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Abstract. In the present paper we study the Dirichlet problem for an equation involving

the 1–Laplacian and a total variation term as reaction, namely:

−div
( Du

|Du|

)
= |Du|+ f(x) .

We prove a strong multiplicity result: we show that, for any positive Radon measure concen-

trated in a set away from the boundary and singular with respect to a certain capacity, there
exists an unbounded solution, which is infinite on the set where the measure is concentrated.

These results can be viewed as the analogue for the 1–Laplacian operator of some known

multiplicity results obtained by Abdellaoui, Dall’Aglio, Peral and by Hamid, Bidaut–Veron.
We show explicit examples of multiplicity as well.

1. Introduction and Statement of the Main Result

The starting point of this paper lies in the paper [6] by Andreu, Dall’Aglio and Segura de
León. In that paper, existence and uniqueness results for problem

(1)

 u− div
( Du
|Du|

)
= |Du|+ f(x) in Ω ;

u = 0 on ∂Ω ;

were obtained, where Ω is a bounded open subset of RN . The main result of that article provides
a bounded solution for every datum f(x) belonging to Lm(Ω), with m > N (see [6, Theorem
1]). Knowing that for small enough data the solution is the trivial one (see [22, Theorem 4.2]),
it is further shown that this is the unique bounded solution (see [6, Proposition 4]).

On the other hand, in [13], the authors study problem

(2)

 −div
( Du
|Du|

)
= |Du|+ f(x) in Ω ;

u = 0 on ∂Ω ;

showing a criterion on the datum to determine when the unique solution is the trivial one. The
question dealt in the present paper is whether there exists some other solution (which must be
unbounded). We will focus on problem (2) for the sake of simplicity.
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In the p–Laplacian setting (p > 1) problem (2) has been studied in [2, 19, 20]. The main
result of the present paper can be seen as a translation of those to our setting. Recall that
Abdellaoui, Dall’Aglio and Peral in [2] the following multiplicity result for the Laplacian was
proved:

Let f ∈ Lm(Ω) be nonnegative and small enough, wherem > N/2. For any positive Radon
measure µ which is concentrated on a set which has zero capacity, there exists a solution uµ to
problem

(3)

{
−∆uµ = |∇uµ|2 + f(x) in Ω ;

uµ = 0 on ∂Ω

which is unbounded near the set where the measure is concentrated.
It must be noted that the results in those papers rely on a Cole–Hopf change of unknown,

which does not work in the case p = 1. The absence of any kind of Cole–Hopf change of
unknown is indeed one of the biggest difficulties to deal with multiplicity in our framework.
Another difficulty comes from the definition of solution to problems involving the 1–Laplacian
operator (as introduced in [4] by Andreu, Ballester, Caselles and Mazón, see also [5]). Indeed,
the suitable energy space is BV (Ω), the space of all functions of bounded variation, and this

notion relies on a bounded vector field z which plays the role of
Du

|Du|
in the sense that it

satisfies ‖z‖∞ ≤ 1 and (z, Du) = |Du| (where (z, Du) stands for a type of dot product of z and
Du). Moreover, the equation holds, so that −div z = |Du|+ f is just a Radon measure. In our
computations we need to manipulate products of the form (z, Du). According to the Anzellotti
theory, (z, Du) is well–defined as a Radon measure whenever div z is a Radon measure and
u ∈ BV (Ω) ∩ C(Ω) ∩ L∞(Ω). This last condition can be relaxed to avoid the continuity of
u, namely: div z a Radon measure and u ∈ BV (Ω) ∩ L∞(Ω) (see [11], see also [23, 10] ).
Nevertheless, this is not enough to deal with unbounded solutions. For this reason, we have to
extend the Anzellotti theory (see Section 3 below).

Despite all these difficulties, we can prove the multiplicity of solutions for the 1–Laplacian.
Being a very singular operator, the result we obtain is not as sharp as the one stated for the
Laplacian. Indeed, measures are assumed to be singular with respect to a stronger capacity
and must be zero near the boundary of Ω. Nevertheless, our result is sufficient to show wild
multiplicity of solutions:

Theorem 1.1. Let f ∈ Lm(Ω), with m > N , be nonnegative and small enough to satisfy

‖f‖m <
(N −m′(N − 1)

N

)m−1
m |Ω|

N−1
N − 1

m′

SN,1
,

where SN,1 denotes the best constant in the Sobolev embedding BV (Ω) ↪→ LN/(N−1)(Ω).
Let µ be a positive Radon measure which is singular with respect to the q–capacity for

some 1 < q (that is, it is concentrated on a set E of zero W 1,q–capacity). Assume also that the
distance from E to ∂Ω is positive.
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Consider a renormalized solution vp of

(4)

 −∆p(vp) = f(x)
(

1 +
vp
p− 1

)p−1

+ µ in Ω ;

vp = 0 on ∂Ω ;

and set up = (p − 1) log
(
1 +

vp
p−1

)
. Then the “sequence” {up} converges, as p goes to 1, to a

solution uµ of problem

(5)

 −div
( Duµ
|Duµ|

)
= |Duµ|+ f(x) in Ω ;

uµ = 0 on ∂Ω ;

in the sense of Definition 4.1 below. This solution satisfies

(6) eδuµ ∈ BV (Ω) , for all 0 < δ < 1 .

and

(7) −div (euµz) = euµf + µ , in D′(Ω) ,

where z ∈ L∞(Ω;RN ) is the vector field appearing in Definition 4.1 below.

The plan of this paper is the following. The next section is devoted to preliminaries: we
introduce our notation, the notions of capacity and renormalized solution as well as auxiliary
results on BV–functions. Section 3 is devoted to extend the Anzellotti theory of L∞–divergence–
measure vector fields to our needs. The multiplicity Theorem 1.1 is proved in Section 4, while
the last Section deals with radial explicit solutions.

2. Preliminaries

2.1. General notation. From now on, we fix an integer N ≥ 2. The symbol HN−1(E) stands
for the (N − 1)–dimensional Hausdorff measure of a set E ⊂ RN and |E| for its Lebesgue
measure. Moreover, Ω will always denote an open subset of RN with Lipschitz boundary. Thus,
an outward normal unit vector ν(x) is defined for HN−1–almost every x ∈ ∂Ω.

The space of all C∞–functions having compact support in Ω is denoted by C∞0 (Ω). The
symbol Lq(Ω), with 1 ≤ q ≤ ∞, denotes the usual Lebesgue space with respect to Lebesgue

measure and q′ is the conjugate of q: q′ =
q

q − 1
. We will denote by W 1,q

0 (Ω) the usual Sobolev

space, of measurable functions having weak gradient in Lq(Ω;RN ) and zero trace on ∂Ω. The

dual space of W 1,q
0 (Ω) will be denoted by W−1,q′(Ω), we recall that its elements can be written

as divF for some F ∈ Lq′(Ω;RN ). Finally, if 1 ≤ p < N , we will denote by p∗ = Np/(N − p)
its Sobolev conjugate exponent and by SN,p the best constant in the embedding W 1,p

0 (Ω) ↪→
Lp
∗
(Ω), that is, (∫

Ω

|u|p
∗
)p/p∗

≤ SN,p
∫

Ω

|∇u|p .

The truncation function will be use throughout this paper. Given k > 0, it is defined by

(8) Tk(s) = min{|s|, k} sign (s) ,
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for all s ∈ R. Moreover we will denote by Gk(s) the function defined by

Gk(s) = s− Tk(s) .

2.2. Capacity. Let 1 ≤ p < N . For every compact set K ⊂ Ω, we define its p–capacity with
respect to Ω as

cap1,p(K,Ω) = inf

{∫
Ω

|∇u|p : u ∈W 1,p
0 (Ω), u ≥ χK almost everywhere in Ω

}
(we will use the convention that inf ∅ = +∞). For any open set U ⊂ Ω, its p–capacity is then
defined by

cap1,p(U,Ω) = sup
{

cap1,p(K,Ω) : K is a compact subset of Ω
}
.

Finally, given a Borelian subset B ⊂ Ω the definition is extended by setting:

cap1,p(B,Ω) = inf
{

cap1,p(U,Ω) : U open subset of Ω, B ⊂ U
}
.

We point out that p–capacity is not a Radon measure, although it is an outer measure.
Using the definition of capacity, it is easy to see that 1 < p < q and cap1,q(A,Ω) = 0 imply

cap1,p(A,Ω) = 0 as well as HN−1(A) = 0.

2.3. Radon measures. We recall that a Radon measure is a distribution of order 0 and that
every positive distribution T , which is a distribution satisfying 〈T, ϕ〉 ≥ 0 for all nonnegative
ϕ ∈ C∞0 (Ω), is a nonnegative Radon measure. Given a Radon measure µ, we denote by |µ|
its total variation. The Lebesgue spaces with respect to µ are denoted by Lq(Ω, µ), where
1 ≤ q ≤ ∞.

For a Radon measure µ in Ω and a Borel set A ⊆ Ω the measure µ A is defined by
(µ A)(B) = µ(A ∩ B) for any Borel set B ⊆ Ω. If a measure µ is such that µ = µ A for a
certain Borel set A, the measure µ is said to be concentrated on A.

