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Abstract. In this paper we study existence and uniqueness of solutions for the
boundary-value problem, with initial datum in L1(Ω),

ut = div a(x, Du) in (0,∞) × Ω

− ∂u

∂ηa
∈ β(u) on (0,∞) × ∂Ω

u(x, 0) = u0(x) in Ω,

where a is a Carathéodory function satisfying the classical Leray-Lions hypothesis,
∂/∂ηa is the Neumann boundary operator associated to a, Du the gradient of u
and β is a maximal monotone graph in R × R with 0 ∈ β(0).

1. Introduction

This paper is devoted to the solvability of the nonlinear parabolic equation

(E) ut = div a(x, Du)

with initial data in L1(Ω), Ω being a domain in R
N (bounded or unbounded)

and a a Carathéodory function satisfying the classical Leray-Lions hypothesis,
i.e., a is a vector valued function mapping Ω × R

N into R
N and satisfying

(H1) a is a Carathéodory function ( i.e., the map ξ → a(x, ξ) is continuous
for almost all x and the map x → a(x, ξ) is measurable for every ξ ) and there
exists λ > 0 such that

〈a(x, ξ), ξ〉 ≥ λ|ξ|p ( 1 < p < ∞ )

holds for every ξ and a.e. x ∈ Ω, where 〈, 〉 means scalar product in R
N . There

is no restriction in assuming that λ = 1.

(H2) For every ξ and η ∈ R
N , ξ �= η, and a.e. x ∈ Ω there holds

〈a(x, ξ) − a(x, η), ξ − η〉 > 0.
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(H3) There exists Λ ∈ R such that

|a(x, ξ)| ≤ Λ(j(x) + |ξ|p−1)

holds for every ξ ∈ R
N with j ∈ Lp′

, p′ = p/(p − 1).

The hypothesis (H1), (H2) and (H3) are classical in the study of nonlinear op-
erators in divergence form ( see [L] ). The model example of a function a sat-
isfying these hypothesis is a(x, ξ) = |ξ|p−2ξ. The corresponding operator is the
p-Laplacian operator Δp(u) = div

(
|Du|p−2 Du

)
. This operator has been widely

considered in the literature of PDE. It represents one of the simpler examples of
degenerate nonlinear operators for which the classical theory is not available. It
also appears in several physical problems as, for instance, in non-newtonian fluids
( see [DH] and the literature cited therein ).

Recently, in [B-V], a new concept of solution has been introduced for the elliptic
equation

−div a(x, Du) = f(x) in Ω

u = 0 on ∂Ω,

namely entropy solution. As a consequence, an m-completely accretive operator
in L1(Ω) can be associated to the corresponding parabolic equation. In [AMST],
using the method developed in [B-V], we study entropy solutions for the elliptic
problem with non-linear boundary conditions. Precisely, we study existence and
uniqueness of entropy solutions for equations of the form

u − div a(x, Du) = f in Ω

− ∂u
∂ηa

∈ β(u) on ∂Ω,

where ∂/∂ηa is the Neumann boundary operator associated to a, i.e.,

∂u

∂ηa
:= 〈a(x, Du), η〉

with η the unit outward normal on ∂Ω, Du the gradient of u and β a
maximal monotone graph in R×R with 0 ∈ β(0) . These nonlinear fluxes on the
boundary occur in heat transfer between solids and gases ( cf. [Fr] ) and in some
problems in Mechanics and Physics [DL] ( see also [Br2] ). Observe also that the
classical Neumann and Dirichlet boundary conditions correspond to β = R × {0}
and β = {0} × R , respectively.

As a consequence of the results of [B-V] and [AMST], we can solve the equation
(E) ( with non-linear boundary conditions in case Ω is bounded and with Dirichlet
boundary conditions in case Ω is unbounded ) from the point of view of Nonlinear
Semigroups Theory, i.e., for every initial datum in L1(Ω), there exists a unique
mild-solution given by the Crandall-Liggett exponential formula. However, in prin-
ciple, it is not clear how these mild-solutions have to be interpreted. The purpose
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of the present paper is to characterize these mild-solutions, for which the problem is
well posed, by introducing a new class of weak solutions, namely entropy solutions.
More precisely, we prove that mild-solutions and entropy solutions coincide.

The study of the Cauchy problem for equations of type (E) has received a great
deal of attention. For example, existence of weak solutions with measures as initial
data, in the case Ω bounded with Dirichlet boundary conditions, has been studied
in [BG2], [Ra1] and [Ra2]. For some results about existence of weak solutions of
similar equations with non-linear boundary conditions see [X]. Respect to existence-
uniqueness results for Cauchy problems of type (E), we only know the one given
by E. Di Benedetto and M. A. Herrero in [DiH1] and [DiH2] ( see also [Di1] and
[Di2] ) for the p-Laplacian equation in R

N . In this case, they introduce a class of
weak solutions and prove existence and uniqueness of this type of solutions when the
initial datum is positive. The non-negativity of the initial data and the homogeneity
of the p-Laplacian are essential in their proof of uniqueness since they use some
sort of time-compactness via the regularizing effect of Bénilan-Crandall [BCr1]. Di
Benedetto in [Di2] says the following: “It would be of interest to have a notion of
solution that is irrespective of the sign of the solution and a correspondent existence-
uniqueness theorem. We remark that the problem is open even if one considers the
boundary value problem in bounded domain”. The aim of this paper is to answer
this question.

The plan of the paper is as follows: Some preliminary results and notation are
collected in Section 2. In the third section we study the case Ω bounded. We
prove existence and uniqueness results for the entropy solution of the initial-value
problem for equation (E) with non-linear boundary condition, and we show that the
entropy solution coincides with the mild-solution. In the last section we establish
similar results to those of the previous section for the case of Dirichlet boundary
conditions and Ω not necessarily bounded.

2. Preliminaries

In this section we give some of the notation and definitions used later. If Ω ⊂ R
N

is a Lebesgue measurable set, λN (Ω) denotes its measure. The norm in Lp(Ω) is
denoted by ‖.‖p, 1 ≤ p ≤ ∞. If k ≥ 0 is an integer and 1 ≤ p ≤ ∞, W k,p(Ω)
is the Sobolev space of functions u on the open set Ω ⊂ R

N for which Dαu

belongs to Lp(Ω) when |α| ≤ k, with its usual norm ‖.‖k,p. W k,p
0 (Ω) is the

closure of D(Ω) = C∞
0 (Ω) in W k,p(Ω). Respect to the vector-valued functions

we follow the notation and definitions of [Br2]. For instance, if X is a Banach
space, a < b and 1 ≤ p ≤ ∞, Lp(a, b;X) denotes the space of all u : [a, b] → X
measurable functions such that ‖u(s)‖ belongs to Lp([a, b]). If v ∈ L1(Ω) and
λN (Ω) < ∞, we denote by v the average of v, i.e.,

v :=
1

λN (Ω)

∫
Ω

v(x) dx.

Given a finite measure space (S, ν), we denote by M(S, ν) the set of all
measurable functions u : S → R finite a.e., identifying the functions that are
equal a.e.
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We recall, cf. [BBC], that for 0 < q < ∞ the Marcinkiewicz space Mq(Ω)
can be defined as the set of measurable functions f : Ω → R such that the
corresponding distribution function

φf (k) = λN{x ∈ Ω : |f(x)| > k}

satisfies an estimate of the form

φf (k) ≤ Ck−q, C < ∞.

