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Abstract.-

In this article we deal with a Cauchy-Dirichlet quasilinear parabolic problem con-
taining a gradient term with quadratic growth and source; namely,





ut −∆u + |u|2γ−2u|∇u|2 = |u|p−2u in Q := Ω×]0, +∞[;

u(x, t) = 0 on S := ∂Ω×]0, +∞[;

u(x, 0) = u0(x) in Ω;

with Ω a bounded open set of IRN . We prove that if p ≥ 1, γ ≥ 1/2 and
p < 2γ + 2, then there exists a global weak solution for all u0 ∈ L1(Ω). We also
see that there exists a nonnegative solution if u0 ≥ 0.

1 Introduction and assumptions.

Consider the following quasilinear parabolic problem





ut −∆u + u2γ−1|∇u|q = up−1 in Q := Ω×]0, +∞[;

u = 0 on S := ∂Ω×]0, +∞[;

u(x, 0) = u0(x) ≥ 0 in Ω;

(1)

1



where Ω is a bounded open set in IRN , whose boundary is denoted by ∂Ω,
p, q ≥ 1 and γ ≥ 1/2.

For the concrete case γ = 1/2, problem (1) was introduced by M. Chipot and
F.B. Weissler in [4] in order to investigate the effect of a damping term on existence
or nonexistence of classical solutions. Several authors have studied the existence of
non global positive classical solutions, giving conditions for blow-up under certains
assumptions on p, q, N and Ω; see [1] and the references therein. Global existence
for nonnegative initial data has been proved in the case q ≥ p > 1.

On the other hand, it is remarked in [12] that problem (1) does not admit global
classical solutions in the case p > 2, γ ≥ 1/2 and 2γ + 2 < p.

A related problem has been studied in [1], where a degenerate case is considered.
More concretely, if the term ∆u is replaced by ∆(um) in problem (1), the
existence of global weak solutions for nonnegative initial data in Lm+1(Ω) is proved
in [1] under the following assumptions: Ω a smooth bounded domain, m ≥
1, (2γ + q − 1)/q > m/2, 1 ≤ q < 2 and 2 ≤ p < 2γ + q.

We point out that in [11] and [1] a model in population dynamics is described by
this type of equations. The model is as follows: Consider a population of a biological
species living on a territory Ω ⊂ IRN and denote by u(., t) the space density of the
population at time t ≥ 0. The evolution of this density is the result of three types
of mechanisms: displacements, births and deaths. Displacements are measured by
−div φ, where φ is the flow of individuals; we will take φ = −c1∇u. On the other
hand, the contributions by accidental deaths should be of the form −c2D(|∇us|),
where D is an increasing function; we will suppose that D(z) = z2. Finally, the
contribution of births is assumed to be proportional to the number of cuples (or,
more generally, of r-tuples), so the population supply due to births will be given by
c3u

r. Therefore, summing up the different contributions one obtains the equation

ut = c1∆u− c2|∇us|2 + c3u
r.

Consequently, under the hipotheses that every death is accidental and that there is
a non-viable environment in the boundary zone (we have homogeneous Dirichlet’s
boundary condition), the solution of our equation (1) describes the evolution of the
population density.

The aim of this paper is to prove the existence of global weak solutions of problem
(1) for nonnegative initial data u0 ∈ L1(Ω) in the limit case q = 2. To be more
precise, we deal with the following problem





ut −∆u + u|u|2γ−2|∇u|2 = u|u|p−2 in Q := Ω×]0, +∞[;

u(x, t) = 0 on S := ∂Ω×]0, +∞[;

u(x, 0) = u0(x) in Ω;

(2)

where Ω is a bounded open subset of IRN and under the hypotheses

p ≥ 1, γ ≥ 1/2 and p < 2γ + 2. (H)

We remark that no regularity assumption is required on the boundary of the open
set Ω.



The methods used here to prove the existence result are different from those of [1],
which do not work for the limit case q = 2. Our starting point is to solve problem
(2) for bounded initial data. To obtain the existence of weak solutions for integrable
initial data, we apply the time-regularizing convolution operator introduced in [6]
(and in [9] for nonzero initial data).

This article is organized as follows. In Section 2 we define the concept of weak
solution we use and prove the existence of global weak solutions for u0 ∈ L∞(Ω).
Section 3 is devoted to an initial datum u0 ∈ L1(Ω): we define weak solution in
this context and prove the existence of a global weak solution.

2 Bounded data

In this section we are going to see that if the initial datum u0 is bounded, there
exists a global weak solution of problem (2) in the following sense.

