 = 0
 y1 = b & d

Vantis DesignDirect-CPLD User Guide

4-22 December 1998

 Example 10: The 1 is treated as a single bit

The first operation is 1 & d, so 1 is treated as a single bit.

[x2,y2] = 1 & d & [a, b]
= (1 & d) & [a, b]
= d & [a, b]
= [d & a, d & b]
x2 = a & d
y2 = b & d

If you are unsure about the interpretation of an equation, try the following:

• Fully parenthesize your equation. Errors can occur if you are not familiar with the
precedence rules.

• Write out numbers as sets of 1s and 0s instead of as decimal numbers. If the width
is not what you expected, you will get an error message.

Arguments and Argument Substitution

Variable values can be used in macros, modules, and directives. These values are called
the arguments of the construct that uses them. In ABEL-HDL, a distinction must be
made between two types of arguments: actual and dummy. Their definitions are given
here.

Dummy argument: An identifier used to indicate where an actual argument is to be
substituted in the macro, module, or directive.

Actual argument: The argument (value) used in the macro, directive, or module. The
actual argument is substituted for the dummy argument. An actual argument can be any
text, including identifiers, numbers, strings, operators, sets, or any other element of
ABEL-HDL.

Dummy arguments are specified in macro declarations and in the bodies of macros,
modules, and directives. The dummy argument is preceded by a question mark in the
places where an actual argument is to be substituted. The question mark distinguishes
the dummy arguments from other ABEL-HDL identifiers occurring in the source file.

Take for example, the following macro declaration arguments:

OR_EM MACRO (a,b,c) { ?a # ?b # ?c };

This defines a macro named OR_EM that is the logical OR of three arguments. These
arguments are represented in the definition of the macro by the dummy arguments, a, b,
and c. In the body of the macro, which is surrounded by braces, the dummy arguments
are preceded by question marks to indicate that an actual argument is substituted.

The equation

D = OR_EM (x,y,z&1);

invokes the OR_EM macro with the actual arguments, x, y, and z&1. This results in the
equation:

D = x # y # z&1;

ABEL-HDL Design Vantis

December 1998 4-23

Arguments are substituted into the source file before checking syntax and logic, so if an
actual argument contains unsupported syntax or logic, the compiler detects and reports
the error only after the substitution.

Spaces in Arguments
Actual arguments are substituted exactly as they appear, so any spaces (blanks) in actual
arguments are passed to the expression. In most cases, spaces do not affect the
interpretation of the macro. The exception is in functions that compare character strings,
such as @IFIDEN and IFNIDEN. For example, the macro

iden macro(a,b) {@ifiden(?a,?b)
{@message 'they are the same';};};

compares the actual arguments and prints the message if they are identical. If you enter
the macro with spaces in the actual arguments:

iden(Q1, Q1);

The value is false because the space is passed to the macro.

Argument Guidelines
• Dummy arguments are place-holders for actual arguments.

• A question mark preceding the dummy argument indicates that an actual argument
is to be substituted.

• Actual arguments replace dummy arguments before the source file is checked for
correctness.

• Spaces in actual arguments are retained.

ABEL-HDL Design Considerations
This section discusses issues you need to consider when you create a design with ABEL-
HDL.

Pin-to-pin Language Features

ABEL-HDL is a device-independent language. You do not have to declare a device or
assign pin numbers to your signals until you are ready to implement the design into a
device. However, when you do not specify a device or pin numbers, you need to specify
pin-to-pin attributes for declared signals.

Because the language is device-independent, the ABEL-HDL compiler does not have
predetermined device attributes to imply signal attributes. If you do not specify signal
attributes or other information (such as the dot extensions, which are described later),
your design might not operate consistently if you later transfer it to a different target
device.

Device-independence vs. Architecture-independence

The requirement for signal attributes does not mean that a complex design must always
be specified with a particular device in mind. You may still have to understand the
differences between, for example, a P22V10 PAL and a MACH211 device, but you do
not have to specify a particular device when describing your design.

Vantis DesignDirect-CPLD User Guide

4-24 December 1998

Attributes and dot extensions help you refine your design to work consistently when
moving from one class of device architecture to another; for example from devices
having inverted outputs to those with a particular kind of reset/preset circuitry. However,
the more you refine your design, using these language features, the more restrictive your
design becomes in terms of the number of device architectures for which it is
appropriate.

Signal Attributes

Signal attributes remove ambiguities that occur when no specific device architecture is
declared. If your design does not use device-related attributes (either implied by a
DEVICE statement or expressed in an ISTYPE statement), it may not operate the same
way when targeted to different device architectures.

Signal Dot Extensions

Signal dot extensions, like attributes, enable you to more precisely describe the behavior
of a circuit that may be targeted to different architectures. Dot extensions remove the
ambiguities in equations.

Pin-to-pin vs. Detailed Description Methods for Registered Designs

You can use ABEL-HDL assignment operators when you write high-level equations.
The = operator specifies a combinational assignment, where the design is written with
only the circuit's inputs and outputs in mind. The := assignment operator specifies a
registered assignment, where you must consider the internal circuit elements (such as
output inverters, presets and resets) related to the memory elements (typically flip-flops).
The semantics of these two assignment operators are discussed below.

Using := for Pin-to-pin Descriptions

The := implies that a memory element is associated with the output defined by the
equation. For example, the equation;

Q1 := !Q1 # Preset;

implies that Q1 will hold its current value until the memory element associated with
that signal is clocked (or unlatched, depending on the register type). This equation is a
pin-to-pin description of the output signal Q1. The equation describes the signal's
behavior in terms of desired output pin values for various input conditions. Pin-to-pin
descriptions are useful when describing a circuit that is completely architecture-
independent.

Language elements that are useful for pin-to-pin descriptions are the ":=" assignment
operator, and the .CLK, .OE, .FB, .CLR, .ACLR, .SET, .ASET and .COM dot
extensions. These dot extensions help resolve circuit ambiguities when describing
architecture-independent circuits.

ABEL-HDL Design Vantis

December 1998 4-25

Resolving Ambiguities
In the equation above (Q1 := !Q1 # Preset;), there is an ambiguous feedback condition.
The signal Q1 appears on the right side of the equation, but there is no indication of
whether that fed-back signal should originate at the register, come directly from the
combinational logic that forms the input to the register, or come from the I/O pin
associated with Q1. There is also no indication of what type of register should be used
(although register synthesis algorithms could, theoretically, map this equation into
virtually any register type). The equation could be more completely specified in the
following manner.

Q1.CLK = Clock; "Register clocked from input
Q1 := !Q1.FB # Preset; "Reg. feedback normalized to pin value

This set of equations describes the circuit completely and specifies enough information
that the circuit will operate identically in virtually any device in which you can fit it.
The feedback path is specified to be from the register itself, and the .CLK equation
specifies that the memory element is clocked, rather than latched.

Detailed Circuit Descriptions

In contrast to a pin-to-pin description, the same circuit can be specified in a detailed
form of design description in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1.D = !Q1.Q # Preset; "D-type f/f used for register

In this form of the design, specifying the D input to a D-type flip-flop and specifying
feedback directly from the register restricts the device architectures in which the design
can be implemented. Furthermore, the equations describe only the inputs to, and
feedback from, the flip-flop and do not provide any information regarding the
configuration of the actual output pin. This means the design will operate quite
differently when implemented in a device with inverted outputs (a simple P16R4 PAL
device, for example), versus a device with non-inverting outputs (such as an M4-32).