For bounded Ω’s, it is immediate that Mq(Ω) ⊂ M q̂(Ω) if q̂ ≤ q, also Lq(Ω) ⊂
Mq(Ω) ⊂ Lr(Ω) if 1 ≤ r < q.

We will use the following truncature operator: For a given constant k > 0 we
define the cut function Tk : R → R as

Tk(s) :=
{

s if |s| ≤ k

k sign (s) if |s| > k.

For a function u = u(x), x ∈ Ω, we define the truncated function Tku pointwise,
i.e., for every x ∈ Ω the value of Tku at x is just Tk

(
u(x)

)
. Observe that

lim
k→0

1
k

Tk(s) = sign(s) :=

⎧⎪⎨
⎪⎩

1 if s > 0
0 if s = 0
−1 if s < 0.

By the Stampacchia Theorem, cf. [KS], if u ∈ W 1,1(Ω), we have

DTk(u) = 1{|u|<k} Du,

where 1B denotes the characteristic function of a measurable set B ⊂ Ω.
We need to define the trace of functions which are not in the Sobolev spaces.

Before discussing this concept of trace we recall the following spaces introduced in
[B-V]: T 1,1

loc (Ω) is defined as the set of measurable functions u : Ω → R such
that for every k > 0 the truncated function Tk(u) belongs to W 1,1

loc (Ω). For
1 < p < ∞, T 1,p

loc (Ω) is the subset of T 1,1
loc (Ω) consisting of the functions u

such that DTk(u) ∈ Lp
loc(Ω) for every k > 0. Likewise, T 1,p(Ω) is the subset

of T 1,1
loc (Ω) consisting of the functions u such that DTk(u) ∈ Lp(Ω) for every

k > 0. Observe that in the definition of T 1,p(Ω) is not imposed the condition
Tk(u) ∈ Lp(Ω). Of course, this condition follows immediately when Ω is bounded.
So, if Ω is bounded, we have

T 1,p(Ω) = {u : Ω → R measurable : Tk(u) ∈ W 1,p(Ω) for all k > 0}.

It is possible to give a sense to the derivative Du of a function u ∈ T 1,1
loc (Ω), gen-

eralizing the usual concept of weak derivative in W 1,1
loc (Ω), thanks to the following

result (see [B-V, Lemma 2.1]):
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“For every u ∈ T 1,1
loc (Ω) there exists a unique measurable function v : Ω → R

such that

(2.1) DTk(u) = v1{|v|<k} a.e.

Furthermore, if u ∈ W 1,1
loc (Ω) then v = Du in the usual weak sense.”

The derivative Du of a function u ∈ T 1,1
loc (Ω) is defined as the unique function

v satisfying (2.1). This notation will be used throughout in the sequel.

Let Ω be a bounded open subset of R
N of class C1 and 1 ≤ p < ∞. It is

well-known ( cf. [N] or [M] ) that if u ∈ W 1,p(Ω), it is possible to define the trace
of u on ∂Ω. More precisely, there exists a bounded operator γ from W 1,p(Ω)
into Lp(∂Ω) such that γ(u) = u|∂Ω whenever u ∈ C(Ω). Now, it is easy to
see that, in general, it is not possible to define the trace of an element of T 1,p(Ω).
In dimension one it is enough to consider the function u(x) = 1/x for x ∈]0, 1[.
Nevertheless, we are going to define the trace for the elements of a subset T 1,p

tr (Ω)
of T 1,p(Ω). T 1,p

tr (Ω) will be the subset of T 1,p(Ω) consisting of the functions that
can be approximated by functions of W 1,p(Ω) in the following sense: a function
u ∈ T 1,p(Ω) belongs to T 1,p

tr (Ω) if there exists a sequence un ∈ W 1,p(Ω) such
that

(a) un → u a.e. in Ω,
(b) DTk(un) → DTk(u) in L1(Ω) for any k > 0,
(c) the sequence {γ(un)} converges a.e. in ∂Ω.

Obviously, we have

(2.2) W 1,p(Ω) ⊂ T 1,p
tr (Ω) ⊂ T 1,p(Ω).

In (2.2) the inclusions are strict. In fact: It is easy to see that the function u(x) =
1/x for x ∈]0, 1[ is an element of T 1,1(]0, 1[) ∼ T 1,1

tr (]0, 1[). Moreover the function
u defined by

u(x) :=
{

1/x if x ∈]0, 1[
−1/x if x ∈] − 1, 0[,

is an example of an element of T 1,1
tr (] − 1, 1[) ∼ W 1,1(] − 1, 1[).

In the following result ( [AMST, Theorem 3.1] ) we obtain an extension of the
trace defined in W 1,p(Ω).

Theorem 2.1. Let Ω be a bounded open subset of R
N of class C1 and

1 ≤ p < ∞. Then, there exists a map τ : T 1,p
tr (Ω) → M(∂Ω, μ) such that

τ(u) = γ(u) whenever u ∈ W 1,p(Ω).

Moreover,
(i) γ(Tku) = Tk(τu) for every u ∈ T 1,p

tr (Ω) and k > 0.
(ii) If u ∈ T 1,p

tr (Ω) and φ ∈ W 1,p(Ω) ∩ L∞(Ω), then u − φ ∈ T 1,p
tr (Ω) and

τ(u − φ) = τ(u) − τ(φ).

To study the Dirichlet problem, in [B-V] it is introduced the subspace T 1,p
0 (Ω) of

T 1,p(Ω) consisting of the functions that can be approximated by smooth functions
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with compact support in Ω in the following sense: a function u ∈ T 1,p(Ω) belongs
to T 1,p

0 (Ω) if for every k > 0 there exists a sequence ζn ∈ C∞
0 (Ω) such that

ζn → Tku in L1
loc(Ω),

Dζn → DTk(u) in Lp(Ω).

As a consequence of the characterizations of T 1,p
0 (Ω) given in [B-V, Appendix II]

we have
Ker(τ) = T 1,p

0 (Ω).

We refer the reader to [Ba], [Be], [BCP] and [Cr] for background material on the
Theory of Nonlinear Semigroups.

3. The case Ω bounded

Throughout this section Ω is a bounded domain in R
N ( N ≥ 2 ) with smooth

boundary ∂Ω of class C1, 1 < p < N , a is a vector valued mapping from Ω×R
N

into R
N satisfying (H1) - (H3) and β is a maximal monotone graph in R × R

with 0 ∈ β(0).
In this section we establish existence and uniqueness of solutions of the non-linear

parabolic equation with nonlinear boundary condition

ut = div a(x, Du) in QT = (0, T ) × Ω

(I) − ∂u

∂ηa
∈ β(u) on ST = (0, T ) × ∂Ω

u(x, 0) = u0(x) in Ω

for every initial datum in L1(Ω).

In [AMST] we associate a completely accretive operator in L1(Ω) with the
formal differential expresion

−div a(x, Du) + nonlinear boundary conditions.