Definition 2.1 Let u0 ∈ L∞(Ω). By a weak solution of problem (2) in the set
QT = Ω×]0, T [ we mean a function u ∈ L2(0, T ; H1

0 (Ω)) ∩ L∞(QT ), such that
ut ∈ L2(0, T ; H−1(Ω)) + L1(QT ), |u|p−1 ∈ L1(QT ), |u|2γ−1|∇u|2 ∈ L1(QT ) and

∫

Ω
u(T )φ(T )−

∫ T

0
〈u, φt〉+

∫

QT

∇u·∇φ+
∫

QT

|u|2γ−2u|∇u|2φ =
∫

QT

|u|p−2uφ+
∫

Ω
u0φ(0)

for all φ ∈ L2(0, T ; H1
0 (Ω))∩L∞(QT ) such that φt ∈ L2(0, T ; H−1(Ω)) + L1(QT ).

By a global weak solution of (2), we mean a solution in QT for all T > 0.

Remark 2.1 (1) If v belongs to L2(0, T ; H1
0 (Ω))∩L∞(QT ) and its distributional

derivative in time is such that vt ∈ L2(0, T ; H−1(Ω)) + L1(QT ), it is well known
that v ∈ C([0, T ]; L2(Ω)). As a consequence, the functions φ(0) and φ(T ) in
the above definition have sense and the meaning of the initial condition u(0) = u0

is clear.
(2) Since φt ∈ L2(0, T ; H−1(Ω)) + L1(QT ), φt = β1 + β2 where β1 ∈

L2(0, T ; H−1(Ω)) and β2 ∈ L1(QT ). We use the notation

∫ T

0
〈u, φt〉 =

∫ T

0
〈u, β1〉H1

0 ,H−1 +
∫

QT

uβ2

in the above definition.

As mentioned above, in this section we prove that there exists a weak solution
of problem (2) in each QT for u0 bounded. To this end, we will use the main
result in [3] and then an L∞-estimate procedure introduced by Aronson and Serrin
(see [2]). We remark that, since these results hold under more general hypotheses,
our results also apply not just to the Laplacian but also to operators satisfying the
hypotheses in [3] (see also [8]) and [2].



Lemma 2.1 Let T > 0 and let b ∈ C(IR) ∩ L∞(IR). For every u0 ∈ L∞(Ω),
there exists u ∈ L2(0, T ; H1

0 (Ω)) ∩ L∞(QT ), weak solution of the problem





ut −∆u + u|u|2γ−2|∇u|2 = b(u) in QT := Ω×]0, T [;

u = 0 on ST := ∂Ω×]0, T [;

u(x, 0) = u0(x) in Ω;

(3)

such that ut ∈ L2(0, T ; H−1(Ω)) + L1(QT ).
Moreover, if b(0) ≥ 0 and u0 ≥ 0, then the weak solution can also be taken

nonnegative.

Proof: Let M > 0 be such that |b(s)| ≤ M for all s ∈ IR. For each k ∈ IN ,
we consider the following approximating problem:





ut −∆u + Tk(u)|Tk(u)|2γ−2|∇u|2 = b(u) in QT := Ω×]0, T [;

u = 0 on ST := ∂Ω×]0, T [;

u(x, 0) = u0(x) in Ω,

(4)

where Tk is the function of a real variable defined by

Tk(s) = max(−k, min(k, s)).

Define two real functions by ψ(t) = Mt + ‖u0‖∞ and ϕ = −ψ. It is easy
to check that ϕ is a subsolution and ψ is a supersolution of problem (4). By
Theorem (1.1) in [3], there is a weak solution of (4) which satisfies ϕ ≤ u ≤ ψ in
QT . Taking k > ‖ψ‖∞, it follows that Tk(u) = u and consequently u is a weak
solution of (3).

When b(0) ≥ 0 and u0 ≥ 0, we only have to notice that ϕ(t) = 0 defines a
subsolution of problem (4); so that we may take a nonnegative weak solution.

Theorem 2.1 Let T > 0. For every u0 ∈ L∞(Ω), there exists u belonging to
L2(0, T ; H1

0 (Ω))∩L∞(QT ), such that ut ∈ L2(0, T ; H−1(Ω)) + L1(QT ), which is a
weak solution of problem (2).

Furthermore, this weak solution may be chosen nonnegative when u0 ≥ 0.

Proof: Consider the following approximating problems:





ut −∆u + u|u|2γ−2|∇u|2 = Tn(|u|p−2u) in QT := Ω×]0, T [;

u = 0 on ST := ∂Ω×]0, T [;

u(x, 0) = u0(x) in Ω.

(5)

By Lemma 2.1, there exists un ∈ L2(0, T ; H1
0 (Ω))∩L∞(QT ), such that (un)t ∈

L2(0, T ; H−1(Ω)) + L1(QT ), which is a weak solution of problem (5).



