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Abstract. We study a class of Dirichlet boundary value problems
whose prototype is

(0.1)

{
−∆u = |u|p−2u + f(x) in Ω ,
u = 0 on ∂Ω ,

where 0 < p < 1 and f belongs to a suitable Lebesgue space. The
main features of this problem are the presence of a singular term
|u|p−2u and a datum f which possibly changes its sign. We in-
troduce a notion of solution in this singular setting and we prove
an existence result for such a solution. The motivation of our no-
tion of solution to problem (0.1) is due to a minimization problem
for a non–differentiable functional on H1

0 (Ω) whose formal Euler–
Lagrange equation is an equation of type (0.1). For nonnegative
solutions a uniqueness result is obtained.

1. Introduction

In the present paper we deal with a semilinear elliptic equation hav-
ing a singularity. We look for a function u which solves the problem

(1.2)

{
−div (A(x)∇u) = g(x, u) + f(x) , in Ω

u = 0 , on ∂Ω ,

where Ω is an open bounded set of RN , N ≥ 2, A(x) is a symmetric
matrixA(x) = (aij(x)) such that aij ∈ L∞(Ω) and verifies the ellipticity
condition

(1.3) A(x)ξ · ξ ≥ λ|ξ|2 ,
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for all ξ ∈ RN , for almost every x ∈ Ω and for some λ > 0. Moreover
g is a singular function at s = 0, that is we assume that

g : Ω× (R \ {0}) −→ R
is a Carathéodory function which satisfies the following growth condi-
tion:

(1.4) |g(x, s)| ≤ Λ|s|p−1 ,

where 0 < p < 1 and Λ > 0, for almost all x ∈ Ω and for all s ∈ R\{0}.
Finally we assume that the datum f can change its sign and satisfies
the following summability assumption

(1.5) f ∈ Lm(Ω) , m >
N

2
.

The basic model for the function g(x, s) is given by

(1.6) g(x, s) =
h(x)s

|s|2−p
, for a.e. x ∈ Ω and for all s ∈ R \ {0} ,

with h a function belonging to L∞(Ω) and 0 < p < 1.
As far as existence results for this type of problems are concerned,

we recall the classical paper [7], where the authors prove the existence
of a classical positive solution if the matrix A(x), the boundary ∂Ω and
the function g(x, s) + f(x) are smooth enough.

The study of different features of positive solutions to the Dirichlet
problem for equations of type −∆u = u−γ + f(x, u) is addressed in
several papers (see [9, 10, 11]) from a variational point of view.

In [5] the authors consider the case where f ≡ 0, g(x, s) = h(x)
sγ

, with
γ > 0 and h a nonnegative function belonging to a suitable Lebesgue
space. They prove existence, uniqueness and regularity results for pos-
itive distributional solutions. Main tools in such an approach are the
assumption that g(x, s) is nonincreasing in the variable s and the max-
imum principle. Uniqueness and comparison results for this type of
solution has been proved in [4] and [6], this one with symmetrization
techniques.
A different approach is used in the papers [15, 16, 17] where exis-
tence, uniqueness and stability results are proved without assuming
that g(x, s) is an nonincreasing function in the variable s and without
using the maximum principle in the proofs. In [15, 16] the case where

f ≡ 0 and g(x, s) = h(x)
sγ

, with 0 < γ ≤ 1 and h belonging to a Lebesgue
space, is studied, while the case γ > 1 is considered in [17]. In the latest
case, no global energy estimate is available for solutions and this leads
to introduce a notion in the spirit of the notion of “solution defined
by transposition” introduced in other problems by J.-L. Lions and E.
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Magenes, and by G. Stampacchia. Such a notion cannot be extended
to the case of nonlinear operators, except for some special cases.

Further contributions to semilinear elliptic equations having this
type of singularity are contained for example in [1], [2], [10], [11], [12],
[21], [22]. Extensions to equations driven by p-Laplacian type operators
are also studied, for instance, in [3].

A common feature to all these papers is that only positive solutions
are considered. A very few results are known about existence of solu-
tions which changes its sign and a first paper in this direction is [8],
where the authors show that if the “singular term” goes to infinity
at zero faster than 1/|u| then only nonnegative solutions are possible,
while in another case nonpositive solution or even solutions changing
the sign are possible.

In the present paper we are concerned with existence and uniqueness
for the singular problems of the type (1.2). Our interest was inspired by
the study of existence of solutions to problem (1.2) changing the sign.
This induces us to study the minimization problem for the following
functional on H1

0 (Ω)

(1.7) J [u] =
1

2

∫
Ω

A(x)∇u · ∇u−
∫

Ω

G(x, u)−
∫

Ω

f(x)u ,

where G(x, s) is a primitive of g(x, s), that is

(1.8) G(x, s) =

∫ s

0

g(x, t) dt , s ∈ R .

We prove that a solution to problem (1.2) is given by a minimizer of
this functional defined on H1

0 (Ω). Observe that (1.2) is formally the
Euler–Lagrange equation of this functional. Actually, this is true in
the sense proved in Proposition 3.2 below.