To define it we need to introduce the following subset of W 1,p(Ω): Given β a
maximal monotone graph in R × R with 0 ∈ β(0) , we set

W 1,p
β (Ω) := {u ∈ W 1,p(Ω) : u(x) ∈ D(β) a.e. x ∈ ∂Ω}.

The above definition uses the fact that the trace of u ∈ W 1,1(Ω) on ∂Ω is well
defined in L1(∂Ω) [N, Theorem 4.2]. Observe that we use the same notation u
for u and its trace when convenient.

Remark that if D(β) is closed then W 1,p
β (Ω) is a closed convex subset of

W 1,p(Ω). In case β corresponds to the Dirichlet boundary condition, W 1,p
β (Ω) =

W 1,p
0 (Ω), and in case β corresponds to the Neumann boundary condition, W 1,p

β (Ω) =
W 1,p(Ω).
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We define the operator A in L1(Ω) by the rule:

(u, v) ∈ A if and only if u ∈ W 1,p(Ω) ∩ L∞(Ω), v ∈ L1(Ω), there exists
w ∈ L1(∂Ω) with −w(x) ∈ β(u(x)) a.e. on ∂Ω and

(3.1)
∫

Ω

〈a(x, Du), D(u − φ)〉 ≤
∫

Ω

v(u − φ) +
∫

∂Ω

w(u − φ)

for every φ ∈ W 1,p
β (Ω) ∩ L∞(Ω).

To characterize the closure of the operator A we define the operator A in
L1(Ω) by the rule:

(u, v) ∈ A if and only if u, v ∈ L1(Ω), u ∈ T 1,p
tr (Ω) and there exists w ∈

L1(∂Ω), −w(x) ∈ β(u(x)) a.e. on ∂Ω such that

(3.2)
∫

Ω

〈a(x, Du), DTk(u − φ)〉 ≤
∫

Ω

vTk(u − φ) +
∫

∂Ω

wTk(u − φ)

for every φ ∈ W 1,p
β (Ω) ∩ L∞(Ω) and k > 0.

Notice that the integrals in (3.2) are well defined. In general, the diference
of two elements of T 1,p(Ω) is not an element of T 1,p(Ω) (see [B-V]), however,
since φ ∈ W 1,p(Ω) ∩ L∞(Ω), we have u − φ ∈ T 1,p

tr (Ω) ( Theorem 2.1 ). Hence,
Tk(u−φ) ∈ W 1,p(Ω)∩L∞(Ω) and consequently the two first integrals in (3.2) are
well defined. Moreover, in the last integral we can use the fact that the trace of
f ∈ W 1,p(Ω) on ∂Ω is well defined in Lp(∂Ω).

Also we need to recall the following definition due to Ph. Bénilan (see [AMST]).
We say that a is smooth if for every f ∈ L∞(Ω) there exists g ∈ L1(∂Ω) such
that the solution u of the Dirichlet problem

−div a(x, Du) = f in Ω

u = 0 on ∂Ω,

is solution of the Neumann problem

−div a(x, Du) = f in Ω

∂u

∂ηa
= g on ∂Ω.

In the following theorem we summarize all the results we need about the opera-
tors A and A given in [AMST].

Theorem 3.1. Assume that D(β) is closed or a is smooth. Then, the operator
A is completely accretive, L∞(Ω) ⊂ R(I + A) and D(A) = L1(Ω). Moreover,
A is the closure of A in L1(Ω). Consequently, A is an m-completely accretive
operator in L1(Ω) with dense domain.

We transcribe (I) as the evolution problem in L1(Ω)

(II)
du

dt
+ Au � 0, u(0) = u0.
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By Theorem 3.1, according to Crandall-Liggett’s Generation Theorem, for every
initial datum u0 ∈ L1(Ω) there exists a unique mild-solution u ∈ C(0, T ;L1(Ω))
of the evolution problem (II), with u(t) = S(t)u0, where

(
S(t)

)
t≥0

is the semigroup
of order-preserving contractions given by the exponential formula

S(t)u0 = lim
n→∞

(
I +

t

n
A

)−n
u0.

Moreover, since A is completely accretive, if the initial datum u0 ∈ D(A)
then the mild-solution u(t) = S(t)u0 is a strong-solution (see [BCr2]), i.e., u ∈
W 1,1(0, T ;L1(Ω)) and (II) is verified almost everywhere. The next result is a con-
sequence of the Nonlinear Semigroups Theory. We include the proof here for the
sake of completeness.

Lemma 3.2. Assume that D(β) is closed or a is smooth. Let u0 ∈ D(A)
and let u(t) = S(t)u0 be the mild-solution of (II). Then u ∈ Lp(0, T ;W 1,p

β (Ω)) ∩
W 1,1(0, T ;L1(Ω)) for every T > 0, and there exists w ∈ L1(ST ) with −w(t, x) ∈
β(u(t, x)) a.e. on ST such that

(3.3)
∫

Ω

〈a(x, Du(t)), D(u(t) − φ)〉 ≤ −
∫

Ω

u′(t)(u(t) − φ) +
∫

∂Ω

w(t)(u(t) − φ)

for every φ ∈ W 1,p
β (Ω) ∩ L∞(Ω) and a.e. on [0, T ].

Proof. Since u(t) = S(t)u0 is a strong-solution of (II), the set K consisting of
those values of t ∈ [0, T ] for which either u is not differenciable at t, or t is not
a Lebesgue point for u′, or u′(t)+Au(t) �� 0, is a null subset of [0, T ]. Then, since
u′ ∈ L1(0, T ;L1(Ω)), [BCP, Proposition 1.5] guarantees us that for each ε > 0,
there exists a partition 0 = t0 < t1 < . . . < tn−1 ≤ T < tn with the properties:
tk �∈ K, k = 1, . . . , n, tk − tk−1 < ε for k = 1, . . . , n and

(3.4)
n∑

k=1

∫ tk

tk−1

‖u′(s) − u′(tk)‖ ds < ε.

If one defines vε as vε(0) := u0, vε(t) := u(tk) on ]tk−1, tk], k = 1, . . . , n.
Then vε is solution of an ε-discretization of (II) and consequently, vε → u in
C(0, T ;L1(Ω)).

Since
(
u(tk),−u′(tk)

)
∈ A, there exists wk ∈ L1(∂Ω) with −wk(x) ∈ β(u(tk, x))

a.e. on ∂Ω, such that

(3.5)
∫

Ω

〈a(x, Du(tk)), D(u(tk)−φ)〉 ≤ −
∫

Ω

u′(tk)(u(tk)−φ)+
∫

∂Ω

wk(u(tk)−φ)

for every φ ∈ W 1,p
β (Ω) ∩ L∞(Ω). From here, if we set wε(t) := wk and uε(t) :=

u′(tk) on ]tk−1, tk], k = 1, . . . , n, we get

(3.6)
∫ T

0

∫
Ω

〈a(x, Dvε), D(vε − φ)〉 ≤ −
∫ T

0

∫
Ω

uε(vε − φ) +
∫ T

0

∫
∂Ω

wε(vε − φ)



DEGENERATE PARABOLIC EQUATION 9

for every φ ∈ L∞(QT )∩Lp(0, T ;W 1,p
β (Ω)). Taking φ = 0 as test function in (3.6),

by (H1) and (3.4) we have

(3.7)

∫ T

0

∫
Ω
|Dvε|p ≤ −

∫ T

0

∫
Ω

uεvε +
∫ T

0

∫
∂Ω

wεvε ≤

≤ −
∫ T

0

∫
Ω

uεvε ≤ ‖uε‖L1(QT ) ‖u0‖∞ ≤ M ‖u0‖∞.