Taking un as test function in the weak formulation of (5), we get

∫

Ω
un(T )2 −

∫ T

0
〈un, (un)t〉+

∫

QT

|∇un|2 +
∫

QT

|un|2γ|∇un|2 =

=
∫

QT

Tn(|un|p−2un)un +
∫

Ω
u2

0 ≤
∫

QT

|un|p +
∫

Ω
u2

0.

Since
∫ T
0 〈un, (un)t〉 = 1

2
[
∫
Ω un(T )2 − ∫

Ω u2
0], it follows that

1

2

∫

Ω
un(T )2 +

∫

QT

|∇un|2 +
∫

QT

|un|2γ|∇un|2 ≤
∫

QT

|un|p +
1

2

∫

Ω
u2

0. (6)

Applying Poincaré’s inequality and dropping nonnegative terms, we obtain

C1

∫

QT

|un|2γ+2 ≤
∫

QT

|un|2γ|∇un|2 ≤
∫

QT

|un|p +
1

2

∫

Ω
u2

0.

Since p < 2γ + 2, it follows from Young’s inequality that
∫

QT

|un|2γ+2 ≤ C2,

where C2 only depends on ‖u0‖∞ and |Ω|.
Now, we prove that the sequence (un)n is bounded in any Lλ(QT ) with λ < ∞.

To this end, we state the following claim:
If for some s > 0 the sequence (un)n is bounded in Lp+s(QT ), by a con-

stant only depending on the parameters of our problem, then it is also bounded in
L2(γ+1)+s(QT ) by a similar constant.

Take |un|sun as test function in the weak formulation of (5), then

1

s + 2

∫

Ω
|un(T )|s+2 +

∫

QT

∇un · ∇(|un|sun) +
∫

QT

|un|2γ+s|∇un|2 ≤

≤
∫

QT

|un|p+s +
1

s + 2

∫

Ω
|u0|s+2.

Thus, by Poincaré’s inequality, it follows that

∫

QT

|un|2(γ+1)+s ≤ C3

∫

QT

|un|2γ+s|∇un|2 ≤ C3

∫

QT

|un|p+s +
C3

s + 2

∫

Ω
|u0|s+2.

Thus, our claim is proved.
As a consequence, an iterative procedure gives us that (un)n is bounded in

Lλ(QT ) for all λ < ∞. Indeed, if we consider s1 such that p + s1 = 2γ + 2,
taking into account that (un)n is bounded in L2γ+2(QT ), then it is bounded in
L4(γ+1)−p(QT ). Now, consider s2 such that p+ s2 = 4(γ +1)− p and deduce that
(un)n is bounded in L6(γ+1)−2p(QT ). Hence, it is straightforward that the sequence
(un)n is bounded in L2(γ+1)+sk(QT ) for all k ∈ IN , where sk = k(2γ + 2 − p).
Since sk →∞, it follows that (un)n is bounded in any Lλ(QT ), as desired.

Next, take Gk(un) as test function in the weak formulation of (5), where the
function Gk is defined by Gk(r) = r−Tk(r). Then, denoting by Ik the primitive
of Gk such that Ik(0) = 0, we get

∫

Ω
Ik(un)(T ) +

∫

QT

|∇Gk(un)|2 +
∫

QT

un|un|2γ−1Gk(un) =



=
∫

QT

un|un|p−2Gk(un) +
∫

Ω
Ik(u0)

and so ∫

Ω
Ik(un)(T ) +

∫

QT

|∇Gk(un)|2 ≤
∫

QT

un|un|p−2Gk(un) +
∫

Ω
Ik(u0). (7)

Observe also that (un|un|p−2)∞n=1 is bounded in any Lλ(QT ) for λ > N
2

+ 1.
From this fact and (7), using the L∞-estimate procedure introduced by Aronson
and Serrin in [2], we deduce that (un)n is bounded in L∞(QT ). Taking n large
enough, we get Tn(|un|p−2un) = |un|p−2un, so that we conclude that un is a weak
solution of problem (2).

Finally, if the initial datum u0 is nonnegative, then (by Lemma 2.1) each un

can be taken nonnegative and so is the obtained weak solution.

3 L1 data

In this section we use the following definition of weak solution:

Definition 3.1 Given u0 ∈ L1(Ω), by a weak solution of problem (2) in QT we
mean a function u ∈ C([0, T ]; L1(Ω))∩L2(0, T ; H1

0 (Ω)) satisfying |u|p−1 ∈ L1(QT ),
|u|2γ−1|∇u|2 ∈ L1(QT ) and

−
∫

QT

uφt +
∫

QT

∇u · ∇φ +
∫

QT

|u|2γ−2u|∇u|2φ =
∫

QT

|u|p−2uφ +
∫

Ω
u0φ(0)

for all φ ∈ L2(0, T ; H1
0 (Ω))∩L∞(QT )∩W 1,∞(0, T ; L∞(Ω)) such that φ(T ) = 0 in

Ω.
As above, a global weak solution of (2) is a solution in QT for all T > 0.

