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Abstract.

We study existence and regularity of distributional solutions for a class of nonlinear parabolic
problems. The equations we consider have a quasi-linear diffusion operator and a lower order
term, which may grow quadratically in the gradient and may have a very fast growth (for instance,
exponential) with respect to the solution. The model problem we refer to is the following





ut −∆u = β(u)|∇u|2 + f(x, t), in Ω×]0, T [;

u(x, t) = 0, on ∂Ω×]0, T [;

u(x, 0) = u0(x), in Ω;

(1)

with Ω ⊂ RN a bounded open set, T > 0, and β(u) ∼ e|u|; as far as the data are concerned,
we assume exp(exp(|u0|)) ∈ L2(Ω), and f ∈ X(0, T ; Y (Ω)), where X,Y are Orlicz spaces of
logarithmic and exponential type, respectively. We also study a semilinear problem having a
superlinear reaction term, problem that is linked with problem (1) by a change of unknown (see
(5) below). Likewise, we deal with some other related problems, which include a gradient term
and a reaction term together.

1 Introduction.

The present paper is devoted to prove existence results for some quasilinear parabolic problems
with lower order terms, whose model is (1). This kind of problems has been extensively studied
in the last years (see for instance [19], [7], [4], [5], [8], [12], [13], [15], [17], [18], [21], [23], [24] and
references therein). In those works the hypotheses on the function β(s) imply grosso modo that
β(s) is bounded, with some exceptions as in [7] and [19]. In [7] the existence of subsolutions and
supersolutions is assumed, while no growth assumption is made on the continuous function β; then

1



it is proved that there exists a distributional solution to problem (1). This solution turns out to
be Hölder continuous by Theorem 1.1 in §1, Chapter V of [19].

More recently, in [14], assuming that β(u) = |u|λ, λ > 0, the authors are able to prove the
existence of solutions to (1) without using sub/supersolutions. In that paper, the assumption on
f(x, t) is that

f(x, t) ∈ Lr(0, T ; Lq(Ω)) , r > 1 , q >
N

2
max

{
λ + 1,

r

r − 1

}
,

while on the initial datum u0(x) the assumption is essentially that
∫

Ω

e2|u0|δ < +∞ for some δ > λ + 1.

For a slightly improved result for this case, see Section 4. Note that, when λ goes to infinity, the
exponent q also goes to infinity . Therefore one could expect that the case where β(s) = es will
require the use of exponential summability in the spatial variable for f(x, t) and a condition like∫
Ω

e2e|u0|
< +∞, for the initial datum. On the other hand, this strong assumption in the x variable

allows to require just a slightly superlinear integrability in the time variable (see also Section 7 for
some comments on these assumptions).

The aim of this paper, which improves and generalises the results of [14], is, in fact, to
deal with very general growth for β(u) like, for example, β(u) = eu or β(u) = exp(k)(s) =
exp(. . . (exp︸ ︷︷ ︸

k

(s)) . . . ). The assumptions on f(x, t) and u0(x), when β(s) = es, are

T∫

0

‖f(., t)‖φ

(
log∗ ‖f(., t)‖φ

) (
log∗ log∗ ‖f(., t)‖φ

)
dt < +∞, (2)

where log∗ s = max{1, log |s|}, ‖ . ‖φ denotes an Orlicz norm (see the definition in Section 2) with
N-function φ(s) = exp(exp(s))− e(s + 1), and

∫

Ω

e2e|u0|
< +∞ ; (3)

this is exactly in the same spirit of the previous considerations.
In order to explain the existence and regularity results, and the assumptions on the data, let

us consider problem (1) with f, u0 ≥ 0, for a general continuous function β : [0,+∞[→ [0,+∞[
satisfying lims→+∞ β(s) ∈]0,+∞]. If one performs the change of variable

v = Ψ(u) =

u∫

0

exp
( s∫

0

β(σ) dσ
)

ds, (4)

one obtains the semilinear problem




vt −∆v = f(x, t)g(v), in Ω×]0, T [;

v(x, t) = 0, on ∂Ω×]0, T [;

v(x, 0) = v0(x) := Ψ(u0), in Ω ,

(5)

where g(v) = exp
( u∫

0

β(s) ds
)

= Ψ′(Ψ−1(v)) has a linear or slightly superlinear growth in the

sense that

lim
s→+∞

g(s)
s

= lim
s→+∞

β(s) ∈]0, +∞]
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and
+∞∫

1
g(s)

ds = +∞, (6)

as can easily be checked by a change of variable. For instance, if we start from equation

ut −∆u = (eu + 1)|∇u|2 + f

and apply the change of variable v = exp
(
exp(s)− 1

)− 1, then we obtain the equation

vt −∆v = f(v + 1)
(
log(v + 1) + 1

)
.

Similarly, if β(s) = ees

, we have that g(s) grows at infinity like s (log s) (log log s), and so on.

It is well known (see [10]) that if condition (6) does not hold, that is if

+∞∫
1

g(s)
ds < +∞, then

there is no global solution to (5) for large f . On the other hand, if condition (6) is satisfied and f
and u0 are bounded, it is easy to obtain a priori estimates using a supersolution of the semilinear
problem (5) depending only on the variable t. However, this method is useless if one deals with
unbounded f and u0. So one of the crucial points of the present paper is to find a priori estimates
for the problem with an equation like (5) for unbounded data. This has been done by the authors
in [14] for an equation whose model is

vt −∆v = f(v + 1)
(
log(v + 1) + 1

)θ
, 0 < θ < 1.

In order to find results of global existence for the general problem (5), with assumption (6), we use
more general techniques which make use of a generalized logarithmic Sobolev’s inequality similar
to those proved in [2] and [11] leading to the assumptions on f described above. Moreover, the
change of variable from quasilinear problem (1) to the semilinear one (5) is not possible in general
if one considers operators endowed with more general structure like

ut − div a(x, t, u,∇u) = b(x, t, u,∇u), (7)

but with similar growths. To overcome this difficulty, one is led to use, as in several other papers on
elliptic and parabolic equations with quadratic gradient terms, test functions of exponential type
instead of changing the unknown variable. The role of these tests functions in dealing with gradient
term is put in evidence in Proposition 3.3 below. Actually, we will consider general equations of
the form (7).

The plan of this paper is as follows. The main existence results, Theorems 2.1 and 2.2 below,
respectively for problems (5) and (1), are stated in Section 2 together with a result on bounded
solutions. In Theorem 2.1 we prove the existence of at least one distributional solution of (5),
assuming (2) and v0 ∈ L2, while in Theorem 2.2 the hypotheses on the data are (2) and (3) (see
(18) below for the exact statement). In both theorems the differential operators and the lower
order terms which appear in (5) and (1) may be replaced by fairly general nonlinear terms having
similar growth, as in (7).

The proofs of the main results are given in Section 3.
Then Section 4 is devoted to comparison with some previous results, improving those in [14].

Section 5 deals with the case of higher growth for the function β in (1), which corresponds to slightly
higher growth for the function g in (5). For instance, if β(s) = exp(2)(s) = ees

, then g(s) grows
like s (log s) (log log s) at infinity; if β(s) = exp(3)(s), then g(s) ∼ s (log s) (log log s) (log log log s),
and so on. We can prove existence of distributional solutions to these problems under suitable
(stronger) assumptions on the data f and u0, depending on the growth of the functions g and β.
The precise results are stated in Theorems 5.1 and 5.2.

In Section 6 we consider the case where both lower order terms appear together in the right-hand
side, that is, we consider equations of the form

ut −∆u = β(u)|∇u|2 + f1(x, t)g(u) + f2(x, t) ,

β and g being as above. In this case the nonlinear behaviour of the terms implies that the
assumptions on f1 must be stronger than the one required for f in (5) (that is, when β(s) ≡ 0),
while the hypothesis on f2 remains the same as the one for f in problem (1).
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The last section is devoted to further extensions, a summary and several remarks. We discuss
our method of proving the a priori estimates, showing the possibility of using different Orlicz
spaces in their proofs and we point out the lack of uniqueness by analyzing the change of unknown
function (4).

2 Assumptions and main results.

Let Ω be a bounded open subset in RN , N ≥ 1. For T > 0, we define the cylinder QT =
Ω×]0, T [. The symbols Lq(Ω), Lr(0, T ;Lq(Ω)), and so forth, denote the usual Lebesgue spaces, see
for instance [9] or [16]. Moreover we will sometimes use the shorter notations ‖f‖

q
, ‖f‖

r,q
instead of

‖f‖
Lq(Ω)

, ‖f‖
Lr(0,T ;Lq(Ω))

, respectively. The simbol H1
0 (Ω) denotes the Sobolev space of functions

with distributional derivatives in L2(Ω) which have zero trace on ∂Ω. H−1(Ω) denotes the dual
space of H1

0 (Ω). The spaces L2(0, T ; H1
0 (Ω)) and L2(0, T ; H−1(Ω)) have obvious meanings, see

again [9] or [16]. Let us recall that a function ϕ(s) : [0,+∞[→ [0, +∞[ is called an N-function if
it admits the representation

ϕ(s) =

s∫

0

p(t) dt

where p(t) is right continuous for t ≥ 0, positive for t > 0, nondecreasing and satisfying p(0) = 0
and p(∞) = ∞. If ϕ is an N-function, we call Orlicz space associated to ϕ, denoted by Lϕ(Ω), the
class of those measurable real functions u, defined on Ω, for which the norm

‖u‖
Lϕ(Ω)

= inf
{

λ > 0 :
∫

Ω

ϕ
( |u|

λ

)
dx ≤ 1

}

is finite. If the function ϕ satisfies the so-called ∆2-condition, i.e.