A first difficulty arises when we deal with the singular term since we
cannot prove it belongs to L1

loc(Ω). It implies that the distributional
formulation of problem (1.2) is not available. This hindrance occurs
even if g(x, u) ∈ L1

loc(Ω) and begs the question of identifying the right
concept of solution to problem (1.2). Inspired by the minimization
problem of (1.7), we introduce a concept based on a class of test func-
tions whose main feature is that they vanish when u vanishes. Our
concept resembles that of “renormalized solution” introduced by P.-L.
Lions and F. Murat in [20] (see also [13]) for nonlinear elliptic equation
having L1–function or measure data. In this formulation test functions
are chosen as S(u)ϕ to cut solutions at infinity and a condition must be
added to control the energy as solutions go to infinity. This condition
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reads as

lim
k→+∞

1

k

∫
{k<|u|<2k}

A(x)∇u · ∇u dx = 0

when the measure datum is singular with respect to the capacity. We
point out that, as a consequence of this condition, every renormalized
solution is a distributional one.

In our setting, obviously, test functions must cut solutions at zero
(where the singularity is located). Having identified our notion of solu-
tion, then an important question arises, namely, to show when a solu-
tion to problem (1.2) in our sense is actually a distributional solution.
In the case g(x, u) ∈ L1

loc(Ω), the condition

(1.9) lim
k→0

1

k

∫
{|u|<k}

A(x)∇u · ∇u dx = 0

provides us of a sufficient condition to ensure what solutions of problem
(1.2) (according to Definition 2.1) are distributional ones.

We have mentioned that test functions must cut solutions at zero,
and this leads to another drawback. Indeed, the function that vanishes
identically always satisfies our formulation and this fact raises the ques-
tion of proving that the solution we find is not the trivial solution. We
are able to check it when the singular term satisfies a sign condition,
namely: g(x, s) ≥ 0 for every s ∈ R.

On the other hand, our definition of solution is also based on the fact
that our solution is bounded (see Definition 2.1 below). The necessity of
dealing with bounded functions justifies the assumption that the data f
have to belong to Lebesgue spaces Lm(Ω), with m > N/2. Nevertheless
in a forthcoming paper we show that our definition of solution can
also be adapted to the case of datum f belonging to a larger class of
Lebesgue spaces and to a class of nonlinear elliptic operators whose
principal part is a general Leray–Lions type operator.

When dealing with positive solutions is possible to arrive at a unique-
ness result assuming g(x, s) is nonincreasing in the variable s. This fact
is easy to check for distributional solutions. We will prove it for non-
negative solutions which satisfy a slightly milder condition than (1.9).
Uniqueness of nonnegative solutions to problem (1.2) are also proven
in Section 5. There, we consider the following problem

(1.10)


−div (A(x)∇u) = g(x, u) + f(x) , in Ω

u > 0 , in Ω

u = 0 , on ∂Ω ,
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where we assume that g(x, s) satisfies

(1.11) 0 ≤ g(x, s) ≤ Λsp−1 ,

with 0 < p < 1 and Λ > 0, for almost all x ∈ Ω and for all s ≥ 0 .
This paper is organized as follows. In Section 2 we introduce our

notion of solution and state our main results.
The minimization problem for the functional (1.7) is treated in Section
3 where we specify in which sense problem (1.2) is the Euler–Lagrange
equation of functional (1.7) and prove the existence of a minimizer.
In Section 3 we also prove that u is a solution to problem (1.2) in the
sense of Definition 2.1 below.
In Section 4 we study the relation between distributional solutions and
our definition of solution and we give a sufficient condition which makes
the solution we have found a solution in the sense of distributions.
In Section 5 we face the study of nonnegative solutions to problem (1.2).
We give a sufficient condition for the uniqueness of such a solution.

Finally in Section 6 we make some remarks concerning our approach
and the standard approximation procedure, which seems not significant
in this setting.

2. Notation and statements of results

Throughout this paper, Ω stands for an open bounded set of RN ,
with N ≥ 1. The Lebesgue measure of E ⊂ Ω will be denoted by
|E|. The symbols Lq(Ω) will denote the usual Lebesgue spaces and
H1

0 (Ω) the usual Sobolev space, of measurable functions having weak
derivative in L2(Ω;RN) and zero trace on ∂Ω.
On the other hand, the positive and negative part of a function u is
denoted by u+ and u−, respectively. Moreover, we denote

{|u| ≥ δ} = {x ∈ Ω : |u(x)| ≥ δ} ,

for any δ > 0.
In what follows, we will also consider two auxiliary functions. For any
s ∈ R and any k > 0 we define

(2.12) Gk(s) = (|s| − k)+sign (s) ,

(2.13) Tk(s) = max{−k,min{s, k}} .

The aim of this section is to introduce our notion of solution and to
state our main results.
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2.1. Definition of solution to problem (1.2). As pointed out in the
Introduction, a notion of solution to problem (1.2) has to be defined.
The following definition is based on a suitable class of functions test,
whose role is to cut the zone where the solution u is zero. We emphazise
the analogy with the definition of renormalized solution introduced by
P.L. Lions and F. Murat for nonlinear elliptic equations with L1–data
or measures data (see, for example, [13], [20]).