Let µ be a Radon measure in Ω, we say that µ is singular with respect to the p–capacity
if it is concentrated on a subset E ⊂ Ω such that

cap1,p(E,Ω) = 0 ,

and we say that it is absolutely continuous with respect to the p–capacity if cap1,p(E,Ω) = 0
implies µ(E) = 0. Although the p–capacity is not a measure, every Radon measure µ can
be decomposed as µ = µa + µs, where µa is absolutely continuous and µs is singular, with
respect to the p–capacity. Moreover, thanks to [9, Theorem 2.1], every Radon measure µ which
is absolutely continuous with respect to the p–capacity can be written as µ = f − divF , where
f ∈ L1(Ω) and F ∈ Lp′(Ω;RN ).

2.4. Definition of renormalized solution. Two definitions of solution must be considered,
those to problem (4) and to problem (5). We point out that definition of a solution to problem
(5) relies on the theory of L∞–divergence–measure vector fields, which will be studied in the
next section, so that we postpone the definition of solution to problem (5) to Section 4. We now
introduce the concept of renormalized solution to problem (4), we refer to [14] for a detailed
study of this concept.
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Given the measure µ, we decompose it as µ = µ0 + µ+
s − µ−s , where µ0 is absolutely

continuous with respect to the p–capacity, while µ+
s and µ−s are two nonnegative measures

which are concentrated on two disjoint subsets of zero p–capacity.
Let f(x) be a function in L1(Ω), and h(s) be a real continuous function. A measurable

function v : Ω→ R is a renormalized solution to problem{
−∆p(v) = f(x)h(v) + µ in Ω ;

v = 0 on ∂Ω ;

if the following conditions hold:

(a) The function v is finite almost everywhere and Tk(v) ∈ W 1,p
0 (Ω) for all k > 0. (As a

consequence, a generalized gradient ∇v can be defined, see [8, Lemma 2.1].)
(b) The gradient satisfies |∇v|p−1 ∈ Lq(Ω) for every q < N

N−1 .

(c) fh(v) ∈ L1(Ω).
(d) For every S ∈W 1,∞(R) such that S′ has compact support in R (consequently S is constant

for |s| large and so the limits S(+∞) = lims→+∞ S(s) and S(−∞) = lims→−∞ S(s) exist),
we have∫
Ω

S′(v)ϕ|∇v|p +

∫
Ω

S(v)|∇v|p−2∇v · ∇ϕ

=

∫
Ω

f(x)h(v)S(v)ϕ+

∫
Ω

S(v)ϕdµ0 + S(+∞)

∫
Ω

ϕdµ+
s − S(−∞)

∫
Ω

ϕdµ−s

for all ϕ ∈W 1,r(Ω) ∩ L∞(Ω), with r > N , such that S(v)ϕ ∈W 1,p
0 (Ω).

2.5. BV –functions. The space BV (Ω) of functions of bounded variation is defined as the space
of functions u ∈ L1(Ω) whose distributional gradient Du is a vector valued Radon measure on
Ω with finite total variation. This space is a Banach space with the norm defined by

‖u‖BV =

∫
Ω

|u| dx+ |Du|(Ω) .

We recall that the notion of trace can be extended to any u ∈ BV (Ω) and this fact allows
us to interpret it as the boundary values of u and to write u

∣∣
∂Ω

. Moreover, it holds that the trace

is a linear bounded operator BV (Ω) → L1(∂Ω) which is onto. Using the trace, an equivalent
norm in BV (Ω) can be defined by

‖u‖ =

∫
∂Ω

|u| dHN−1 + |Du|(Ω) .

For every u ∈ BV (Ω), the Radon measure Du can be decomposed into its absolutely
continuous and singular parts with respect to the Lebesgue measure: Du = Dau + Dsu. So,
for each measurable set E, we have Dau(E) =

∫
E
∇u(x) dx, where ∇u is the Radon–Nikodým

derivative of the measure Dau with respect to the Lebesgue measure.
We denote by Su the set of all x ∈ Ω such that x is not a Lebesgue point of u. We say that

x ∈ Su is an approximate jump point of u if there exist u+(x) > u−(x) ∈ R and νu(x) ∈ SN−1

such that

lim
ρ↓0
−
∫
B+
ρ (x,νu(x))

|u(y)− u+(x)| dy = lim
ρ↓0
−
∫
B−ρ (x,νu(x))

|u(y)− u−(x)| dy = 0,
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where

B+
ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 > 0}

and

B−ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 < 0}.

We denote by Ju the set of approximate jump points of u. By the Federer-Vol’pert Theorem
[3, Theorem 3.78], we know that Su is countably HN−1–rectifiable and HN−1(Su\Ju) = 0.
Moreover, Du Ju = (u+−u−)νuHN−1 Ju. Using Su and Ju, we may split Dsu in two parts:
the jump part Dju and the Cantor part Dcu defined by

Dju = Dsu Ju and Dcu = Dsu (Ω\Su) ,

respectively. Thereby

Dju = (u+ − u−)νuHN−1 Ju.

Moreover, if x ∈ Ju, then νu(x) = Du
|Du| (x), Du

|Du| being the Radon–Nikodým derivative of Du

with respect to its total variation |Du|.
If x is a Lebesgue point of u, then u+(x) = u−(x) for any choice of the normal vector and

we say that x is an approximate continuity point of u. We define the approximate limit of u by
ũ(x) = u+(x) = u−(x). The precise representative u∗ : Ω\(Su\Ju)→ R of u is defined as equal

to ũ on Ω\Su and equal to u++u−
2 on Ju. It is well known (see for instance [3, Corollary 3.80])

that if ρ is a symmetric mollifier, then the mollified functions u ? ρε converges pointwise to u∗

in its domain.
A compactness result in BV (Ω) will be used several times in what follows. It states that

every sequence that is bounded in BV (Ω) has a subsequence which strongly converges in L1(Ω)
to a certain u ∈ BV (Ω).

To pass to the limit we will often apply that some functionals defined on BV (Ω) are lower
semicontinuous with respect to the convergence in L1(Ω). We recall that the functional defined
by

(9) u 7→ |Du|(Ω) +

∫
∂Ω

|u| dHN−1

is lower semicontinuous with respect to the convergence in L1(Ω). Similarly, if we fix ϕ ∈ C1
0 (Ω),

with ϕ ≥ 0, the functional defined by

u 7→
∫

Ω

ϕd|Du| ,

is lower semicontinuous in L1(Ω).
We also need a chain rule for functions in BV (Ω). Since we will only apply it for functions

having empty jump set, we will state it only in this simple case. If u ∈ BV (Ω)∩L∞(Ω) is such
that Dju = 0, and f is a real Lipschitz–continuous function, then v = f ◦ u belongs to BV (Ω)
and Dv = f ′(u∗)Du.

For further information concerning functions of bounded variation we refer to [3] or [26].
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3. Extending Anzellotti’s theory

In this section we will study some properties involving divergence–measure vector fields
and functions of bounded variation. Our aim is to extend the Anzellotti theory introduced in
[7].

Following [11] we define DM∞(Ω) as the space of all vector fields z ∈ L∞(Ω;RN ) whose
divergence in the sense of distributions is a Radon measure with finite total variation, i.e.,
z ∈ DM∞(Ω) if and only if div z is a Radon measure belonging to W−1,∞(Ω).

The theory of L∞–divergence–measure vector fields is due to G. Anzellotti [7] and, indepen-
dently, to G.–Q. Chen and H. Frid [11]. In spite of their different points of view, both approaches
introduce the normal trace of a vector field through the boundary and establish the same gen-
eralized Gauss–Green formula. Both also define the pairing (z, Du), where z ∈ DM∞(Ω) and
u is a certain BV –function, as a Radon measure. However, they differ in handling this concept.
In the present paper we will need that the “dot product” be defined for every u ∈ BV (Ω)
and every z ∈ DM∞(Ω) satisfying a certain condition (see Corollary 3.5 below). We begin by
recalling a result proved in [11].

Proposition 3.1. For every z ∈ DM∞(Ω), the measure µ = div z is absolutely continuous
with respect to HN−1. As a consequence, |µ| is also absolutely continuous with respect to HN−1.

Consider now µ = div z with z ∈ DM∞(Ω) and let u ∈ BV (Ω); then the precise repre-
sentative u∗ of u is equal HN−1–a.e. to a Borel function; that is, to limε→0 ρε ? u, where (ρε) is
a symmetric mollifier. Then one deduces from the Proposition 3.1 that u∗ is equal µ–a.e. to a
Borel function. So, given u ∈ BV (Ω), u∗ is always µ–measurable. Moreover, u ∈ BV (Ω)∩L∞(Ω)
implies u ∈ L∞(Ω, µ) ⊂ L1(Ω, µ).

3.1. Preservation of the norm. We point out that every div z, with z ∈ DM∞(Ω), defines

a functional on W 1,1
0 (Ω) by

〈div z, u〉W−1,∞(Ω),W 1,1
0 (Ω) = −

∫
Ω

z · ∇u .

To express this functional in terms of an integral with respect to the measure µ = div z, we
need the following Meyers–Serrin type theorem (see [3, Theorem 3.9] for its extension to BV –
functions).

Proposition 3.2. Let µ = div z, with z ∈ DM∞(Ω). For every u ∈ BV (Ω) ∩ L∞(Ω) there
exists a sequence (un)n in W 1,1(Ω) ∩ C∞(Ω) ∩ L∞(Ω) such that

(1) un → u∗ in L1(Ω, µ)

(2)
∫

Ω
|∇un| → |Du|(Ω).

(3) un|∂Ω = u|∂Ω for all n ∈ N .