ϕ(2t) ≤ k ϕ(t) ,

at least for all t large enough, then this space is the same as
{

u : Ω → R measurable s.t.
∫

Ω

ϕ(|u(x)|) dx < +∞
}

,

otherwise this last set is not a vector space. It is clear that N-functions which are asymptotically
equivalent near infinity generate the same Orlicz spaces. The following inequality always holds
true:

‖u‖
Lϕ(Ω)

≤ 1 +
∫

Ω

ϕ(|u(x)|) dx (8)

We will sometimes write ‖u‖
ϕ

instead of ‖u‖
Lϕ(Ω)

.

Let ϕ and ϕ̃ be two N -functions of class C1. We say that they are conjugate if ϕ′ = (ϕ̃′)−1.
For instance, the functions ϕ(s) = sp/p and ϕ̃(s) = sp′/p′, with p, p′ > 1 and 1/p + 1/p′ = 1, are
conjugate N -functions. Moreover, as in the case of Lebesgue’s spaces, if ϕ and ϕ̃ are two conjugate
N -functions, the following Hölder inequality holds:

∫

Ω

uv dx ≤ 2‖u‖
Lϕ(Ω)

‖v‖
Lϕ̃(Ω)

,

for all u ∈ Lϕ(Ω), v ∈ Lϕ̃(Ω). Evolution Orlicz spaces Lψ(0, T ; Lϕ̃(Ω)) can be defined in an obvious
way.

We will consider the following two parabolic problems:




vt − div a(x, t, v,∇v) = F (x, t, v), in QT ;

v(x, t) = 0, on ∂Ω×]0, T [;

v(x, 0) = v0(x), in Ω;

(9)
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ut − div a(x, t, u,∇u) = b(x, t, u,∇u), in QT ;

u(x, t) = 0, on ∂Ω×]0, T [;

u(x, 0) = u0(x), in Ω;

(10)

In both problems, the vector-valued function

a(x, t, s, ξ) : Ω×]0, T [×R× RN → RN

is a Carathéodory function, that is, it is measurable with respect to (x, t) for every (s, ξ) ∈ R×RN ,
and continuous with respect to (s, ξ) for almost every (x, t) ∈ QT . Moreover we assume there exist
positive constant Λ and α satisfying:

|a(x, t, s, ξ)| ≤ Λ|ξ| , (11)

a(x, t, s, ξ) · ξ ≥ α|ξ|2 , (12)
[
a(x, t, s, ξ)− a(x, t, s, η)

] · (ξ − η) > 0 , ξ 6= η . (13)

We first consider problem (9), and state the assumptions and the results for this problem.
The function F : QT × R→ R satisfies the Carathéodory conditions; moreover there exists a

positive measurable function f(x, t) satisfying

T∫

0

‖f(., t)‖φ

(
log∗ ‖f(., t)‖φ

) (
log∗ log∗ ‖f(., t)‖φ

)
dt < +∞, (14)

where log∗ s = max{log s, 1} and ‖ . ‖φ denotes the Orlicz norm associated to the N-function
φ(s) = exp(exp(s))− e(s + 1) (see also Remark 2.2 below), such that

|F (x, t, s)| ≤ (
1 + |s| log∗ |s|)f(x, t) ; (15)

and
v0(x) ∈ L2(Ω). (16)

Theorem 2.1 Under the assumptions (11)–(16), there exists at least one distributional solution
v to problem (9) such that

v ∈ L2(0, T ; H1
0 (Ω)) ∩ C0([0, T ];L2(Ω)) , F (x, t, v) ∈ L1(QT ) .

We now turn our attention to problem (10). We will assume that b(x, t, s, ξ) : QT ×R×RN → R
is a Carathéodory function satisfying

|b(x, t, s, ξ)| ≤ (µe|s| + 1)|ξ|2 + f(x, t) =: β(s)|ξ|2 + f(x, t) , (17)

where µ is a positive constant, and we will assume that f satisfies (14), while u0 satisfies

exp(2)(|u0|) ∈ L2µ(Ω) . (18)

The main result for problem (10) is the following:

Theorem 2.2 Under the assumptions (11)–(13), (17) and (18), there exists at least one distribu-
tional solution u to problem (10) such that

u ∈ L2(0, T ;H1
0 (Ω)) ∩ C0([0, T ];L2(Ω)) , b(x, t, u,∇u) ∈ L1(QT ) ,

and moreover
eµe|u| ∈ L2(0, T ; H1(Ω)) ∩ C0([0, T ]; L2(Ω)) , (19)

5



Remark 2.1 The assumptions on the initial data in the last two theorems can be weakened, as
far as the existence is concerned. For instance, in Theorem 2.1, one can assume v0 ∈ Ld(Ω),
for some d > 1, but in this case one only obtains that (1 + v)d/2 − 1, rather than v, belongs to
L2(0, T ;H1

0 (Ω)) ∩ C0([0, T ];L2(Ω)).
Similarly, the assumption on u0 in Theorem 2.2 can be weakened to exp(2)(|u0|) ∈ Ldµ(Ω), with

d > 1, instead of (18), but in this case one obtains e
d
2 µe|u| ∈ L2(0, T ; H1(Ω)) ∩ C0([0, T ]; L2(Ω))

instead of (19). See Remark 3.1 below.

Remark 2.2 We also point out that the assumption (14) on the datum f(x, t) can be weakened
too. Indeed, as will be clear in the proof of the main a priori estimates (Propositions 3.1 and 3.4),
it is enough to assume that (14) is satisfied with an N-function φ(s) which grows at infinity like∫ s

0
exp(exp(s)) ds instead of φ(s) ∼ exp(exp(s)).

Furthermore, if the data are slightly more regular, we can prove that the solutions found in
Theorems 2.1 and 2.2 are bounded:

Theorem 2.3 Let (11)–(13) be assumed and consider

f ∈ Lr(0, T ; Lq(Ω)) , r, q > 1,
N

2q
+

1
r

< 1 . (20)

i) Under hypotheses (15) and v0 ∈ L∞(Ω), the solution obtained in Theorem 2.1 is bounded in
QT .

ii) Under hypotheses (17) and u0 ∈ L∞(Ω), the solution obtained in Theorem 2.2 is bounded in
QT .

Remark 2.3 Condition (20) on (r, q) is known as the Aronson-Serrin condition (see [3]). The
assumptions (14), and (20) are all satisfied, for instance, if

f ∈ Lr(0, T ;Lφ(Ω)) .

with r > 1, where φ is the same as in (14).

Remark 2.4 We do not know whether the assumptions (14) and v0 ∈ L∞(Ω) are sufficient,
without the hypothesis (20), to guarantee the existence of bounded solutions of problem (9). A
similar remark applies to problem (10).

An essential tool for proving the a priori estimates is given by the following Proposition, which
is a generalisation of a logarithmic Sobolev inequality of the same form as in [2] and [11].

Proposition 2.1 Let A : [0,+∞[→ [0, +∞[ be a nonnegative, nondecreasing function satisfying
the ∆2-condition, that is,

A(2t) ≤ KA(t) ,

for all t and for some positive K. Then there exists a positive constant C (depending on N , K,
|Ω|, A) such that, for every ε > 0 and for every u ∈ H1

0 (Ω),
∫

Ω

|u(x)|2A(log∗ |u(x)|) dx ≤ C

[
ε

∫

Ω

|∇u(x)|2 dx + ‖u‖2
2
A (log∗ 1/ε) + ‖u‖2

2
A(log∗ ‖u‖

2
)
]

.

In the proofs of the next Sections we will often use the letter c to denote different constants
appearing in the calculations, depending only on the data of the considered problem. The value of
c may change from line to line.
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3 Proof of the main results.

We begin this section by proving Proposition 2.1.
Proof of Proposition 2.1: It is enough to prove the inequality for ε ≤ 1. Let us first suppose
‖u‖

2
= 1. Then

∫

Ω

u2A(log∗ |u|) ≤
∫

{|u|>e}

u2A(log |u|) + A(1)‖u‖2
2

=
∫

{|u|>e}

u2A
(

log(εN/2|u|) +
N

2
log(1/ε)

)
+ c .

Note that the ∆2-condition implies

A(r + s) ≤ k
(
A(r) + A(s)

)
for every r, s ∈ [0,+∞[,

so that
∫

{|u|>e}

u2A
(

log(εN/2|u|) +
N

2
log(1/ε)

)
≤ k

∫

Ω

u2A
((

log(εN/2|u|))
+

)
+ ckA(log 1/ε) ‖u‖2

2
,

where s+ = max{s, 0} denotes the positive part of s. Applying Hölder’s inequality to the first
term of the right-hand side, we get

∫

Ω

u2A
((

log(εN/2|u|))
+

) ≤
( ∫

Ω

|u|2N/(N−2)

)N−2
N

( ∫

Ω

(
A

((
log(εN/2|u|))

+

))N/2
) 2

N

≤ c ε

∫

Ω

|∇u|2 ,

where we have used Sobolev’s inequality and the fact that a function satisfying the ∆2-condition
has at most a polynomial growth, so that

A
((

log(εN/2|u|))
+

) ≤ c ε|u|2/N ,

and, as a consequence,
[ ∫

Ω

(
A

((
log(εN/2|u|))

+

))N/2
]2/N

≤ c ε

[ ∫

Ω

|u|
]2/N

≤ c ε‖u‖2/N

2
≤ c ε .