To maintain the correct pin behavior, using detailed equations, one additional language
element is required: a 'buffer' attribute (or its complement, an 'invert' attribute). The
'buffer' attribute ensures that the final implementation in a device has no inversion
between the specified D-type flip-flop and the output pin associated with Q1. For
example, add the following to the Declarations section:

Q1 pin istype 'buffer';

Detailed Descriptions: Designing for Macrocells
One way to understand the difference between pin-to-pin and detailed description
methods is to think of detailed descriptions as macrocell specifications. A macrocell is a
block of circuitry normally (but not always) associated with a device's I/O pin. The
following figure illustrates a typical macrocell associated with signal Q1.

Vantis DesignDirect-CPLD User Guide

4-26 December 1998

 Figure 2: Detailed Macrocell

Q1.ap

Q1.ar

Q1.clk

Q1.d

Q1.q

AP

D

Clk

Q1.oe

Q1O
Fuse
Mux

1

Q

AR

Q1.pin
!Q1.pin 0665-3

Detailed descriptions are written for the various input ports of the macrocell (shown in
the figure above with dot extension labels). Note that the macrocell features a
configurable inversion between the Q output of the flip-flop and the output pin labeled
Q1. If you use this inverter (or select a device that features a fixed inversion), the
behavior you observe on the Q1 output pin will be inverted from the logic applied to (or
observed on) the various macrocell ports, including the feedback port Q1.q.

Pin-to-pin descriptions, on the other hand, allow you to describe your circuit in terms of
the expected behavior on an actual output pin, regardless of the architecture of the
underlying macrocell. The following figure illustrates the pin-to-pin concept.

 Figure 3: Pin-to-pin Macrocell

OR

a

b

a

b

Q1

Q1

1748-1

When pin-to-pin descriptions are written in ABEL-HDL, the generic macrocell \t
"ABEL 26" shown above is synthesized from whatever type of macrocell actually exists
in the target device.

Examples of Pin-to-Pin and Detailed Descriptions

Two equivalent module descriptions, one pin-to-pin and one detailed, are shown below
for comparison:

Pin-to-Pin Module Description
module Q1_1
 Q1 pin istype 'reg';
 Clock,Preset pin;

ABEL-HDL Design Vantis

December 1998 4-27

equations
 Q1.clk = Clock;
 Q1 := !Q1.fb # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

Detailed Module Description
module Q1_2
 Q1 pin istype 'reg_D,buffer';
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.D = !Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

The first description can be targeted into virtually any device (if register synthesis and
device fitting features are available), while the second description can be targeted only to
devices featuring D-type flip-flops and non-inverting outputs.

To implement the second (detailed) module in a device with inverting outputs, the
source file would need to be modified as shown in the following section.

Detailed Module with Inverted Outputs

module Q1_3
 Q1 pin istype 'reg_D,invert';
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 !Q1.D = Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;

Vantis DesignDirect-CPLD User Guide

4-28 December 1998

 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

In this version of the module, the existence of an inverter between the output of the D-
type flip-flop and the output pin (specified with the 'invert' attribute) has necessitated a
change in the equation for Q1.D.

As this example shows, device-independence and pin-to-pin description methods are
preferable, since you can describe a circuit completely for any implementation. Using
pin-to-pin descriptions and generalized dot extensions (such as .FB, .CLK and .OE) as
much as possible allows you to implement your ABEL-HDL module into any one of a
particular class of devices. (For example, any device that features enough flip-flops and
appropriately configured I/O resources.) However, the need for particular types of device
features (such as register preset or reset) might limit your ability to describe your design
in a completely architecture-independent way.

If, for example, a built-in register preset feature is used in a simple design, the target
architectures are limited. Consider this version of the design.

module Q1_5l
 Q1 pin istype 'reg,buffer';
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.AP = Preset;
 Q1 := !Q1.fb ;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

The equation for Q1 still uses the := assignment operator and .FB for a pin-to-pin
description of Q1's behavior, but the use of .AP to describe the reset function requires
consideration of different device architectures. The .AP extension, like the .D and .Q
extensions, is associated with a flip-flop input, not with a device output pin. If the target
device has inverted outputs, the design will not reset properly, so this ambiguous reset
behavior is removed by using the 'buffer' attribute, which reduces the range of target
devices to those with non-inverted outputs.

Using .ASET instead of .AP can solve this problem if the fitter being used supports the
.ASET dot extension.

Versions 5 and 7 of the design above and below are unambiguous, but each is restricted
to certain device classes.

module Q1_7l
 Q1 pin istype 'reg,invert';
 Clock,Preset pin;

ABEL-HDL Design Vantis

December 1998 4-29

equations
 Q1.CLK = Clock;
 Q1.AR = Preset;
 Q1 := !Q1.fb ;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

When to Use Detailed Descriptions

Although the pin-to-pin description is preferable, there will frequently be situations
when you must use a more detailed description. If you are unsure about which method to
use for various parts of your design, examine the design's requirements. If your design
requires specific features of a device (such as register preset or unusual flip-flop
configurations), detailed descriptions are probably necessary. If your design is a simple
combinational function, or if it matches the generic macrocell in its requirements, you
can probably use simple pin-to-pin descriptions.

Using := for Alternative Flip-flop Types

In ABEL-HDL you can specify a variety of flip-flop types using attributes such as istype
'reg_D' and 'reg_JK'. However, these attributes do not enforce the use of a specific type
of flip-flop when a device is selected, and they do not affect the meaning of the :=
assignment operator.

You can think of the := assignment operator as a memory operator. The type of register
that most closely matches the := assignment operator's behavior is the D-type flip-flop.

The primary use for attributes such as istype 'reg_D', 'reg_JK' and 'reg_SR' is to control
the generation of logic. Specifying one of the 'reg_' attributes (for example, istype
'reg_D') instructs the AHDL compiler to generate equations using The .D extension
regardless of whether the design was written using .D, := or some other method (for
example, state diagrams).

Note: You also need to specify istype 'invert' or 'buffer' when you use detailed syntax.

Using := for flip-flop types other than D-type is only possible if register synthesis
features are available to convert the generated equations into equations appropriate for
the alternative flip-flop type specified. Since the use of register synthesis to convert D-
type flip-flop stimulus into JK or SR-type stimulus usually results in inefficient circuitry,
the use of := for these flip-flop types is discouraged. Instead, you should use the .J and
.K extensions (for JK-type flip-flops) or the .S and .R extensions (for SR-type flip-flops)
and use a detailed description method (including 'invert' or 'buffer' attributes) to describe
designs for these register types.

Vantis DesignDirect-CPLD User Guide

4-30 December 1998

There is no provision in the language for directly writing pin-to-pin equations for
registers other than D-type. State diagrams, however, may be used to describe pin-to-pin
behavior for any register type.

Using Active-low Declarations
In ABEL-HDL you can write pin-to-pin design descriptions using implied active-low
signals. Active-low signals are declared with a '!' operator, as shown below.

!Q1 pin istype 'reg';

If a signal is declared active-low, it is automatically complemented when you use it in
the subsequent design description. This complementing is performed for any use of the
signal itself, including as an input, as an output, and in test vectors. Complementing is
also performed if you use the .fb dot extension on an active-low signal.

The following three designs, for example, operate identically.

