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Abstract. We study the homogeneous Dirichlet problem for some elliptic
equations with a first order term b(u,Du) which is quadratic in the gradient
variable and singular in the u variable at a positive point. Moreover, the
gradient term we consider, changes its sign at the singularity. Dealing with

an appropriate concept of solution that gives sense to the equation at the
singularity, we prove existence of solutions for every datum belonging to a
suitable Lebesgue space. Furthermore, we show that the solution pass through
the singularity when data are big enough.

1. Introduction

Since the pioneering works by L. Boccardo, F. Murat and J.P. Puel in the 80’s
of last century (see, for instance, [12] and [13]), many articles have been published
on the Dirichlet problem for elliptic equations having a quadratic gradient term of
the form g(u)|Du|2, mainly when g is a continuous real function. The prototype of
such a kind of problems is

(1.1)

 −∆u = g(u)|Du|2 + f(x) , in Ω ;

u = 0 , on ∂Ω .

Recently, attention has been focused on functions g having a singularity, and several
authors have studied conditions for existence or non existence of solution when the
singularity lies at 0 (see [1], [2], [3] [4], [8] and [17]). The uniqueness of solutions
for this type of equations has also been studied (see [5]).

Nevertheless, as far as we know, results concerning equation with a gradient term
having a singularity at a positive point (say, 1) can only be found in [11] and [18].

In [11] existence and non existence of solution are considered for g(s) = − 1

|1− s|k
in (1.1). More precisely, the authors prove that, if 0 < k < 2, for data f(x) large
enough, there is no solution u ∈ H1

0 (Ω) satisfying 0 ≤ u < 1, while, for k ≥ 2,
there exist always solutions in H1

0 (Ω), whatever is the size of f(x). In turn, in [18]
the authors investigate correlations between problems like (1.1) and some related
semilinear problems, via change of unknown.

In the present paper, we deal with the Dirichlet problem for elliptic equations
containing a quadratic gradient term with a singularity given by a function of the
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form g(s) = ± sign (s− 1)

|s− 1|θ
, where 0 < θ < 1. Hence, our model problems will be

(1.2)


−∆u = ± sign (u− 1)

|u− 1|θ
|Du|2 + f(x) , in Ω ;

u = 0 , on ∂Ω .

Actually, instead of the Laplacian, we will consider a general Leray–Lions type
operator.

Our aim is to prove that there exists a solution to (1.2) for every datum, whether
big or small, which belongs to a suitable Lebesgue space. Moreover, we show that
solutions cross the singularity when data are large enough. Note that this is due
to the fact that we have gradient terms with singularities. Indeed, the Dirichlet
problem for equations with a positive singularity in a zero order term has been
studied by Boccardo in [7]. In this case, the singularity makes a bound which cannot
be surpassed. Furthermore, in [19] it is shown that this phenomenon persists even
if we add, to the singular zero order term, a gradient term which is non singular
in the u variable . On the other hand, singularities in the principal term have
also been studied (see [6] and, for instance, [16]); in these papers the solutions can
achieve the singularity but they cannot pass through it. This is also a feature for
the solutions in the problem considered in [11], in this paper is considered problem
(1.1) with a function g which could be written as

−g(s) =
{ 1

(1−s)k
, if 0 ≤ s < 1 ;

+∞ , if s ≥ 1 .

In contrast, in our model, the solution can pass through the singularity (see Propo-
sition 2.5 below).

We will obtain our existence results by considering approximating problems,
looking for a priori estimates and studying the convergence of the approximate
solutions. As usual, when dealing with gradient terms with natural growth, we will
get a priori estimates for the solutions to these problems by applying a cancellation
result (see [14, 20]). The presence of sign (s − 1) in the gradient term adds some
extra snags in getting estimates to this term: we must consider separately what
happens on the set {u ≤ 1} and what happens on {u ≥ 1}. Hence, to obtain the
desired estimates, we will take test functions whose support lives in each of those
sets.

Besides the difficulties that appear when one studies second order equations
with gradient terms, there are specific ones arising when we deal with singularities.
Among them, we want to highlight two. An obvious, but essential, difficulty is
giving a meaning to the gradient term at the singularity. In our cases it becomes in

assigning values to sign (u−1)
|u−1|θ |Du|2 in {u = 1}. We will show that its natural value

is 0. This will be justified in the following section (see (2.6) below).
A second hindrance is how we can avoid the singularity in order to obtain conver-

gence of the approximate solutions un. Of course, we avoid the singularity by using
suitable test functions. But beyond these technical complications, this fact has
some important consequences for the convergence of un. Indeed, since we are only
able to prove the pointwise convergence of the gradients Dun on the set {u ̸= 1}, it
is not easy to deduce the weak convergence of the principal term (when a general
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Leray–Lions operator is consider) nor the strong convergence of the gradient term.
In both cases, we have to make some cumbersome calculations.