Hence we have proved that, if ‖u‖
2

= 1,

∫

Ω

u2A(log∗ |u|) ≤ c
(
ε‖∇u‖2

2
+ A(log 1/ε) + 1

)
≤ c

(
ε‖∇u‖2

2
+ A(log∗ 1/ε)

)
.

When ‖u‖
2
6= 1, we may write u = ‖u‖

2
v and apply the last estimate to v to obtain the result,

after using the inequality

A
(
log∗(‖u‖

2
|v|)) ≤ k

(
A

(
log∗ ‖u‖

2

)
+ A

(
log∗ |v|)

)
.

In order to prove Theorem 2.1, we introduce the following approximating problems.




vt − div a(x, t, v,∇v) = Tn

(
F (x, t, v)

)
, in Ω×]0, T [;

v(x, t) = 0, on ∂Ω×]0, T [;

v(x, 0) = Tn(v0(x)), in Ω,

(21)
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where Tn(s) = min{n , max{s,−n}} is the usual truncation at levels ±n.
It is well known that there exists (see [19] or [22]) at least a bounded weak solution

vn ∈ L2
(
0, T ;H1

0 (Ω)
) ∩ C0

(
[0, T ];L2(Ω)

)
.

The next a priori estimate is the main tool for proving the existence result:

Proposition 3.1 Let vn be a solution of problem (21). Then there exists a positive constant C
such that, for all n ∈ N,

sup
t∈[0,T ]

∫

Ω

|vn|2 +
∫

QT

|∇vn|2 ≤ C (22)

∫

QT

f |vn|2 log∗ |vn| ≤ C . (23)

Moreover, the sequence
{ ∫

Ω
|vn|2dx

}
n

is relatively compact in C([0, T ]).

Proof: Using vn as test function in (21), we obtain, fixed t ∈]0, T [,

1
2

d

dt

∫

Ω

v2
n dx + α

∫

Ω

|∇vn|2 dx ≤
∫

Ω

f(x, t) |vn|(1 + |vn| log∗ |vn|) dx = I . (24)

Note that

I ≤ c

( ∫

Ω

f dx +
∫

Ω

f v2
n log∗ |vn| dx

)
.

We now use the generalized Hölder-Orlicz inequality, with the pair

ϕ(s) =

s∫

0

log
(
1 + log(1 + σ)

)
dσ ϕ̃(s) =

s∫

0

(
e(eσ−1) − 1

)
dσ

of conjugate N -functions. Note that, for s → +∞,

ϕ(s) ∼ s log log s , ϕ̃(s) ∼
s∫

0

exp(exp(σ)) dσ ,
ϕ̃(s)
φ(s)

→ 0 , (25)

where we denote φ(s) = exp(exp(s))− e(s + 1). Then we obtain
∫

Ω

f v2
n log∗ |vn| dx ≤ 2 ‖v2

n log∗ |vn|‖
ϕ
‖f‖

ϕ̃
≤ c ‖v2

n log∗ |vn|‖
ϕ
‖f‖

φ
.

Now, by (8) and (25), one has

‖v2
n log∗ |vn|‖

ϕ
≤ 1 +

∫

Ω

ϕ(v2
n log∗ |vn|) dx ≤ c

(
1 +

∫

Ω

v2
n

(
log∗ |vn|

) (
log∗ log∗ |vn|

)
dx

)
.

Now, using Proposition 2.1 with A(s) = s log∗ s and ε = α/(2 c C ‖f‖
φ
), we then obtain

I ≤ c
(‖f‖

1
+ ‖f‖

φ

)
+

α

2

∫

Ω

|∇vn|2 dx + c ‖f‖
φ
‖vn‖2

2

(
A

(
log∗ ‖vn‖2

2

)
+ A

(
log∗ ‖f‖

φ

))
. (26)

Putting (24) and (26) together, one obtains

1
2

d

dt

∫

Ω

v2
n dx +

α

2

∫

Ω

|∇vn|2 dx ≤ c
(‖f‖

1
+ ‖f‖

φ

)
+

+ c ‖f‖
φ
‖vn‖2

2

(
A

(
log∗ ‖vn‖2

2

)
+ A

(
log∗ ‖f‖

φ

))
.

(27)
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Norms of f appearing in the right-hand side of (27) depend on t, and are integrable functions on
]0, T [, by our assumptions on f . Therefore, if we set

ξn(t) =
∫

Ω

v2
n(t) dx ,

from (27) we obtain an inequality of the form

ξ′n(t) ≤ Υ(t) [1 + H(ξn(t))] , (28)

where Υ(t) ∈ L1(0, T ), while H(s) is a positive function such that

+∞∫

0

ds

1 + H(s)
= +∞ . (29)

Therefore, if we define

G(s) =

s∫

0

dσ

1 + H(σ)
,

from (28) we obtain
G(ξn(t))−G(ξn(0)) ≤ c ,

which implies a global estimate on ξn(t) by (29). Going back to (27), this yields the first desired
estimate (22). Observe that the integral I in (24) is bounded by an integrable function of t, so
that the second estimate follows.

Let us turn to see the sequence
{ ∫

Ω
|vn|2dx

}
n

is relatively compact in C([0, T ]). It follows
from

1
2

d

dt

∫

Ω

|vn|2dx =
∫

Ω

Tn

(
F (x, t, vn)

)
vn −

∫

Ω

a(x, t, vn,∇vn) · ∇vn

that
|ξ′n(t)| =

∣∣∣ d

dt

∫

Ω

|vn|2dx
∣∣∣ ≤ 2

∫

Ω

|Tn

(
F (x, t, vn)

)
vn|+ 2Λ

∫

Ω

|∇vn|2 ≤ ρ(t) ,

where the right hand side is a function belonging to L1(0, T ). Hence,

|ξn(t)− ξn(s)| ≤
∣∣∣

t∫

s

ρ(t) dt
∣∣∣

and so we obtain the required equicontinuity on {ξn}n.

Proof of Theorem 2.1 By Proposition 3.1, the sequence {vn} is bounded in L∞(0, T ;L2(Ω)) and
in L2(0, T ; H1

0 (Ω)). Moreover, by the equation, {(vn)t} is bounded in L2(0, T ; H−1(Ω)) + L1(QT ).
Using standard compactness results for evolution spaces (see for instance [25]), we can extract a
subsequence (still denoted by {vn}) which converges to some function v strongly in L2(QT ) and
weakly in L2(0, T ; H1

0 (Ω)). Moreover, the right-hand side of the equation is equi-integrable:
∫

E

f
(
1 + |vn| log∗ |vn|

) ≤
∫

E∩{|vn|≤k}

f
(
1 + |vn| log∗ |vn|

)
+

1
k

∫

{|vn|≥k}

f |vn|
(
1 + |vn| log∗ |vn|

)
,

thus, the equi-integrability follows from (23).
Applying [6], it is easy to see that the gradients converge strongly in L2(QT ), and so pass to the

limit in the weak formulation of (21), thus showing that v solves (9) in the sense of distributions.
As far as the initial datum is concerned, one can use Proposition 3.2 below (which can be proved
using the same argument as in Proposition 6.4 of [13]), which also shows that v ∈ C([0, T ];L1(Ω)).

Finally, we will prove that our solution belongs to C
(
[0, T ]; L2(Ω)

)
. Defining ξ(t) =

∫
Ω
|v(x, t)|2 dx,

we deduce from Proposition 3.1 that ξ belongs to C([0, T ]). Since we already know that v ∈
C

(
[0, T ];L1(Ω)

)
, it follows that it actually belongs to C

(
[0, T ];L2(Ω)

)
.

9



Proposition 3.2 Let vn ∈ L2
(
0, T ; H1

0 (Ω)
) ∩ C

(
[0, T ]; L2(Ω)

)
be a sequence of solutions of pro-

blems 



(vn)t − div a(x, t, vn,∇vn) = gn, in Ω×]0, T [;

vn(x, 0) = v0,n, in Ω,

such that

gn ∈ L2(QT ) , gn → g in L1(QT ),

v0,n → v0 in L1(Ω),

∇Tk(vn) → ∇Tk(v) in L2(QT ;RN ), for every k > 0,

∇vn bounded in L2(QT ;RN ).

Then vn → v in C
(
[0, T ];L1(Ω)

)
.

Remark 3.1 Now we can explain how to obtain the result which has been stated in Remark 2.1 in
the case where the initial datum v0 is less integrable. Indeed one can use

(
(1+|vn|)d−1−1

)
sign vn,

instead of vn, as test function in (21), and then follow the outline of the previous proof. Note
that this choice of test function does not affect the assumptions on the datum f , but provides
different regularity of solutions. A similar consideration applies to the proof of the next proposition
concerning the quasi-linear quadratic problem.

