

Mass Analysis + Database search

INVESTIGATORTM PROGEST

Voyager-DE[™] PRO

Biospectrometry™ Workstation

Mass fingerprint analysis

Post-source decay of metastable ions

Sequence information						
Length: 379 AA	Molecular 39247 Da	weight:	SESQ2	XASEXA	QXSGFD	VXR
10 MLFKSFVTFT	20 VLANALAAPL	30 AHQHHQHKEE	X=Ile/	/Leu	PETTINU	
70	80	90	100	110	120	
VAADSSVSVS	VNTEPPONHP	TTTQDVASAS	TYPSSTDGSA	ASSSAAASSS	SQAGSEPSGG	
130	140	150	160	170	180	
 VGSGGAKGIT	YSPYSDNGGC	KSSSQIASEI	AQLSGFNVIR	LYGVDCDQVA	AVLIAKTSSQ	
190	200	210	220	230	240	
KIFAGIFDVS	SITSGIESLA	EAVKSICGSW	DDIYTVSIGN	ELVNAGSATP	SQIKAYVEEG	
250	260	270	280	290	300	
I RKALKAAGYT	GPVVSVDTFI	AVINNPDLCD	YSDYMAVNAH	AFFDGHVAAE	NSGAWVLQQI	
310	320	330	340	350	360	
QRVWTACGGK	KNVLITETGW	PSRGDSNGVA	VPSKSNQQAA	ISSIKSSCGA	SAILFTAFND	
370						240
LWKADGPYNA	EKYWGIYSN					134.U
						f

% Intensity

Voyager Spec #1=>AdvBC(32,0.5,0.1)=>NR(2.00)=>DI[BP = 1066.1, 8637]

ION	Z	SECUENCIA	PROTEÏNA
621.3	2+	QYFNLS(226)EL	Similar to Q8H7F4
750.2	2+	LNKYGPPPLGCTIK	Rubisco large chain
792.3	2+	ALLSDPVFRPLVEK	Ascorbate peroxidase
631.3	2+	QVTLGFVD(I/L)(I/L)R	Rubisco large chain
858.7	2+	SKATNSINDASNSSYR	Protein tyrosine kinase
691.3	2+	EHNSSPGYYDGR	Rubisco small chain
983.8	2+	FETLSYLP(1015)	Rubisco small chain
739.0	2+	LPLFGATDSSQVLK	Rubisco small chain
942.6	2+	IVDTFPGQSIDFFGALR	Rubisco activase
697.5	3+	VPIIVTGNDFSTLYAPLIR	Rubisco activase
880.8	2+	DGIDYAAVTVQLPGGER	33 kDa polypeptide of oxygen-evolving complex in Photosystem II
482.7	2+	VPFLFT(I/L)K	33 kDa polypeptide of oxygen-evolving complex in Photosystem II

3. 5

Mass (m/z)

FIG. 5. MALDI-TOF mass spectrometry. Mass spectrometric c termination of the molecular masses of DTT-refolded MAT before (and after (B) treatment with vinylpyridine under denaturing but nc reducing conditions is shown. Molecular masses of GSH/GSSG-refold MAT I and III (C) and of C35S and C61S MAT mutants (D) up... treatment with vinylpyridine under denaturing but nonreducing conditions are also included.

TABLE IV Results of the tryptic digestion analyzed by MALDI-TOF mass spectrometry

Fragments assigned by MALDI-TOF mass spectrometry in GSH/ GSSG-refolded MAT III digested with trypsin under denaturing but nonreducing conditions in the presence of 10 mM iodoacetamide.

M + H	Fragment	Sequence modifications
Da		
2551.9	34-48	
and the spinst	55 - 62	1 CM-C; 1 S-S
6588.3	2-62	2 CM-C; 1 S-S; M20-ox
672.7	49-54	
2308.6	63-82	CM-C69; 1 M-ox
2264.8	63-82	C69-red; 2 M-ox
2233.1	63-82	C69-red
1006.0	80-98	
3261.1	99-126	CM-C105; CM-C121
2553.9	104 - 126	C105 and C121 red
	/S 57	22
2	/5 57	CYS 35
	/S 57	CYS 35 CYS 61
	YS 69	CYS 35 CYS 61
	YS 69	CYS 35 CYS 61

1110.0 004-092

α3 Colágeno IV y enfermedad autoinmune de Goodpasture

Juan Saus, Quique Pérez-Payá (FVIB)

C-t.

Fig 2. Diagram of the different $\alpha\beta$ integrin heterodimers and of their ligands. coll, collagen; FN, fibronectin; VN, vitronectin; LN, laminin; TSP, thrombospondin; vWF, von Willebrand factor; FG, fibrinogen.