Definition 2.1. We will say that u ∈ H1
0 (Ω) ∩ L∞(Ω) is a solution to

(1.2) if

(2.14)
|∇u|2

|u|p
∈ L1(Ω) ,

and

(2.15)

∫
Ω

S ′(u)ϕA(x)∇u · ∇u+

∫
Ω

S(u)A(x)∇u · ∇ϕ

=

∫
Ω

g(x, u)S(u)ϕ+

∫
Ω

fS(u)ϕ .

for every Lipschitz–continuous S : R→ R satisfying S(0) = 0 and for
every ϕ ∈ H1(Ω)∩L∞(Ω). Here we have defined g(x, 0) in such a way
that g(x, 0)S(0) = 0.

Remark 2.2. It is worth remarking that no singularity occurs in the
product |g(x, s)||s|1−p since by (1.4),

(2.16) |g(x, s)| |s|1−p ≤ Λ , s 6= 0 .

Obviously the product g(x, s)s has also no singularities. More generally
the product g(x, s)S(s) has no singularities and therefore we can define
the function g(x, ·) in 0 in such a way that g(x, 0)S(0) = 0.

Remark 2.3. Observe that, since S is a Lipschitz continuous function
such that S(0) = 0 and ϕ ∈ H1(Ω) ∩ L∞(Ω), we get S(u)ϕ ∈ H1

0 (Ω).
This implies that the first two terms in the left-hand side of (2.15)
are well-defined. Moreover, by condition |S(u)| ≤ L|u|, the growth
condition on g (1.4) and since g(x, 0)S(0) = 0, we get∣∣∣ ∫

Ω

g(x, u)S(u)ϕdx
∣∣∣ ≤ L‖ϕ‖L∞

∫
Ω

|u|p dx < +∞ .

Finally since S(u)ϕ ∈ L∞(Ω) also the last term on the right-hand side
is finite.
Moreover we explicitly remark that, as a consequence of (2.14), the for-
mulation (2.15) holds for every function S : R→ R which is Lipschitz–
continuous on every closed interval which does not contain 0, satisfying
S(0) = 0 and |S(s)| ≤ L|s|1−p for certain L > 0.



A SINGULAR ELLIPTIC EQUATION AND A RELATED FUNCTIONAL 7

Remark 2.4. We point out that u ≡ 0 always satisfies requirement
(2.15). In (3.8), we introduce a condition which avoids the possibility
of considering the trivial solution.

Remark 2.5. We remark that, in general, the singular term g(x, u) in
the problem (1.2) is not a summable function, i.e

g(x, u) 6∈ L1(Ω) .

Notice, however, that any solution u to problem (1.2) in the sense of
Definition 2.1 satisfies

g(x, u)χ{|u|≥δ} ∈ L1(Ω) ∀δ > 0 .

Indeed this is an easy consequence of the growth condition on g(x, s)
(1.4) and the fact that p < 1.

2.2. Statements of main results. We are interested in the existence
of changing sign solutions to problem (1.2) jointly with the minimiza-
tion of the functional (1.7).

Our main results are stated as follows.

Theorem 2.6. Under the assumptions (1.3), (1.4) and (1.5), prob-
lem (1.2) has at least a solution in the sense of Definition 2.1 which
minimizes functional (1.7).

The second main result concerns uniqueness of nonnegative solutions:

Theorem 2.7. Assume (1.3) and (1.11). If

g(x, ·) is a nonincreasing function in s ∈ R+

for a.e. x ∈ Ω and u1, u2 are nonnegative solutions to problem (1.10)
in the sense of Definition 2.1 which satisfy the condition

(2.17) lim
δ→0

1

δ

∫
{δ≤ui≤2δ}

A(x)∇ui · ∇ui dx = 0 , i = 1, 2

then u1 = u2 a.e. in Ω.

Remark 2.8. We stress that our results also hold for more general
functions. For instance, we may replace condition (1.4) with

|g(x, s)| ≤ Λ1|s|p−1 + Λ2 .

In particular, it is not necessary that lim|s|→∞ g(x, s) = 0.
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3. Existence result

This Section is devoted to obtain a minimizer of functional J which is
also a solution to problem (2.6). To this end, we firstly prove that such
a minimizer exists and then we derive the Euler–Lagrange equation of
this functional which is equation in (2.6), as expected.

Proposition 3.1. Under the assumptions (1.3), (1.4) and (1.5), T
there exists u ∈ H1

0 (Ω) ∩ L∞(Ω) that minimizes functional J , defined
in (1.7).

Proof. Observe that Young’s inequality implies

1

2
A(x)∇u · ∇u− G(x, u)− f(x)u ≥ λ

2
|∇u|2 − Λ

p
|u|p − |f(x)| |u|

≥ λ

2
|∇u|2 −

[
Λ

2
+

1

2
|f |
]
|u|2 −

[
Λ(2− p)

2p
+

1

2
|f |
]

where the functions into brackets belong to Lm(Ω) (m > N
2

). A similar
inequality majorizing the integrand of J holds. Now, our result is a
straightforward consequence of well–known results of the Calculus of
Variations (see, for instance, [19]).