 Example 11: Design 1 — Implied Pin-to-Pin Active-low

module act_low2
 !q0,!q1 pin istype 'reg';
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 [q1,q0] := ([q1,q0].FB + 1) & !reset;

test_vectors ([clock,reset] -> [q1, q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

 Example 12: Design 2 — Explicit Pin-to-Pin Active-low

module act_low1
 q0,q1 pin istype 'reg';
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 ![q1,q0] := (![q1,q0].FB + 1) & !reset;

test_vectors ([clock,reset] -> [!q1,!q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];

ABEL-HDL Design Vantis

December 1998 4-31

 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

 Example 13: Design 3 — Explicit Detailed Active-low

module act_low3
 q0,q1 pin istype 'reg_d,buffer';
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 ![q1,q0].D := (![q1,q0].Q + 1) & !reset;

test_vectors ([clock,reset] -> [!q1,!q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

Both of these designs describe an up counter with active-low outputs. The first example
inverts the signals explicitly (in the equations and in the test vector header), while the
second example uses an active-low declaration to accomplish the same thing.

Polarity Control
Automatic polarity control is a powerful feature in ABEL-HDL where a logic function is
converted for both non-inverting and inverting devices.

A single logic function may be expressed with many different equations. For example,
all three equations below for F1 are equivalent.

(1) F1 = (A & B);
(2) !F1 = !(A & B);
!F1 = !A # !B;

In the example above, equation (3) uses two product terms, while equation (1) requires
only one. This logic function will use fewer product terms in a non-inverting device
such as the P10H8 than in an inverting device such as the P10L8. The logic function
performed from input pins to output pins will be the same for both polarities.

Not all logic functions are best optimized to positive polarity. For example, the inverted
form of F2, equation (3), uses fewer product terms than equation (2).

(1) F2 = (A # B) & (C # D);
(2) F2 = (A & C) # (A & D) # (B & C) # (B & D);

Vantis DesignDirect-CPLD User Guide

4-32 December 1998

!F2 = (!A & !B) # (!C & !D);

Programmable polarity devices are popular because they can provide a mix of non-
inverting and inverting outputs to achieve the best fit.

Polarity Control with Istype

In ABEL-HDL, you control the polarity of the design equations and target device (in the
case of programmable polarity devices) in two ways:

• Using Istype neg, pos, and dc

• Using Istype invert and buffer

Using Istype neg, pos, and dc to Control Equation and Device Polarity

The 'neg', 'pos', and 'dc' attributes specify types of optimization for the polarity as
follows:

neg Istype neg optimizes the circuit for negative
polarity. Unspecified logic in truth tables and state
diagrams becomes a 0.

pos Istype pos optimizes the circuit for positive polarity.
Unspecified logic in truth tables and state diagrams
becomes a 1.

dc Istype dc uses polarity for best optimization.
Unspecified logic in truth tables and state diagrams
becomes don't care (X).

Using invert and buffer to Control Programmable Inversion

An optional method for specifying the desired state of a programmable polarity output is
to use the 'invert' or 'buffer' attributes. These attributes ensure that an inverter gate either
does or does not exist between the output of a flip-flop and its corresponding output pin.
When you use the 'invert' and 'buffer' attributes, you can still use automatic polarity
selection if the target architecture features programmable inverters located before the
associated flip-flop.

These attributes are particularly useful for devices such as the P22V10, where the reset
and preset behavior is affected by the programmable inverter.

Note: The 'invert' and 'buffer' attributes do not actually control device or equation polarity
— they only enforce the existence or nonexistence of an inverter between a flip-flop and
its output pin.

The polarity of devices that feature a fixed inverter in this location, and a programmable
inverter before the register, cannot be specified using 'invert' and 'buffer'.

ABEL-HDL Design Vantis

December 1998 4-33

Flip-flop Equations

Pin-to-pin equations (using the := assignment operator) are only supported for D flip-
flops. ABEL-HDL does not support the := assignment operator for T, SR or JK flip-flops
and has no provision for specifying a particular output pin value for these types.

If you write an equation of the form:

Q1 := 1;

and the output, Q1, has been declared as a T-type flip-flop, the ABEL-HDL compiler
will give a warning and convert the equation to

Q1.T = 1;

Because the T input to a T-type flip-flop does not directly correspond to the value you
observed on the associated output pin, this equation will not result in the pin-to-pin
behavior you want.

To produce specific pin-to-pin behavior for alternate flip-flop types, you must consider
the behavior of the flip-flop you used and write detailed equations that stimulate the
inputs of that flip-flop. A detailed equation to set and hold a T-type flip-flop is shown
below.

Q1.T = !Q1.Q;

Feedback Considerations — Dot Extensions
The source of feedback is normally set by the architecture of the target device. If you
don't specify a particular feedback path, the design may operate differently in different
device types. Specifying feedback paths (with the .FB, .Q or .PIN dot extensions)
eliminates architectural ambiguities. Specifying feedback paths also allows you to use
architecture-independent simulation.

The following rules should be kept in mind when you are using feedback:

• No Dot Extension — A feedback signal with no dot extension (for example, count
:= count+1;) results in pin feedback if it exists in the target device. If there is no pin
feedback, register feedback is used, with the value of the register contents
complemented (normalized) if needed to match the value observed on the pin.

• .FB Extension — A signal specified with the .FB extension (for example, count :=
count.fb+1;) results in register feedback normalized to the pin value if a register
feedback path exists. If no register feedback is available, pin feedback is used, and
the fuse mapper checks that the output enable does not conflict with the pin
feedback path. If there is a conflict, an error is generated if the output enable is not
constantly enabled.

• .COM Extension — A signal specified with the .COM extension (for example,
count := count.com+1;) results in OR-array (pre-register) feedback, normalized to
the pin value if an OR-array feedback path exists. If no OR-array feedback is
available, pin feedback is used and the fuse mapper checks that the output enable
does not conflict with the pin feedback path. If there is a conflict, an error is
generated if the output enable is not constantly enabled.

Vantis DesignDirect-CPLD User Guide

4-34 December 1998

• .PIN Extension — If a signal is specified with the .PIN extension (for example,
count := count.pin+1;), the pin feedback path will be used. If the specified device
does not feature pin feedback, an error will be generated. Output enables frequently
affect the operation of fed-back signals that originate at a pin.

• .Q Extension — Signals specified with the .Q extension (for example, count.d =
count.q + 1;) will originate at the Q output of the associated flip-flop. The fed-back
value may or may not correspond to the value you observe on the associated output
pin. If an inverter is located between the Q output of the flip-flop and the output pin
(as is the case in most registered PAL-type devices), the value of the fed-back signal
will be the complement of the value you observe on the pin.

• .D Extension — Some devices, such as the MACH210, allow feedback of the input
to the register. To select this feedback, use the .D extension. Some device kits also
support .COM for this feedback; refer to your device kit manual for detailed
information.

Dot Extensions and Architecture-Independence

To be architecture-independent, you must write your design in terms of its pin-to-pin
behavior rather than in terms of specific device features (such as flip-flop configurations
or output inversions).

For example, consider the simple circuit shown in the following figure. This circuit
toggles high when the Toggle input is forced high, and low when the Toggle is low. The
circuit also contains a three-state output enable that is controlled by the active-low
Enable input.

 Figure 4: Dot Extensions and Architecture-independence: Circuit 1

Ena

Clk

Toggle QoutD Q

0770-1

The following simple ABEL-HDL design describes this simple one-bit synchronous
circuit. The design description uses architecture-independent dot extensions to describe
the circuit in terms of its behavior, as observed on the output pin of the target device.
Since this design is architecture-independent, it will operate the same (disregarding
initial power-up state), irrespective of the device type.

 Example 14: Pin-to-pin One-bit Synchronous Circuit module pin2pin.