We remark that the kind of lower order terms studied in the present paper,
i.e. those terms which include sign (s − 1) jointly with a singularity at 1, can be
found in the Euler’s equation of a problem of minimizing a functional. Consider,
for instance, the functional defined by

I[u] =

∫
Ω

1 + |u− 1|1−θ

1− θ
|Du|2 −

∫
Ω

fu .

Even though Euler’s equation corresponding to the above I does not satisfy our
structural condition (2.2) below, it is not difficult to modify slightly the definition
in order to obtain Euler’s equation satisfying (2.2). To be more precise, consider
a smooth real function T satisfying T (s) = s for all s ∈ [0,M ], with M > 1,
and T ′(s) = 0 for s big enough. Then it is easy to see that Euler’s equation
corresponding to the functional defined by

I[u] =

∫
Ω

1 + T (|u− 1|1−θ)

1− θ
|Du|2 −

∫
Ω

fu .

satisfies all the hypotheses assumed below.
This paper is organized as follows. Next section is devoted to establish our

precise assumptions, notation and the statements of the main results; their proof
appear in Section 3.

2. Hypotheses and statements of results

Let us state our hypotheses more precisely. Consider a Carathéodory function

a(x, s, ξ) : Ω× R× RN → RN

such that there exist some constants α > 0 and ν > 0 satisfying the following
inequalities

a(x, s, ξ) · ξ ≥ α|ξ|2,(2.1)

|a(x, s, ξ)| ≤ ν|ξ|,(2.2)

(a(x, s, ξ)− a(x, s, η)) · (ξ − η)>0 ;(2.3)

for all ξ, η ∈ RN , with ξ ̸= η, for all s ∈ R and for almost all x ∈ Ω.
We will deal with the following problems

(2.4)±

−div(a(x, u,Du)) = ± sign (u− 1)

|u− 1|θ
|Du|2 + f(x) , in Ω ;

u = 0 , on ∂Ω ;

where Ω is an open bounded set in RN (N > 2), 0 < θ < 1 and

(2.5) f(x) ∈ Lm(Ω),

m depending on the chosen sign in (2.4)± (see Theorems 2.3 and 2.4 below). We
point out that the equations involve indeterminate quotients on the set {u = 1},
which must be clarified. Indeed, since we are looking for solutions in the energy
space H1

0 (Ω), according to the result of G. Stampacchia in [22], Du vanishes a.e.
on {u = 1}, and so the gradient term is indefinite.
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Definition 2.1. If u and |u− 1|1− θ
2 − 1 belong to H1

0 (Ω), we define

|Du|2

|u− 1|θ
=

4

(2− θ)2
|D

(
|u− 1|1− θ

2 − 1
)
|2 .

Observe that, by definition,
|Du|2

|u− 1|θ
always belongs to L1(Ω). Moreover, as a

consequence of Stampacchia’s Theorem, we obtain

(2.6)
|Du|2

|u− 1|θ
= 0 a.e. in {u = 1} .

In order to check that a function u is actually solution to problem (2.4)±, we

will have to see |u− 1|1− θ
2 − 1 ∈ H1

0 (Ω); in this task the following simple claim will
be applied.

Lemma 2.2. Let u ∈ H1
0 (Ω). If

|Du|2

|u− 1|θ
is integrable on {u ̸= 1}, then

|u− 1|1− θ
2 − 1 ∈ H1

0 (Ω) ,

and ∫
Ω

|Du|2

|u− 1|θ
=

∫
{u̸=1}

|Du|2

|u− 1|θ
.

To see it, consider u ∈ H1
0 (Ω) such that

|Du|2

|u− 1|θ
is integrable on {u ̸= 1}. Then

∫
Ω

|Du|2

( 1n + |u− 1|)θ
=

∫
{u̸=1}

|Du|2

( 1n + |u− 1|)θ
≤

∫
{u ̸=1}

|Du|2

|u− 1|θ
,

for all n ∈ N; in other words∫
Ω

∣∣∣D(( 1

n
+ |u− 1|

)1− θ
2 −

( 1

n
+ 1

)1− θ
2
)∣∣∣2 ≤ C , ∀n ∈ N .