Proposition 3.2. Assume that u ∈ H1
0 (Ω)∩L∞(Ω) is a minimizer of

the functional J defined in (1.7). Then u satisfies the identity

(3.1)

∫
Ω

S ′(u)ϕA(x)∇u · ∇u dx+

∫
Ω

S(u)A(x)∇u · ∇ϕdx

=

∫
Ω

g(x, u)S(u)ϕdx+

∫
Ω

f S(u)ϕdx ,

for any S : R → R Lipschitz–continuous function such that S(0) = 0
and for any ϕ ∈ H1(Ω) ∩ L∞(Ω). (Recall that we have defined g(x, 0)
in such a way that g(x, 0)S(0) = 0.)

Proof. Consider a Lipschitz–continuous function S : R→ R such that
S(0) = 0 and fix ϕ ∈ H1(Ω) ∩ L∞(Ω). The following equality holds

(3.2)
J [u+ tS(u)ϕ]− J [u]

t
=

=
1

2t

∫
Ω

(
A(x)∇(u+ tS(u)ϕ) · ∇(u+ tS(u)ϕ)− A(x)∇u · ∇u

)
− 1

t

∫
Ω

(
G(x, u+ tS(u)ϕ)− G(x, u)

)
−
∫

Ω

fS(u)ϕ

= J1(t)− J2(t)−
∫

Ω

fS(u)ϕ ,
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where G(x, ·) denotes the primitive of g(x, ·) as in (1.8),

J1(t) =
1

2t

∫
Ω

(
A(x)∇(u+ tS(u)ϕ) · ∇(u+ tS(u)ϕ)− A(x)∇u · ∇u

)
,

J2(t) =
1

t

∫
Ω

(
G(x, u+ tS(u)ϕ)− G(x, u)

)
.

Let us evaluate J1(t) and J2(t). The case J1(t) follows by a classical
argument (see, for instance, [14, Chapter 8]): It is easy to verify that

J1(t) =

∫
Ω

S ′(u)ϕA(x)∇u · ∇u+

∫
Ω

S(u)A(x)∇u · ∇ϕ

+
t

2

∫
Ω

A(x)∇(S(u)ϕ) · ∇(S(u)ϕ) .

We explicitly remark that all terms are well–defined since S is Lipschitz–
continuous and u is bounded.
Therefore letting t→ 0, we obtain

(3.3) lim
t→0
J1(t) =

∫
Ω

S ′(u)ϕA(x)∇u · ∇u+

∫
Ω

S(u)A(x)∇u · ∇ϕ .

Now let us evaluate J2(t), the second term in (3.2). We claim that

(3.4) lim
t→0
J2(t) =

∫
Ω

g(x, u)S(u)ϕdx .

It is obvious that

lim
t→0

G(x, u+ tS(u)ϕ)− G(x, u)

t
= g(x, u)S(u)ϕ , a.e. in Ω .

Then, in order to apply Lebesgue’s dominated convergence Theorem,
we will prove that, for t small enough,

(3.5)
∣∣∣G(x, u+ tS(u)ϕ)− G(x, u)

t

∣∣∣ ≤ 21−pΛL‖u‖p∞‖ϕ‖∞ ,

where L > 0 is a constant satisfying |S(u)| ≤ L|u|. To this aim, we
write

(3.6)
G(x, u+ tS(u)ϕ)− G(x, u)

t

=
1

t

(∫ t

0

g(x, u+ τS(u)ϕ)S(u)ϕdτ
)
.

Now denote δ = ‖u‖∞ and choose t satisfying

L|t|‖ϕ‖∞ ≤
1

2
.
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by assumption (1.4), we get∣∣∣g(x, u+ τS(u)ϕ)S(u)ϕ
∣∣∣ ≤ ∣∣∣ Λ

|u+ τS(u)ϕ|1−p
S(u)ϕ

∣∣∣
≤ ΛL|u|‖ϕ‖∞(
|u| − L|τ ||u||ϕ|

)1−p

≤ L |u|p(
1− L|t|‖ϕ‖∞

)1−pΛ‖ϕ‖∞ ≤ 21−pLδpΛ‖ϕ‖∞ .

By (3.6) this yields (3.5) and therefore, via Lebesgue’s dominated con-
vergence theorem, the assertion (3.4).
Collecting (3.2),(3.3) and (3.4) we deduce the conclusion.

Proof of Theorem 2.6 . Only assertion (2.14) must be checked. To this
end, for any fixed k > 0 we consider S(u) = Gk(|u|−pu) and ϕ = 1.
Then, by ellipticity condition (1.3), since g(x, 0)Gk(0) = 0, we get

(1− p)λ
∫
{|u|1−p>k}

|u|−p|∇u|2 dx

≤
∫

Ω

A(x)∇u · ∇
(
Gk(|u|−pu)

)
dx

=

∫
Ω

g(x, u)Gk(|u|−pu) dx+

∫
Ω

f Gk(|u|−pu) dx

≤ Λ

∫
Ω

|u|p−1 |Gk(|u|−pu)| dx+

∫
Ω

|f | |Gk(|u|−pu)| dx .

Therefore,

(3.7) (1− p)λ
∫
{|u|1−p>k}

|u|−p|∇un|2 dx ≤ Λ|Ω|+
∫

Ω

|f | |u|1−p dx .

Now we let k goes to 0 on the left-hand side and by the monotone
convergence Theorem,

lim
k→0

∫
{|u|1−p>k}

|u|−p|∇u|2 =

∫
{|u|>0}

|u|−p|∇u|2 < +∞ .