 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype 'reg';

equations
 Qout := !Qout.FB & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

ABEL-HDL Design Vantis

December 1998 4-35

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end

If you implement this circuit in a simple device (either by adding a device declaration
statement or by specifying the P16R8 in the Fuseasm process), the result will be a circuit
like the one illustrated in the following figure. Since the P16R8 features inverted
outputs, the design equation is automatically modified to take the feedback from Q-bar
instead of Q.

 Figure 5: Dot Extensions and Architecture-independence, Circuit 2

D Q

Q

1

2

11

19

0768-1

If you implement this design in a device with a different architecture, the resulting
circuit could be quite different. But, because this is a pin-to-pin design description, the
circuit behavior is the same. The following figure illustrates the circuit that results when
you specify a different architecture.

 Figure 6: Dot Extensions and Architecture-independence, Circuit 3

Vantis DesignDirect-CPLD User Guide

4-36 December 1998

Dot Extensions and Detail Design Descriptions

You may need to be more specific about how you implement a circuit in a target device.
More complex device architectures have many configurable features, and you may want
to use these features in a particular way. You may want a precise power-up and preset
operation or, in some cases, you may need to control internal elements.

The circuit previously described (using architecture-independent dot extensions) could
be described, for example, using detailed dot extensions in the following ABEL-HDL
source file.

 Example 15: Detailed One-bit Synchronous Circuit with Inverted Qout

module detail1
 d1 device 'P16R8';
 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype 'reg_D';

equations
 !Qout.D = Qout.Q & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end

This version of the design will result in exactly the same fuse pattern as indicated in the
preceding figure for Circuit 2. As written, this design assumes the existence of an
inverted output for the signal Qout. This is why the Qout.D and Qout.Q signals are
reversed from the architecture-independent version of the design presented earlier.

Note: The inversion operator applied to Qout.D does not correspond directly to the
inversion found on each output of a P16R8. The equation for Qout.D actually refers to
the D input of one of the P16R8's flip-flops; the output inversion found in a P16R8 is
located after the register and is assumed rather than specified.

Using Don't Care Optimization
Use Don't Care optimization to reduce the amount of logic required for an incompletely
specified function. The @DCSET directive (used for logic description sections) and
ISTYPE attribute 'dc' (used for signals) specify don't care values for unspecified logic.

ABEL-HDL Design Vantis

December 1998 4-37

Consider the following ABEL-HDL truth table:

truth_table ([i3,i2,i1,i0]->[f3,f2,f1,f0])
 [0, 0, 0, 0]->[0, 0, 0, 1];
 [0, 0, 0, 1]->[0, 0, 1, 1];
 [0, 0, 1, 1]->[0, 1, 1, 1];
 [0, 1, 1, 1]->[1, 1, 1, 1];
 [1, 1, 1, 1]->[1, 1, 1, 0];
 [1, 1, 1, 0]->[1, 1, 0, 0];
 [1, 1, 0, 0]->[1, 0, 0, 0];
 [1, 0, 0, 0]->[0, 0, 0, 0];

This truth table has four inputs, and therefore sixteen (24) possible input combinations.
The function specified, however, only indicates eight significant input combinations. For
each of the design outputs (f3 through f0) the truth table specifies whether the resulting
value should be 1 or 0. For each output, then, each of the eight individual truth table
entries can be either a member of a set of true functions called the on-set, or a set of
false functions called the off-set.

Using output f3, for example, the eight input conditions can be listed as on-sets and off-
sets as follows (maintaining the ordering of inputs as specified in the truth table above.

 on-set of f3 off-set of f3
 0 1 1 1 0 0 0 0
 1 1 1 1 0 0 0 1
 1 1 1 0 0 0 1 1
 1 1 0 0 1 0 0 0

The remaining eight input conditions that do not appear in either the on-set or off-set
are said to be members of the dc-set, as follows for f3.

 dc-set of f3
 0 0 1 0
 0 1 0 0
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 0 1 1
 1 1 0 1

Expressed as a Karnaugh map, the on-set, off-set and dc-set would appear as follows
(with ones indicating the on-set, zeroes indicating the off-set, and dashes indicating the
dc-set).

Vantis DesignDirect-CPLD User Guide

4-38 December 1998

 Figure 7: Truth table expressed as a Karnaugh map

0

-

1

0

0

-

-

-

0

1

1

-

-

-

1

-
1746-1

00 01 11 10

00

01

11

10

i1 i0
i3 i2

If the don't-care entries in the Karnaugh map are used for optimization, the function for
f3 can be reduced to a single product term (f3 = i2) instead of the two (f3 = i3 & i2 & !i0
i2 & i1 & i0) otherwise required.

The ABEL-HDL compiler uses this level of optimization if the @DCSET directive or
ISTYPE 'dc' is included in the ABEL-HDL source file, as shown below.

 Example 16: Source File Showing Don't Care Optimization

module dc.
 i3,i2,i1,i0 pin;
 f3,f2,f1,f0 pin istype 'dc,com';

truth_table ([i3,i2,i1,i0]->[f3,f2,f1,f0])
 [0, 0, 0, 0]->[0, 0, 0, 1];
 [0, 0, 0, 1]->[0, 0, 1, 1];
 [0, 0, 1, 1]->[0, 1, 1, 1];
 [0, 1, 1, 1]->[1, 1, 1, 1];
 [1, 1, 1, 1]->[1, 1, 1, 0];
 [1, 1, 1, 0]->[1, 1, 0, 0];
 [1, 1, 0, 0]->[1, 0, 0, 0];
 [1, 0, 0, 0]->[0, 0, 0, 0];
end

This example results in a total of four single-literal product terms, one for each output.
The same example (with no istype 'dc') results in a total of twelve product terms.

For truth tables, Don't Care optimization is almost always the best method. For state
machines, however, you may not want undefined transition conditions to result in
unknown states, or you may want to use a default state (determined by the type of flip-
flops used for the state register) for state diagram simplification.

When using don't care optimization, be careful not to specify overlapping conditions
(specifying both the on-set and dc-set for the same conditions) in your truth tables and
state diagrams. Overlapping conditions result in an error message.

For state diagrams, you can perform additional optimization for design outputs if you
specify the @dcstate attribute. If you enter @dcstate in the source file, all state diagram
transition conditions are collected during state diagram processing. These transitions are
then complemented and applied to the design outputs as don't-cares. You must use
@dcstate in combination with @dcset or the 'dc' attribute.

ABEL-HDL Design Vantis

December 1998 4-39

Exclusive OR Equations
Designs written for exclusive-OR (XOR) devices should contain the 'xor' attribute for
architecture-independence.

Optimizing XOR Devices

You can use XOR gates directly by writing equations that include XOR operators, or you
can use implied XOR gates. XOR gates can minimize the total number of product terms
required for an output or they can emulate alternate flip-flop types.

Using XOR Operators in Equations

If you want to write design equations that include XOR operators, you must either
specify a device that features XOR gates in your ABEL-HDL source file, or specify the
'xor' attribute for all output signals that will be implemented with XOR gates. This
preserves one top-level XOR operator for each design output. For example

module X1
 Q1 pin istype 'com,xor';
 a,b,c pin;
equations
 Q1 = a $ b & c;
end

Also, when writing equations for XOR PALs, you should use parentheses to group those
parts of the equation that go on either side of the XOR. This is because the XOR
operator ($) and the OR operator (#) have the same priority in ABEL-HDL.