From where it follows that {|Dvε| : 0 < ε < 1} is a bounded subset of Lp(QT ).
Hence, after passing to a suitable subsequence, we have

Dvε → v ∈ Lp(QT )N weakly in Lp(QT )N as ε → 0.

Now, since vε → u in C(0, T ;L1(Ω)), we have v = Du. Thus, it follows from
vε ∈ Lp(0, T ;W 1,p

β (Ω)) that u ∈ Lp(0, T ;W 1,p
β (Ω)).

On the other hand, since
(
u(t),−u′(t)

)
∈ A, there exists w(t) ∈ L1(∂Ω) with

−w(t)(x) ∈ β(u(t)(x)) a.e. in x ∈ ∂Ω, such that∫
Ω

〈a(x, Du(t)), D(u(t) − φ)〉 ≤ −
∫

Ω

u′(t)(u(t) − φ) +
∫

∂Ω

w(t)(u(t) − φ)

for every φ ∈ W 1,p
β (Ω)∩L∞(Ω). Taking φ = u(t)− Tk

(
u(t)− vε(t)

)
in the above

inequality we get

(3.8)

∫
Ω
〈a(x, Du(t)), DTk(u(t) − vε(t))〉 ≤

≤ −
∫
Ω

u′(t)Tk(u(t) − vε(t)) +
∫

∂Ω
w(t)Tk(u(t) − vε(t)).

Taking φ = vε(t) − Tk

(
vε(t) − u(t)

)
as test function in (3.5), we get

(3.9)

∫
Ω
〈a(x, Dvε(t)), DTk(vε(t) − u(t))〉 ≤

≤ −
∫
Ω

uε(t)Tk(vε(t) − u(t)) +
∫

∂Ω
wε(t)Tk(vε(t) − u(t)).

Adding (3.8) and (3.9), we obtain

0 ≤
∫

Ω

〈a(x, Du(t)) − a(x, Dvε(t)), DTk(u(t) − vε(t))〉 ≤

≤ −
∫

Ω

(u′(t) − uε(t))Tk(u(t) − vε(t)) +
∫

∂Ω

(w(t) − wε(t))Tk(u(t) − vε(t)).

From where it follows that

(3.10)
∫

∂Ω

|w(t) − wε(t)| ≤
∫

Ω

|u′(t) − uε(t)|.

Finally, from (3.4) and (3.10), we get w ∈ L1(ST ), and the proof concludes.

The above theorem motivates us to give the following definition of solution of
the problem

(III)
ut = div a(x, Du) in QT = Ω × (0, T )

− ∂u
∂ηa

∈ β(u) on ST = ∂Ω × (0, T ).
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Definition. A measurable function u : QT → R is an entropy solution of (III)
in QT if u ∈ C(0, T ;L1(Ω)), u(t) ∈ T 1,p

tr (Ω) for almost all t ∈ [0, T ], Tku ∈
Lp(0, T ;W 1,p

β (Ω)) for all k > 0 and there exists w ∈ L1(ST ) with −w(t, x) ∈
β(u(t, x)) a.e. on ST such that

(3.11)

∫ t

0

∫
Ω
〈a(x, Du), DTk(u − φ)〉 ≤ −

∫ t

0

∫
Ω

∂φ
∂s Tk(u − φ)+

+
∫
Ω

Jk(u(0) − φ(0)) −
∫
Ω

Jk(u(t) − φ(t)) +
∫ t

0

∫
∂Ω

wTk(u − φ)

for all k > 0, for all t ∈ [0, T ] and φ ∈ T (QT ), where

T (QT ) := L∞(QT ) ∩ Lp(0, T ;W 1,p
β (Ω)) ∩ W 1,1(0, T ;L1(Ω))

and
Jk(r) :=

∫ r

0

Tk(s) ds.

The purpose of this section is to prove existence and uniqueness of entropy
solutions for problem (I) when the initial data are in L1(Ω). Moreover, we will see
that these entropy solutions are the mild-solutions. We start with existence.

Theorem 3.3. Assume that D(β) is closed or a is smooth. Let u0 ∈ L1(Ω)
and let u(t) = S(t)u0 be the mild-solution of (II). Then, u is an entropy solution
of (III) for all T > 0.

Proof. Let u0
n ∈ D(A) be such that u0

n → u0 in L1(Ω) and let f ∈ L1(Ω) be
such that |u0

n| ≤ f for all n ∈ N. By the above Lemma, if un(t) := S(t)u0
n, we

have un ∈ Lp(0, T ;W 1,p
β (Ω)) ∩ W 1,1(0, T ;L1(Ω)) and there exists wn ∈ L1(ST )

with −wn(t, x) ∈ β(un(t, x)) a.e. on ST such that

(3.12)

∫
Ω
〈a(x, Dun(s)), D(un(s) − φ)〉 ≤

≤ −
∫
Ω

u′
n(s)(un(s) − φ) +

∫
∂Ω

wn(s)(u(s) − φ)

for every φ ∈ W 1,p
β (Ω) ∩ L∞(Ω) and for almost all 0 < s < T .

We introduce the class F of functions S ∈ C2(R) ∩ L∞(R) satisfying:

S(0) = 0, 0 ≤ S′ ≤ 1, S′(s) = 0 for s large enough,

S(−s) = −S(s), and S′′(s) ≤ 0 for s ≥ 0.

Let G := F ∪ {Tk : k > 0}. Then, given φ ∈ T (QT ) and S ∈ G, using
un(s) − S(un(s) − φ(s)) as test function in (3.12) and integrating we obtain that

(3.13)

∫ t

0

∫
Ω
〈a(x, Dun(s)), DS(un(s) − φ(s))〉 ≤

≤ −
∫ t

0

∫
Ω

u′
n(s)S(un(s) − φ(s)) +

∫ t

0

∫
∂Ω

wn(s)S(un(s) − φ(s))

for every φ ∈ T (QT ), S ∈ G and for all 0 < t < T .
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For every S ∈ G, let JS(r) :=
∫ r

0
S(s) ds. Then,

(3.14)
∂

∂s
JS(un − φ) = S(un − φ)

∂

∂s
(un − φ).

From (3.13) and (3.14), it follows that

(3.15)

∫ t

0

∫
Ω
〈a(x, Dun(s)), DS(un(s) − φ(s))〉 ≤

≤ −
∫ t

0

∫
Ω

∂φ
∂s S(un(s) − φ(s)) +

∫
Ω

JS(un(0) − φ(0))−

−
∫
Ω

JS(un(t) − φ(t)) +
∫ t

0

∫
∂Ω

wn(s)S(un(s) − φ(s))

for every φ ∈ T (QT ), S ∈ G and for all 0 < t < T .
Taking φ = 0 and S = Tk in (3.15) and using (H1), we get

(3.16)

∫ t

0

∫
Ω
|DTk(un(s))|p ≤

∫ t

0

∫
Ω
〈a(x, Dun(s)), DTk(un(s))〉 ≤

≤
∫
Ω

Jk(un(0)) ≤ k
∫
Ω
|u0

n| ≤ k‖f‖1,

consequently, {DTkun}n∈N is a bounded sequence in Lp(QT ). Hence, there exists
a subsequence, still denoted by DTkun, such that DTkun → h weakly in Lp(QT ).
Now, since Tkun → Tk(u) in Lp(QT ), it follows that DTkun → DTk(u) weakly
in Lp(QT ).