(4) |un(x)| ≤ ‖u‖∞ |µ|–a.e. for all n ∈ N .
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Moreover, if u ∈ W 1,1(Ω) ∩ L∞(Ω), then one may find un satisfying, instead of (2), the
condition

(2’) un → u in W 1,1(Ω) .

Since

−
∫

Ω

z · ∇ϕ =

∫
Ω

ϕdµ

holds for every ϕ ∈ C∞0 (Ω), it is easy to obtain this equality for every W 1,1
0 (Ω) ∩ C∞(Ω).

Given u ∈ W 1,1
0 (Ω) ∩ L∞(Ω) and applying Proposition 3.2, we may find a sequence (un)n in

W 1,1
0 (Ω) ∩ C∞(Ω) satisfying (1) and (2’). It follows from

−
∫

Ω

z · ∇un =

∫
Ω

un dµ

for every n ∈ N. letting n go to infinity, that

−
∫

Ω

z · ∇u =

∫
Ω

u∗ dµ

and so

〈div z, u〉W−1,∞(Ω),W 1,1
0 (Ω) =

∫
Ω

u∗ dµ

holds for every u ∈W 1,1
0 (Ω) ∩ L∞(Ω). Then the norm of this functional is given by

‖µ‖W−1,∞(Ω) = sup

{∣∣∣ ∫
Ω

u∗ dµ
∣∣∣ :

∫
Ω

|∇u| ≤ 1

}
.

We have seen that µ = div z can be extended from W 1,1
0 (Ω) to BV (Ω) ∩ L∞(Ω). Next, we will

prove that this extension preserves the norm.

Theorem 3.3. If z ∈ DM∞(Ω), then µ = div z can be extended to BV (Ω)∩L∞(Ω) in such a
way that

‖µ‖W−1,∞(Ω) = sup

{∣∣∣ ∫
Ω

u∗ dµ
∣∣∣ : |Du|(Ω) +

∫
∂Ω

|u| dHN−1 ≤ 1

}
.

Proof. Since we already know that BV (Ω) ∩ L∞(Ω) is a subset of L1(Ω, µ), all we have to
prove is

(10)
∣∣∣ ∫

Ω

u∗ dµ
∣∣∣ ≤ ‖µ‖W−1,∞(Ω)

(
|Du|(Ω) +

∫
∂Ω

|u| dHN−1
)
.

for all u ∈ BV (Ω) ∩ L∞(Ω). This inequality will be proved in two steps.
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1) Assume first that u ∈W 1,1(Ω) ∩ L∞(Ω). Applying [7, Lemma 5.5], we find a sequence
(wn)n in W 1,1(Ω) ∩ C(Ω) such that

(1) wn|∂Ω = u|∂Ω .

(2)

∫
Ω

|∇wn| ≤
∫
∂Ω

|u| dHN−1 +
1

n
.

(3)

∫
Ω

|wn| ≤
1

n
.

(4) wn(x) = 0, if dist(x, ∂Ω) > 1
n .

(5) wn(x)→ 0, for all x ∈ Ω .

Then it yields∣∣∣ ∫
Ω

(u∗ − w∗n) dµ
∣∣∣ =

∣∣〈µ, (u− wn)〉W−1,∞(Ω),W 1,1
0 (Ω)

∣∣ ≤ ‖µ‖W−1,∞(Ω)

∫
Ω

|∇u−∇wn|

≤ ‖µ‖W−1,∞(Ω)

(∫
Ω

|∇u|+
∫
∂Ω

|u| dHN−1 +
1

n

)
.

It follows that

(11)
∣∣∣ ∫

Ω

u∗ dµ
∣∣∣ ≤ ∣∣∣ ∫

Ω

(u∗ − w∗n) dµ
∣∣∣+
∣∣∣ ∫

Ω

w∗n dµ
∣∣∣

≤ ‖µ‖W−1,∞(Ω)

(∫
Ω

|∇u| dx+

∫
∂Ω

|u| dHN−1 +
1

n

)
+
∣∣∣ ∫

Ω

w∗n dµ
∣∣∣ .

Since the sequence (wn)n tends pointwise to 0 and it is uniformly bounded in L∞(Ω), by
Lebesgue’s Theorem,

lim
n→∞

∫
Ω

w∗n dµ = 0 .

Now, taking the limit in (11) we obtain (10).
2) In the general case, we apply Proposition 3.2 and find a sequence un in W 1,1(Ω) ∩

C∞(Ω) ∩ L∞(Ω) satisfying (1)–(4). Then, it follows from∣∣∣ ∫
Ω

u∗n dµ
∣∣∣ ≤ ‖µ‖W−1,∞(Ω)

(∫
Ω

|∇un|+
∫
∂Ω

|u| dHN−1
)

for all n ∈ N

that (10) holds.

Corollary 3.4. Let z ∈ DM∞(Ω) satisfy div z = ν + f for a certain Radon measure ν and a
certain f ∈ LN (Ω). If either ν ≥ 0 or ν ≤ 0, then µ = div z can be extended to BV (Ω) and

‖µ‖W−1,∞(Ω) = sup

{∣∣∣ ∫
Ω

u∗ dµ
∣∣∣ : |Du|(Ω) +

∫
∂Ω

|u| dHN−1 ≤ 1

}
.
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Moreover, BV (Ω) ↪→ L1(Ω, µ).

Proof. Consider u ∈ BV (Ω), write u+ = max{u, 0} and, for every k > 0, apply the previous
result to Tk(u+). Then

(12)
∣∣∣ ∫

Ω

(
Tk(u+)

)∗
dµ
∣∣∣ ≤ ‖µ‖W−1,∞(Ω)

(
|DTk(u+)|(Ω) +

∫
∂Ω

Tk(u+) dHN−1
)

≤ ‖µ‖W−1,∞(Ω)

(
|Du+|(Ω) +

∫
∂Ω

u+ dHN−1
)
.

On the other hand, observe that u∗ is a ν–measurable function, so that we obtain∫
Ω

(
Tk(u+)

)∗
dµ =

∫
Ω

Tk(u+)∗ dν +

∫
Ω

Tk(u+)f

for every k > 0. We may apply Levi’s Theorem and Lebesgue’s Theorem to deduce that

lim
k→+∞

∫
Ω

(
Tk(u+)

)∗
dν =

∫
Ω

(u+)∗ dν ;

lim
k→+∞

∫
Ω

Tk(u+)f =

∫
Ω

u+f .

Thus,

lim
k→+∞

∫
Ω

(
Tk(u+)

)∗
dµ =

∫
Ω

(u+)∗ dµ .

Now taking the limit when k goes to ∞ in (12), it yields

(13)
∣∣∣ ∫

Ω

(u+)∗ dµ
∣∣∣ ≤ ‖µ‖W−1,∞(Ω)

(
|Du+|(Ω) +

∫
∂Ω

u+ dHN−1
)
.

Assume, in order to be concrete, that ν ≥ 0. Since
∫

Ω
(u+)∗ dµ− =

∫
Ω
u+f−, we already

have that (u+)∗ is µ−–integrable. Hence, as a consequence of (13), we deduce that (u+)∗ is also
µ+–integrable and so µ–integrable.

Since we may prove a similar inequality to u− = max{−u, 0}, adding both inequalities we
deduce that u∗ is µ–integrable and that∣∣∣ ∫

Ω

u∗ dµ
∣∣∣ ≤ ‖µ‖W−1,∞(Ω)

(
|Du|(Ω) +

∫
∂Ω

|u| dHN−1
)

holds true.

3.2. A Green formula. Let z ∈ DM∞(Ω) and let u ∈ BV (Ω). Assume that div z = ν + f ,
with ν a Radon measure satisfying either ν ≥ 0 or ν ≤ 0, and f ∈ LN (Ω). In the spirit of [7],
we define the following distribution on Ω. For every ϕ ∈ C∞0 (Ω), we write

(14) 〈(z, Du), ϕ〉 = −
∫

Ω

u∗ ϕdµ−
∫

Ω

uz · ∇ϕ ,

where µ = div z. Note that the previous subsection implies that every term in the above
definition has sense.
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Proposition 3.5. Let z and u be as above. The distribution (z, Du) defined previously satisfies

(15) |〈(z, Du), ϕ〉| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

d|Du|

for all open set U ⊂ Ω and for all ϕ ∈ C∞0 (U).
As a consequence, the distribution (z, Du) is actually a Radon measure. Both (z, Du) and

its total variation |(z, Du)| are absolutely continuous with respect to the measure |Du| and∣∣∣∣∫
B

d(z, Du)

∣∣∣∣ ≤ ∫
B

d|(z, Du)| ≤ ‖z‖L∞(U)

∫
B

d|Du|

holds for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.

Proof. If U ⊂ Ω is an open set and ϕ ∈ C∞0 (U), then it was proved in [23] that

(16) |〈(z, DTk(u)), ϕ〉| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

d|DTk(u)| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

d|Du|

holds for every k > 0. On the other hand,

〈(z, DTk(u)), ϕ〉 = −
∫

Ω

(
Tk(u)

)∗
ϕd(div z)−

∫
Ω

Tk(u)z · ∇ϕ .

We may let k →∞ in each term on the right hand side, due to u∗ ∈ L1(Ω, µ) and u ∈ L1(Ω).
Therefore,

lim
k→∞

〈(z, DTk(u)), ϕ〉 = 〈(z, Du), ϕ〉 ,

and so (16) implies (15).

On the other hand, for every z ∈ DM∞(Ω), a weak trace on ∂Ω of the normal component
of z is defined in [7] and denoted by [z, ν].