Using Implied XORs in Equations

High-level operators in equations often result in the generation of XOR operators. If you
specify the 'XOR' attribute, these implied XORs are preserved, decreasing the number of
product terms required. For example,

module X2
 q3,q2,q1,q0 pin istype 'reg,xor';
 clock pin;
 count = [q3..q0];
equations
 count.clk = clock;
 count := count.FB + 1;
end

This design describes a simple four-bit counter. Since the addition operator results in
XOR operators for the four outputs, the 'xor' attribute can reduce the amount of circuitry
generated.

Note: The high-level operator that generates the XOR operators must be the top-level
(lowest priority) operation in the equation. An equation such as
count := (count.FB + 1) & !reset does not result in the preservation of top-level XOR
operators, since the & operator is the top-level operator.

Vantis DesignDirect-CPLD User Guide

4-40 December 1998

State Machines
A state machine is a digital device that traverses a predetermined sequence of states.
State-machines are typically used for sequential control logic. In each state, the circuit
stores its past history and uses that history to determine what to do next.

This section provides some guidelines to help you make state diagrams easy to read and
maintain and to help you avoid problems. State machines often have many different
states and complex state transitions that contribute to the most common problem, which
is too many product terms being created for the chosen device. The topics discussed in
the following subsections help you avoid this problem by reducing the number of
required product terms.

The following subsections provide state machine considerations:

• Use Identifiers Rather Than Numbers for States

• Power-up Register States

• Unsatisfied Transition Conditions, D-Type Flip-Flops

• Unsatisfied Transition Conditions, Other Flip-Flops

• Number Adjacent States for a One-bit Change

• Use State Register Outputs to Identify States

• Use Symbolic State Descriptions

Use Identifiers Rather than Numbers for States

A state machine has different "states" that describe the outputs and transitions of the
machine at any given point. Typically, each state is given a name, and the state machine
is described in terms of transitions from one state to another. In a real device, such a
state machine is implemented with registers that contain enough bits to assign a unique
number to each state. The states are actually bit values in the register, and these bit
values are used along with other signals to determine state transitions.

As you develop a state diagram, you need to label the various states and state transitions.
If you label the states with identifiers that have been assigned constant values, rather
than labeling the states directly with numbers, you can easily change the state transitions
or register values associated with each state.

When you write a state diagram, you should first describe the state machine with names
for the states, and then assign state register bit values to the state names.

For an example, see the following source file for a state machine named "sequence."
(This state machine is also discussed in the design examples.) Identifiers (A, B, and C)
specify the states. These identifiers are assigned a constant decimal value in the
declaration section that identifies the bit values in the state register for each state. A, B,
and C are only identifiers: they do not indicate the bit pattern of the state machine. Their
declared values define the value of the state register (sreg) for each state. The declared
values are 0, 1, and 2.

ABEL-HDL Design Vantis

December 1998 4-41

 Example 17: Using identifiers for states

module Sequence
title 'State machine example';

 q1,q0 pin 14,15 istype 'reg';
 clock,enab,start,hold,reset pin 1,11,4,2,3;
 halt pin 17 istype 'reg';
 in_B,in_C pin 12,13 istype 'com';
 sreg = [q1,q0];

"State Values...
 A = 0; B = 1; C = 2;

equations
 [q1,q0,halt].clk = clock;
 [q1,q0,halt].oe = !enab;
state_diagram sreg;
 State A: " Hold in state A until start is active.
 in_B = 0;
 in_C = 0;
 IF (start & !reset) THEN B WITH halt := 0;
 ELSE A WITH halt := halt.fb;

 State B: " Advance to state C unless reset is active
 in_B = 1; " or hold is active. Turn on halt indicator
 in_C = 0; " if reset.
 IF (reset) THEN A WITH halt := 1;
 ELSE IF (hold) THEN B WITH halt := 0;
 ELSE C WITH halt := 0;

 State C: " Go back to A unless hold is active
 in_B = 0; " Reset overrides hold.
 in_C = 1;
 IF (hold & !reset) THEN C WITH halt := 0;
 ELSE A WITH halt := 0;
test_vectors([clock,enab,start,reset,hold]-
>[sreg,halt,in_B,in_C])
 [.p. , 0 , 0 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 0 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 0]->[C , 0 , 0 , 1];

 [.c. , 0 , 1 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 1 , 0]->[A , 1 , 0 , 0];
 [.c. , 0 , 0 , 0 , 0]->[A , 1 , 0 , 0];

 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 1]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 1]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 0]->[C , 0 , 0 , 1];
end

Vantis DesignDirect-CPLD User Guide

4-42 December 1998

Power-up Register States

If a state machine has to have a specific starting state, you must define the register
power-up state in the state diagram description or make sure your design goes to a
known state at power-up. Otherwise, the next state is undefined.

Unsatisfied Transition Conditions

D-Type Flip-Flops

For each state described in a state diagram, you specify the transitions to the next state
and the conditions that determine those transitions. For devices with D-type flip-flops, if
none of the stated conditions are met, the state register, shown in the following figure, is
cleared to all 0s on the next clock pulse. This action causes the state machine to go to
the state that corresponds to the cleared state register. This can either cause problems or
you can use it to your advantage, depending on your design.

 Figure 8: D-type register with false inputs

NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM

D Q

Q

LOGIC 0
F0

0774-1

You can use the clearing behavior of D-type flip-flops to eliminate some conditions in
your state diagram, and some product terms in the converted design, by leaving the
cleared-register state transition implicit. If no specified transition condition is met, the
machine goes to the cleared-register state. This behavior can also cause problems if the
cleared-register state is undefined in the state diagram, because if the transition
conditions are not met for any state, the machine goes to an undefined state and stays
there.

To avoid problems caused by this clearing behavior, always have a state assigned to the
cleared-register state. Or, if you don't assign a state to the cleared-register state, define
every possible condition so some condition is always met for each state. You can also
use the automatic transition to the cleared-register state by eliminating product terms
and explicit definitions of transitions. You can also use the cleared-register state to
satisfy illegal conditions

Other Flip-flops

If none of the state conditions is met in a state machine that employs JK, RS, and T-type
flip-flops, the state machine does not advance to the next state, but holds its present state
due to the low input to the register from the OR array output. In such a case, the state
machine can get stuck in a state. You can use this holding behavior to your advantage in
some designs.

ABEL-HDL Design Vantis

December 1998 4-43

If you want to prevent the hold, you can use the complement array provided in some
devices (such as the F105) to detect a "no conditions met" situation and reset the state
machine to a known state.

Precautions for Using Don't Care Optimization

When you use don't care optimization, you need to avoid certain design practices. The
most common design technique that conflicts with this optimization is mixing equations
and state diagrams to describe default transitions. For example, consider the design
shown below.