Applying [18, Lemma 2.5], we obtain that |u|1−(p/2) ∈ H1
0 (Ω) and∫

{|u|>0}
|u|−p|∇u|2 =

∫
Ω

|u|−p|∇u|2 ,

so that |u|−p|∇u|2 ∈ L1(Ω) as desired.
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Remark 3.3. We point out that in case that the singular term satisfies

(3.8) g(x, s)s ≥ 0 for all s ∈ R,

the minimum we have found is not trivial when f 6= 0. This is a
consequence of comparing our minimum with the unique solution to
the following problem{

−div (A(x)∇v) = f(x) , in Ω

v = 0 , on ∂Ω ,

Observe that f 6= 0 implies v 6= 0. Moreover, it follows from condition
(3.8) that G(x, s) ≥ 0 for all s ∈ R, so that

(3.9) G(x, v) ≥ 0 .

On the other hand, this function v minimizes the functional defined on
H1

0 (Ω) as

(3.10) J0[v] =
1

2

∫
Ω

A(x)∇v · ∇v dx−
∫

Ω

f(x)v dx .

Now appealing to the facts that u minimizes J and v minimizes J0

jointly with (3.9), we have the following inequalities

J [u] ≤ J [v] ≤ 1

2

∫
Ω

A(x)∇v · ∇v dx−
∫

Ω

G(x, v) dx−
∫

Ω

f(x)v dx

≤ J0[v] < J0[0] = 0 = J [0] .

This yields u 6= 0.

4. Distributional solutions

As pointed out a solution u in the sense of Definition 2.1 need not be
a solution in the sense of distributions to problem (1.2). Nevertheless,
a sufficient condition which assure that u is a solution in the sense of
distributions is given below.

We begin with two natural hypotheses. To obtain a distributional
solution, we require

(4.1) g(x, u) ∈ L1
loc(Ω) .

Due to our singular setting, we also assume

(4.2) lim
s→0
|g(x, s)| = +∞ for almost all x ∈ Ω .

A straightforward consequence of both assumptions is |{u = 0}| = 0,
that we will use henceforth.
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Lemma 4.1. Under the assumptions of Theorem 2.6 as well as (4.1)
and (4.2), if u is a solution to (1.2) in the sense of Definition 2.1, then
the following equality holds,

(4.3) lim
k→0

1

k

∫
{|u|<k}

ϕA(x)∇u · ∇u dx =

= −
∫

Ω

A(x)∇u·∇ϕ signu dx+

∫
Ω

ϕ g(x, u) signu dx+

∫
Ω

ϕfsignu dx .

for any ϕ ∈ C∞0 (Ω).

Remark 4.2. We point out that, in the case that the stronger condition
g(x, u) ∈ L1(Ω) holds, the following proof actually applies to every
ϕ ∈ H1(Ω) ∩ L∞(Ω). Then, choosing ϕ ≡ 1, we get

(4.4) lim
k→0

1

k

∫
{|u|<k}

A(x)∇u · ∇u dx

=

∫
Ω

g(x, u) signu dx+

∫
{u>0}

f dx−
∫
{u<0}

f dx .

Moreover, since |{u = 0}| = 0, g(x, u) is defined a.e. in Ω.

Proof. We first fix k > 0, and choose S(τ) = 1
k
Tk(τ) in (2.15). Then

for any ϕ ∈ C∞0 (Ω), we have

1

k

∫
{|u|<k}

ϕA(x)∇u · ∇u dx+
1

k

∫
Ω

Tk(u)A(x)∇u · ∇ϕdx(4.5)

=
1

k

∫
Ω

g(x, u)Tk(u)ϕdx+
1

k

∫
Ω

fTk(u)ϕdx .

In order to let k go to 0, we evaluate each term in this equality. It is
easy to verify that

(4.6) lim
k→0

1

k

∫
Ω

Tk(u)A(x)∇u · ∇ϕdx =

∫
Ω

A(x)∇u · ∇ϕ signu dx

Moreover, since

1

k
|g(x, u)Tk(u)| ≤ |g(x, u)| , a.e. in Ω .

by Lebesgue’s dominated convergence theorem we deduce

(4.7) lim
k→0

1

k

∫
Ω

g(x, u)Tk(u)ϕdx =

∫
{u6=0}

g(x, u) signuϕdx

=

∫
Ω

g(x, u) signuϕdx .
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where we have used that |{u = 0}| = 0.
On the other hand, it follows

1

k

∫
Ω

ϕfTk(u) dx =
1

k

∫
{u>0}

ϕfTk(u) dx+
1

k

∫
{u<0}

ϕfTk(u) dx ,

Letting k go to zero, we conclude

(4.8) lim
k→0

1

k

∫
Ω

ϕfTk(u) dx

=

∫
{u>0}

ϕf dx−
∫
{u<0}

ϕf dx =

∫
Ω

ϕfsignu dx .

Then (4.3) is a consequence of (4.5), (4.6), (4.7) and (4.8).