Therefore, ( 1n + |u− 1|)1− θ
2 − ( 1n + 1)1−

θ
2 is bounded in H1

0 (Ω). Thus, there exist

a subsequence, no relabel, and v ∈ H1
0 (Ω) satisfying( 1

n
+ |u− 1|

)1− θ
2 −

( 1

n
+ 1

)1− θ
2

⇀ v , weakly in H1
0 (Ω) .

It follows, up to a subsequence, that

v = lim
n→∞

( 1

n
+ |u− 1|

)1− θ
2 −

( 1

n
+ 1

)1− θ
2

, a.e. in Ω .

Hence, v = |u− 1|1− θ
2 − 1 and so |u− 1|1− θ

2 − 1 ∈ H1
0 (Ω). Finally, (2.6) implies the

second assertion of our claim.

Next, we introduce some notation. We will denote by |E| the Lebesgue measure
of a set E ⊂ Ω. By C a positive constant depending on parameters of our problem
is denoted; its value may vary from line to line. Throughout this paper, ω(n) will
denote a quantity, which only depends on n and on parameters of our problem, and
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tends to 0 as n goes to ∞; the meaning of ω(ε) is similar, but now it tends to 0 as
ε goes to 0. We will denote by Tn(s) the usual truncation function at level ±n:

(2.7) Tn(s) =


n s ≥ n

s −n ≤ s ≤ n

−n s ≤ −n.

Finally, let us introduce the following functions γ(s) and ψ(s), s ∈ R

γ(s) =


1

α

1− |s− 1|1−θ

1− θ
if “−” holds in (2.4)±

1

α

|s− 1|1−θ − 1

1− θ
if “+” holds in (2.4)±

(2.8)

ψ(s) =

∫ s

0

eγ(σ) dσ .(2.9)

Note that γ(s) is a primitive function of the function 1
α

sign (s−1)
|s−1|θ if “+” holds in

(2.4)± and of the function − 1
α

sign (s−1)
|s−1|θ = 1

α
sign (1−s)
|s−1|θ if “−” holds in (2.4)±.

The definition of solution u for problem (2.4)+ or (2.4)− is precised in the fol-
lowing theorems which are our main results.

Theorem 2.3. Suppose (2.1)–(2.3) hold true. If m ≥ 2N
N+2 , then there exists at

least a function u ∈ H1
0 (Ω) such that

ψ(u) ∈ H1
0 (Ω),

|Du|2

|u− 1|θ
∈ L1(Ω)

(2.10)

∫
Ω

a(x, u,Du) ·Dφ+

∫
Ω

sign (u− 1)

|u− 1|θ
|Du|2φ =

∫
Ω

fφ ∀ φ ∈ H1
0 (Ω) ∩ L∞(Ω).

(2.11)

Theorem 2.4. If (2.1)–(2.3) hold true and m ≥ N
2 , then there exists u ∈ H1

0 (Ω)
satisfying (2.10) and
(2.12)∫

Ω

a(x, u,Du) ·Dφ =

∫
Ω

sign (u− 1)

|u− 1|θ
|Du|2φ+

∫
Ω

fφ ∀ φ ∈ H1
0 (Ω) ∩ L∞(Ω).

One may wonder if the singularity actually occurs, that is if solutions to our
problems achieve the singularity. We will show that this is the case when data
are large enough, at least in the case of solutions of (2.4)−. Indeed, let f be a
nonnegative regular enough datum and consider the following problem:

(2.13)

{
−∆ϕ1 = λ1fϕ1 , in Ω ;

ϕ1 = 0 , on ∂Ω .

It is well known that there exist λ1 > 0 and ϕ1 ∈ H1
0 (Ω), with ϕ1 > 0, which solve

the above eigenvalue problem. Then the following result holds true.

Proposition 2.5. For every λ > λ1, solutions to−∆u+
sign (u− 1)

|u− 1|θ
|Du|2 = λf(x) , in Ω ;

u = 0 , on ∂Ω ;
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are not bounded by 1.

Remark 2.6. It is easy to show that the results of Theorem 2.3 and Theorem

2.4 still hold true if we replace the function sign (s−1)
|1−s|θ appearing in (2.4)± with a

continuous function g : R\{1} → R, summable near the singularity s = 1, and
satisfying lim

|s|→∞
g(s) = 0 and g(s)sign (s− 1) ≥ 0 .