Theorem 3.1 For every u0 ∈ L1(Ω), there exists a weak solution of problem (2).
This weak solution can be nonnegative if u0 is so.

Proof: Let T > 0 be fixed and let (u0n)∞n=1 be a sequence in H1
0 (Ω) ∩ L∞(Ω)

such that
u0n → u0 in L1(Ω) (8)

and ‖u0n‖1 ≤ ‖u0‖1 for all n ∈ IN . Consider the following approximating problems
in QT :





(un)t −∆un + un|un|2γ−2|∇un|2 = |un|p−2un in QT := Ω×]0, T [;

un = 0 on ST := ∂Ω×]0, T [;

un(x, 0) = u0n(x) in Ω.

(9)

By Theorem 2.1, there exists un which is a weak solution of problem (9); observe
that if u0 ≥ 0, then we may pick un ≥ 0. Taking T1(un)χ(0,t) as test function in
the weak formulation of (9), it follows that

∫

Ω
J1(un(t)) +

∫

Qt

|∇T1(un)|2 +
∫

Qt

T1(un)un|un|2γ−2|∇un|2 =

=
∫

Qt

T1(un)un|un|p−2 +
∫

Ω
J1(u0n),

(10)



where we denote J1(r) =
∫ r
0 T1(s)ds.

1.- A priori estimates

Since
∫

QT

T1(un)un|un|2γ−1|∇un|2 ≥
∫

{|un|>1}∩QT

|un|2γ−1|∇un|2,

having in mind (10) for t = T , it follows that

∫

{|un|>1}∩QT

|un|2γ−1|∇un|2 ≤
∫

QT

T1(un)un|un|p−2 +
∫

Ω
J1(u0n) ≤

≤ |QT |+
∫

{|un|>1}∩QT

|un|p−1 +
∫

Ω
|u0n| ≤ C + C

∫

{|un|>1}∩QT

(|un| − 1)p−1.

Consequently, denoting G1(r) = r − T1(r), we get the inequality

∫

{|un|>1}∩QT

|un|2γ−1|∇un|2 ≤ C + C
∫

{|un|>1}∩QT

|G1(un)|p−1,

which yields

(
γ + (1/2)

)−2
∫

QT

∣∣∣∇|G1(un)|γ+(1/2)
∣∣∣
2

=
∫

{|un|>1}∩QT

|un|2γ−1|∇un|2 ≤

≤ C + C
∫

QT

|G1(un)|p−1.

Now Poincaré’s inequality implies

∫

QT

|G1(un)|2γ+1 ≤ C + C
∫

QT

|G1(un)|p−1,

and from here, using Young’s inequality, we deduce

∫

QT

|G1(un)|2γ+1 ≤ C

for all n ∈ IN ; consequently

∫

QT

|un|2γ+1 ≤ C for all n ∈ IN, (11)

where C only depends on the parameters γ, p, |QT | and ‖u0‖1. Obviously,
since p < 2γ + 2, we also have

∫

QT

up−1
n ≤ C for all n ∈ IN. (12)

Moreover, since the sequence (u0n)∞n=1 is bounded in L1(Ω) by a constant only
depending on ‖u0‖1, we obtain that the right-hand side in the equality (10) is
bounded. Hence, the following estimates hold:

sup
t∈[0,T ]

∫

Ω
|un(t)| ≤ C for all n ∈ IN, (13)



∫

QT

|∇T1(un)|2 ≤ C for all n ∈ IN, (14)

and ∫

QT

T1(un)un|un|2γ−2|∇un|2 ≤ C for all n ∈ IN. (15)

This last estimate implies
∫

QT

|∇G1(un)|2 ≤
∫

QT

T1(un)un|un|2γ−2|∇(un)|2 ≤ C for all n ∈ IN.