 Example 18: State machine description with conflicting logic

module TRAFFIC
title 'Traffic Signal Controller'
 Clk,SenA,SenB pin 1, 8, 7;
 PR pin 16; "Preset control
 GA,YA,RA pin 15..13;
 GB,YB,RB pin 11..9;

 "Node numbers are not required if fitter is used
 S3..S0 node 31..34 istype 'reg_sr,buffer';
 COMP node 43;

 H,L,Ck,X = 1, 0, .C., .X.;
 Count = [S3..S0];

"Define Set and Reset inputs to traffic light flip-flops
 GreenA = [GA.S,GA.R];
 YellowA = [YA.S,YA.R];
 RedA = [RA.S,RA.R];
 GreenB = [GB.S,GB.R];
 YellowB = [YB.S,YB.R];
 RedB = [RB.S,RB.R];
 On = [1 , 0];
 Off = [0 , 1];
" test_vectors edited
equations
 [GB,YB,RB].AP = PR;
 [GA,YA,RA].AP = PR;
 [GB,YB,RB].CLK = Clk;
 [GA,YA,RA].CLK = Clk;
 [S3..S0].AP = PR;
 [S3..S0].CLK = Clk;

"Use Complement Array to initialize or restart
 [S3..S0].R = (!COMP & [1,1,1,1]);
 [GreenA,YellowA,RedA] = (!COMP & [On ,Off,Off]);
 [GreenB,YellowB,RedB] = (!COMP & [Off,Off,On]);

state_diagram Count
 State 0: if (SenA & !SenB) then 0 with COMP = 1;
 if (!SenA & SenB) then 4 with COMP = 1;

Vantis DesignDirect-CPLD User Guide

4-44 December 1998

 if (SenA == SenB) then 1 with COMP = 1;
 State 1: goto 2 with COMP = 1;
 State 2: goto 3 with COMP = 1;
 State 3: goto 4 with COMP = 1;
 State 4: GreenA = Off;
 YellowA = On ;
 goto 5 with COMP = 1;
 State 5: YellowA = Off;
 RedA = On ;
 RedB = Off;
 GreenB = On ;
 goto 8 with COMP = 1;
 State 8: if (!SenA & SenB) then 8 with COMP = 1;
 if (SenA & !SenB) then 12 with COMP = 1;
 if (SenA == SenB) then 9 with COMP = 1;
 State 9: goto 10 with COMP = 1;
 State 10: goto 11 with COMP = 1;
 State 11: goto 12 with COMP = 1;
 State 12: GreenB = Off;
 YellowB = On ;
 goto 13 with COMP = 1;
 State 13: YellowB = Off;
 RedB = On ;
 RedA = Off;
 GreenA = On ;
 goto 0 with COMP = 1;
end

This design uses the complement array feature of the Signetics FPLA devices to perform
an unconditional jump to state [0,0,0,0]. If you use the @DCSET directive, the equation
that specifies this transition

[S3,S2,S1,S0].R = (!COMP & [1,1,1,1]);

will conflict with the dc-set generated by the state diagram for S3.R, S2.R, S1.R, and
S0.R. If equations are defined for state bits, the @DCSET directive is incompatible.
This conflict would result in an error and failure when the logic for this design is
optimized.

To correct the problem, you must remove the @DCSET directive so the implied dc-set
equations are folded into the off-set for the resulting logic function. Another option is to
rewrite the module as shown below.

 Example 19: @DCSET-compatible state machine description

module TRAFFIC1
title 'Traffic Signal Controller'

 Clk,SenA,SenB pin 1, 8, 7;
 PR pin 16; "Preset control
 GA,YA,RA pin 15..13;
 GB,YB,RB pin 11..9;

 S3..S0 node 31..34 istype 'reg_sr,buffer';

ABEL-HDL Design Vantis

December 1998 4-45

 H,L,Ck,X = 1, 0, .C., .X.;
 Count = [S3..S0];

"Define Set and Reset inputs to traffic light flip flops
 GreenA = [GA.S,GA.R];
 YellowA = [YA.S,YA.R];
 RedA = [RA.S,RA.R];
 GreenB = [GB.S,GB.R];
 YellowB = [YB.S,YB.R];
 RedB = [RB.S,RB.R];
 On = [1 , 0];
 Off = [0 , 1];
" test_vectors edited
equations
 [GB,YB,RB].AP = PR;
 [GA,YA,RA].AP = PR;
 [GB,YB,RB].CLK = Clk;
 [GA,YA,RA].CLK = Clk;
 [S3..S0].AP = PR;
 [S3..S0].CLK = Clk;
@DCSET
state_diagram Count
 State 0: if (SenA & !SenB) then 0;
 if (!SenA & SenB) then 4;
 if (SenA == SenB) then 1;
 State 1: goto 2;
 State 2: goto 3;
 State 3: goto 4;

 State 4: GreenA = Off;
 YellowA = On ;
 goto 5;
 State 5: YellowA = Off;
 RedA = On ;
 RedB = Off;
 GreenB = On ;
 goto 8;
 State 6: goto 0;
 State 7: goto 0;

 State 8: if (!SenA & SenB) then 8;
 if (SenA & !SenB) then 12;
 if (SenA == SenB) then 9;
 State 9: goto 10;
 State 10: goto 11;
 State 11: goto 12;
 State 12: GreenB = Off;
 YellowB = On ;
 goto 13;
 State 13: YellowB = Off;
 RedB = On ;
 RedA = Off;
 GreenA = On ;
 goto 0;

Vantis DesignDirect-CPLD User Guide

4-46 December 1998

 State 14: goto 0;
 State 15: "Power up and preset state
 RedA = Off;
 YellowA = Off;
 GreenA = On ;
 RedB = On ;
 YellowB = Off;
 GreenB = Off;
 goto 0;
end

Number Adjacent States for One-bit Change

You can reduce the number of product terms produced by a state diagram by carefully
choosing state register bit values. Your state machine should be described with symbolic
names for the states, as described above. Then, if you assign the numeric constants to
these names so the state register bits change by only one bit at a time as the state
machine goes from state to state, you will reduce the number of product terms required
to describe the state transitions.

As an example, take the states A, B, C, and D, which go from one state to the other in
alphabetical order. The simplest choice of bit values for the state register is a numeric
sequence, but this is not the most efficient method. To see why, examine the following
bit value assignments. The preferred bit values cause a one-bit change as the machine
moves from state B to C, whereas the simple bit values cause a change in both bit values
for the same transition. The preferred bit values produce fewer product terms.

 Table 16: Simple vs. preferred bit values

State Simple Bit Values Preferred Bit Values
A 00 00
B 01 01
C 10 11
D 11 10

If one of your state register bits uses too many product terms, try reorganizing the bit
values so that state register bit changes in value as few times as possible as the state
machine moves from state to state.

Obviously, the choice of optimum bit values for specific states can require some
tradeoffs; you may have to optimize for one bit and, in the process, increase the value
changes for another. The object should be to eliminate as many product terms as
necessary to fit the design into the device.

Use State Register Outputs to Identify States

Sometimes it is necessary to identify specific states of a state machine and signal an
output that the machine is in one of these states. Fewer equations and outputs are needed
if you organize the state register bit values so one bit in the state register determines if
the machine is in a state of interest. Take, for example, the following sequence of states
in which identification of the Cn states is required.

ABEL-HDL Design Vantis

December 1998 4-47

 Table 17: State register bit values

State Name Q3 Q2 Q1
A 0 0 0
B 0 0 1
C1 1 0 1
C2 1 1 1
C3 1 1 0
D 0 1 0

This choice of state register bit values allows you to use Q3 as a flag to indicate when
the machine is in any of the Cn states. When Q3 is high, the machine is in one of the Cn
states. Q3 can be assigned directly to an output pin on the device. Notice also that these
bit values change by only one bit as the machine cycles through the states, as is
recommended in the section above.

Using Symbolic State Descriptions

Symbolic state descriptions describe a state machine without having to specify actual
state values. A symbolic state description is shown below.