We now prove that {Dun}n∈N is a Cauchy sequence in measure. To do this we
follow the same technique used in [BG1] ( see also [AMST] ). Let r, ε > 0. For
some A > 1, we set

C(x, A, r) := inf{〈a(x, ξ) − a(x, η), ξ − η〉 : |ξ| ≤ A, |η| ≤ A, |ξ − η| ≥ r }.

Having in mind that the function ψ → a(x, ψ) is continuous for almost all x ∈ Ω
and the set {(ξ, η) : |ξ| ≤ A, |η| ≤ A, |ξ − η| ≥ t } is compact, the infimum in
the definition of C(x, A, r) is a minimum. Hence, by (H2), it follows that

(3.17) C(x, A, r) > 0 for almost all x ∈ Ω.

For k > 0 and n, m ∈ N, we have

(3.18)
{|Dun − Dum| > r} ⊂ {|DTAun| ≥ A} ∪ {|DTAum| ≥ A} ∪ {|un| > A}∪

∪{|um| > A} ∪ {|un − um| ≥ k2} ∪ {C(x, A, r) ≤ k} ∪ G,

where
G := {|un − um| ≤ k2, |un| ≤ A, |um| ≤ A, C(x, A, r) ≥ k,

|DTAun| ≤ A, |DTAum| ≤ A, |Dun − Dum| > r}.
Now,

λN+1({|un| > A}) ≤
∫ T

0

∫
Ω

|un|
A

≤ 1
A

∫ T

0

‖un(t)‖L1(Ω) ≤
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≤ 1
A

∫ T

0

‖u0
n‖L1(Ω) ≤

T

A
‖u0

n‖L1(Ω) ≤
T

A
‖f‖1.

Hence, we can choose A large enough in order to have

(3.19) λN+1({|un| > A} ∪ {|um| > A}) ≤ ε

5
.

On the other hand, by (3.16), we have

λN+1({|DTAun| > A}) ≤
∫ T

0

∫
Ω

|DTAun|p
Ap

≤ ‖f‖1A
1−p.

Then, we can choose A large enough in order to have

(3.20) λN+1({|DTAun| > A} ∪ {|DTAum| > A}) ≤ ε

5
.

By (3.17), taking k small enough we have

(3.21) λN+1({(t, x) ∈ QT : C(x, A, r) ≤ k}) ≤ ε

5
.

Since un, um ∈ T (QT ), inserting the test functions un, um in (3.13), adding
and dropping unnecessary positive terms one has

∫ T

0

∫
Ω

〈a(x, Dun(s)) − a(x, Dum(s)), DTk(un(s) − um(s))〉 ≤

≤ −
∫ T

0

∫
Ω

(u′
n(s) − u′

m(s))Tk(un(s) − um(s)) =

= −
∫ T

0

∫
Ω

∂

∂s
Jk(un(s) − um(s)) =

∫
Ω

Jk(un(0) − um(0))−

−
∫

Ω

Jk(un(T ) − um(T )) ≤
∫

Ω

Jk(un(0) − um(0)) ≤ k

∫
Ω

|u0
n − u0

m| ≤ 2k‖f‖1.

Hence

(3.22)

λN+1(G) ≤

≤ λN+1({|un − um| ≤ k2, 〈a(x, Dun) − a(x, Dum), D(un − um)〉 ≥ k}) ≤

≤ 1
k

∫
{|un−um|<k2}〈a(x, Dun) − a(x, Dum), D(un − um)〉 ≤ 2

k k2‖f‖1 ≤ ε
5

for k small enough.
Finally, since A and k have been already choosen and {un} is a Cauchy

sequence in L1(QT ), if n0 is large enough we have for n, m ≥ n0 the estimate

λN+1({|un − um| ≥ k2}) ≤ ε

5
.
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From here, using (3.18), (3.19), (3.20), (3.21) and (3.22), we can conclude that

λN+1({|Dun − Dum| ≥ r}) ≤ ε for m, n ≥ n0.

Consequently, {Dun}n∈N is a Cauchy sequence in measure. Now, the above ar-
gument also shows that {DTkun}n∈N is a Cauchy sequence in measure for every
k > 0. Moreover, since {DTkun}n∈N is bounded in Lp(QT ), by [B-V, Lemma
6.1], {DTkun}n∈N converges to DTk(u) in L1(QT ), Thus,

(3.23) {Dun}n∈N converges to Du in measure.

According to Nemytskii’s Theorem [K, Lemma I.2.2.1] the convergence of Dun to
Du in measure implies that a(x, Dun) converges in measure to a(x, Du), and
a.e. ( up to extraction of a subsequence, if necessary ).

We now claim

(3.24) {wn} is a Cauchy sequence in L1(ST ).

Taking the test functions un, um in (3.13), adding and dropping unnecessary
positive terms we get

−
∫ T

0

∫
∂Ω

(wn − wm)Tk(un − um) ≤ −
∫ T

0

∫
Ω

(u′
n − u′

m)Tk(un − um) =

= −
∫ T

0

∫
Ω

∂

∂s
Jk(un − um) =

∫
Ω

Jk(u0
n − u0

m) −
∫

Ω

Jk(un(T ) − um(T )) ≤

≤
∫

Ω

Jk(u0
n − u0

m) ≤ k

∫
Ω

|u0
n − u0

m|.

Dividing by k and letting k → 0, it follows that

∫ T

0

∫
∂Ω

|wn − wm| ≤
∫

Ω

|u0
n − u0

m|.

Consequently, the claim (3.24) holds and there exists w ∈ L1(ST ) such that

(3.25) wn → w in L1(ST ).

Let us see now that u(t) ∈ T 1,p
tr (Ω) for almost all t ∈ [0, T ]. Indeed: Let

Ak := {(t, x) ∈ ST : |Tku(t)(x)| < k},

and

C := ST ∼
∞⋃

k=1

Ak.
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Then, for every k > 0, we have

μ(C) =
1
k

∫
C

|Tku| ≤ 1
k

∫
ST

|Tku| ≤ C1

k

∫ T

0

‖Tku(t)‖W 1,1(Ω) ≤

≤ C2

k

( ∫ T

0

‖Tku(t)‖L1(Ω) +
∫ T

0

‖DTku(t)‖Lp(Ω)

)
.

Now,
‖Tku(t)‖L1(Ω) ≤ ‖u(t)‖L1(Ω) ≤ ‖u(0)‖L1(Ω).

Moreover, by (3.16) we have

∫ T

0

‖DTku(t)‖Lp(Ω) =
∫ T

0

( ∫
Ω

|DTku(t)|p
)1/p

≤ C3

( ∫ T

0

∫
Ω

|DTku(t)|p
)1/p

≤ C4k
1/p.