Proposition 3.6. Let z and u be as above. With the above definitions, the following Green
formula holds

(17)

∫
Ω

u∗ dµ+

∫
Ω

d(z, Du) =

∫
∂Ω

[z, ν]u dHN−1 ,

where µ = div z.

Proof. Applying the Green formula proved in [23], we obtain

(18)

∫
Ω

(
Tk(u)

)∗
dµ+

∫
Ω

d(z, DTk(u)) =

∫
∂Ω

[z, ν]Tk(u) dHN−1 ,

for every k > 0. In the proof of the previous Proposition, we have seen that

lim
k→∞

∫
Ω

d(z, DTk(u)) =

∫
Ω

d(z, Du) .

We may take limits in the other terms since u∗ ∈ L1(Ω, µ) and u ∈ L1(∂Ω). Hence, letting k go
to ∞ in (18), we get (17).
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4. Multiplicity of solutions

In this Section, we will assume that f is a nonnegative function belonging to Lm(Ω), with
m > N . We also assume that

(19) ‖f‖m <
( m−N
N(m− 1)

)m−1
m |Ω| 1m− 1

N

SN,1
.

The constant on the right hand side is obtained in the proof of Theorem 1.1 (see Step 1 below).
It could also been deduced from an argument by N. Grenon in [17] and [18], checking the
dependence on p > 1 of every involved constant and letting p go to 1. (It should be mentioned
that Grenon assume p > 2N

N+1 , but this hypothesis can be removed.) We point out that this
procedure leads to the same constant.

It is worth showing the translation of condition (19) to the N–norm. Indeed, Hölder’s
inequality implies

(20) ‖f‖N ≤ ‖f‖m|Ω|
1
N−

1
m <

( m−N
N(m− 1)

)m−1
m

S−1
N,1 ≤ S

−1
N,1 ,

since N ≥ 1. So, [13, Theorem 4.1] allows us to deduce that the only bounded solution to
problem (5) is the trivial solution. We now turn to define solution to problem (5), following the
concept introduced in [4].

Definition 4.1. Given f ∈ Lm(Ω), with m > N , we say that u is a solution of problem (5),
if u ∈ BV (Ω) is such that the jump part satisfies Dju = 0 and there exists a vector field
z ∈ DM∞(Ω), with ‖z‖∞ ≤ 1, satisfying

(21) −div z = |Du|+ f in D′(Ω) ,

(22) (z, Du) = |Du| as measures in Ω ,

and

(23) [z, ν] ∈ sign (−u) HN−1–a.e. on ∂Ω .

Thanks to Propositions 3.5, identity (22) has sense. Heuristically, identity (22), jointly

with ‖z‖∞ ≤ 1, leads to z =
Du

|Du|
, while (23) is a weak formulation of the Dirichlet boundary

condition.
The proof of our main Theorem below uses the following elementary technical results.

Lemma 4.2. If 1 < α < N
N−1 and 1 < p < 2, then

eαs − 1 ≤ 2
(
e
α
p s − 1

)p
+ 1

for all s ≥ 0.

Proof. Just note that every x ≥ 1 satisfies

xp =
(
(x− 1) + 1

)p ≤ 2p−1
(
(x− 1)p + 1

)
≤ 2
(
(x− 1)p + 1

)
and we may choose x = e

α
p s.
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Lemma 4.3. If 1 < α < N
N−1 and 1 < p < 2, then(

e
α
p s − 1

)p
≤ eαs − 1

for all s ≥ 0.

Proof. As in Lemma 4.2 consider x = e
α
p s and check that the real function defined by

η(x) = (x− 1)p − xp + 1 , x ≥ 1 ,

is increasing.

Proof of Theorem 1.1. Fix a positive Radon measure µ satisfying

(1) µ is concentrated in a set A
(2) dist(A, ∂Ω) > 0
(3) There exists q > 1 such that capq(A,Ω) = 0.

Since our aim is to let p go to 1, we may take q as small as we want. For instance, we may
assume that q ≤ 2 without loss of generality.

The proof of Theorem 1.1 will be developed in several stages.
Step 1: Problems with measure datum. For any 1 < p < q, consider the problem

(24)

 −∆p(vp) = f(x)
(

1 +
vp
p− 1

)p−1

+ µ , in Ω ;

vp = 0 , on Ω .

This problem has been studied in [17, Theorem 1.1] and [20, Theorem 6.2]. It follows from (20)
that

lim sup
p→1

‖f‖N
p
SN,p ≤ lim

p→1
‖f‖N |Ω|

p−1
N SN,p = ‖f‖NSN,1 < 1 ,

so that ‖f‖N
p
SN,p < 1, for p close enough to 1. Observe that the Hölder and Sobolev inequalities

imply ∫
Ω

f |w|p ≤ ‖f‖N
p
SN,p

∫
Ω

|∇w|p ,

for all w ∈W 1,p
0 (Ω). As a consequence, it yields

1 <
1

‖f‖N
p
SN,p

≤ inf

{∫
Ω
|∇w|p∫

Ω
f |w|p

: w ∈W 1,p
0 (Ω) ,

∫
Ω

f |w|p 6= 0

}
.

Thus, for p close enough to 1, we may apply [20, Theorem 6.2] and find a renormalized solution
to (24). Since data f and µ are nonnegative, it follows that vp ≥ 0.

Taking 1 − 1(
1 +

Tk(vp)
p−1

)p−1 as test function in the renormalized formulation of (24), we

obtain∫
{vp<k}

|∇vp|p(
1 +

vp
p−1

)p ≤ ∫
Ω

f
(

1 +
vp
p− 1

)p−1

+ µ(Ω)

≤
∫

Ω

f +

∫
Ω

f
( vp
p− 1

)p−1

+ µ(Ω) ≤ ‖f‖1 + ‖f‖m
∥∥∥( vp
p− 1

)p−1∥∥∥
m′

+ µ(Ω) .
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Passing to the limit as k goes to +∞, we have

(25)

∫
Ω

|∇vp|p(
1 +

vp
p−1

)p ≤ ‖f‖1 + ‖f‖m
∥∥∥( vp
p− 1

)p−1∥∥∥
m′

+ µ(Ω) .

Thus, to go on, we need an estimate of ‖vp−1
p ‖m′ , not depending on p. This is a consequence

of the regularity of renormalized solutions. Indeed, observe that we may choose the truncate
Tk(vp) as test function in the renormalized formulation of (24) and deduce that∫

{vp<k}
|∇vp|p ≤ k

∫
Ω

f
(

1 +
vp
p− 1

)p−1

+ kµ(Ω) ≤ kMp

where Mp = ‖f‖1 + ‖f‖m
∥∥∥( vp

p−1

)p−1∥∥∥
m′

+ µ(Ω). An appeal to [8, Lemma 4.1] leads to

|{vp−1
p > k}| ≤

(
SN,pMp

k

) N
N−p

, for all k > 0 .

In the setting of Marcinkiewicz spaces (see, for instance, [15, Appendix: Singular Integrals]),
this inequality states that

[
vp−1
p

]
N
N−p
≤ SN,pMp, and so[

vm
′(p−1)

p

]
N

m′(N−p)
=
[
vp−1
p

]m′
N
N−p
≤ (SN,pMp)

m′ .

On the other hand, having in mind inequality (6.5) in [15, Appendix], we deduce∫
Ω

|vp−1
p |m

′
≤ N

N −m′(N − p)
|Ω|1−

m′(N−p)
N

[
vm
′(p−1)

p

]
N

m′(N−p)

≤ N

N −m′(N − p)
|Ω|1−

m′(N−p)
N (SN,pMp)

m′

=
N

N −m′(N − p)
|Ω|1−

m′(N−p)
N (SN,p)

m′
(
‖f‖1 + ‖f‖m

∥∥∥( vp
p− 1

)p−1∥∥∥
m′

+ µ(Ω)
)m′

.

Hence,

(26) ‖vp−1
p ‖m′ ≤(

N

N −m′(N − p)

) 1
m′

|Ω| 1
m′−

(N−p)
N SN,p

(
‖f‖1 + (p− 1)−(p−1)‖f‖m‖vp−1

p ‖m′ + µ(Ω)
)
.

Note that a bound for the norm ‖vp−1
p ‖m′ can be obtained if

‖f‖m <
(N −m′(N − p)

N

)m−1
m (p− 1)p−1|Ω|

N−p
N − 1

m′

SN,p
.

The limit, as p goes to 1, on the right hand side is straightforward (since limp→1 SN,p = SN,1)
and is given by (N −m′(N − 1)

N

)m−1
m |Ω|

N−1
N − 1

m′

SN,1
.

Hence, our hypothesis (19) allows us to rearrange inequality (26) and obtain a bound for the
norm ‖vp−1

p ‖m′ for p close enough to 1. So, there is not loss of generality in assuming that q is
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small enough to perform the above manipulations for all 1 < p < q. Therefore, we have found
a bound (not depending on p) of the right hand side of (25), that is, there exists M > 0 such
that

(27) ‖f‖1 + ‖f‖m
∥∥∥( vp
p− 1

)p−1∥∥∥
m′

+ µ(Ω) ≤M , for all 1 < p < q ,

and so

(28)

∫
Ω

|∇vp|p(
1 +

vp
p−1

)p ≤M , for all 1 < p < q .

Step 2: Problems having gradient terms. In this step, we are considering the problems

(29)

{ −∆p(up) = |∇up|p + f(x) , in Ω ;

up = 0 , on Ω .