So that, it follows from this fact and (14) that

∫

QT

|∇un|2 ≤ C for all n ∈ IN. (16)

Furthermore, (15) and (16) imply

∫

QT

|un|2γ−1|∇un|2 ≤ C for all n ∈ IN. (17)

for all n ∈ IN .
Going back again to the equation (9), we get the boundedness of the sequence

((un)t)
∞
n=1 in the space L2(0, T ; H−1(Ω)) + L1(QT ). Using this fact and (16),

we obtain from [10], Corollary 4, that (un)∞n=1 is relatively compact in L2(QT ).
Summing up, there exists a function u ∈ L2(0, T ; H1

0 (Ω)) and a subsequence, still
denoted by (un)∞n=1, such that

un ⇀ u weakly in L2(0, T ; H1
0 (Ω)) (18)

and
un → u in L2(QT ) and a.e. in QT . (19)

Thus, in particular, u can be taken nonnegative if u0 ≥ 0.
We also deduce that

|un|p−1 → |u|p−1 in L1(QT ) (20)

Indeed, because of (12), we just have to show that the sequence (|un|p−1)∞n=1 is
equi-integrable, but it is straighforward taking (11) and Hölder’s inequality into
account.

2.- Convergence of gradients

Our aim is to prove that

∇Tk(un) → ∇Tk(u) in L2(QT ) for all k ∈ IN, (21)

where 0 < ε < T . From this fact we also deduce that

∇un → ∇u a.e. in QT . (22)

To prove (21), we have to regularize our approximating sequence. We begin by
decomposing (un)t = β1n +β2n where β1n ∈ L2(0, T ; H−1(Ω)) and β2n ∈ L1(QT ).
Now applying [3] Lemma 2.2 to each un − u0n and then adding u0n to the



obtained sequence, we can consider a sequence (znσ)∞σ=1 in L2([0, T ]; H1
0 (Ω)) such

that znσ(0) = uon, and (znσ)t = β1nσ + β2nσ, where β1nσ ∈ L2(0, T ; H−1(Ω)),
β2nσ ∈ L1(QT ), and satisfying the following convergences as σ goes to infinity:





znσ → un in L2(0, T ; H1
0 (Ω))

β1nσ → β1n in L2(0, T ; H−1(Ω))

β2nσ → β2n in L1(QT ).

(23)

On the other hand, we regularize the initial datum by taking v0ν ∈ H1
0 (Ω) such

that 



0 ≤ v0ν ≤ k for all ν ∈ IN

v0ν → Tku0 in L1(Ω)

1

ν

∫

Ω
|∇v0ν |2 → 0 as ν →∞;

(24)

for which is enough to consider the solution of the following problem





− 1
ν
∆v0ν + v0ν = Tk(u0) in Ω

v0ν = 0 on ∂Ω.

Furthermore, we consider the time-regularization function introduced in [6] (see
also [9]): for a fixed ν ∈ IN and a given function w ∈ L2(0, T ; H1

0 (Ω)), we set

wν(t) = ν
∫ t

0
w(x, s)eν(s−t)ds + e−νtv0ν

for t ∈ [0, T ]. Applying this regularization to the truncatures Tk(um) and having
in mind (24), we have that





|(Tk(um))ν | ≤ k

(
(Tk(um))ν

)
t
= −ν(Tk(um))ν + νTk(um)

(Tk(um))ν → Tk(um) in L2(0, T ; H1
0 (Ω)) as ν →∞.

(25)

Given a number ε, 0 < ε < T , we consider the following two real functions ψ
and ϕ. On the one hand, ψ is a nonnegative and decreasing function such that
ψ ∈ C1([0, T ]), ψ(T ) = 0 and ψ(t) = 1 for all t ∈ [0, T − ε]. On the other hand,
ϕ is a Lipschitz continuous function on IR satisfying ϕ(0) = 0 and ϕ(s)s ≥ 0
for all s ∈ IR. Moreover, from now on, we denote by o(m,n, ν) any quantity I
satisfying

lim
ν→∞

(
lim

n→∞( lim
m→∞ I)

)
= 0;

likewise o(n, ν) denotes a quantity such that limν→∞(limn→∞ I) = 0.
Our next step is to prove that

〈(un)t, ψ ϕ(Tk(un)− (Tk(um))ν)〉 ≥ o(m,n, ν). (26)



For the sake of brevity, we set w = ψ ϕ(Tk(un)−(Tk(um))ν) and wσ = ψ ϕ(Tk(znσ)−
(Tk(um))ν). Then

〈(un)t, w〉 = lim
σ→∞〈(znσ)t, wσ〉 = lim

σ→∞(I1 + I2 + I3),

where
I1 =

∫

QT

(Tk(znσ)− (Tk(um))ν)twσ

I2 =
∫

QT

((Tk(um))ν)twσ

I3 =
∫

QT

(Gk(znσ))twσ.