Hence,

μ(C) ≤ C2

k

(
‖u(0)‖L1(Ω) + C4k

1/p
)

for any k > 0.

Taking limit as k → ∞ we have μ(C) = 0. Moreover, Ak ⊂ Ar if k ≤ r. Thus,
the function v in ST given by

v(t, x) := (Tku(t))(x) if (t, x) ∈ Ak,

is well defined.
On the other hand, since C is a null subset of ST , there exists a null subset B

of [0, T ] such that the sections Ct = {x ∈ ∂Ω : (t, x) ∈ C} are null subsets of
∂Ω for all t �∈ B. For every t �∈ B, we define in Ω the function vn(t) := Tn(u(t)).
Then, vn(t) ∈ W 1,p(Ω) for all n ∈ N and vn(t) → u(t) as n → ∞ a.e. in Ω.
Moreover, for every k > 0,

DTk(vn(t)) → DTk(u(t)) in L1(Ω).

Finally, if x �∈ Ct, there is n0 ∈ N such that (t, x) ∈ An for all n ≥ n0. Hence,
v(t, x) = (Tnu(t))(x) = vn(t)(x) for all n ≥ n0. Thus, vn(t) → v(t) as n → ∞
a.e. in ∂Ω. Consequently, u(t) ∈ T 1,p

tr (Ω) for all t �∈ B.
We now claim that, up to extraction of a subsequence,

(3.26) un → v a.e. in ST .

In fact: since

∫ T

0

‖Tkun(t) − Tku(t)‖L1(∂Ω) ≤ M

∫ T

0

‖Tkun(t) − Tku(t)‖W 1,1(Ω),

we have
Tkun → Tku in L1(ST ) as n → ∞.
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Then, by a diagonal process, we can find a subsequence unj
and a null subset

D ⊂ ST , such that

(Tkunj
(t))(x) → (Tku(t))(x) as j → ∞ for (t, x) ∈ ST ∼ D.

From here it is easy to see that

unj (t, x) → v(t, x) as j → ∞ for any (t, x) ∈ ST ∼ (C ∪ D),

and claim (3.26) holds.
To complete the proof it remains to show that −w(t, x) ∈ β(u(t, x)) a.e. on

ST and that for every φ ∈ T (QT ), k > 0 and all t ∈ [0, T ]

(3.27)

∫ t

0

∫
Ω
〈a(x, Du), DTk(u − φ)〉 ≤ −

∫ t

0

∫
Ω

∂φ
∂s Tk(u − φ)+

+
∫
Ω

Jk(u(0) − φ(0)) −
∫
Ω

Jk(u(t) − φ(t)) +
∫ t

0

∫
∂Ω

wTk(u − φ).

Suppose first that S ∈ F and φ ∈ T (QT ). Then, by (3.15) we have

(3.28)

∫ t

0

∫
Ω
〈a(x, Dun(s)), DS(un(s) − φ(s))〉 ≤

≤ −
∫ t

0

∫
Ω

∂φ
∂s S(un(s) − φ(s)) +

∫
Ω

JS(un(0) − φ(0))−

−
∫
Ω

JS(un(t) − φ(t)) +
∫ t

0

∫
∂Ω

wn(s)S(un(s) − φ(s)).

We can write the first member of (3.28) as

(3.29)

∫ t

0

∫
Ω
〈a(x, Dun(s)), Dun(s)〉S′(un(s) − φ(s))−

−
∫ t

0

∫
Ω
〈a(x, Dun(s)), Dφ(s)〉S′(un(s) − φ(s)).

Since un → u and Dun → Du a.e., we have by the Fatou Lemma

∫ t

0

∫
Ω

〈a(x, Du(s)), Du(s)〉S′(u(s) − φ(s)) ≤

≤ lim inf
n→∞

∫ t

0

∫
Ω

〈a(x, Dun(s)), Dun(s)〉S′(un(s) − φ(s)).

The second term of (3.29) is estimated as follows. Let r := ‖φ‖∞ + ‖S‖∞. By
(3.16) and (H3), it follows that

{a(x, DTrun) : n ∈ N} is bounded in Lp′
(QT ).

Then, up to extraction of a subsequence, we can suppose that

(3.30) a(x, DTrun) → a(x, DTru) weakly in Lp′
(QT ).
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On the other hand,

|DφS′(un − φ)| ≤ M |Dφ| ∈ Lp(QT ).

Then, by the Dominated Convergence Theorem, we have

(3.31) DφS′(un − φ) → DφS′(u − φ) in Lp(QT )N .

Hence, by (3.30) and (3.31), it follows that

lim
n→∞

∫ t

0

∫
Ω

〈a(x, Dun(s)), Dφ(s)〉S′(un(s) − φ(s)) =

=
∫ t

0

∫
Ω

〈a(x, Du(s)), Dφ(s)〉S′(u(s) − φ(s)).

Therefore, applying again the Dominated Convergence Theorem in the second mem-
ber of (3.28), we obtain

∫ t

0

∫
Ω

〈a(x, Du), DS(u − φ)〉 ≤ −
∫ t

0

∫
Ω

∂φ

∂s
S(u − φ)+

+
∫

Ω

JS(u(0) − φ(0)) −
∫

Ω

JS(u(t) − φ(t)) +
∫ t

0

∫
∂Ω

wS(u − φ).

From here, to get (3.27) we only need to apply the technique used in the proof of
[B-V, Lemma 3.2].

Finally, since −wn ∈ β(un) a.e. on ST , by (3.25), (3.26) and the closedness of
β, we get −w ∈ β(u) a.e. on ST .

In order to prove the uniqueness of entropy solutions we give first the following
result.

Lemma 3.4. Assume that D(β) is closed or a is smooth. Let u0 ∈ L1(Ω)
and v0 ∈ D(A). Let u(t) be the entropy solution with initial datum u0 and let
v(t) = S(t)v0 be the mild-solution with initial datum v0. Then, for every k > 0
and t ∈ [0, T ] we have

∫
Ω

Jk(u(t) − v(t)) ≤
∫

Ω

Jk(u0 − v0).

In particular, ∫
Ω

|u(t) − v(t)| ≤
∫

Ω

|u0 − v0|.

Proof. By Lemma 3.2, there exists ŵ ∈ L1(ST ) with −ŵ(t, x) ∈ β(v(t, x)) a.e.
on ST , such that

(3.32)

∫
Ω
〈a(x, Dv(t)), DTk(v(t) − φ)〉 ≤

≤ −
∫
Ω

v′(t)Tk(v(t) − φ) +
∫

∂Ω
ŵ(t)Tk(v(t) − φ)
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for every φ ∈ W 1,p
β (Ω) ∩ L∞(Ω), k > 0 and almost all 0 < t < T . Now, since u

is an entropy solution, for any h > 0, Thu(t) ∈ W 1,p
β (Ω) ∩ L∞(Ω). Hence, taking

Thu(s) as test function in (3.32) and integrating, we get

(3.33)

∫ t

0

∫
Ω
〈a(x, Dv(s)), DTk(v(s) − Thu(s))〉 ≤

−
∫ t

0

∫
Ω

v′(s)Tk(v(s) − Thu(s)) +
∫ t

0

∫
∂Ω

ŵ(s)Tk(v(s) − Thu(s)).