Let us turn our attention to problem (10), under hypothesis (17). We recall that β(s) = µe|s|+1.
Then we define

γ(s) =

s∫

0

β(σ) dσ = µ(e|s| − 1) sign s + s , Ψ(s) = µ−1
(
eµ(e|s|−1) − 1

)
sign s . (30)

For n ∈ N, we introduce the following approximate problem:




(un)t − div a(x, t, un,∇un) = Tn(b(x, t, un,∇un)), in Ω×]0, T [;

un(x, t) = 0, on ∂Ω×]0, T [;

un(x, 0) = u0,n(x), in Ω,

(31)

where u0,n are in L∞(Ω)∩H1
0 (Ω) and satisfy the same requirements as in [13] with a view to pass

to the limit, namely:
1
n
‖u0,n‖H1

0 (Ω) → 0 as n →∞ ,

Ψ(u0,n) → Ψ(u0) a.e. and strongly in L2(Ω) ,

(see also [13] for an easy proof of the existence of such a sequence). Note that there exists at least
a bounded solution un ∈ L2(0, T ; H1

0 (Ω)) of (31) by [22].
We will need the following cancellation result (see [13]):

Proposition 3.3 Assume that un is a bounded weak solution of (31). If ψ is a locally Lipschitz
continuous and increasing function such that ψ(0) = 0, then for a.e. t ∈]0, T [ one has

d

dt

∫

Ω

φ(un(·, t)) dx + α

∫

Ω

e|γ(un(·,t))|ψ′(un(·, t))|∇un(·, t)|2 dx ≤
∫

Ω

f(·, t)e|γ(un(·,t))||ψ(un(·, t))| dx ,

and therefore

sup
τ∈[0,T ]

∫

Ω

φ(un)(τ)) dx + α

∫

QT

e|γ(un)|ψ′(un)|∇un|2 ≤ 2
∫

QT

fe|γ(un)||ψ(un)|+ 2
∫

Ω

φ(u0,n) dx ,

where φ(s) =
∫ s

0
e|γ(σ)|ψ(σ) dσ .

10



The next a priori estimate is the main tool for proving the existence result:

Proposition 3.4 Let un be a solution of problem (31). Then there exists a positive constant C
such that

sup
t∈[0,T ]

∫

Ω

|Ψ(un)|2 dx +
∫

QT

|∇Ψ(un)|2 ≤ C (32)

and ∫

QT

f Ψ(un)2 log∗ |Ψ(un)| ≤ C .

for all n ∈ N. Moreover:

the sequence
{ ∫

Ω

|Ψ(un)|2dx
}

n
is relatively compact in C([0, T ]) , (33)

the sequence
{ ∫

Ω

u2
ndx

}
n

is relatively compact in C([0, T ]) . (34)

Proof: It is easy to show that

e|γ(s)| ≤ c
(
1 + |Ψ(s)| log∗ |Ψ(s)|

)
. (35)

Using Proposition 3.3 with ψ = Ψ, so that φ(s) = Ψ(s)2/2, we obtain

1
2

d

dt

∫

Ω

Ψ(un)2 dx + α

∫

Ω

|∇Ψ(un)|2 dx =
∫

Ω

f(x, t) e|γ(un)||Ψ(un)| dx .

≤ c

∫

Ω

f(x, t) |Ψ(un)|
(
1 + |Ψ(un)| log∗ |Ψ(un)|

)
.

This inequality is formally identical to that in (24), whith vn = Ψ(un). Therefore proceeding as
in the proof of Proposition 3.1 we get the desired estimates and the equicontinuity (33). In order
to show (34) one can use the same method, multiplying problem (31) by un and using the a priori
estimates.

Remark 3.2 Note that, since Ψ has a superlinear growth, estimate (32) implies that the sequence
{un} is bounded in L2

(
0, T ;H1

0 (Ω)
)
.

Proposition 3.5 1) There exists a positive constant C such that
∫

QT

Tn(b(x, t, un,∇un)) ≤ C , for every n ∈ N.

2)

lim
m→+∞

∫

{|un|>m}

|Tn(b(x, t, un,∇un))| = 0 , uniformly in n ∈ N.

Proof: 1) By (17)
∫

QT

Tn(b(x, t, un,∇un)) ≤
∫

QT

(µe|un| + 1)|∇un|2 +
∫

QT

f = I1 + I2 .

Since (see (30))
µe|s| + 1 ≤ cΨ′(s) ≤ cΨ′(s)2 , (36)
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we have
I1 ≤ c

∫

QT

|∇Ψ(un)|2 ,

which is bounded by Proposition 3.3, while the estimate of the term I2 is straightforward.

2)
∫

{|un|>m}

|Tn(b(x, t, un,∇un))| ≤
∫

{|un|>m}

(µe|un| + 1)|∇un|2 +
∫

{|un|>m}

f = J1 + J2 .

By (36) and estimate (32) one has

J1 ≤ c

Ψ′(m)

∫

QT

|∇Ψ(un)|2 ≤ c

Ψ′(m)
.

The estimate of J2 is trivial.

Proof of Theorem 2.2. We consider a sequence {un} of solutions of the approximate problems
(31). By Proposition 3.4 and Remark 3.2, the sequence {un} is bounded in L2(0, T ; H1

0 (Ω)) ∩
C0([0, T ];L2(Ω)), which, together with Proposition 3.5, implies that (un)t is bounded in L2(0, T ; H−1(Ω))+
L1(QT ). Therefore, using a standard compactness result (see for instance [25]), we can deduce that
there exists u ∈ L2(0, T ; H1

0 (Ω)) such that, up to a subsequence,

un → u almost everywhere in QT ,

un → u strongly in L2(QT ),

un → u weakly in L2(0, T ; H1
0 (Ω)).

The strong convergence in L2(Ω;RN ) of {∇Tk(un)}n, for every k > 0, can be proved as in Pro-
position 6.2 in [13], with minor modifications needed in Step 2 of the proof. Thus the gradients
∇un converge almost everywhere in QT . This fact and the previous convergences imply on the one
hand that

a(x, t, un,∇un) → a(x, t, u,∇u) strongly in Lq(QT ;RN ) for every q < 2,

a(x, t, un,∇un) ⇀ a(x, t, u,∇u) weakly in L2(QT ;RN )

(recall assumption (11)) and on the other hand that

Tn

(
b(x, t, un,∇un)

) → b(x, t, u,∇un) strongly in L1(QT ) ,

by Proposition 3.5. Hence, one can pass to the limit in each term of the distributional formulation
of (31). Therefore u is a distributional solution of the equation in (10). Using Proposition 3.2, we
obtain that un → u in C([0, T ];L1(Ω)), which shows that the initial datum is attained. By (33)
and (34), one easily obtains that u, Ψ(u) ∈ C([0, T ]; L2(Ω)). Recalling the definition of Ψ, this
gives (19).

Proof of Theorem 2.3. As far as the semilinear problem (9) is concerned, the result is a
consequence of Theorem 2.1, p.425, of [19] and of the a priori estimates obtained in Proposition
3.1.

In the case of the quadratic problem, we wish to use exponential test functions in order to apply
again the techniques by Ladyzenskaja, Solonnikov and Ural’ceva in [19]: first of all we observe that
one can assume that the initial data of the approximating problems (31) also satisfy

‖u0n‖
L∞(Ω)

≤ ‖u0‖
L∞(Ω)

;

Then we take ψ(s) = Gm(Ψ(s)), m ≥ ‖Ψ(u0)‖
L∞(Ω)

, in Proposition 3.3, where Ψ is defined by

(30), and
Gm(s) := s− Tk(s) = (|s| − k)+ sign s .
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We obtain

sup
t∈[0,T ]

∫

Ω

Gm(Ψ(un))2 dx +
∫

QT

|∇Gm(Ψ(un))|2 ≤ cε

∫

QT∩{|Ψ(un)|>m}

f |Ψ(un)|2+ε ,

where we have used (35) and the fact that log∗ s grows less than any power sε at infinity (ε > 0 to
be determined). Now, by Young’s inequality,

f |Ψ(un)|2+ε ≤ c
(
fp′Ψ(un)2 + |Ψ(un)|2+εp

)
,

with p > 1 such that

ϕ(x, t) = fp′ ∈ Lρ(0, T ; Lσ(Ω)) , ρ, σ > 1,
N

2σ
+

1
ρ

< 1 ,

Once p is fixed, ε is chosen in such a way that δ := 2 + εp is close enough to 2 (for instance,
ε < 4/(pN) will suffice). Then one has

sup
t∈[0,T ]

∫

Ω

Gm(Ψ(un))2 dx +
∫

QT

|∇Gm(Ψ(un))|2 ≤ c

∫

QT∩{|Ψ(un)|>m}

ϕ |Ψ(un)|2 + c

∫

QT∩{|Ψ(un)|>m}

|Ψ(un)|δ ,

which is essentially inequality (2.8) on page 425 of [19] for the function Ψ(un), under the same
hypotheses. Therefore, this yields an L∞-estimate of the sequence {Ψ(un)}n and so, by the
definition of Ψ (30), also an estimate on (un)n. Once an estimate in L∞(QT ) is obtained, it
is clear that this also holds for the limit function u.

4 Comparison with earlier results

4.1 Comparison with the case β ≡ 1.

In this subsection we will deal with the most classical case in which

|b(x, t, u,∇u)| ≤ |∇u|2 + f (37)

(while the operator on the left-hand side of the equations continues to verify assumptions (11)–
(13)). This corresponds to our problem (10) when µ = 0 in (17). Observe that this situation falls
outside the framework studied in the previous Section, since there we have assumed µ > 0 in (17).
One may wonder what happens if we apply our schema to this borderline problem. Then we would
obtain the following result.

Theorem 4.1 If f(x, t) ∈ L1 log L1(0, T ; Lexp(Ω)), that is,

T∫

0

‖f(., t)‖
Lϕ(Ω)

log∗ ‖f(., t)‖
Lϕ(Ω)

dt < ∞ ,

where ϕ(s) = es − s− 1, and e|u0| ∈ L2(Ω), then there exists at least one distributional solution u
of problem (10) with right-hand side satisfying (37) such that the functions u and e|u| − 1 belong
to L2(0, T ; H1

0 (Ω)) ∩ C0([0, T ]; L2(Ω)).