According to the results in [19, 20], the function up = (p− 1) log
(
1 +

vp
p−1

)
belongs to W 1,p

0 (Ω)

and is a solution to (29). In terms of these new functions, the estimate (28) becomes

(30)

∫
Ω

|∇up|p ≤M , for all 1 < p < q .

Applying Young’s inequality, it follows that

(31)

∫
Ω

|∇up| ≤
1

p

∫
Ω

|∇up|p +
p− 1

p
|Ω| ≤M + |Ω| , for all 1 < p < q .

(Recall that M depends on Ω, m, µ and f , but not on p.) This BV –estimate implies that there
exists u ∈ BV (Ω) satisfying (up to subsequences)

up → u pointwise a.e in Ω(32)

up → u strongly in Lr(Ω) , 1 ≤ r < N

N − 1
.(33)

On the other hand, estimate (30) is the starting point in [4] to get a suitable vector field
z. So, following [4] (see also [24, Theorem 3.5]) we get z ∈ L∞(Ω;RN ) satisfying ‖z‖∞ ≤ 1 and

(34) |∇up|p−2∇up ⇀ z , weakly in Ls(Ω;RN ) , 1 ≤ s <∞ .

Step 3: Passing to the limit in (29). Let ϕ ∈ C∞0 (Ω) be nonnegative. Taking ϕ as test
function in (29), we have∫

Ω

|∇up|p−2∇up · ∇ϕ =

∫
Ω

ϕ|∇up|p +

∫
Ω

fϕ .

Applying Young’s inequality, it yields∫
Ω

ϕ|∇up|+
∫

Ω

fϕ ≤ 1

p

∫
Ω

ϕ|∇up|p +
p− 1

p

∫
Ω

ϕ+

∫
Ω

fϕ

≤
∫

Ω

|∇up|p−2∇up · ∇ϕ+
p− 1

p

∫
Ω

ϕ
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and appealing to the lower–semicontinuity on the left hand side, we deduce∫
Ω

ϕd|Du|+
∫

Ω

fϕ ≤
∫

Ω

z · ∇ϕ .

Therefore,

(35) |Du|+ f ≤ −div z , in D′(Ω) ,

and so div z is a Radon measure. It has finite total variation since is the distributional limit of
∆p(up) and this sequence is bounded in L1(Ω), due to (30) and equation (29).

On the other hand, −div z is a Radon measure which is above an LN–function. Thus, we
may apply the results of Section 3 and so we have at our disposal a Green’s formula involving
the Radon measure (z, Du) (Proposition 3.6).

Step 4: Passing to the limit in (24). We need another estimate, this one to get the
convergence of eup . Fix 0 < δ < 1 and k > 0, and take eδTk(up) − 1 as test function in the weak
formulation of (29). Dropping nonnegative terms it yields

δ

∫
Ω

eδTk(up)|∇Tk(up)|p =

∫
Ω

(
eδTk(up) − 1

)
|∇up|p +

∫
Ω

f
(
eδTk(up) − 1

)
≥
∫

Ω

(
eδTk(up) − 1

)
|∇up|p −

∫
Ω

f .

Then rearranging and taking into account (30) we get∫
Ω

eδTk(up)|∇up|p − δ
∫

Ω

eδTk(up)|∇Tk(up)|p ≤
∫

Ω

|∇up|p +

∫
Ω

f ≤M +

∫
Ω

f

from where it follows

(1− δ)
∫

Ω

eδTk(up)|∇up|p ≤M +

∫
Ω

f ,

for all 0 < δ < 1 and all k > 0. Thanks to Levi’s Monotone Convergence Theorem, we may let
k go to +∞ and get

(1− δ)
∫

Ω

|∇
(
eδup − 1

)
|p ≤M +

∫
Ω

f ,

for all 0 < δ < 1. Hence, as a consequence of Young’s inequality we have a W 1,1
0 –estimate of

eδup − 1, and on account of (32) it yields eδu ∈ BV (Ω) for all 0 < δ < 1, as well as

eδup → eδu pointwise a.e in Ω

eδup → eδu strongly in Lr(Ω) , 1 ≤ r < N

N − 1
.

A straightforward consequence of the last convergence is

(36) eup → eu strongly in Lr(Ω) , 1 ≤ r < N

N − 1
.

(Nevertheless, we do not claim that eu ∈ BV (Ω), see Remark 4.4 below.)
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Now recalling that every renormalized solution is a distributional solution as well, take
ϕ ∈ C∞0 (Ω) as test function in (24). Then∫

Ω

|∇vp|p−2∇vp · ∇ϕ =

∫
Ω

f
(

1 +
vp
p− 1

)p−1

ϕ+

∫
Ω

ϕdµ ,

which in terms of up becomes

(37)

∫
Ω

eup |∇up|p−2∇up · ∇ϕ =

∫
Ω

feupϕ+

∫
Ω

ϕdµ .

Our next aim is to let p go to 1, to this end, we are analyzing each term in (37). On the left
hand side, we apply (36) and (34) to pass to the limit. On the other hand, (36) implies that

eup → eu in Lm
′
(Ω), so that we may also pass to the limit on the right hand side. We conclude

that

(38) −div
(
euz
)

= feu + µ , in D′(Ω) .

We note that our assumptions on µ imply that µ� cap1,q and so µ /∈ L1(Ω) +W−1,q′(Ω),

by [9, Theorem 2.1]. We deduce from (38) that eu /∈ Lq′(Ω); in particular we have u /∈ L∞(Ω).
Step 5: Dju = 0. This fact is proved in [6] for a bounded solution to problem (5) through

[6, Lemma 2]. The only modification of that proof we need in our setting is to choose λ > 3
and take λ− T1(u) as test function in Un.

Step 6: The equation −div z = |Du|+ f holds as measures. First we claim that

(39) −eudiv z ≤ eu|Du|+ euf + µ

holds as measures. (Here we do not mean that eu is integrable with respect to the positive
Radon measures −div z and |Du|.) To see our claim, for any k > 0, our starting point is
(z, DeTk(u)) ≤ |DeTk(u)| jointly with the equality

−eTk(u)div z = (z, DeTk(u))− div
(
eTk(u)z

)
.

Then, by the chain rule,

−eTk(u)div z ≤ |DeTk(u)| − div
(
eTk(u)z

)
= eTk(u)|DTk(u)| − div

(
eTk(u)z

)
.

We now choose a nonnegative ϕ ∈ C∞0 (Ω) obtaining

−
∫

Ω

ϕeTk(u)d(div z) ≤
∫

Ω

ϕeTk(u)d|DTku|+
∫

Ω

eTk(u)z · ∇ϕ .

Applying Levi’s Monotone Convergence Theorem to the measures −div z and |Du|, let k go to
infinity to get

−
∫

Ω

ϕeud(div z) ≤
∫

Ω

ϕeud|Du|+
∫

Ω

euz · ∇ϕ =

∫
Ω

ϕeud|Du|+
∫

Ω

ϕeuf +

∫
Ω

ϕdµ ,

due to (38). Therefore, (39) is proved.
Next, we will study these measures concentrated on the sets {u < k}\A, with k > 0.

Having in mind that µ (Ω\A) = 0, it follows that

−eudiv z ({u < k}\A) ≤ eu|Du| ({u < k}\A) + eufχ({u<k}\A) .



18

Observing that every term is finite, we deduce

−div z ({u < k}\A) ≤ |Du| ({u < k}\A) + fχ({u<k}\A) .

Letting k go to infinity, it yields

−div z ({u <∞}\A) ≤ |Du| ({u <∞}\A) + fχ({u<∞}\A) .

We point out that {u = +∞} ⊂ Su satisfies HN−1({u = +∞}) = 0, and so it is a null set with
respect to all the involved measures. Since cap1,q(A,Ω) = 0, and so HN−1(A) = 0, a similar
consequence is seen for A. Thus,

−div z ≤ |Du|+ f ,

and this inequality and (35) leads to the desired equality.
Step 7: (z, Du) = |Du| as measures. Given ϕ ∈ C∞0 (Ω), with ϕ ≥ 0, take e−upϕ as test

function in (29) to get

2

∫
Ω

e−upϕ|∇up|p +

∫
Ω

fe−upϕ =

∫
Ω

e−up |∇up|p−2∇up · ∇ϕ .

It is straightforward that then

2

∫
Ω

ϕ|∇
(
e−up

)
|p +

∫
Ω

fe−upϕ ≤
∫

Ω

e−up |∇up|p−2∇up · ∇ϕ ,

and, by Young’s inequality,

2

∫
Ω

ϕ|∇
(
e−up

)
|+
∫

Ω

fe−upϕ ≤
∫

Ω

e−up |∇up|p−2∇up · ∇ϕ+ 2
p− 1

p

∫
Ω

ϕ .

The lower semicontinuity of the total variation leads to

2

∫
Ω

ϕd|D
(
e−u

)
|+
∫

Ω

fe−uϕ ≤
∫

Ω

e−uz · ∇ϕ

= −
∫

Ω

ϕd
(
div (e−uz)

)
=

∫
Ω

ϕe−ud|Du|+
∫

Ω

ϕe−uf −
∫

Ω

ϕd(z, D(e−u)) ,

since

div (e−uz) = e−udiv z +
(
z , D(e−u)

)
in D′(Ω) .