On the other hand, taking φ = v(s) as test function in the definition of entropy
solution, we have that there exists w ∈ L1(ST ) with −w(t, x) ∈ β(u(t, x)) a.e.
on ST such that

(3.34)

∫ t

0

∫
Ω
〈a(x, Du(s)), DTk(u(s) − v(s))〉 ≤ −

∫ t

0

∫
Ω

∂v
∂s Tk(u(s) − v(s))+

+
∫
Ω

Jk(u(0) − v(0)) −
∫
Ω

Jk(u(t) − v(t)) +
∫ t

0

∫
∂Ω

w(s)Tk(u(s) − v(s)).

Now,

∫ t

0

∫
Ω

〈a(x, Dv(s)), DTk(v(s)− Thu(s))〉+
∫ t

0

∫
Ω

〈a(x, Du(s)), DTk(u(s)− v(s))〉 =

=
∫ ∫

{|u|≤h}
〈a(x, Du(s)) − a(x, Dv(s)), DTk(u(s) − v(s))〉+

+
∫ ∫

{|u|>h}
〈a(x, Dv(s)), DTk(v(s) − h sign u(s))〉+

+
∫ ∫

{|u|>h}
〈a(x, Du(s)), DTk(u(s) − v(s))〉 ≥

≥
∫ ∫

{|u|>h}
〈a(x, Du(s)), DTk(u(s) − v(s))〉 = 0

if h > k + ‖v0‖∞.
On the other hand, having in mind that u(s) ∈ T 1,p

tr (Ω), by the Dominated
Convergence Theorem, it follows that

lim
h→∞

∫ t

0

∫
Ω

v′(s)
(

Tk

(
v(s) − Thu(s)

)
− Tk

(
v(s) − u(s)

))
= 0.

and

lim
h→∞

∫ t

0

∫
∂Ω

ŵ(s)Tk(v(s) − Thu(s)) =
∫ t

0

∫
∂Ω

ŵ(s)Tk(v(s) − u(s)).

Therefore, since

∫ t

0

∫
∂Ω

ŵ(s)Tk(v(s) − u(s)) +
∫ t

0

∫
∂Ω

w(s)Tk(u(s) − v(s)) ≤ 0,
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adding (3.33) and (3.34), we get

(3.35)
∫

Ω

Jk(u(t) − v(t)) ≤
∫

Ω

Jk(u0 − v0).

Finally, since

lim
k→0

Jk(r)
k

= |r|,

by the Dominated Convergence Theorem, we get
∫

Ω

|u(t) − v(t)| ≤
∫

Ω

|u0 − v0|.

Theorem 3.5. Assume that D(β) is closed or a is smooth. Let u0 ∈ L1(Ω).
Then, the entropy solution u(t) of problem (III) with initial datum u0 is unique
and coincides with the mild-solution v(t) = S(t)u0.

Proof. Take u0
n ∈ D(A), such that u0

n → u0 in L1(Ω). By the above Lemma,
∫

Ω

|S(t)u0
n − u(t)| ≤

∫
Ω

|u0
n − u0|

for all t ∈ [0, T ]. Then, since S(t)u0
n → v(t) in L1(Ω), we get u(t) = v(t).

To finish this section we will see that every entropy solution of (III) is a weak
solution and has some regularity properties which are the optimal ones in the par-
ticular case of the Heat Equation. The method used in the proof was suggested by
Ph. Bénilan.

Theorem 3.6. Assume that D(β) is closed or a is smooth. Let u0 ∈ L1(Ω).
Then, the entropy solution u(t) of problem (III) with initial datum u0 is a weak
solution of (III), i.e.,

ut = div a(x, Du) in D′(QT ).

Moreover,
u ∈ Mp1(QT ), |Du| ∈ Mp2(QT )

where p1 = p − 1 + p
N and p2 = N(p−1)+p

N+1 . In case p > 1 + N
N+1 , u ∈

Lq(0, T ;W 1,q(Ω)) for every 1 ≤ q < p2.

Proof. Take u0
n ∈ D(A) such that u0

n → u0 in L1(Ω). Let f ∈ L1(Ω) be such
that |u0

n| ≤ f a.e. in Ω for all n ∈ N. For every n ∈ N, let un(t) := S(t)u0
n.

By Theorem 3.5, we have u(t) = S(t)u0. Since un → u in L1(QT ), there exists
g ∈ L1(QT ) such that |un| ≤ g a.e. in QT for all n ∈ N.

We claim

(3.36) {un}n∈N is bounded in Mp1(QT ), p1 = p − 1 +
p

N
.
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Let p� = pN
N−p . By Poincaré’s inequality ( cf. [Zi, Cap. 4] ) and since |un(t)| ≤ g,

there exist constants Ci > 0 such that

‖Tkun(t)‖p
p� ≤

(
‖Tkun(t) − Tkun(t)‖p� + ‖Tkun(t)‖p�

)p

≤

≤
(

C1‖DTkun(t)‖p + ‖Tkun(t)‖p�

)p

≤ C2

(
‖DTkun(t)‖p + ‖Tkun(t)‖1

)p

≤

≤ C3

(
1 + ‖DTkun(t)‖p

)p

.

Then, by (3.16), it follows that

∫ T

0

‖Tkun(t)‖p
p� dt ≤ C3

∫ T

0

(
1 + ‖DTkun(t)‖p

)p

dt ≤

≤ C4

(
1 +

∫ T

0

‖DTkun(t)‖p
p dt

)
≤ C4(1 + Mk).

Thus

(3.37)
∫ T

0

(
λN ({|un(t)| ≥ k})

)p/p�

dt ≤
∫ T

0

(
1
k
‖Tkun(t)‖p�

)p

dt ≤ C5(1 + k)
kp

.

Moreover

(3.38) λN ({|un(t)| ≥ k}) ≤ 1
k
‖un(t)‖1 ≤ C6

k
.

Then, by (3.37) and (3.38), we have

λN+1({|un| ≥ k}) =
∫ T

0

λN ({|un(t)| ≥ k}) dt =

=
∫ T

0

(
λN ({|un(t)| ≥ k})

)1−p/p�(
λN ({|un(t)| ≥ k})

)p/p�

dt ≤

≤
(

C6

k

)1−p/p� ∫ T

0

(
λN ({|un(t)| ≥ k})

)p/p�

dt ≤

≤ C7
1

k1−p/p�

(1 + k)
kp

≤ C8

kp−p/p� = C8k
−p1 .

Next, we claim that

(3.39) {Dun}n∈N is bounded in Mp2(QT ), p2 =
N(p − 1) + p

N + 1
.
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Let r > 0. By (3.16), there exists a constant Q1 > 0 such that for every k > 0
and n ∈ N,

(3.40) λN+1({|DTk(un)| > r/2}) ≤
∫ T

0

∫
Ω

|DTk(un)|p
(r/2)p

≤ Q1k

rp
.

On the other hand, by (3.36), there exists a constant Q2 > 0 such that

(3.41) λN+1({|un| ≥ k}) ≤ Q2

kp1
for every k > 0 and n ∈ N.