Advances in Brief

Obtustatin: A Potent Selective Inhibitor of $\alpha 1\beta 1$ Integrin *in Vitro* and Angiogenesis *in Vivo*¹

Cezary Marcinkiewicz,² Paul H. Weinreb, Juan J. Calvete, Dariusz G. Kisiel, Shaker A. Mousa, George P. Tuszynski, and Roy R. Lobb

Temple University, School of Medicine, Thrombosis Research Center, Philadelphia, Pennsylvania 19140 [C. M., D. G. K., G. P. T.]; Biogen, Inc., Cambridge, Massachusetts 02142 [P. H. W., R. R. L.]; Instituto de Biomedicina, C.S.I.C., 46010 Valencia, Spain [J. J. C.]; and Albany College of Pharmacy and PRI at Albany, New York 12208 [S. A. M.]

Effect of obtustatin (▼) and PBS (●) on Lewis lung carcinoma growth in C57BL/ 6 mice

FOR THE RECORD

Amino acid sequence and homology modeling of obtustatin, a novel non-RGD-containing short disintegrin isolated from the venom of *Vipera lebetina obtusa*

M. PAZ MORENO-MURCIANO,¹ DANIEL MONLEÓN,² JUAN J. CALVETE,¹ BERNARDO CELDA,² AND CEZARY MARCINKIEWICZ³

¹Instituto de Biomedicina de Valencia, C.S.I.C., 46010 Valencia, Spain

²Departamento de Química Física, Universitat de València, 46100 Burjassot (Valencia), Spain ³Temple University College of Science and Technology, Biotechnology Center, Philadelphia, Pennsylvania 19122-6078, USA

Sequence of peptide	<i>IC</i> ₅₀ (μM)			
CWKTSLTSHYC	586			
CAKTSLTSHYC	612			
CWATSLTSHYC	1185 K			
CWKASLTSHYC	>2000 T			
CWKTALTSHYC	916 S			
CWKTSATSHYC	698			
CWKTSLASHYC	603			
CWKTSLTAHYC	632			
CWKTSLTSAYC	658			
CWKTSLTSTAC	669			

J. Mol. Biol. (2003) 329, 135-145

Available online at www.sciencedirect.com

NMR Solution Structure of the Non-RGD Disintegrin Obtustatin

M. Paz Moreno-Murciano^{1,2}, Daniel Monleón¹, Cezary Marcinkiewicz³ Juan J. Calvete^{2*} and Bernardo Celda^{1*}

Monleón, D., Moreno-Murciano, M.P., Kovacs, H., Marcinkiewicz, C., Calvete, J.J. & Celda, B.

Concerted motions of the integrin-binding loop and the C-terminal tail of the non-RGD disintegrin obtustatin

J. Biol. Chem. (2003) in press

Venómica

Paula Juárez, Libia Sanz IBV

Characterization of the protein components of the venom of *Sistrurus barbouri*

QUANTITATION OF FREE CYSTEINE RESIDUES AND DISULPHIDE BONDS

No free cysteine residue

(15483-13980)/106= 14.1 Cys

14/2 = 7 Disulphide bonds

HPLC fraction	N-terminal sequence	MALD	I-TOF MS [Da]]			Protein family
		M _{Nat} M _{VF}	M _{PE}	N° (of cysteines*		
				Free SH	Total Cys	S-S	
4	AGEECDCGSP GEECDCGSPE EECDCGSPEN	7501 7502	2 8762		12	6	Disintegrin
5	GEECDCGSPE EECDCGSPEN						
6	Protein 15 contain	ed a blocke	d N-termi	nus.	12 14	6 7	Disintegrin PLA ₂
7		12056 12056	15455		14	7	PLA ₂
8	The protein contai	ned 1 free c	ysteine a	nd	16	8	CRISP
9	17 discipnide bon	as			14	7	PLA ₂
10	HLITFEQLIMKIAGRSGVFW	13980 13983	15483		14	7	PLA ₂
11	This suggested th	at protein 1	5 might b	e a	12	6	Ser-proteinase
12	metalloproteinase	of the ADA	vi family		12	6	Ser-proteinase
13	NPEHQRYVELFIVVDHGM	23187 23293	23921	¹ 1	7	3	metalloproteinase
14	NPEHQRYVELFIVVD	23356 23375	24089	1	7	3	metalloproteinase
15	Blocked	48555 48664	52241	1	35	17] ◀┘ [°]

The proteins in the major peaks were identified by combination of N-terminal sequencing and mass spectrometric determination of molecular masses and cysteine content

MALDI-TOF tryptic mass fingerprint of the carboxyamidomethylated-protein 15 in solution.

The sequence of peptide at m/z 871.0:

K K H D N A Q I/L I/L T A I/L D F K

shows strong homology to peptide 43-58 of jararhagin:

K K H D N A Q L L T A I D F N

Further indicating that protein 15 of *Sistrurus barbouri* venom is a jarrarhagin-like metalloproteinase

CONCLUSIONS

Although the lack of genome sequences of snake species is a handicap for the identificacion of venom proteins by MALDI-TOF mass fingerprinting, MS/MS fragmentation of selected ions yielded sufficient sequence information to identify an homologue protein from a related snake venom metalloprotease.

The venom proteome of the pigmy rattlesnake *Sistrurus barbouri* is composed of proteins belonging to only a few known proteins families, including:

- Phospholipases A2
- PI Zn²⁺ metalloproteinases
- Disintegrins
- CRISP
- Serine proteinases
- ADAM