Theorem 4.3. Under the assumptions of Theorem 2.6 as well as (4.1)
and (4.2), if u ∈ H1

0 (Ω) is a solution to (1.2) in the sense of Definition
2.1 and

(4.9) lim
k→0

1

k

∫
{|u|<k}

A(x)∇u · ∇u dx = 0,

then u is a distributional solution to problem (1.2).

Remark 4.4. When g(x, u) ∈ L1(Ω) holds, by previous Lemma and
Remark 4.2, condition (4.9) is satisfied if the following equality holds
true

(4.10)

∫
{u>0}

f dx+

∫
{u>0}

g(x, u) dx =

∫
{u<0}

f dx+

∫
{u<0}

g(x, u) dx .

Proof. Fix k > 0. We choose S(s) = 1
k
Tk(|s|) in (2.15) obtaining

(4.11)
1

k

∫
{|u|<k}

ϕ
u

|u|
A(x)∇u · ∇u dx+

1

k

∫
Ω

Tk(|u|)A(x)∇u · ∇ϕdx

=
1

k

∫
Ω

ϕg(x, u)Tk(|u|) dx+
1

k

∫
Ω

ϕfTk(|u|) dx ,

for any ϕ ∈ C∞0 (Ω).
Now we evaluate each term in this equality. Since∣∣∣∣∫

{|u|<k}
ϕ
u

|u|
A(x)∇u · ∇u dx

∣∣∣∣ ≤ ‖ϕ‖∞C ∫
{|u|<k}

|∇u|2 dx ,
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it follows that, by assumptions (4.9) and (1.3),

(4.12) lim
k→0

1

k

∫
{|u|<k}

ϕ
u

|u|
A(x)∇u · ∇u dx

≤ ‖ϕ‖∞C lim
k→0

1

k

∫
{|u|<k}

|∇u|2 dx = 0 .

On the other hand, it is straightforward that

(4.13) lim
k→0

1

k

∫
Ω

Tk(|u|)A(x)∇u · ∇ϕdx =

∫
{u6=0}

A(x)∇u · ∇ϕdx

=

∫
Ω

A(x)∇u · ∇ϕdx ,

due to Stampacchia’s theorem. Moreover, premise |{u = 0}| = 0 im-
plies

(4.14) lim
k→0

1

k

∫
Ω

ϕg(x, u)Tk(|u|) dx =

∫
{u6=0}

ϕg(x, u) dx

=

∫
Ω

ϕg(x, u) dx

and

(4.15) lim
k→0

1

k

∫
Ω

ϕfTk(|u|) dx =

∫
{u6=0}

ϕf dx =

∫
Ω

ϕf dx .

Combining (4.12), (4.13), (4.14) and (4.15), identity (4.11) becomes∫
Ω

A(x)∇u · ∇ϕdx =

∫
Ω

ϕg(x, u) dx+

∫
Ω

ϕf dx ,

and the result is proved.

Remark 4.5. It is worth remarking that assumptions g(x, s) ≥ 0 for
all s ∈ R and f ≥ 0 lead to a positive solution. Indeed, this fact follows
from the inequality

−div (A(x)∇u) = g(x, u) + f(x) ≥ f(x)

by applying the strong maximum principle. Then, for every ω ⊂⊂ Ω
there exists a constant Cω > 0 such that u ≥ Cω a.e. in ω. As
a consequence, g(x, u) ∈ L1

loc(Ω) and g(x, u)ϕ ∈ L1(Ω) for all test
functions ϕ with compact support and so u is a solution in the sense of
distributions. Furthermore, we may also deduce that g(x, u)ϕ ∈ L1(Ω)
for all ϕ ∈ H1

0 (Ω). Nevertheless, identity (4.10) does not hold, since its
right hand side vanishes. Therefore, ϕ ≡ 1 cannot be chosen as a test
function, so that g(x, u) /∈ L1(Ω).
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5. Uniqueness of positive solutions: proof of Theorem 2.7

Let u1, u2 be two nonnegative solutions to problem (1.2) which satisfy
condition (2.17) with u replaced by ui, i = 1, 2. Moreover, to get a
contradiction, assume that

|{x ∈ Ω : u1(x) > u2(x)}| > 0 .

Since u1 is a solution to (1.2), we choose S(t) = hδ(t) in Definition 2.1
written for u = u1, where

hδ(t) =



0 , |t| ≤ δ

t

δ
sign t− 1 δ ≤ |t| ≤ 2δ

1 |t| ≥ 2δ ,

for any δ > 0. The following equality holds true∫
Ω

A(x)∇u1 · ∇u1h
′
δ(u1)ϕdx+

∫
Ω

hδ(u1)A(x)∇u1 · ∇ϕdx =

=

∫
Ω

g(x, u1)hδ(u1)ϕdx+

∫
Ω

fhδ(u1)ϕdx ,

for every ϕ ∈ H1(Ω) ∩ L∞(Ω).
Now let us choose ϕ = Gm((u1 − u2)+) , m > 2δ, in the previous
equality. We have∫

Ω

A(x)∇u1 · ∇u1h
′
δ(u1)Gm((u1 − u2)+) dx

+

∫
Ω

hδ(u1)A(x)∇u1 · ∇(u1 − u2)G′m((u1 − u2)+)dx

=

∫
Ω

g(x, u1)hδ(u1)Gm((u1 − u2)+) dx+

∫
Ω

fhδ(u1)Gm((u1 − u2)+) dx .