Simplifying and applying the chain rule we deduce∫
Ω

ϕd|D
(
e−u

)
| ≤ −

∫
Ω

ϕd(z, D(e−u)) ≤
∫

Ω

ϕd|D(e−u)| =
∫

Ω

ϕe−ud|Du| ,

from where −(z, D(e−u)) = |D(e−u)| follows. As a consequence of the definition of the pairing
of a vector field and a gradient, it follows that

(z, D(1− e−u)) = −(z, D(e−u)) = |D(1− e−u)| .

Finally, thanks to [21, Proposition 2.2],we are done.
Step 8: L∞–estimate near the boundary. Recall that, on account of our hypothesis

dist(A, ∂Ω) > 0, we may apply [12, Theorem 4.3] and deduce that each solution up is bounded

in any closed subset of Ω\A. Let BR denote a ball of radius R > 0 such that BR ∩ A = ∅ and
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|BR| < 1. We explicitly point out that BR ∩ (RN\Ω) can be a non null set since we want to
prove regularity up to the boundary. In what follows, we will write

Apk,R = {x ∈ BR ∩ Ω : up(x) > k} and Ak,R = {x ∈ BR ∩ Ω : u(x) > k} .

Consider ϕ ∈ C∞0 (BR), with 0 ≤ ϕ ≤ 1, 1 < α < N
N−1 and k > 0. Our aim is to prove

(40)

∫
BR∩Ω

|∇(e
α
pGk(up) − 1)|pϕp ≤ C

∫
Apk,R

|∇ϕ|p(eαGk(up) − 1) + C‖f‖m|Apk.R|
1/m′ ,

where C is a constant which does not depend on p.
To this end, take (e(α−1)Gk(up) − e−Gk(up))ϕp as a test function in problem (24), written

in terms of up. Then it yields∫
Ω

eup |∇Gk(up)|p
[
(α− 1)e(α−1)Gk(up) + e−Gk(up)

]
ϕp

≤ p
∫

Ω

eup |∇Gk(up)|p−1(e(α−1)Gk(up) − e−Gk(up))ϕp−1|∇ϕ|p

+

∫
Ω

feup(e(α−1)Gk(up) − e−Gk(up))ϕp .

Having in mind that we are actually integrating on the set {up > k}, we have eup = ek+Gk(up).
Thus, dividing the last inequality by ek, we obtain

(41)

∫
Ω

|∇Gk(up)|p
[
(α− 1)eαGk(up) + 1

]
ϕp

≤ p
∫

Ω

|∇Gk(up)|p−1(eαGk(up) − 1)ϕp−1|∇ϕ|p +

∫
Ω

f(eαGk(up) − 1)ϕp .

We are now analyzing the first term on the right hand side of (41). Observe that Young’s
inequality implies

p

∫
Ω

|∇Gk(up)|p−1(eαGk(up) − 1)ϕp−1|∇ϕ|p

≤ (p− 1)

∫
Ω

|∇Gk(up)|p(eαGk(up) − 1)ϕp +

∫
Ω

|∇ϕ|p(eαGk(up) − 1) ,

so that one term can be absorbed by the left hand side of (41) becoming

(α− p)
∫

Ω

|∇Gk(up)|p(eαGk(up) − 1)ϕp ≤
∫

Ω

|∇ϕ|p(eαGk(up) − 1) +

∫
Ω

f(eαGk(up) − 1)ϕp .

Since there is not loss of generality in assuming 1 < p < α+1
2 and 1 < p < 2, we may let

α− p > α−1
2 and αp < α2. Furthermore, easy manipulations leads to

(42)
(α− 1

2α2

)∫
Ω

|∇(e
α
pGk(up) − 1)|pϕp ≤

(α− p
2αp

)∫
Ω

|∇(e
α
pGk(up) − 1)|pϕp

≤
∫

Ω

|∇ϕ|p(eαGk(up) − 1) +

∫
Ω

f(eαGk(up) − 1)ϕp .
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We point out that, in every term of (42), we are integrating on the set Apk,R. Applying

Lemma 4.2 to the last term of (42), we get

(43)

∫
Ω

f(eαGk(up) − 1)ϕp ≤ 2

∫
Apk,R

f(e
α
pGk(up) − 1)pϕp + 2

∫
Apk,R

fϕp .

To estimate the right hand side of (43), we will apply the Hölder and Sobolev inequalities. (We

explicitly point out that it follows from up ∈W 1,p
0 (BR)∩L∞(BR) that (e

α
pGk(up)−1)ϕ belongs

to W 1,p
0 (BR) ∩ L∞(BR), even though α/p > 1.) Performing those manipulations, we obtain

(44)

∫
Apk,R

f(e
α
pGk(up) − 1)pϕp ≤ ‖f‖m

[∫
Apk,R

(e
α
pGk(up) − 1)p

∗
ϕp
∗

]p/p∗
|Apk,R|

1
m′−

p
p∗

≤ ‖f‖mSN,p

[∫
Apk,R

|∇
(
(e

α
pGk(up) − 1)ϕ

)
|p
]
|BR|

1
m′−

p
p∗

≤ ‖f‖mSN,p2p−1

[∫
Apk,R

ϕp|∇(e
α
pGk(up) − 1)|p +

∫
Apk,R

(e
α
pGk(up) − 1)p|∇ϕ|p

]
|BR|

1
m′−

p
p∗

≤ 2(SN,1 + 1)‖f‖m

[∫
Apk,R

ϕp|∇(e
α
pGk(up) − 1)|p +

∫
Apk,R

(e
α
pGk(up) − 1)p|∇ϕ|p

]
|BR|

1
m′−

p
p∗ ,

here we have estimated the constant taking p close enough to 1. Now we set δ = 1
2

(
1
N −

1
m

)
> 0

and note that

1

m′
− p

p∗
=

p

N
− 1

m
> δ .

Recalling that |BR| < 1, we deduce that |BR|
1
m′−

p
p∗ ≤ |BR|δ. Going back to (44), it yields

∫
Apk,R

f(e
α
pGk(up) − 1)pϕp

≤ 2(SN,1 + 1)‖f‖m

[∫
Apk,R

ϕp|∇(e
α
pGk(up) − 1)|p +

∫
Apk,R

(e
α
pGk(up) − 1)p|∇ϕ|p

]
|BR|δ

≤ 2(SN,1 + 1)‖f‖m

[∫
Apk,R

ϕp|∇(e
α
pGk(up) − 1)|p +

∫
Apk,R

(eαGk(up) − 1)|∇ϕ|p
]
|BR|δ ,
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this last inequality due to Lemma 4.3. This inequality implies that (42) is transformed in(α− 1

2α2

)∫
Apk,R

|∇(e
α
pGk(up) − 1)|pϕp ≤

∫
Apk,R

|∇ϕ|p(eαGk(up) − 1)

+ 4(SN,1 + 1)‖f‖m|BR|δ
[∫

Apk,R

ϕp|∇(e
α
pGk(up) − 1)|p +

∫
Apk,R

(eαGk(up) − 1)|∇ϕ|p
]

+ 2

∫
Apk,R

fϕp .

Now R > 0 is chosen small enough to have 4‖f‖m|BR|δ < α−1
4α2 . Hence we find a constant C > 0

independent of p satisfying

α− 1

4α2

∫
Apk,R

|∇(e
α
pGk(up) − 1)|pϕp ≤ C

∫
Apk,R

|∇ϕ|p(eαGk(up) − 1) + 2

∫
Apk,R

fϕp ,

To finish the proof of (40) is enough to apply Hölder’s inequality.
The next step is to let p go to 1 in (40). Applying Young’s inequality, it follows that∫

BR∩Ω

|∇(e
α
pGk(up) − 1)|ϕ ≤ 1

p

∫
BR∩Ω

|∇(e
α
pGk(up) − 1)|pϕp +

p− 1

p
|BR|p/(p−1)

≤ C

p

∫
BR∩Ω

|∇ϕ|p(eαGk(up) − 1) +
C

p
‖f‖m|Apk.R|

1/m′ +
p− 1

p

Thanks to be α < N
N−1 , we may use that eαGk(up) − 1 converges to eαGk(u) − 1 in L1(BR ∩Ω).

This fact and up → u pointwise in BR ∩Ω allow us to pass to the limit on the right hand side.

On the left hand side, we deduce that e
α
pGk(up) − 1 converges to eαGk(u) − 1 in L1(BR ∩Ω) (it

is enough to realize that |e
α
pGk(up) − 1| ≤ |eαGk(up) − 1| and use a variant of the dominated

convergence Theorem) and apply the lower semicontinuity of the total variation. Therefore, we
conclude that

(45)

∫
BR∩Ω

ϕd|D(eαGk(u) − 1)| ≤ C
∫
BR∩Ω

|∇ϕ|(eαGk(u) − 1) + C‖f‖m|Ak.R|1/m
′
.

To obtain a Caccioppoli type inequality, consider 0 < ρ < R and a function ϕ ∈ C∞0 (BR)
such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in Bρ, the ball concentric with BR and having radius ρ. We
may assume that |∇ϕ| ≤ 2

R−ρ . Then (45) becomes

(46)

∫
Bρ∩Ω

d|D(eαGk(u) − 1)| ≤ C

R− ρ

∫
BR∩Ω

(eαGk(u) − 1) + C‖f‖m|Ak.R|1/m
′
.