From (3.40) and (3.41), it follows that

λN+1({|Dun| > r}) ≤
≤ λN+1({|Dun − DTk(un)| > r/2}) + λN+1({|DTk(un)| > r/2}) ≤

≤ λN+1({|un| ≥ k}) + λN+1({|DTk(un)| > r/2}) ≤ Q2

kp1
+

Q1k

rp
.

Then, taking k := rp2/p1 , we have

λN+1({|Dun| > r}) ≤ Qr−p2 for every n ∈ N,

and the claim (3.39) is satisfied.
From (3.23), (3.36) and (3.39) we can state that

u ∈ Mp1(QT ), |Du| ∈ Mp2(QT )

where p1 = p−1+ p
N and p2 = N(p−1)+p

N+1 . Suppose we are in the case p > 1+ N
N+1 .

Then p2 > 1. Hence, if 1 ≤ q < p2, we have that u ∈ Lq(QT ) and Du ∈ Lq(QT ).
Consequently, u ∈ Lq(0, T ;W 1,q(Ω)) for every 1 ≤ q < p2.

Let us see now that u is a weak solution of (III). Indeed: By (3.39), {|Dun| :
n ∈ N} is a bounded sequence in Mp2(QT ). Thus, {|Dun|p−1 : n ∈ N} is
a bounded sequence in Mq1(QT ) with q1 = 1 + 1

(p−1)(N+1) . Then, by (H3) it
follows that {|a(x, Dun)| : n ∈ N} is a bounded sequence in Mq1(QT ). Hence, if
1 ≤ q < q1, {|a(x, Dun)| : n ∈ N} is a bounded sequence in Lq(QT ). Moreover,
by the proof of Theorem 3.3, we know that

a(x, Dun) → a(x, Du) in measure.

Then, by [B-V, Lemma 6.1],

a(x, Dun) → a(x, Du) in L1(QT ).

On the other hand, since each un is a strong solution and un ∈ L∞(QT ), given
φ ∈ D(QT ), if we take un + φ and un − φ as test functions in (3.11), we obtain∫ T

0

∫
Ω

〈a(x, Dun), Dφ〉 = −
∫ T

0

∫
Ω

∂un

∂t
φ =

∫ T

0

∫
Ω

∂φ

∂t
un.

Letting n → ∞ in the last equality we get∫ T

0

∫
Ω

〈a(x, Du), Dφ〉 =
∫ T

0

∫
Ω

∂φ

∂t
u,

for all φ ∈ D(QT ).
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4. The case Dirichlet boundary condition for general Ω

From now on Ω is an open set, not necessarily bounded, in R
N (N ≥ 2),

1 < p < N and a is a vector valued mapping from Ω × R
N into R

N satisfying
(H1) - (H3). In this section we establish existence and uniqueness of solutions of the
initial-value problem for the non-linear parabolic equation with Dirichlet boundary
condition

ut = div a(x, Du) in QT = (0, T ) × Ω

(IV ) u = 0 on ST = (0, T ) × ∂Ω

u(x, 0) = u0(x) in Ω,

for every initial datum in L1(Ω).

We use the following completely accretive operators introduced in [B-V] instead
of the operators A and A of the previous section.

We define the operator B in L1(Ω) by the rule:

(u, v) ∈ B if and only if u ∈ T 1,p
0 (Ω) ∩ L∞(Ω) ∩ L1(Ω), v ∈ L1(Ω) and

−div a(x, Du) = v in D′(Ω).

The closure of the operator B in L1(Ω) is the operator B defined by the rule:

(u, v) ∈ B if and only if u, v ∈ L1(Ω), u ∈ T 1,p
0 (Ω) and

∫
Ω

〈a(x, Du), DTk(u − φ)〉 ≤
∫

Ω

vTk(u − φ)

for every φ ∈ T 1,p
0 (Ω) ∩ L∞(Ω) and k > 0.

In the following Theorem we summarize all the results we need about the oper-
ators B and B given in [B-V].

Theorem 4.1. The operator B is completely accretive, L∞(Ω) ⊂ R(I + B) and
D(B) = L1(Ω). Moreover, B is the closure of B in L1(Ω). Consequently, B is
an m-completely accretive operator in L1(Ω) with dense domain.

We transcribe (IV) as the evolution problem in L1(Ω)

(V )
du

dt
+ Bu = 0, u(0) = u0.

By Theorem 4.1, according to Crandall-Liggett’s Generation Theorem, for every
initial datum u0 ∈ L1(Ω) there exists a unique mild-solution u ∈ C(0, T ;L1(Ω)) of
the evolution problem (V), with u(t) = T (t)u0, where

(
T (t)

)
t≥0

is the semigroup
of order-preserving contractions given by the exponential formula

T (t)u0 = lim
n→∞

(I +
t

n
B)−n u0.
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As in the bounded case, we want to characterize the mild-solutions as weak
solutions satisfying certain entropy inequality. To do that we introduce the following
definition of solution for the problem

(V I)
ut = div a(x, Du) in QT = Ω × (0, T )

u = 0 on ST = ∂Ω × (0, T ).

Definition. A measurable function u : QT → R is an entropy solution of (VI)
in QT if u ∈ C(0, T ;L1(Ω)), u(t) ∈ T 1,p

0 (Ω) for almost all t ∈ [0, T ], DTku ∈
Lp(QT ) for all k > 0 and

∫ t

0

∫
Ω

〈a(x, Du), DTk(u − φ)〉 ≤ −
∫ t

0

∫
Ω

∂φ

∂s
Tk(u − φ)+

+
∫

Ω

Jk(u(0) − φ(0)) −
∫

Ω

Jk(u(t) − φ(t)),

for all k > 0, t ∈ [0, T ] and φ ∈ L∞(QT )∩W 1,1(0, T ;L1(Ω)), with φ(t) ∈ T 1,p
0 (Ω)

for almost all t and Dφ ∈ Lp(QT ).

Using the same technique than in the bounded case and small modifications in
the proofs of the theorems of the above section, we get existence and uniqueness of
entropy solutions for problem (IV) when the initial data are in L1(Ω). Concretely,
we can establish the following result.

Theorem 4.2. For every initial datum u0 ∈ L1(Ω), the mild-solution u(t) =
T (t)u0 of problem (V) is the unique entropy solution of problem (VI). Moreover,
u(t) is a weak solution of (VI) and

u ∈ Mp1(QT ), |Du| ∈ Mp2(QT )

where p1 = p − 1 + p
N and p2 = N(p−1)+p

N+1 . In case p > 1 + N
N+1 , u ∈

Lq(0, T ;W 1,q
loc (Ω)) for every 1 ≤ q < p2.
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Added in proof. The referee has point out to us the existence of the paper with
reference

X. Xu, On the initial-boundary-valued problem for ut − div
(
|∇u|p−2∇u

)
= 0,

Arch. Rat. Mech. Anal. 127 (1994), pp. 319-335,

in which renormalized solutions are introduced for the particular case of the p-
Laplacian with Dirichlet boundary condition. Existence and uniqueness of this type
of solutions are proved. It is not difficult to see that this concept and the one of
entropy solution introduced here coincide.
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