This result is proved in a similar way to Theorem 2.1: if one sets γ(s) = s, after defining
the approximate problems (31), one can check that Proposition 3.3 hold. Then, applying it with
ψ(s) = Ψ(s) =

(
e|s|−1

)
sign s, one easily obtain an a priori estimate of the same type as Proposition

3.4. The conclusion is straightforward.
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Remark 4.1 We point out that, in the situation of problem (10) with right hand side (37), the
standard hypothesis (see [19] and [22]) on the datum f is

f(x, t) ∈ Lr(0, T ; Lq(Ω)) , r > 1 ,
1
r

+
N

2q
≤ 1.

Following our scheme, we cannot deduce an a priori estimate from this assumption and Propo-
sition 2.1. Indeed, we have to estimate the term containing f in the proof of Proposition 3.4:

I =
∫

Ω

f(x, t) e|u||Ψ(u)| dx =
∫

Ω

f (1 + |Ψ(u)|) |Ψ(u)| dx

≤ 1
2

∫

Ω

f dx +
3
2

∫

Ω

f Ψ(u)2 dx ≤ 1
2
‖f(., t)‖1 +

3
2
‖f(., t)‖q

( ∫

Ω

|Ψ(u)|2q′ dx
)1/q′

,

where Ψ(s) =
(
e|s| − 1

)
sign s. Since

∫

Ω

|Ψ(u)|2q′ dx =
∫

Ω

Ψ(u)2A(log∗ |Ψ(u)|) dx

with A(s) = e2s(q′−1) for s large, it is obvious that A does not satisfies the ∆2-condition, therefore
we cannot apply Proposition 2.1. The conclusion, in this situation, is that the inequality of
Proposition 2.1 can only be applied to treat source functions belonging to Orlicz’ spaces slightly
superlinear on t and of exponential type on x.

4.2 Comparison with the case β(s) = |s|λ
We continue by comparing our results with those in [14]. In that paper two main problems are
studied, the first one considers problem (9) in the case where the source term F (x, t, u) satisfies

|F (x, t, s)| ≤ f(x, t)
(
1 + |s|(log∗ |s|)θ

)
, with 0 < θ < 1 , (38)

instead of (15). We will next improve a little bit those results by applying Proposition 2.1.

Theorem 4.2 Assume f ∈ Lr(log L)rθ
(
0, T ; Lq(Ω)

)
; that is, ‖f(·, t)‖q

(
log∗ ‖f(·, t)‖q

)θ ∈ Lr(0, T );
with

q ≥ N

2
max

{
r

r − 1
,

1
1− θ

}
.

If v0 ∈ L2(Ω), then there exists at least one distributional solution v of problem (9) such that
v ∈ L2(0, T ;H1

0 (Ω)) ∩ C0([0, T ];L2(Ω)).

Proof: As usual, we begin the proof by considering the “truncated” problems (21), and let (vn)
denote the corresponding sequence of bounded solutions.

All we need to prove is a priori estimates similar to those of Proposition 3.1. Then the conver-
gence of approximate solutions follows the proof of Theorem 2.1, and will be omitted.

We point out that 2q = Nr′ may be assumed; if it is not the case, just replace r by a smaller
value satisfying the equality and apply the usual inclusions between Lebesgue’s spaces. So we will

assume 2q = Nr′ which implies
1

1− θ
≤ r

r − 1
, that is, θr ≤ 1.

Now, for t fixed, multiply the equation in (21) by vn(., t) and integrate on Ω. Using the
assumption (38), this gives

1
2

d

dt

∫

Ω

v2
n dx + α

∫

Ω

|∇vn|2 dx ≤
∫

Ω

f |vn|
(
1 + |vn|(log∗ |vn|)θ

)
dx

≤ c

∫

Ω

f dx + c

∫

Ω

f |vn|2(log∗ |vn|)θ dx .

(39)
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We then proceed to estimate the last integral. Observing that 2q = Nr′ implies

1
q

+
2

2∗r′
+

1
r

= 1 ,

it follows from the Hölder, Young and Sobolev inequalities that, for every δ > 0,
∫

Ω

f |vn|2(log∗ |vn|)θ dx =
∫

Ω

f |vn|2/r′ |vn|2/r(log∗ |vn|)θ dx

≤ ‖f(., t)‖q ‖vn(., t)‖2/r′

2∗

( ∫

Ω

v2
n(log∗ |vn|)θr dx

)1/r

≤ δ ‖vn(., t)‖22∗ + c(δ)‖f(., t)‖r
q

∫

Ω

v2
n(log∗ |vn|)θr dx

≤ δ c

∫

Ω

|∇vn|2dx + c(δ)‖f(., t)‖r
q

∫

Ω

v2
n(log∗ |vn|)θr dx .

Hence, (39) becomes

1
2

d

dt

∫

Ω

v2
n dx + α

∫

Ω

|∇vn|2 dx ≤ δ c

∫

Ω

|∇vn|2dx + c ‖f(., t)‖1 + c(δ)‖f(., t)‖r
q

∫

Ω

v2
n(log∗ |vn|)θr dx

and taking δ = α/(2c), it yields

d

dt

∫

Ω

v2
n dx +

∫

Ω

|∇vn|2 dx ≤ c ‖f(., t)‖1 + c ‖f(., t)‖r
q

∫

Ω

v2
n(log∗ |vn|)θr dx . (40)

By applying Proposition 2.1 with A(s) = sθr, we deduce that
∫

Ω

v2
n

(
log∗ |vn|

)θr
dx ≤ ε c

∫

Ω

|∇vn|2 dx + c

[
(log∗ 1/ε)θr +

(
log∗

∫

Ω

v2
n dx

)θr
] ∫

Ω

v2
n dx ,

and so, choosing ε = α
2c‖f(t)‖r

q
, it follows from (40) that

d

dt

∫

Ω

v2
n dx +

∫

Ω

|∇vn|2 dx ≤ c ‖f(., t)‖1 + c ‖f(., t)‖r
q

(
log∗ ‖f(., t)‖q

)θr
∫

Ω

v2
n dx

+ c ‖f(., t)‖r
q

∫

Ω

v2
n dx

(
log∗

∫

Ω

v2
n dx

)θr

.

(41)

Then, denoting

ξn(t) =
∫

Ω

v2
n(x, t) dx ,

we have the following differential inequality

ξ′n(t) ≤ c
(
‖f(., t)‖1 +‖f(., t)‖r

q

(
log∗ ‖f(., t)‖q

)θr
)(

1+ ξn(t)
(
log∗ ξn(t)

)θr
)

= Υ(t) (1+H(ξn(t))) ,

where Υ ∈ L1(0, T ) and, taking into account θr ≤ 1, the function H(s) = s(log∗ s)θr satisfies

+∞∫
ds

1 + H(s)
= +∞ .

Thus, the function ξn(t) is bounded in [0, T ], uniformly in n. Going back to (41), we deduce the
desired estimates.
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Once Theorem 4.2 has been proved and having in mind the proof of [14] Theorem 2.2, we study
the second example in [14], which is of type (10) with

|b(x, t, s, ξ)| ≤ |s|λ|ξ|2 + f(x, t) , (42)

with λ > 0. A few preliminaries are in order. We define the function

Ψ(s) =

s∫

0

exp
( |σ|λ+1

λ + 1

)
dσ . (43)

An easy application of De L’Hôpital’s rule yields

|s|λ+1 ∼ log |Ψ(s)| and exp
( |s|λ+1

λ + 1

)
∼ |Ψ(s)|( log |Ψ(s)|)

λ
λ+1 as s →∞ . (44)

Theorem 4.3 If f ∈ Lr log Lrλ/(λ+1)
(
0, T ; Lq(Ω)

)
, with q ≥ N

2 max{ r
r−1 , λ + 1}, and Ψ(u0) ∈

L2(Ω), then there exists at least one distributional solution u to problem (10) with right-hand side
satisfying (42), such that

u, Ψ(u) ∈ L2(0, T ; H1
0 (Ω)) ∩ C0([0, T ]; L2(Ω)) , |u|λ|∇u|2 ∈ L1(QT ) .

Proof: We consider the truncated problems (31). Applying Proposition 3.3 with ψ = Ψ, one has

1
2

d

dt

∫

Ω

Ψ(un)2 dx + α

∫

Ω

|∇Ψ(un)|2 dx ≤
∫

Ω

f exp
( |un|

λ
λ+1

λ + 1

)
|Ψ(un)| dx .

Taking (44) into account, it yields

d

dt

∫

Ω

Ψ(un)2 dx +
∫

Ω

|∇Ψ(un)|2 dx ≤ c

∫

Ω

f
(
1 + Ψ(un)2

(
log∗ |Ψ(un)|))

λ
λ+1

)
dx .

This is the same inequality as in (39), so that the same arguments may be followed to obtain a
priori estimates. The convergence of approximate solutions may be proved as for Theorem 2.2.

5 Extension to higher growth

We are now interested in higher growths for the continuous function β in problem (1); more
precisely, we will consider problem (10) with

b(x, t, s, ξ) : Ω×]0, T [×R× RN → R

satisfying
|b(x, t, s, ξ)| ≤ β(|s|)|ξ|2 + f(x, t) , (45)

while the functions a satisfies the usual assumptions (11)–(13). Let us introduce the hypotheses
satisfied by β and f . To begin with, the function β(s) : [0, +∞[→ [0,+∞[ satisfies

0 ≤ β(s) ≤ c1 exp(k)(s) + c2 , (46)

for some k ∈ N, k ≥ 2, where, as above,

exp(k)(s) = exp(. . . (exp︸ ︷︷ ︸
k

(s)) . . . ) .