This Caccioppoli inequality will allow us to apply Stampacchia’s Theorem. To begin with,
consider B(R+ρ)/2, the ball concentric with BR but having radius R+ρ

2 , and take the function

η ∈ C∞0 (B(R+ρ)/2) satisfying 0 ≤ η ≤ 1, η ≡ 1 in Bρ and |∇η| ≤ 2
R−ρ . We do not know that

eαGk(u) − 1 ∈ BV (BR ∩ Ω) yet, so that we do not may apply Sobolev’s inequality. Instead, we
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will consider a suitable truncation. Indeed, we have∫
Bρ∩Ω

(eαGk(Th(u)) − 1) ≤
∫
B(R+ρ)/2∩Ω

(eαGk(Th(u)) − 1)η

≤ |Ak,R|1/N
[∫

B(R+ρ)/2∩Ω

(eαGk(Th(u)) − 1)
N
N−1 η

N
N−1

](N−1)/N

≤ |Ak,R|1/NSN,1
∫
B(R+ρ)/2∩Ω

d
∣∣D((eαGk(Th(u)) − 1)η

)∣∣
≤ |Ak,R|1/NSN,1

∫
B(R+ρ)/2∩Ω

d
∣∣D((eαGk(u) − 1)η

)∣∣ ,
and the monotone convergence Theorem gives us the desired inequality∫

Bρ∩Ω

(eαGk(u) − 1) ≤ |Ak,R|1/NSN,1
∫
B(R+ρ)/2∩Ω

d
∣∣D((eαGk(u) − 1)η

)∣∣ .
Hence, we deduce from inequality (46) that

(47)

∫
Bρ∩Ω

(eαGk(u) − 1)

≤ |Ak,R|1/NSN,1
[ ∫

B(R+ρ)/2∩Ω

η d
∣∣D(eαGk(u) − 1)

∣∣+

∫
B(R+ρ)/2∩Ω

(eαGk(u) − 1)|∇η|
]

≤ |Ak,R|1/NSN,1
[ ∫

B(R+ρ)/2∩Ω

d
∣∣D(eαGk(u) − 1)

∣∣+
2

R− ρ

∫
B(R+ρ)/2∩Ω

(eαGk(u) − 1)

]
≤ C

R− ρ
|Ak,R|1/N

∫
BR∩Ω

(eαGk(u) − 1) + C|Ak,R|
1
N + 1

m′ .

To apply Stampacchia’s procedure take 0 < h < k and observe that the following facts
hold. ∫

BR∩Ω

(eαGk(u) − 1) ≤
∫
BR∩Ω

(eαGh(u) − 1)

|Ak,R| ≤
1

k − h

∫
BR∩Ω

Gh(u) ≤ 1

α(k − h)

∫
BR∩Ω

(eαGh(u) − 1)

Therefore, inequality (47) yields∫
Bρ∩Ω

(eαGk(u) − 1)

≤ C

α1/N (k − h)1/N (R− ρ)

[∫
BR∩Ω

(eαGh(u) − 1)

]1+ 1
N

+
C

α(1/N)+(1/m′)(k − h)(1/N)+(1/m′)

[∫
BR∩Ω

(eαGh(u) − 1)

] 1
m′+

1
N

.
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We point out that k − h, R − ρ and
∫
BR∩Ω

(eαGh(u) − 1) can be taken as small as we want in

Stampacchia’s procedure. Thus, we may unify all the exponents obtaining∫
Bρ∩Ω

(eαGk(u) − 1) ≤ C

(k − h)1+(1/N)(R− ρ)

[∫
BR∩Ω

(eαGh(u) − 1)

] 1
m′+

1
N

.

Applying Stampacchia’s Theorem (see [25, Lemma 5.1], and observe that the last exponent is
larger than 1) to

ϕ(h,R) =

∫
BR∩Ω

(eαGh(u) − 1) ,

then we get k0 such that ϕ(k,R) = 0 for all k > k0, so that u ∈ L∞(BR ∩ Ω).
Therefore, we have seen that u ∈ L∞(BR ∩ Ω) for every ball satisfying BR ∩ A = ∅ and

|BR| < 1. The last step uses a compactness argument to conclude that u is bounded in a strip
around ∂Ω.

A further remark is in order: we have deduced that the trace u
∣∣
∂Ω
∈ L∞(∂Ω), so that all

integrals on ∂Ω that occur in the next Step are well–defined.
Step 9: Boundary condition. As a consequence of Step 8, we know that there exists a strip

around the boundary ∂Ω where u is bounded. Let φ ∈ C(∂Ω) be a nonnegative function. Then
there exists a nonnegative ϕ ∈ C∞(Ω) such that ϕ

∣∣
∂Ω

= φ and that vanishes outside that strip.
For instance, we may consider ϕ = ϕ1ϕ2 where ϕ1 is the solution to the Dirichlet problem for
Laplace equation with datum φ, and ϕ2 vanishes outside that strip and satisfies ϕ2

∣∣
∂Ω
≡ 1. In

other words, we search a smooth function satisfying ϕ
∣∣
∂Ω

= φ and such that u is bounded in
suppϕ.

Fix λ, k > 0 and take (eλTk(up) − 1)ϕ as a test function in problem (24), written in terms
of up. Then

λ

∫
Ω

eupeλTk(up)ϕ|∇Tk(up)|p

= −
∫

Ω

eup(eλTk(up) − 1)|∇up|p−2∇up · ∇ϕ+

∫
Ω

feup(eλTk(up) − 1)ϕ .

Now, Young’s inequality implies

λ

∫
Ω

e(λ+1)Tk(up)ϕ|∇Tk(up)|

≤ λ

p

∫
Ω

eupeλTk(up)ϕ|∇Tk(up)|p +
λ(p− 1)

p

∫
Ω

e(λ+1)Tk(up)ϕ

= −1

p

∫
Ω

eup(eλTk(up) − 1)|∇up|p−2∇up · ∇ϕ+
1

p

∫
Ω

feup(eλTk(up) − 1)ϕ

+
λ(p− 1)

p

∫
Ω

e(λ+1)Tk(up)ϕ .
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Formally adding a null term, we obtain

λ

λ+ 1

∫
Ω

ϕ|∇
(
e(λ+1)Tk(up) − 1

)
|+ λ

λ+ 1

∫
∂Ω

ϕ
(
e(λ+1)Tk(up) − 1

)
dHN−1

≤ −1

p

∫
Ω

eup(eλTk(up) − 1)|∇up|p−2∇up · ∇ϕ+
1

p

∫
Ω

feup(eλTk(up) − 1)ϕ

+
λ(p− 1)

p

∫
Ω

e(λ+1)Tk(up)ϕ .

Recall that, by (36), we have eup → eu in L1(Ω) and, by (32) and Lebesgue’s Theorem, we
also have e(λ+1)Tk(up) − 1 converges to e(λ+1)Tk(u) − 1 in L1(Ω) as p goes to 1. By the lower
semicontinuity of the functional we may let p go to 1 as well as remove the truncation, since u
is bounded in suppϕ. Therefore,

(48)
λ

λ+ 1

∫
Ω

ϕd
∣∣D(e(λ+1)u − 1

)∣∣+
λ

λ+ 1

∫
∂Ω

ϕ
(
e(λ+1)u − 1

)
dHN−1

≤ −
∫

Ω

eu(eλu − 1)z · ∇ϕ+

∫
Ω

feu(eλu − 1)ϕ .

To perform some manipulations on the right hand side, we use (38) to deduce

−ϕdiv (euz) = ϕeuf .

Having in mind that euz is bounded in suppϕ, by Green’s formula, Step 7 and the chain rule,
we can write∫

Ω

feu(eλu − 1)ϕ =

∫
Ω

d
(
euz, D((eλu − 1)ϕ)

)
−
∫
∂Ω

(eλu − 1)ϕ[euz, ν] dHN−1

=

∫
Ω

eud
(
z, D((eλu − 1)ϕ)

)
−
∫
∂Ω

(eλu − 1)euϕ[z, ν] dHN−1

=

∫
Ω

euϕd|D(eλu − 1)|+
∫

Ω

eu(eλu − 1)z · ∇ϕ−
∫
∂Ω

(eλu − 1)euϕ[z, ν] dHN−1

=
λ

λ+ 1

∫
Ω

ϕd
∣∣D(e(λ+1)u − 1

)∣∣+

∫
Ω

eu(eλu − 1)z · ∇ϕ−
∫
∂Ω

(eλu − 1)euϕ[z, ν] dHN−1 .

Inserting this equality in (48) and simplifying, it yields

λ

λ+ 1

∫
∂Ω

φ
(
e(λ+1)u − 1

)
dHN−1 ≤ −

∫
∂Ω

(eλu − 1)euφ[z, ν] dHN−1 .

Since φ is an arbitrary nonnegative continuous function, it follows that

λ

λ+ 1

(
e(λ+1)u − 1

)
≤ −(eλu − 1)eu[z, ν] , HN−1–a.e. on ∂Ω .

Obviously, this inequality holds on the set where {u = 0} ∩ ∂Ω. On the contrary, in the set
{u > 0} ∩ ∂Ω this inequality implies

[z, ν] ≤ − λ

λ+ 1

e(λ+1)u − 1

(eλu − 1)eu
≤ − λ

λ+ 1
.
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Hence, the arbitrariness of λ > 0 and |[z, ν]| ≤ 1 lead to [z, ν] = −1, so that

[z, ν] = sign (−u) , HN−1–a.e. on ∂Ω .

We have proved that u is actually a solution to problem (5), so that the proof of Theorem
1.1 is completely finished.