We are going to handle the above integrals separately.
Let φ be the primitive of ϕ such that φ(0) = 0; since ϕ is nondecreasing, φ

a nonnegative function. Moreover, taking into account that ψ′ ≤ 0, we have that

I1 =
∫

QT

ψ
d

dt

(
φ(Tk(znσ)− (Tk(um))ν)

)
=

= −
∫

QT

ψ′ φ(Tk(znσ)− (Tk(um))ν)−
∫

Ω
φ(Tk(u0n)− Tk(v0ν))

≥ −
∫

Ω
φ(Tk(u0n)− Tk(v0ν)).

From here, by (25), it follows that

I1 ≥ o(m,n, ν). (27)

On the other hand, it is not difficult to see that

lim
n→∞

(
lim

m→∞ ( lim
σ→∞ I2)

)
≥ 0. (28)

We next decompose I3 integrating by parts as follows:

I3 = −
∫

QT

Gk(znσ)ψ′ ϕ(Tk(znσ)− (Tk(um))ν)−

−
∫

QT

Gk(znσ)ψ ϕ′(Tk(znσ)− (Tk(um))ν) (Tk(znσ)− (Tk(um))ν)t−

−
∫

Ω
Gk(uon)ϕ(Tk(u0n)− Tk(v0ν)) = J1 + J2 + J3.

Then,

lim
n→∞

(
lim

m→∞ ( lim
σ→∞ J1)

)
= −

∫

QT

Gk(u)ψ′ ϕ(Tk(u)− (Tk(u))ν) =

= −
∫

{|u|>k}
(u− k signu)ψ′ ϕ(Tk(u)− (Tk(u))ν).

Now, since |(Tk(u))ν | ≤ k, the last integral is nonnegative and so it yields

lim
n→∞

(
lim

m→∞ ( lim
σ→∞ J1)

)
≥ 0. (29)



Proceeding in a similar way, it is easy to see




limn→∞
(

limm→∞ ( limσ→∞ J2)
)
≥ 0

limν→∞ ( limn→∞ J3) = 0.

(30)

From (27), (28), (29) and (30), it follows that (26) is proved.
Taking w as test function in the weak formulation of (9); by (26), we have

o(n,m, ν) +
∫

QT

∇un · ∇w +
∫

QT

|un|2γ−2un|∇un|2w ≤

≤
∫

QT

|un|p−2unw.

(31)

We prove (21) by taking limits in the above inequality and for doing so we now
study each integral in (31) separately.

First of all, we deal with the right hand side of (31). Since (Tk(un))ν → (Tk(u))ν

a.e. in QT , and |un|p−1|w| ≤ |un|p−1ϕ(2k) ∈ L1(QT ), by Lebesgue’s dominated
convergence theorem,

lim
ν→∞

(
lim

n→∞ ( lim
m→∞

∫

QT

|un|p−2unw )
)

= 0. (32)

We next turn to consider the last term in the left hand side of (31). Note that

lim
m→∞

∫

QT

|un|2γ−2un|∇un|2w =

=
∫

{|un|<k}
|Tk(un)|2γ−2Tk(un)ψ ϕ(Tk(un)− (Tk(u))ν)|∇Tk(un)|2+

+
∫

{|un|≥k}
|un|2γ−2unψ ϕ(Tk(un)− (Tk(u))ν)|∇un|2,

where the last term in the above formula is nonnegative; moreover,

∣∣∣
∫

{|un|<k}
|Tk(un)|2γ−2Tk(un)ψ ϕ(Tk(un)− (Tk(u))ν)|∇Tk(un)|2

∣∣∣ ≤

≤
∫

QT

k2γ−1ψ|ϕ(Tk(un)− (Tk(u))ν)| |∇Tk(un)|2 ≤

≤ 2
∫

QT

k2γ−1ψ|ϕ(Tk(un)− (Tk(u))ν)| |∇Tk(un)−∇Tk(u)|2+

+2
∫

QT

k2γ−1ψ|ϕ(Tk(un)− (Tk(u))ν)| |∇Tk(u)|2.
Since

lim
ν→∞

(
lim

n→∞ 2
∫

QT

k2γ−1ψ|ϕ(Tk(un)− (Tk(u))ν)| |∇Tk(u)|2
)

= 0,

it follows that

lim
m→∞

∫

QT

|un|2γ−2unψ ϕ(Tk(un)− (Tk(um))ν)|∇un|2 ≥

≥ −2
∫

QT

k2γ−1ψ|ϕ(Tk(un)− (Tk(u))ν)| |∇Tk(un)−∇Tk(u)|2 + o(n, ν).

(33)



We finally take limits in the term
∫
QT
∇un · ∇w of (31). Having in mind that

∇(Tk(um))ν ⇀ ∇(Tk(u))ν weakly in L2(QT ) as m →∞,

we get that

lim
m→∞

∫

QT

∇un · ∇w =
∫

QT

ψ∇un · ∇(Tk(un)− (Tk(u))ν) ϕ′(Tk(un)− (Tk(u))ν).