Let us also define the functions

log∗(i) s = log∗(log∗(. . . (log∗︸ ︷︷ ︸
i

s) . . . )) , where log∗ s = max{1, log |s|} ,
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Am(s) = |s| log∗ |s| log∗(2) |s| . . . log∗(m) |s| . (47)

Regarding the function f(x, t) which appear in (45), we assume that

T∫

0

Ak+1

(‖f(·, t)‖
φ

)
dt < +∞ , where φ(s) ∼ exp(k+1)(s) . (48)

Remark 5.1 Indeed, as we shall see in the proof of Theorem 5.1, a more general hypothesis on φ
in (48) should be φ(s) ∼ ∫ s

0
exp(k+1)(σ) dσ, which is weaker than the previous one, but less simple

to handle. Note also that assumption (48) is satisfied if exp(k+1)(f) ∈ Lr(0, T ; L1(Ω)), with r > 1.

On the initial datum u0, we require that:

exp(k+1)(|u0|) ∈ L2(Ω) . (49)

We now state the main result of this section:

Theorem 5.1 Under the above assumptions (45)–(49), there exists at least one distributional
solution u of problem (10) such that

u ∈ L2(0, T ;H1
0 (Ω)) ∩ C0([0, T ];L2(Ω)) , b(x, t, u,∇u) ∈ L1(QT ) ,

exp(k+1)(u) ∈ L2(0, T ; H1(Ω)) ∩ C0([0, T ]; L2(Ω)) .

In order to prove this result, the only part that must be modified with respect to Theorem
2.2 is the a priori estimate, which is stated in Proposition 5.1 below (the other changes being
straightforward). To this aim, we introduce the following families of functions defined on the real
line

β0(s) = 1 , γ0(s) = s ,

βi(s) = e|γi−1(s)| + βi−1(s) , γi(s) =

s∫

0

βi(σ) dσ , Ψi(s) =

s∫

0

e|γi(σ)| dσ , i = 0, 1, 2, . . .

Note that the functions βi(s) are even, while the functions γi(s) and Ψi(s) are odd. For positive
s, one has

β0(s) = 1 , γ0(s) = s , Ψ0(s) = es − 1 ;

β1(s) = es + 1 , γ1(s) = es − 1 + s , Ψ1(s) = ees−1 − 1 ;

β2(s) = ees−1+s + es + 1 , γ2(s) = (ees−1 − 1) + (es − 1) + s , Ψ2(s) = eees−1−1 − 1 ;

and so on. It is easy to prove that one has, for i ≥ 1,

exp(i)(|s|) ≤ βi(s) + ci , γi(s) = Ψi−1(s) + γi−1(s) , |Ψi(s)| = e|Ψi−1(s)| − 1 . (50)

We define the sequence of auxiliary functions

L0(s) = 1 + |s| , L1(s) = 1 + log(1 + |s|) , L2(s) = 1 + log(1 + log(1 + |s|)) ,

Li(s) = L0(log(Li−1(s))) = Li−1(log(L0(s))) , i = 1, 2, . . . . (51)

Note that

Li(s) ∼ log∗(i) |s| ∼ log∗(i+1+k) |Ψk(s)| for s →∞, (52)

Lk+1(s) = 1 + Ψ−1
k (s) for s ≥ 0, (53)

Am(s) ≤ L0(s)L1(s) . . . Lm(s) .

The following Lemma will be useful for the a priori estimates:

17



Lemma 5.1 For every j = 0, 1, 2, . . . , one has

e|γj(s)| = L0(Ψj(s))L1(Ψj(s)) . . . Lj(Ψj(s)) . (54)

Proof: We prove the assertion by induction on j. Indeed, (54) is obviously true for j = 0. Assume
now that it holds for some j, and let us prove it for j + 1. Indeed, using (50) and (51), we obtain

e|γj+1(s)| = e|Ψj(s)|e|γj(s)|

= e|Ψj(s)| L0(Ψj(s))L1(Ψj(s)) . . . Lj(Ψj(s))
= (1 + |Ψj+1(s)|)L0(log(1 + |Ψj+1(s)|)) L1(log(1 + |Ψj+1(s)|)) . . . Lj(log(1 + |Ψj+1(s)|))
= L0(Ψj+1(s))L1(Ψj+1(s)) . . . Lj+1(Ψj+1(s)) .

Proposition 5.1 Let un be a solution of problem (31) with the function b satisfying (45) and
assume the hypotheses (46), (48) and (49). Then there exists a positive constant C such that

sup
t∈[0,T ]

∫

Ω

|Ψk(un)|2 +
∫

QT

|∇Ψk(un)|2 +
∫

QT

f |Ψk(un)|Ak(Ψk(un)) ≤ C

for all n ∈ N.

Proof: Let us first observe that (46) and (50) imply

β(s) ≤ βk(s) + δ for some δ ≥ 0. (55)

For sake of simplicity, all the proofs in the present section will be written assuming δ = 0. For the
general case, we will point out the necessary changes in Remark 5.2. Using Proposition 3.3 with
ψ = Ψk, we obtain

1
2

d

dt

∫

Ω

Ψk(un)2 dx + α

∫

Ω

|∇Ψk(un)|2 dx ≤
∫

Ω

f(x, t) e|γk(un)||Ψk(un)| dx = I . (56)

Let us estimate the integral I. We set, for brevity,

v = |Ψk(un)| .

Using (52) and Lemma 5.1, we have

I ≤
∫

Ω

f |v|L0(v)L1(v) . . . Lk(v) dx ≤ c

∫

Ω

f dx + c

∫

Ω

f v Ak(v) dx , (57)

where Ak(s) has been defined in (47). To estimate the last integral, we use the generalised Hölder-
Orlicz inequality, with the pair

ϕ(s) =

s∫

0

(Lk+1(σ)− 1) dσ , ϕ̃(s) =

s∫

0

(ϕ′)−1(σ) dσ =

s∫

0

Ψk(σ) dσ

of conjugate N -functions. Note that, for s → +∞,

ϕ(s) ∼ s log∗(k+1) s ∼ sLk+1(s) ,
ϕ̃(s)
φ(s)

=
ϕ̃(s)

exp(k+1)(s)
→ 0 , (58)

where φ is the N-function appearing in the assumption (48) on f . In particular we obtain
∫

Ω

f v Ak(v) dx ≤ c ‖v Ak(v)‖
ϕ
‖f‖

φ
.
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Now, by (8), (58), for every nonnegative function w one has

‖w‖
ϕ
≤ 1 +

∫

Ω

ϕ(w) dx ≤ c

(
1 +

∫

Ω

w log∗(k+1) w dx

)
,

therefore ∫

Ω

f v Ak(v) dx ≤ c‖f‖
φ

(
1 +

∫

Ω

v Ak+1(v) dx

)
, (59)

since Ak(s) log∗(k+1)(s) = Ak+1(s). From (57) and (59), using Proposition 2.1 with A = Ak and
ε = α/(2cC‖f‖

φ
), we then obtain

I ≤ c
(‖f‖

1
+ ‖f‖

φ

)
+

α

2

∫

Ω

|∇v|2 dx +

+ c ‖f‖
φ
Ak+1

(‖v‖2
2

)
+ c ‖v‖2

2
‖f‖

φ
Ak

(
log∗

(
c‖f‖

φ

))
.

(60)

Putting (56) and (60) together and having in mind Ak

(
log∗

(
c‖f‖

φ

)) ≤ C
(
Ak

(
log∗

(‖f‖
φ

))
+1

)
,

one obtains
d

dt

∫

Ω

v2 dx +
∫

Ω

|∇v|2 dx

≤ c
(
‖f‖

1
+ ‖f‖

φ
+ ‖f‖

φ
Ak+1

(‖v‖2
2

)
+ ‖v‖2

2
Ak+1

(‖f‖
φ

)
+ ‖f‖

φ
‖v‖2

2

)
.

(61)

All the norms appearing in the right-hand side of (61) depend on t, and are integrable functions
on ]0, T [, by our assumptions on f . Therefore, if we set ξ(t) =

∫
Ω

v(t)2 dx, we can conclude the
proof of the a priori estimate just as in the proof of Proposition 3.4.

Remark 5.2 In the previous proof we have assumed that (55) holds with δ = 0. In the general
case, some modifications are needed. We define

γ(s) = γk(s) + δs , Ψ(s) =

s∫

0

e|γ(σ)|dσ ,

and we observe that, by De L’Hôpital’s rule,

Ψ(s) ∼ eδ|s|Ψk(s) for s → ±∞, (62)

and, as a consequence, by Lemma 5.1,

e|γ(s)| ≤ eδ|s| |Ψk(s)|Ak−1(log∗ |Ψk(s)|) ≤ c |Ψ(s)|Ak−1(log∗ |Ψ(s)|) .

Similarly, from (52) and (62) it follows that

Li(s) ∼ logi+k+1 |Ψ(s)| for s → ±∞.

The proof proceeds by replacing Ψk by Ψ and γk by γ everywhere (including Proposition 3.3).

It is clear that, using the same technique, one can prove an existence result for problem (9)
under slightly weaker growth assumptions on the reaction term F (x, t, u), that is:

|F (x, t, s)| ≤ f(x, t) (1 + Ak(s)) , (63)

where f(x, t) satisfies assumption (48) and Ak(s) is defined as in (47), while

v0 ∈ L2(Ω) . (64)

The following theorem holds:

Theorem 5.2 Under the above assumptions (63), (48), (64), there exists at least one distributional
solution u of problem (9) such that

u ∈ L2(0, T ; H1
0 (Ω)) ∩ C0([0, T ];L2(Ω)) , F (x, t, u) ∈ L1(QT ) .
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6 A nonlinear phenomenon.