Remark 4.4. We explicitly point out that eu /∈ BV (Ω) for every nontrivial measure µ. Indeed,
if eu ∈ BV (Ω), then the following manipulations would hold:

feu + µ = −div
(
euz
)

= −eudiv (z)− (z, D(eu)) = −eudiv (z)− |D(eu))|
= −eudiv (z)− (eu)|Du| = eu

[
− div (z)− |Du|

]
= euf ,

wherewith µ = 0. Compare this argument with [2, Remark 2.11].

Remark 4.5. Assume for a moment that the function e−u is µ–measurable. Having in mind
Step 7 and [21, Proposition 2.2], it yields (z, DeTk(u)) = |DeTk(u)| for any k > 0. We are able
to see, redoing the same calculations, that (39) becomes an equality. This fact and −div z =
|Du|+ f imply that the measure e−uµ vanishes. Even thought this argument does not work, it
suggest that µ is concentrated on the set {u = +∞}. In other words: A ⊂ {u = +∞}. Compare
this note with [2, Remark 2.16].

Remark 4.6. It is worth noting that we can recover the singular measure from the solution
to (5) we have found. The argument is very similar to that of [2] for p = 2. To check it, take

e
u

1+εu − 1, with ε > 0, as test function in (5). Then, since u is a solution to problem (5), it
follows that

|Du|(Ω) +

∫
∂Ω

∣∣e u
1+εu − 1

∣∣ dHN−1 =

∫
Ω

e
u

1+εu

(
1− 1

(1 + εu)2

)
d|Du|+

∫
Ω

f(x)
(
e

u
1+εu − 1

)
.

Taking into account that u ∈ BV (Ω) and u ∈ L∞(∂Ω), we deduce that the left hand side is
bounded. Thus, ∫

Ω

e
u

1+εu

(
1− 1

(1 + εu)2

)
d|Du| ≤M , for all ε > 0 ,

and so there exists a measure µ such that, up to subsequences,

|Du|eu/(1+εu)
(

1− 1

(1 + εu)2

)
⇀ µ , weakly in the sense of measures.

Now, it is easy to check that this measure satisfies equation (7). In fact, e
u

1+εu ∈ BV (Ω) and

− div
(
eu/(1+εu)z

)
= −eu/(1+εu)div z− (z, Deu/(1+εu))

= |Du|eu/(1+εu)+feu/(1+εu)− 1

(1 + εu)2
eu/(1+εu)|Du| = |Du|eu/(1+εu)

(
1− 1

(1 + εu)2

)
+feu/(1+εu) .

It follows from the estimate eu/(1+εu) ≤ eu ∈ L1(Ω) and the monotone convergence Theorem
that eu/(1+εu) → eu in L1(Ω), wherewith we may let ε→ 0 proving that

−div
(
euz
)

= feu + µ , in D′(Ω).
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Remark 4.7. Roughly speaking, Theorem 1.1 states that for each measure µ concentrated in
a set HN−1–null, we find a solution to problem (5). A few words on the map

(49) µ singular measure 7→ u solution to (5)

is in order. Although we cannot assert that this is a one–to–one map, we can state that not
every measure µ leads to the same unbounded solution u. It is enough to choose two singular
measures µ1 and µ2 satisfying suppµ1 ∩ suppµ2 = ∅. Applying our Theorem to each µi, we
obtain an unbounded solution ui to problem (5), i = 1, 2. However, we know that u1 is bounded
in suppµ2 and u2 is bounded in suppµ1, so that these solutions are different.

5. Multiplicity of radial solutions

In this section we deal with the case of radial solutions in a ball, so that in the following
examples we always assume Ω = BR(0) (i.e., the ball centered at the origin having radius R > 0)
and we search solutions depending on |x|. In what follows, we denote ωN = |B1(0)|, and δ0 the
Dirac measure concentrated in the origin.

Let us begin by dealing with the homogeneous case.

Example 5.1. Assume that f ≡ 0, then problem (5) has a trivial solution, given by

u(x) ≡ 0 , with z(x) ≡ 0 .

In the paper [13] it is shown that u(x) ≡ 0 is the only bounded solution of (5). On the other
hand, we will now show that (5) has infinitely many unbounded radial solutions.

A first kind of solution is the following:

(50) u(x) = −(N − 1) log

(
|x|
αR

)
,

for any choice of α ≥ 1. The corresponding vector field z is given by

z(x) = − x

|x|
.

Note that this solution is zero on ∂BR only when α = 1.
Then another kind of solution is given by

(51) u(x) =

 −(N − 1) log

(
|x|
ρ

)
if 0 < |x| < ρ

0 if ρ ≤ |x| < R ,

for every ρ such that 0 < ρ < R. In this case the vector field z is given by

z(x) =


− x

|x|
if 0 < |x| < ρ

−ρ
N−1x

|x|N
if ρ ≤ |x| < R .

It is easy to check that both (50) and (51) are solutions according to Definition 4.1.
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All these solutions can be achieved using the procedure of Theorem 1.1. Indeed, consider
the singular measure µ = Cδ0, with C > 0, and the approximating problems −∆pvp = Cδ0 in BR(0)

vp = 0 on ∂BR(0) .

It is easy to check that

vp(x) =

(
C

NωN

)1/(p−1)
p− 1

N − p

(
1

|x|
N−p
p−1

− 1

R
N−p
p−1

)
.

Now set

(52) up(x) = (p− 1) log(1 +
vp
p− 1

)

= (p− 1) log

[
1 +

(
C

NωN

)1/(p−1)
1

N − p

(
1

|x|
N−p
p−1

− 1

R
N−p
p−1

)]
.

We may distinguish two cases according to the size of the constant C.
First case: C ≥ NωNRN−1. In this case, it is straightforward that the limit, for p→ 1, is

u(x) = −(N − 1) log(|x|) + log

(
C

NωN

)
,

which can be written as (50) for α =
1

R

(
C

NωN

) 1
N−1

≥ 1.

Second case: 0 < C < NωNR
N−1. Here the limit of up(x) for p→ 1 is given by (51) with

ρ =

(
C

NωN

) 1
N−1

.

Therefore, both types of solutions (50) and (51) correspond to different multiples of the
Dirac delta centered at the origin.

Let us also note that the solutions up(x) correspond to the unbounded solutions to problem

−∆pup = |∇up|p , in Ω = {x ∈ RN : |x| < R} ,

exhibited by Ferone and Murat for p > 1 in [16, Remark 2.11], i.e.,

up(x) = (p− 1) log

(
|x|−(N−p)/(p−1) −m
R−(N−p)/(p−1) −m

)
where m is any constant satisfying mR(N−p)/(p−1) < 1. These solutions are the same as (52),
where C and m are related by

C =
NωNR

N−p(N − p)p−1(
1−mR

N−p
p−1
)p−1

.

The previous example can be adapted in order to obtain a multiplicity result in a general
open set.
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Example 5.2. Assume that Ω is a bounded domain with Lipschitz boundary and f ≡ 0,
then problem (5) has infinitely many nonnegative unbounded solutions. More precisely, for any
x0 ∈ Ω, we can find a solution u(x) which is unbounded near x0.

Fix x0 ∈ Ω and choose ρ > 0 such that Bρ(x0) ⊂⊂ Ω. We set

(53) u(x) =

 −(N − 1) log

(
|x− x0|

ρ

)
if 0 < |x− x0| < ρ

0 if |x− x0| > ρ ,

with the associated vector field

z(x) =


− x− x0

|x− x0|
if 0 < |x− x0| < ρ

−ρ
N−1(x− x0)

|x− x0|N
if |x− x0| > ρ .

Example 5.3. In this example, we will show unbounded radial solutions of problem (5) with

constant datum f ≡ λ ∈
]
0,
N − 1

R

]
in Ω = BR(0).

In this case, a solution is given by

(54) u(x) = −(N − 1) log

(
|x|
αR

)
+ λ
(
|x| −R

)
,

for any choice of α ≥ 1. The corresponding vector field z is given by

z(x) = − x

|x|
.

Another type of solution is given, for any choice of ρ ∈]0, R[, by

(55) u(x) =

 −(N − 1) log

(
|x|
ρ

)
+ λ
(
|x| − ρ

)
if 0 < |x| < ρ

0 if ρ < |x| < R ,

with the associated vector field

z(x) =


− x

|x|
if 0 < |x| < ρ

− λ
N
x−

(
1− λρ

N

)
ρN−1x

|x|N
if ρ < |x| < R .

The details are left to the reader. Note that |z(x)| ≤ 1 due to the inequality λ ≤ N−1
R As in the

first examples, these solutions are related to a singular measure of the form C δ0. In particular,
solution (54) is obtained for large values of C, while solution (55) corresponds to small values
of C.

Example 5.4. In this final example, we will exhibit an unbounded solution to problem (1)
with f ≡ 0, that is:  u− div

( Du
|Du|

)
= |Du| in BR(0) ;

u = 0 on ∂BR(0) ;
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A solution of this problem is defined by

u(x) = g
(
|x|
)
, where g(r) = (N − 1) e−r

∫ αR

r

es

s
ds ,

for every choice of α ≥ 1, with z(x) = − x

|x|
. Another possibility is given by

u(x) =

 g
(
|x|
)

if 0 < |x| < ρ

0 if ρ < |x| < R ,

where

g(r) = (N − 1) e−r
∫ ρ

r

es

s
ds

with the associated vector field

z(x) =


− x

|x|
if 0 < |x| < ρ

−ρ
N−1x

|x|N
if ρ < |x| < R .

It is important to observe that all unbounded solutions exhibited in this Section satisfy

eu 6∈ BV (BR(0)) , eδu ∈W 1,1(BR(0)) for every δ < 1 .
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