 Example 20: Symbolic state description

module SM
 a,b,clock pin; " inputs
 a_reset,s_reset pin; " reset inputs
 x,y pin istype 'com'; " simple outputs

 sreg1 state_register;
 S0..S3 state;

equations
 sreg1.clk = clock;

state_diagram sreg1
 state S0:
 goto S1 with {x = a & b;
 y = 0; }
 state S1: if (a & b)
 then S2 with {x = 0;
 y = 1; }
 state S2: x = a & b;
 y = 1;
 if (a) then S1 else S2;
 state S3:
 goto S0 with {x = 1;
 y = 0; }

 async_reset S0: a_reset;
 sync_reset S0: s_reset;
end

Vantis DesignDirect-CPLD User Guide

4-48 December 1998

Symbolic state descriptions use the same syntax as non-symbolic state descriptions; the
only difference is the addition of the State_register and State declarations, and the
addition of symbolic synchronous and asynchronous reset statements.

Symbolic Reset Statements

In symbolic state descriptions, the Sync_Reset and Async_Reset statements specify
synchronous or asynchronous state machine reset logic. For example, to specify that a
state machine must asynchronously reset to state Start when the Reset input is true, you
write:

ASYNC_RESET Start : (Reset) ;

Symbolic Test Vectors

You can also write test vectors to refer to symbolic state values by entering the symbolic
state register name in the test vector header (in the output sections), and the symbolic
state names in the test vectors as output values.

ABEL-HDL and Truth Tables
Truth Tables in ABEL-HDL represent a very easy and straightforward description
method, well suited in a number of situations involving combinational logic.

The principle of the Truth Table is to build an exhaustive list of the input combinations
(referred to as the ON-set) for which the outputs become active.

The following list summarizes design considerations for Truth Tables. Following the list
are more detailed examples.

• The OFF-set lines in a Truth Table are necessary when more than one output is
assigned in the Truth Table. In this case, not all Outputs are fired under the same
conditions, and therefore OFF-set conditions do exist.

• OFF-set lines are ignored because they represent the default situation, unless the
output variable is declared dc. In this case, a third set is built, the DC-set and the
Output inside it is assigned proper values to achieve the best logic reduction
possible.

• If output type dc (or @dcset) is not used and multiple outputs are specified in a
Truth table, consider the outputs one by one and ignore the lines where the selected
output is not set.

• Don't Cares (.X.) used on the right side of a Truth Table have no optimization
effect.

• When dealing with multiple outputs of different kind, avoid general settings like
@DCSET which will affect all your outputs. Use istype ‘.....DC’ on outputs for
which this reduction may apply.

• Beware of Outputs for which the ON-set might be empty.

• As a general guideline, it is important not to rely on first impression or simple
intuition to understand Truth tables. The way they are understood by the compiler is
the only possible interpretation. This means that Truth Tables should be presented
in a clear and understandable format, should avoid side effects, and should be
properly documented (commented).

ABEL-HDL Design Vantis

December 1998 4-49

Basic Syntax - Simple Examples

In the following example, the lines commented as L1 and L2 are the ON-set. Lines L3
and L4 are ignored because Out is type default (meaning ‘0’ for unspecified
combinations). The resulting equation does confirm this.

MODULE DEMO1
TITLE 'Module 1'
" Inputs

A, B, C pin;
"Output

Out pin istype 'com';
Truth_Table
 ([A, B, C] -> Out)

[0, 1, 0] -> 1; // L1
[1, 1, 1] -> 1; // L2
[0, 0, 1] -> 0; // L3
[1, 0, 0] -> 0; // L4

END
// Resulting Reduced Equation :
// Out = (!A & B & !C) # (A & B & C);

Module 2 (below) differs from Module 1 (above) because Out is now type ‘COM, DC’.
(optimizable don’t care)

In this case, the lines commented as L1 and L2 are the ON-set, L3 and L4 are the OFF-
set and other combinations become don’t care (DC-set) meaning 0 or 1 to produce the
best logic reduction. As a result in this example, the equation is very simple.

@DCSET instruction would have produced the same result as to declare Out of type dc.
But @DCSET must be used with care when multiple outputs are defined : they all
become dc.

MODULE DEMO1
TITLE 'Module 2'
" Inputs

A, B, C pin;
"Output

Out pin istype 'com, dc';
Truth_Table
 ([A, B, C] -> Out)

[0, 1, 0] -> 1; // L1
[1, 1, 1] -> 1; // L2
[0, 0, 1] -> 0; // L3
[1, 0, 0] -> 0; // L4

END
// Resulting Reduced Equation :
// Out = (B);

Influence of Signal Polarity

We’ll see now with Module 3 how the polarity of the signal may influence the truth
table :

Vantis DesignDirect-CPLD User Guide

4-50 December 1998

In this example, Out1 and Out2 are strictly equivalent. For !Out1, note that the ON-set
is the 0 values. The third line L3 is ignored.

MODULE DEMO2
TITLE 'Module 3'
" Inputs

A, B, C pin;
"Output

Out1 pin istype 'com, neg';
Out2 pin istype 'com, neg';
Out3 pin istype 'com, neg'; // BEWARE

Truth_Table
 ([A, B, C] -> [!Out1, Out2, Out3])

[0, 0, 1] -> [0, 1, 0];//L1
[0, 1, 1] -> [0, 1, 0];//L2
[1, 1, 0] -> [1, 0, 1];//L3

END
// Resulting Equations :
// !Out1 = !Out2 = (A # !C);
// or: Out1 = Out2 = (!A & C);
// BUT: Out3 = (A & B & !C); <<what you wanted ?

For active-low outputs, one must be careful to specify 1 for the active state if the Output
appears without the exclamation point (!).
0 must be used when !output is defined in the table header.

We recommend the style used for Out1.

For Out3, line used is L3, L1 and L2 are ignored.

Using .X. in Truth Tables Conditions

Don’t Care used on the left side in Truth tables have no optimization purpose; they only
serve as a shortcut to write several conditions in one single line.

Be careful when using .X. in conditions. This can lead to overlapping conditions which
look not consistent (see Module 4 below). Due to the way the compiler work, this type of
inconsistency is not checked nor reported. In fact, only the ON-set condition is taken
into account, the OFF-set condition is ignored. The following example illustrates this:

MODULE DEMO3
TITLE 'Module 4'
"Inputs

A, B, C pin;
"Output

Out pin istype 'com';
"Equivalence

X = .X.;
Truth_Table
 ([A, B, C] -> Out)

[0, 0, 1] -> 0; //L1 ignored in fact
[0, 1, 0] -> 1; //L2
[1, X, X] -> 1; //L3
[0, 0, 1] -> 1; //L4 incompatible

ABEL-HDL Design Vantis

December 1998 4-51

[1, 1, 0] -> 0; //L5 incompatible
END
// Result : Out = A # (B & !C) # (!B & C)

L1 is in fact ignored. Out is active high, therefore only line L4 is taken into account.

Likewise, L5 intersects L3, but is ignored since it is not in the ON-set for Out.

Globally, only L2, L3 and L4 are taken into account, as we can check in the resulting
equation, without any error reported.

Using .X. on the right side

The syntax allows to use .X. as a target value for an output. In this case, the condition is
simply ignored.

Note: This is not the method to specify optimizable don’t care states.
See example 2 for such an example.

Module 5 shows that-> .X. states are not optimized if DC type or @DCSET are not
used.

These lines are ALWAYS ignored.

MODULE DEMO6
TITLE 'Module 5'
"Inputs

A, B, C pin;
"Output

Out pin istype 'com';
"Equivalence

X = .X.;
Truth_Table
 ([A, B, C] -> Out)

[0, 0, 0] -> 0;
[0, 0, 1] -> X;
[0, 1, 0] -> 1;
[0, 1, 1] -> X;
[1, X, X] => X;

END
// As is : Out = (!A & B & !C);
// With istype 'com,DC' : Out = (B);

They are in fact of no use, except maybe as a way to document that output does not
matter.