6.1 Problems with a gradient term and a reaction term together

It is possible to consider problems which feature both a quadratic gradient term as in (10) and
a linear or slightly superlinear reaction term as in (9). For simplicity, one could consider a very
simple case:

ut −∆u = |∇u|2 + f1(x, t) u + f2(x, t) . (65)

One could guess that the assumptions on the functions f1 and f2 should be the same as in the
following situations where only one of the terms depending on u is taken:

ut −∆u = |∇u|2 + f2(x, t) .

ut −∆u = f1(x, t) u .

In these cases one is lead to assume f1, f2 ∈ Lr(0, T ; Lq(Ω)), with

r, q > 1 ,
N

2q
+

1
r
≤ 1 .

We will try to provide evidence that this is a sufficient assumption on f2, but not on f1, so that
one needs stronger hypotheses on f1 due to the presence of the quadratic term in (65). Indeed, if
one makes the change of unknown v = eu − 1 in order to get rid of the quadratic term, equation
(65) becomes

vt −∆v = f1(x, t)(1 + v) log(1 + v) + f2(x, t)(1 + v) .

Then the summability of f1 should be higher than before in order to get a priori estimates and
existence, while the hypotheses on f2 may be the same.

The same kind of remark can be extended to more general equations of the form (10), with

|b(x, t, s, ξ)| ≤ c1βk(s)|ξ|2 + f1(x, t)(1 + Ah(s)) + f2(x, t) . (66)

In this case we can still obtain a priori estimate and an existence result with a similar choice of
test functions with respect to Theorem 2.2, provided suitable assumptions are made on the data.

More precisely, as far as the functions f1(x, t) and f2(x, t) which appear in (66) are concerned,
we assume that

T∫

0

Ah+k+2

(‖f1(·, t)‖
φ1

)
dt < +∞ , (67)

where φ1(s) is an N-function which is equivalent to exp(h+k+2)(s) near infinity (actually one can
write a weaker assumption as in Remark 5.1), and k, h are the same as in (66). Similarly, we
require

T∫

0

Ak+1

(‖f2(·, t)‖
φ2

)
dt < +∞ , (68)

where φ2(s) is now equivalent to exp(k+1)(s). On the initial datum u0, we require that:

exp(k+1)(|u0|) ∈ L2(Ω) . (69)

We now state the existence result under these generalized hypotheses:

Theorem 6.1 Under the assumptions (66)–(69), there exists at least one distributional solution
u to problem (10) such that

u ∈ L2(0, T ;H1
0 (Ω)) ∩ C0([0, T ];L2(Ω)) , b(x, t, u,∇u) ∈ L1(QT ) ,

and moreover
exp(k+1)(u) ∈ L2(0, T ; H1(Ω)) ∩ C0([0, T ]; L2(Ω)) ,
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The proof of this result is a straightforward modification of the proof of Theorem 2.2 and we
will not write it. In order to obtain an a priori estimate for the approximate problems (31), one
again has to use Ψk(un) in Proposition 3.3. The only different term is now the integral

∫

Ω

f1(x, t) (1 + Ah(un)) e|γk(un)||Ψk(un)| dx ,

which, using (52), may be handled as follows:
∫

Ω

f1(x, t) (1 + Ah(un)) e|γk(un)||Ψk(un)| dx

≤ c

∫

Ω

f1 (1 + Ah(un)) |Ψk(un)|L0(Ψk(un)) L1(Ψk(un)) . . . Lk(Ψk(un)) dx

≤ c

( ∫

Ω

f1 dx +
∫

Ω

f1 |Ψk(un)|Ak+h+1(Ψk(un)) dx

)
.

From now on the proof follows the same course as the one of Proposition 5.1.

6.2 Related problems

Let us recall that in [14] the authors study separately the semilinear problem (9) with F satisfying
(38) and the quasilinear problem (10) with b satisfying (42). In the spirit of the considerations at
the beginning of this Section, one is led to consider the problem in which the right hand side of
the previous equations occur together, that is, problem (10) with

b(x, t, u,∇u) = |u|λ|∇u|2 + f1(x, t) (1 + |u|) (log∗ |u|)θ + f2(x, t) , with 0 < θ < 1 . (70)

To deal with this problem, we consider the function Ψ defined in (43): Ψ(s) =
∫ s

0
exp

(
|σ|λ+1

λ+1

)
dσ.

The existence of a distributional solution may be proved under suitable assumptions on the data.

Theorem 6.2 Let ϕ(s), ϕ̃(s) be a pair of conjugate N -functions such that ϕ(s) ∼ s(log∗(2) s)1−θ

at +∞, so that ϕ̃(s) ∼ ∫ s

0
exp(2)((1− θ)σ1/(1−θ)) dσ, and assume

T∫

0

A2

(‖f1(·, t)‖ϕ̃

)
dt < ∞ , (71)

T∫

0

‖f2(·, t)‖r
q

(
log∗ ‖f2(·, t)‖q

)θr
dt < ∞ and Ψ(|u0|) ∈ L2(Ω) .

Then there exists at least one distributional solution u to problem (10) with right-hand side (70)
such that

u , Ψ(u) ∈ L2(0, T ; H1
0 (Ω)) ∩ C0([0, T ]; L2(Ω)) , uλ|∇u|2 ; f1(x, t) (1 + |u|) (log∗ |u|)θ ∈ L1(QT ) .

Remark 6.1 Once again a nonlinear phenomenon appears, namely the hypothesis on f2 is the
same as in Theorem 4.3, but on f1 must be more restrictive than in Theorem 4.2. Of course, this is
due to the fact that looking for an estimate similar to that of Proposition 3.1, the term containing
f1; that is

I1 =
∫

Ω

f1(x, t) (1 + |un|) (log∗ |un|)θΨ(un)2
(
log∗ |Ψ(un)|)λ/(λ+1)

dx

must be estimated in a different way. Indeed, denoting as usual v = Ψ(un), and taking (44) into
account, we get

I1 ≤
∫

Ω

f1(x, t)
(
1 + v2 log∗ v (log∗(2) v)θ

)
dx .
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Applying the Hölder inequality for Orlicz’ spaces with conjugate N-functions ϕ and ϕ̃, it yields

I1 ≤ ‖f1(·, t)‖ϕ̃

(
1 +

∫

Ω

v2 log∗ v log∗(2) v dx

)
= ‖f1(·, t)‖ϕ̃

(
1 +

∫

Ω

v2A(log∗ v) dx

)
,

where A(s) = s log∗ s. Finally, by Proposition 2.1, there appears a term of the form

‖v‖22 ‖f1(·, t)‖ϕ̃ log∗ ‖f1(·, t)‖ϕ̃ log∗(2) ‖f1(·, t)‖ϕ̃ ,

and hence the hypothesis (71) must be required.

Remark 6.2 Let us consider the situation in the borderline cases, namely when θ goes to 1 and
to 0. To obtain a distributional solution of problem (10) with right hand side

b(x, t, u,∇u) = |u|λ|∇u|2 + f1(x, t) (1 + |u|) log∗ |u|+ f2(x, t) ,

we consider an N-function such that ϕ(s) ∼ s log log log s and denote by ϕ̃ its conjugate, which
satisfies ϕ̃(s) ∼ ∫ s

0
exp(3)(σ) dσ. Then we prove an estimate on the solution under the assumption

T∫

0

A3

(‖f1(·, t)‖ϕ̃

)
dt < ∞ .

Thus a little discontinuity appears, since the assumption on f1 is not the same one would obtain
when θ → 1 in (71).

On the other hand, in the case where

b(x, t, u,∇u) = |u|λ|∇u|2 + f1(x, t) (1 + |u|) + f2(x, t) ,

the conjugate N-functions ϕ and ϕ̃, where ϕ(s) ∼ s log log s and ϕ̃(s) ∼ ∫ s

0
exp(2)(σ) dσ, will be

considered. We may get a distributional solution if the following assumption on f1 is done:

T∫

0

A2

(‖f1(·, t)‖ϕ̃

)
dt < ∞ .

We point out that now there is continuity with the previous hypothesis (71) as θ → 0.

As a final example, we turn to consider what happens when a sublinear growth on u is consi-
dered. Let us consider problem (10) with right hand side

b(x, t, u,∇u) = |u|λ|∇u|2 + f1(x, t) (1 + |u|)θ + f2(x, t) , where 0 < θ < 1 .

To study this problem, we may follow the proof of Theorem 4.2 requiring as assumption on f1 that
it belongs to Lr(log L)r(λ+θ)/(λ+1)

(
0, T ;Lq(Ω)

)
, with q ≥ N

2 max{ r
r−1 , λ+1

1−θ }, while we assume on
f2 the same hypothesis we made in Theorem 4.3.

7 Comments and remarks

Remark 7.1 In Section 5 we dealt with functions β(s) in (45) which grow like exp(k)(s) for an
arbitrary positive integer k. Continuous functions β(s) with completely free growth will induce a
function eγ(s) which may be written as Ψ(s)A(log Ψ(s)) with A(s) = eγ(Ψ−1(es))−s (remember that
γ(s) =

∫ s

0
β(σ)dσ, Ψ(s) =

∫ s

0
e|γ(σ)|dσ). The problem to deal with such a kind of function β(s)

is that actually we do not know if the corresponding function A satisfies always the ∆2-condition
which we need in order to prove the logarithmic Sobolev inequality. In fact the case of totally
general growth for β(s) is an open question.
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Let us summarize in the following first table the situation for different classes of functions β in
(45) and for the related involved functions. In the second table we focus our attention on different
classes of admissible data f(x, t) depending on different situations for β. We do not consider the
case f(x, t) ∈ L1(0, T ; L∞(Ω)), since, as already pointed out, in this case for every function β we
have always existence of solutions via a sub-supersolution method. For simplicity we only consider
s > 0.