By denoting

H1 =
∫

QT

ψ∇Tk(un) · ∇(Tk(un)− (Tk(u))ν) ϕ′(Tk(un)− (Tk(u))ν)

and
H2 =

∫

QT

ψ∇Gk(un) · ∇(Tk(un)− (Tk(u))ν) ϕ′(Tk(un)− (Tk(u))ν),

it yields limm→∞
∫
QT
∇un · ∇w = H1 + H2.

Obviously,

lim
n→∞H2 =

∫

QT

ψ∇Gk(u) · ∇(Tk(u)− (Tk(u))ν) ϕ′(Tk(u)− (Tk(u))ν) =

= −
∫

QT

ψ∇Gk(u) · ∇((Tk(u))ν) ϕ′(Tk(u)− (Tk(u))ν).

Thus,

lim
ν→∞ ( lim

n→∞H2) = −
∫

QT

ψ∇Gk(u) · ∇Tk(u) ϕ′(0) = 0.

With respect to H1, we obtain that

H1 =
∫

QT

ψ∇Tk(un) · ∇(Tk(un)− (Tk(u))) ϕ′(Tk(un)− (Tk(u))ν)+

+
∫

QT

ψ∇Tk(un) · ∇(Tk(u)− (Tk(u))ν) ϕ′(Tk(un)− (Tk(u))ν).

(34)

On the one hand, we have

∫

QT

ψ∇Tk(un) · ∇(Tk(un)− (Tk(u))) ϕ′(Tk(un)− (Tk(u))ν) =

=
∫

QT

ψ|∇(Tk(un)− (Tk(u)))|2 ϕ′(Tk(un)− (Tk(u))ν)+

+
∫

QT

ψ∇Tk(u) · ∇(Tk(un)− (Tk(u))) ϕ′(Tk(un)− (Tk(u))ν)

and it is straightforward that

lim
ν→∞

(
lim

n→∞

∫

QT

ψ∇Tk(u) · ∇(Tk(un)− (Tk(u))) ϕ′(Tk(un)− (Tk(u))ν)
)

= 0.

On the other hand,

lim
ν→∞

(
lim

n→∞

∫

QT

ψ∇Tk(un) · ∇(Tk(u)− (Tk(u))ν) ϕ′(Tk(un)− (Tk(u))ν)
)

= 0.



Hence, it follows from (34) that

H1 =
∫

QT

ψ|∇(Tk(un)− (Tk(u)))|2 ϕ′(Tk(un)− (Tk(u))ν) + o(n, ν).

As a consequence, we get

lim
m→∞

∫

QT

∇un · ∇w = H1 + H2 =

=
∫

QT

ψ|∇(Tk(un)− (Tk(u)))|2 ϕ′(Tk(un)− (Tk(u))ν) + o(n, ν).

(35)

Taking into account (32), (33) and (35), we may take limits in (31) obtaining

∫

QT

ψ|∇(Tk(un)− (Tk(u)))|2Φ ≤ o(m,n, ν), (36)

where Φ = ϕ′(Tk(un)− (Tk(u))ν)−2k2γ−1|ϕ(Tk(un)− (Tk(u))ν)|. Choosing ϕ(s) =
seλs2

, with λ satisfying ϕ′(s)− 2k2γ−1|ϕ(s)| ≥ 1/2, it follows from (36) that

∫

QT−ε

|∇(Tk(un)− (Tk(u)))|2 ≤
∫

QT

ψ|∇(Tk(un)− (Tk(u)))|2 ≤ o(m,n, ν)

and so
∇Tk(un) → ∇Tk(u) in L2(QT−ε).

Observe that we may always extend our problem considering QT+ε instead of
QT (as in [7] or in [5]); therefore, working as before we have that (21) holds true.

3.- u is a weak solution

In order to prove that u is a weak solution of problem (2) in QT several facts
are needed:

1.- |u|2γ−1|∇u|2 ∈ L1(QT ),

2.- u ∈ C([0, T ]; L1(Ω)) and

3.- the weak formulation holds.

The first condition is a consequence of proving

|un|2γ−1|∇un|2 → |u|2γ−1|∇u|2 in L1(QT ). (37)

By (19) and (22), we already know that this sequence converges a.e. in QT so, on
account of Vitali’s theorem, only the proof of the equi-integrability is necessary. Let
E be a measurable subset of QT , then

∫

E
|un|2γ−1|∇un|2 =

∫

E∩{|un|<k}
|un|2γ−1|∇un|2 +

∫

E∩{|un|≥k}
|un|2γ−1|∇un|2 ≤

≤ k2γ−1
∫

E
|∇Tk(un)|2 +

∫

{|un|≥k}
|un|2γ−1|∇un|2.