Special case: Empty ON-set

There is a special case which is unlikely to happen, but may sometimes occurs. Consider
this example:

MODULE DEMO5
TITLE 'Module 6'
"Inputs

Vantis DesignDirect-CPLD User Guide

4-52 December 1998

A, B, C pin;
"Output

Out pin istype 'com, pos';
Truth_Table
 ([A, B, C] -> Out)

[0, 0, 1] -> 0;
[0, 1, 0] -> 0;
[1, 0, 0] -> 0;

// [0, 0, 0] -> 1;//changes everything!
END
// Without the last line L4 :
// !Out=(A & !B & !C)# (!A & B & !C)# (!A & !B & C);
// WITH L4 : Out = (!A & !B & !C);

What we obtain is slightly unexpected. This table should produce Out=0; as the result.
(We enumerated only OFF conditions, and the polarity is POS (or default), so unlisted
cases should also turn into zeroes.)

One reason to build such a table could be when multiple outputs are defined, and when
Out needs to be shut off for whatever reason.

In the absence of the line L4, the result is not intuitive. The output is 0 only for the
listed cases (L1, L2, L3), and is 1 for all other cases, even if dc or pos is used.

When line L4 is restored, then the output equation becomes Out = (!A & !B & !C);
because we fall in the general situation where the ON-set is not empty.

Registered Logic in Truth tables

Truth Tables can specify registered outputs. In this case, the assignment become :>
(instead of ->).

Using a Template to Create an ABEL-HDL Source
This section describes how to enter an ABEL-HDL design description using a template
to create a single ABEL-HDL source.

Creating a Template

Ø To create a template for an ABEL-HDL source file:

1 In the Project Manager, choose Source > New to open the New Source dialog.

ABEL-HDL Design Vantis

December 1998 4-53

2 Select ABEL-HDL Module and click OK. The Text Editor opens and a dialog
prompts you for a module name, file name, and title.

3 Type a Module Name, which is the name of the MODULE statement. The
MODULE statement is required. It defines the beginning of the module and must be
paired with an END statement. The MODULE statement also indicates whether any
module arguments are used.

4 Type a File Name. The file extension can be omitted.

Note: The module name and file name should have the same base name. (The base
name is the name without the 3-character extension.) If the module and file names are
different, some automatic functions in the Project Manager might fail to run properly.

5 Optionally, type a descriptive Title for the module.

6 When you have finished typing the information, click OK. You now have a
template for an ABEL-HDL source file.

Entering Declarations

The Declarations section specifies the names and attributes of signals used in the design;
defines constants, macros, and states; declares lower-level modules and schematics; and
optionally declares a device. Each module must have at least one DECLARATIONS
section, and declarations affect only the module in which they are defined. If a TITLE
statement exists in the template file, enter these statements after the TITLE statement.

Vantis DesignDirect-CPLD User Guide

4-54 December 1998

Using the andff module above as an example, the following describes the
DECLARATIONS statement for the three inputs (two AND gate inputs and the clock)
and the output.

DECLARATIONS
input_1, input_2, Clk pin;
output_q pin istype 'reg';

These two statements declare four signals (input_1, input_2, Clk, and output_q).

Note: ABEL-HDL does not have an explicit declaration for inputs and outputs; whether a
given signal is an input or an output depends on how it is used in the design description
that follows. The signal output_q is declared to be type 'reg', which implies that it is a
registered output pin. The actual behavior of output_q, however, is specified using one or
more equations.

Entering Logic Descriptions

You can use Equations, a State diagram, or a Truth table to describe your logic design.
The following EQUATIONS statement describes the actual behavior of the andff
example module.

EQUATIONS
output_q := input_1 & input_2;
output_q.clk = Clk;

These two equations define the data to be loaded on the registered output, and define the
clocking function for the output.

Entering Test Vectors

The traditional method for testing ABEL-HDL designs is to use test vectors. Test vectors
are sets of input stimulus values and corresponding expected outputs that can be used
with both Equation and JEDEC simulators.

You can specify test vectors in two ways: in the ABEL-HDL source file, or in an
external ABEL Test Vector file (.ABV). When you specify the test vectors in the ABEL-
HDL source file, DesignDirect creates a "dummy" .ABV file that points to the ABEL-
HDL source containing the vectors. This file is necessary because an .ABV file is
required in order to have access to the Equation and JEDEC simulation processes.

To continue with the example andff module, the following describes the
TEST_VECTORS statement.

TEST_VECTORS
 ([Clk, input_1 , input_2] -> output_q)
 [0 , 0 , 0] -> 0;
 [.C., 0 , 0] -> 0;
 [.C., 0 , 1] -> 0;
 [.C., 1 , 1] -> 1;

The following figure shows the complete ABEL-HDL source file describing the example
andff module.

ABEL-HDL Design Vantis

December 1998 4-55

 Figure 9: ABEL-HDL source file describing the andff module

	Contents
	ABEL-HDL Design
	What is ABEL-HDL?
	Language Structure
	Basic Structure
	Structure Rules
	Header
	Declarations
	Logic Description
	Test Vectors Section
	End Statement
	Other Elements

	Basic Syntax
	Syntax Rules
	Supported ASCII Characters
	Identifiers
	Constants
	Blocks
	Comments
	Numbers
	Strings
	Operators, Expression, and Equations
	Sets
	Set Operation Rules
	Limitations/Restrictions on Sets
	Arguments and Argument Substitution

	ABEL-HDL Design Considerations
	Pin-to-pin Language Features
	Device-independence vs. Architecture-independence
	Signal Attributes
	Signal Dot Extensions

	Pin-to-pin vs. Detailed Description Methods for Registered Designs
	Using := for Pin-to-pin Descriptions
	Detailed Circuit Descriptions
	Examples of Pin-to-pin and Detailed Descriptions
	Detailed Module with Inverted Outputs

	When to Use Detailed Descriptions
	Using := for Alternative Flip-flop Types

	Using Active-low Declarations
	Polarity Control
	Polarity Control with lstype
	Using lstype neg, pos, and dc to Control Equation and Device Polarity
	Using invert and buffer to Control Programmable Inversion

	Flip-flop Equations
	Feedback Considerations--Dot Extensions
	Dot Extensions and Architecture-Independence
	Dot Extensions and Detail Design Descriptions

	Using Don't Care Optimization
	Exclusive OR Equations
	Optimizing XOR Devices
	Using XOR Operators in Equations
	Using Implied XORs in Equations

	State Machines
	Use Identifiers Rather than Numbers for States
	Power-up Register States
	Unsatisfied Transition Conditions
	D-Type Flip-flops
	Other Flip-flops

	Precautions for Using Don't Care Optimization
	Number Adjacent States for One-bit Change
	Use State Register Outputs to Identify States
	Using Symbolic State Descriptions
	Symbolic Reset Statements
	Symbolic Test Vectors

	ABEL-HDL and Truth Tables
	Basic Syntax - Simple Examples
	Influence of Signal Polarity
	Using .X. in Truth Tables Conditions
	Using .X. on the Right Side
	Special case: Empty ON-set
	Registsered Logic in Truth Tables

	Using a Template to Create an ABEL-HDL Source
	Creating a Template
	Entering Declarations
	Entering Logic Descriptions
	Entering Test Vectors