Function β(s) Function Ψ(s) =

s∫

0

eγ(σ)dσ eγ(s) as a function of Ψ(s)

β(s) bounded = ecs − 1 ∼ Ψ(s)

β(s) = sλ =

s∫

0

exp
(

σλ+1

λ + 1

)
dσ ∼ Ψ(s)

(
log Ψ(s)

)λ/(1+λ)

β(s) = es + 1 = ees−1 − 1 ∼ Ψ(s) log Ψ(s)

β(s) = exp(k) s = exp(exp(. . . (exp︸ ︷︷ ︸
k+1

(s)− 1) . . . )− 1)− 1 ∼ Ψ(s) log∗(1)Ψ(s) . . . log∗(k)Ψ(s)

Any β(s) fixed =

s∫

0

eγ(σ) dσ ∼ Ψ(s)A
(
log Ψ(s)

)
,

A(s) = exp
(
γ(Ψ−1(es))− s

)

Table 1. Relations between the functions β, γ, Ψ in some model cases. We recall that γ(s) =
∫ s

0
β(σ) dσ.

Function β(s) Condition on source function f(x, t)

β(s) bounded

T∫

0

‖f(., t)‖r
q dt < ∞ , 2q/N ≥ r′ > 1

β(s) = sλ

T∫

0

‖f(., t)‖r
q(log∗ ‖f(., t)‖q)θr dt < ∞ , 2q ≥ N max{λ + 1, r′}

β(s) = es

T∫

0

A2

(‖f(., t)‖φ

)
dt < ∞ , φ(s) ∼

s∫

0

exp(2)(σ) dσ

β(s) = exp(k)(s)

T∫

0

Ak+1

(‖f(·, t)‖
φ

)
dt < ∞ , φ(s) ∼

s∫

0

exp(k+1)(σ) dσ

Any β(s) fixed ?

Table 2. Assumptions on the datum f(x, t) as a function of β(s), in order to obtain existence for problem

(10). We recall that Ak(s) = s log∗ s log∗(2) s . . . log∗(k) s.
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For what refers to the initial datum u0, a sufficient assumption for the existence is, in all cases,
Ψ(u0) ∈ L2(Ω) (actually, it suffices Ψ(u0) ∈ Lδ(Ω), δ > 1, see Remark 3.1).

Remark 7.2 We point out that the functions ϕ and ϕ̃ which appear in the proof of Proposition 3.1
are not uniquely determined by β and several choices are possible. This implies that assumptions
on f(x, t), different that those above, can be made in order to get existence. For instance, for our
exponential model example (1), that is when β(s) = e|s| + 1, we have chosen in Proposition 3.1

ϕ(s) =

s∫

0

(
L2(σ)− 1

)
dσ ∼ s log log s and ϕ̃(s) =

s∫

0

(
eeσ−1 − 1

)
dσ .

As a consequence, one is led to choose A(s) = |s| log∗ |s| in Proposition 2.1, and the assumption
on the datum f has to be

T∫

0

‖f(., t)‖ϕ̃ log∗ ‖f(., t)‖ϕ̃ log∗(2) ‖f(., t)‖ϕ̃ dt < +∞ .

Besides this, other possibilities on ϕ are:

(i) ϕ(s) =

s∫

0

(
L2(σ)− 1

)θ
dσ with 0 < θ < 1 ,

(ii) ϕ(s) =

s∫

0

(
L3(σ)− 1

)
dσ ,

(iii) ϕ(s) =

s∫

0

(
L2(σ)− 1

) (
L3(σ)− 1

)
dσ .

In each of the first two cases, its conjugate N-function may easily be written (this is not the case
in the third one), namely:

(i) ϕ̃(s) =

s∫

0

(
eeσ1/θ−1 − 1

)
dσ ,

(ii) ϕ̃(s) =

s∫

0

(
eeeσ−1−1 − 1

)
dσ ,

respectively. Each choice implies a different function A and a different assumption on the datum
f . On the one hand, in the case (i), one takes A(s) = |s| (log∗ |s|)θ, and f should satisfy

T∫

0

‖f(., t)‖ϕ̃ log∗ ‖f(., t)‖ϕ̃

(
log∗(2) ‖f(., t)‖ϕ̃

)θ
dt < +∞ .

On the other hand, when (ii) is considered, A(s) = |s| log∗(2) |s| and the assumption on f should be

T∫

0

‖f(., t)‖ϕ̃ log∗ ‖f(., t)‖ϕ̃ log∗(3) ‖f(., t)‖ϕ̃ dt < +∞ .

It is clear that we may take functions ϕ growing even more slowly which implies that A grows
also more slowly, and so the corresponding space where f lies is smaller in x and larger in t. Hence,
the datum f belongs to a space of the type Lφ(0, T ;Lϕ̃(Ω)) in such a way that the smaller the
space is with respect to the variable x, the larger it is with respect to the variable t. It seems that
Aronson-Serrin’s curve has been extended through the Orlicz spaces. Note, however, that if we
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choose the smallest space in x, namely L∞(Ω), we will have L1 log L1(0, T ; L∞(Ω)). This space,
obviously, is not the largest one we may obtain, because one can always take f ∈ L1(0, T ; L∞(Ω))
using sub/supersolutions.

The choice that we have done throughout this paper is to consider spaces in the variable x for
which explicit calculations are possible, and notations are quite intuitive. Thus, we have chosen
ϕ(s) =

∫ s

0

(
L2(σ)− 1

)
dσ and not ϕ(s) =

∫ s

0

(
L2(σ)− 1

) (
L3(σ)− 1

)
dσ since the last one is not as

easy as the previous one to handle.

Remark 7.3 The fact that different choices of Orlicz spaces are possible, allows another way of
comparing the conditions on f for several related problems. Consider, for instance, the problems
appearing in Section 4 jointly with our exponential model problem. Starting from the N-functions
ϕ(s) ∼ s log∗ log∗ s and φ(s) ∼ ∫ s

0
exp(2)(σ) dσ, and applying our procedure, one obtains the

situation showed in the following table.

Function β(s) Condition on source function f(x, t)

β(s) bounded

T∫

0

‖f(., t)‖φ log log ‖f(., t)‖φ dt < ∞

β(s) = sλ

T∫

0

‖f(., t)‖φ(log ‖f(., t)‖φ)λ/(λ+1) log log ‖f(., t)‖φ dt < ∞

β(s) = es

T∫

0

‖f(., t)‖φ log ‖f(., t)‖φ log log ‖f(., t)‖φ dt < ∞

Table 3. Comparison among conditions on the datum f(x, t) taking the N-functions ϕ(s) ∼ s log∗ log∗ s

and φ(s) ∼ ∫ s

0
exp(2)(σ) dσ as starting point.

Remark 7.4 In Section 5 we have considered a family of functions defined by recurrence. Its
main advantage is that these functions can easily be handle. Unfortunately, steps between two
consecutive functions belonging to this family are very big. In other words, fixed a function β(s)
and supposed we may find the smallest k ∈ N such that exp(k)(s) grows faster than β(s); then the
fact is that exp(k)(s) may exceed β(s) overmuch.

We point out that other possible families can be considered to obtain a function closer to a
given β(s). For instance, fixed ν > 0, we could have introduced

β0(s) = 1 , γ0(s) = s ,

βi(s) = βi−1(s) + νe|γi−1(s)| , γi(s) =

s∫

0

βi(σ) dσ , Ψi(s) =

s∫

0

e|γi(σ)| dσ , i = 0, 1, 2, . . .

Thus, β1(s) = νe|s| + 1, γ1(s) = (νe|s| + |s| − ν) sign s, Ψ1(s) = eνe|s|−eν

νeν sign s, and so on.

Remark 7.5 As far as uniqueness is concerned, let us consider the model case, where, for sake of
simplicity, we assume that all data are positive.





ut −∆u = |∇u|2 + f(x, t), in Ω×]0, T [;

u(x, 0) = u0(x), in Ω,

u ∈ L2(0, T ;H1
0 (Ω)) .

(72)
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If u is a solution of (72) such that v = Ψ(u) = eu − 1 ∈ L2(0, T ; H1
0 (Ω)), (for instance this

happens if u is bounded), then v satisfies the linear problem




vt −∆v = f (v + 1), in Ω×]0, T [;

v(x, 0) = Ψ(u0(x)), in Ω,

v ∈ L2(0, T ; H1
0 (Ω)) ,

which has a unique solution. However the solution of (72) is not necessarily unique, and it is indeed
possible to show that problem (72) admits infinitely many unbounded solutions. Every solution of
(72) corresponds, via the same change of unknown function, to a solution of problem





vt −∆v = f (v + 1) + µ, in QT ;

v(x, 0) = Ψ(u0(x)), in Ω,

v ∈ Lq(0, T ; W 1,q
0 (Ω)) , for every q < (N + 2)/(N + 1) ,

(73)

where µ is a positive “singular” Radon measure on QT (i.e., concentrated on a set of null capacity).
Viceversa, for every such singular measure µ one can solve problem (73). Then u = log(1 + v) can
be shown to be a solution of problem (72). For these results, see the paper [1].

In the case of a more general operator as in problem (10), the question of uniqueness is open
even in the class of functions such that Ψ(u) ∈ L2(0, T ; H1

0 (Ω)) (where Ψ(s) is defined as in (4)).
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