(38)



We estimate the last integral by taking T1(Gk−1(un)) in the weak formulation of
problem (9). Indeed, denoting Θ(r) =

∫ r
0 T1(Gk−1(s)) ds, we obtain

∫

Ω
Θ(un(t)) +

∫

QT

∇un · ∇T1(Gk−1(un)) +
∫

QT

|un|2γ−2unT1(Gk−1(un))|∇un|2 =

=
∫

QT

|un|2p−2unT1(Gk−1(un)) +
∫

Ω
Θ(u0n).

(39)
Now observe that

∫

{|un|≥k}
|un|2γ−1|∇un|2 =

∫

{|un|≥k}
|un|2γ−2unT1(Gk−1(un))|∇un|2 ≤

≤
∫

{|un|≥k}
|un|2γ−2unT1(Gk−1(un))|∇un|2.

From here, using (39), it yields

∫

{|un|≥k}
|un|2γ−1|∇un|2 ≤

∫

QT

|un|p−2unT1(Gk−1(un)) +
∫

Ω
Θ(u0n) ≤

≤
∫

{|un|≥k−1}
|un|p−1 +

∫

{|un|≥k−1}
|u0n|.

So, it follows from (8) and (20) that

lim
k→∞

∫

{|un|≥k}
|un|2γ−1|∇un|2 = 0.

On the other hand, since ∇Tk(un) → ∇Tk(u) in L2(QT ), we also have that

lim
|E|→0

∫

E
|∇Tk(un)|2 = 0.

Hence, going back to (38), we can conclude that

lim
|E|→0

∫

E
|un|2γ−1|∇un|2 = 0

and so this sequence is equi-integrable.
Since un ∈ C([0, T ]; L2(Ω)), in order to see that u ∈ C([0, T ]; L1(Ω)), we only

have to prove that
un → u in C([0, T ]; L1(Ω)). (40)

To do this fix t ∈ [0, T ], and take Tk(un − um)χ(0,t) as test function in the weak
formulation of un and −Tk(un−um)χ(0,t) in that of um; adding up both identities
we deduce that

∫

Ω
Jk(un(t)− um(t)) +

∫

Qt

∇(un − um) · ∇Tk(un − um)+

+
∫

Qt

[
|un|2γ−2un|∇un|2 − |um|2γ−2um|∇um|2

]
Tk(un − um) =

=
∫

Qt

[
|un|2p−2un − |um|2p−2um

]
Tk(un − um) +

∫

Ω
Jk(u0n − u0m),



where Jk is the primitive of Tk such that Jk(0) = 0. From here, we obtain
a suitable inequality by taking into account that for every r ∈ IR, Jk(r)/k ↑
|r| as k ↓ 0. Indeed, we first disregard a nonnegative term and perform easy
manipulations, getting

∫

Ω
Jk(un(t)− um(t)) ≤ k

∫

QT

∣∣∣|un|2γ−2un|∇un|2 − |um|2γ−2um|∇um|2
∣∣∣+

+k
∫

QT

∣∣∣|un|p−2un − |um|p−2um

∣∣∣ + k
∫

Ω
|u0n − u0m|.

Next, we divide this inequality by k and let k go to 0 by applying the monotone
convergence theorem, obtaining

∫

Ω
|un(t)− um(t)| ≤

∫

QT

∣∣∣|un|2γ−2un|∇un|2 − |um|2γ−2um|∇um|2
∣∣∣+

+
∫

QT

∣∣∣|un|p−2un − |um|p−2um

∣∣∣ +
∫

Ω
|u0n − u0m|.

Hence,

sup
t∈[0,T ]

∫

Ω
|un(t)− um(t)| ≤

∫

QT

∣∣∣|un|2γ−2un|∇un|2 − |um|2γ−2um|∇um|2
∣∣∣+

+
∫

QT

∣∣∣|un|p−2un − |um|p−2um

∣∣∣ +
∫

Ω
|u0n − u0m|.

Thus, it follows from (8), (20) and (37), that (un)∞n=1 is a Cauchy sequence in
C([0, T ]; L1(Ω)) and consequently (40) holds true.

To finish the proof, we consider a test function in the weak formulation of the
approximating problem (9) and take limits as n tends to ∞, having in mind
(8), (18), (19), (20) and (37). Therefore, we deduce that u is a weak solution of
problem (2) and so the proof of theorem (3.1) is concluded.

4 Acknowledgements

The first and fourth authors have partially been supported by the Spanish DGICYT,
Proyecto PB98-1442.

The second and third author wish to thank the warm hospitality of the Departa-
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