Since u2 is a solution to (1.2), we can choose S(t) = hδ(t) in Definition
2.1 written for u = u2 and ϕ = Gm((u1−u2)+). We obtain an analogous
equality, i.e.∫

Ω

A(x)∇u2 · ∇u2h
′
δ(u2)Gm((u1 − u2)+) dx+

+

∫
Ω

hδ(u2)A(x)∇u2 · ∇(u1 − u2)G′m((u1 − u2)+) dx

=

∫
Ω

g(x, u2)hδ(u2))Gm((u1 − u2)+) dx+

∫
Ω

fhδ(u2)Gm((u1 − u2)+) dx .
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Substracting these equalities, we get∫
Ω

hδ(u1)A(x)∇u1 · ∇(u1 − u2)G′m((u1 − u2)+) dx(5.1)

−
∫

Ω

hδ(u2)A(x)∇u2 · ∇(u1 − u2)G′m((u1 − u2)+) dx

+
1

δ

∫
{δ≤|u1|≤2δ}

A(x)∇u1 · ∇u1Gm((u1 − u2)+), dx

−1

δ

∫
{δ≤|u2|≤2δ}

A(x)∇u2 · ∇u2Gm((u1 − u2)+) dx

=

∫
{u1−u2>m}

[g(x, u1) + f ]hδ(u1)Gm((u1 − u2)+) dx

−
∫
{u1−u2>m}

[g(x, u2) + f ]hδ(u2)Gm((u1 − u2)+) dx

Now we pass to the limit for δ which goes to 0 in the last equality.
Since hδ(ui)→ 1 in {ui > 0} and ∇ui = 0 in {ui = 0}, by Lebesgue’s

dominated convergence theorem, we get

lim
δ→0

(∫
Ω

hδ(u1)A(x)∇u1∇(u1 − u2)G′m((u1 − u2)+) dx(5.2)

−
∫

Ω

hδ(u2)A(x)∇u2∇(u1 − u2)G′m((u1 − u2)+) dx

)
=

∫
Ω

A(x)∇Gm((u1 − u2)+) · ∇Gm((u1 − u2)+) dx .

By assumption (2.17), we have

lim
δ→0

1

δ

∫
{δ≤|u1|≤2δ}

A(x)∇u1 · ∇u1Gm((u1 − u2)+), dx = 0(5.3)

lim
δ→0

1

δ

∫
{δ≤|u2|≤2δ}

A(x)∇u2 · ∇u2Gm((u1 − u2)+) dx = 0(5.4)

Denote

I1,δ =

∫
{u1−u2>m}

[g(x, u1) + f ]hδ(u1)Gm((u1 − u2)+) dx ,

I2,δ =

∫
{u1−u2>m}

[g(x, u2) + f ]hδ(u2)Gm((u1 − u2)+) dx , .

Let us evaluate the limit as δ goes to 0 of the right-hand side in (5.1):

(5.5) lim sup
δ→0

(I1,δ − I2,δ) = lim sup
δ→0

I1,δ − lim inf
δ→0

I2,δ
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By Lebesgue theorem we have

(5.6) lim
δ→0

I1,δ =

∫
{u1−u2>m}

[g(x, u1) + f ](Gm(u1 − u2))+ dx = A .

Indeed, since ui are nonnegative functions,

[g(x, u1) + f ] ≤ 1

u1−p
1

+ f ≤ 1

(u2 +m)1−p + f ≤ 1

(m)1−p + f.

On the other hand, by Fatou’s lemma
(5.7)

− lim inf
δ→0

I2,δ ≤ −
∫
{u1−u2>m}

[g(x, u2) + f ](Gm(u1 − u2))+ dx = −B

Assume that B < +∞. Since g(x, ·) is a nonincreasing function, com-
bining (5.5), (5.6) and (5.7), we obtain

lim sup
δ→0

(I1,δ − I2,δ) = A−B ≤ 0.(5.8)

Collecting (5.1)-(5.4), (5.8), by ellipticity condition (1.3), we deduce∫
Ω

|∇Gm((u1 − u2)+)|2 dx = 0,

that is a contradiction. If B = +∞, in analogous way we arrive at

lim sup
δ→0

(I1,δ − I2,δ) = −∞ .

which yields again a contradiction. We conclude that u1 ≤ u2 a.e. in
Ω. In the same way we can prove u2 ≤ u1 a.e. in Ω and the conclusion
follows.

6. Remarks on existence using an approximation approach

This section is devoted to some remarks concerning the standard ap-
proximation approach to existence for problem (1.2). Such an approach
consists in considering suitable approximating problems and to get a
priori estimates for solutions to these problems and their gradients.
These a priori estimates allow to find a function u which is the limit of
a subsequence of approximate solutions and which should become the
solution of our problem.
A sequence of approximate problems is given by

(6.1)

{
−div(A(x)∇un) = gn(x, un) + f(x) , in Ω

un = 0 on ∂Ω .
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for certain non singular functions gn which may be defined in different
ways. For instance:

gn(x, s) =


1 + t

2
g

(
x,

1

n

)
+

1− t
2

g

(
x,
−1

n

)
if s = t

n
with |t| ≤ 1 ;

g(x, s) if |s| ≥ 1
n
.

In case g
(
x, 1

n

)
and g

(
x, −1

n

)
are both positive or both negative, we may

consider problem (6.1) with gn(x, s) = Tn(g(x, s)). Notice, however,
that g

(
x, 1

n

)
and g

(
x, −1

n

)
may have different signs.

For any fixed n ∈ N, equation (6.1) is the Euler–Lagrange equation of
the approximate functional (see, for instance, [14, Chapter 8])

(6.2) Jn[u] =
1

2

∫
Ω

A(x)∇u · ∇u−
∫

Ω

Gn(x, u)−
∫

Ω

f(x)u ,

where Gn(x, s) denotes the primitive of gn(x, s), i.e.

Gn(x, s) =

∫ s

0

gn(x, t) dt .

It is easy to verify a uniform bound

(6.3) |Gn(x, s)| ≤ Λ
|s|p

p

As proved for J , we can see that a minimizer un ∈ H1
0 (Ω) ∩ L∞(Ω) of

Jn, for any fixed n ∈ N, exists and therefore un is a weak solution to
this problem (6.1).
By means of usual techniques, we can check that the sequence of ap-
proximate solutions (un)n satisfies a priori estimates in L∞(Ω) and in
H1

0 (Ω). By these estimates we deduce that un converges to a function
u ∈ H1

0 (Ω) which should be the sought solution.
It is not difficult to prove that u minimizes functional J , while some
difficulties appear in proving that u satisfies (2.15). Indeed in order to
directly check that condition (2.15) holds, we need to have the strong
convergence in L2(Ω;RN)

∇Gk(un)→ ∇Gk(u) for all k > 0

but we are not able to obtain it when functions un change sign. As an
alternative, we must apply Proposition 3.2 to see that assertion (2.15)
holds. Hence, this approach requires going through the minimization
of the functional and does not improve our proof of Theorem 2.6.

This approach, however, allows us to get another sufficient condition
to guarantee that u is a solution in the sense of distributions. To see
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this, we take v ∈ H1
0 (Ω) as test function in (6.1) and so

(6.4)

∫
Ω

A(x)∇un · ∇v dx =

∫
Ω

gn(x, un)v dx+

∫
Ω

fv dx .

After applying the Hölder and Sobolev inequalities and using the a
priori estimates in H1

0 (Ω), it yields∣∣∣∣∫
Ω

gn(x, un)v dx

∣∣∣∣ ≤ ∫
Ω

|A(x)∇un · ∇v| dx+

∫
Ω

|f | |v| dx

≤ C‖∇un‖2‖∇v‖2 + ‖f‖ 2N
N+2
‖v‖2∗

≤ C
[
‖∇un‖2 + ‖f‖ 2N

N+2

]
‖∇v‖2 < +∞ .

So, one deduces that the sequence (gn(x, un))n is bounded in the dual
space H−1(Ω). Hence, up to subsequences, we can find ξ ∈ H−1(Ω)
such that

gn(x, un) ⇀ ξ .

As a consequence, letting n→∞ in (6.4), we obtain

(6.5)

∫
Ω

A(x)∇u · ∇v dx = 〈ξ, v〉H−1,H1
0

+

∫
Ω

fv dx

for all v ∈ H1
0 (Ω). It suggests that ξ plays the role of g(x, u) in some

sense. Therefore, the identity ξ = g(x, u) ∈ L1
loc(Ω) implies that u is

solution in the sense of distributions.
Actually, we just know that

〈ξ, S(u)ϕ〉H−1,H1
0

=

∫
Ω

g(x, u)S(u)ϕdx

for every Lipschitz–continuous function S satisfying S(0) = 0 and every
ϕ ∈ H1(Ω).

Example 6.1. The case g(x, s) = −|s|p−2s is illustrative of the difficul-
ties of addressing these singular problems. In this example we choose

gn(x, s) =


−1 + t

2
n1−p +

1− t
2

n1−p if s = t
n

with |t| ≤ 1 ;

−|s|p−2s if |s| ≥ 1
n
.

Observe that gn(x, s)s ≤ 0 for all n ∈ N. Taking Tk(un) as test func-
tion, we get∫

Ω

|∇Tk(un)|2dx−
∫

Ω

gn(x, un)Tk(un) dx =

∫
Ω

fTk(un) dx
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and disregarding a nonnegative term, we deduce

1

k

∫
Ω

|gn(x, un)| |Tk(un)| dx ≤
∫

Ω

|f | dx

Thus, Fatou’s Lemma yields

1

k

∫
Ω

|g(x, u)| |Tk(u)| dx ≤
∫

Ω

|f | dx

and, letting now k go to ∞, it leads to∫
{u6=0}

|g(x, u)| dx ≤
∫

Ω

|f | dx ,

wherewith |u|p−2uχ{u6=0} ∈ L1(Ω).
Observe that we cannot deduce |u|p−2u ∈ L1(Ω). Indeed, if f = 0,

then u = 0. Moreover, the element ξ occurring in (6.5) satisfies ξ = 0.
Obviously, |{u = 0}| 6= 0, so that ξ 6= |u|p−2u and u is not a solution
in the sense of distributions.
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