3. Proof of the main results

In order to give the proof of Theorem 2.3 and Theorem 2.4, let us introduce a
sequence of approximating problems. Note that the simple choice of replacing the
term

sign (u− 1)

|u− 1|θ
|Du|2 with sign (un − 1)Tn

(
1

|un − 1|θ

)
|Dun|2 .

does not work. Indeed the function sign (s−1)Tn
(

1
|s−1|θ

)
is not continuous at point

1, and so known results on existence cannot be applied.
Therefore, we will truncate by means of the real function Rn defined, for s > 0,

by

(3.1) Rn(s) =


s , if s ≤ n ;

n
(n
s

)1/θ

if s ≥ n .

The idea is that the truncate function

(3.2) s 7→ sign (s− 1)Rn

(
1

|s− 1|θ

)
be linear near the singularity, it is written in this way because we want to point
out that the function changes its sign at 1 and to highlight the singularity.

Thus, for n ∈ N, we consider

(3.3)±n


−div(a(x, un, Dun)) =

= ±sign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2 + Tnf(x) in Ω ;

un = 0 on ∂Ω .

Note that the existence of such a solution un ∈ H1
0 (Ω) ∩ L∞(Ω) is guaranteed

by the results in [20], since the function defined in (3.2) is continuous and

lim
s→∞

Rn

(
1

|s− 1|θ

)
= 0 .

For every n ∈ N and s ∈ R, we define

(3.4) γn(s) =


1

α

∫ s

0

sign (1− σ)Rn

(
1

|σ − 1|θ

)
dσ if “−” holds in (3.3)±n

1

α

∫ s

1

sign (σ − 1)Rn

(
1

|σ − 1|θ

)
dσ if “+” holds in (3.3)±n

and

(3.5) ψn(s) =

∫ s

0

eγn(σ) dσ.
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These two functions are approximating versions of those defined in (2.8) and (2.9).
The following cancellation result will be used several times in the sequel (see [21]
or [14]).

Proposition 3.1. For every increasing Lipschitz–continuous function ϕ : R → R
such that ϕ(0) = 0, it yields that eγn(un)ϕ(un) can be taken as test function in
(3.3)n and so ∫

Ω

eγn(un)ϕ′(un)|Dun|2 ≤
∫
Ω

Tn(f)e
γn(un)ϕ(un) .

Proof of Theorem 2.3: We are dealing with the case of problem (2.4)− i.e.−div(a(x, u,Du)) +
sign (u− 1)

|u− 1|θ
|Du|2 = f in Ω

u = 0 on ∂Ω.

As far as the datum is concerned, we have assumed f ∈ Lm(Ω), where m ≥ (2∗)
′
.

Note that, in this case,

lim
|s|→+∞

γ(s) = −∞ .

On the other hand, let us observe that γn attains a maximum at 1. So that
eγn(s) ≤ eγn(1) for all s ∈ R. Moreover γn(1) ≤ γ(1) for all n ∈ N.

Step 1. Uniform estimates on (ψn(un))n∈N in H1
0 (Ω).

Let us consider vn = eγn(un)ψn(un) ∈ H1
0 (Ω) ∩ L∞(Ω) where γn(s) and ψn(s)

are defined in (3.4) and (3.5). Applying Proposition 3.1, we get∫
Ω

|Dun|2e2γn(un) ≤
∫
Ω

Tn(f)e
γn(un)ψn(un) ≤ C

∫
Ω

|f | |ψn(un)| ,

that is, ∫
Ω

|Dψn(un)|2 ≤ C

∫
Ω

|f | |ψn(un)| .

Since f ∈ Lm(Ω) with m ≥ (2∗)
′
, by the Hölder and Sobolev inequalities, we obtain

(3.6)

∫
Ω

|Dψn(un)|2 ≤ C ∀ n ∈ N .

Step 2. Boundedness of the gradient term in L1(Ω).

Our aim in this Step is to prove that
∫
Ω
Rn

(
1

|un−1|θ

)
|Dun|2 ≤ C for all n ∈ N .
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Take eγn(1−(1−un)
+) − 1 ∈ H1

0 (Ω) ∩ L∞(Ω) as test function in (3.3)−n . Then

1

α

∫
{un≤1}

eγn(un)Rn

(
1

|un − 1|θ

)
a(x, un, Dun) ·Dun

−
∫
{un≤1}

(
eγn(un) − 1

)
Rn

(
1

|un − 1|θ

)
|Dun|2

+

∫
{un≥1}

(
eγn(1) − 1

)
Rn

(
1

|un − 1|θ

)
|Dun|2

=

∫
{un≤1}

Tn(f)
(
eγn(un) − 1

)
+

∫
{un≥1}

Tn(f)
(
eγn(1) − 1

)
.

Using (2.1), cancelling similar terms and disregarding a nonnegative term in the
left hand side, we get

(3.7)

∫
{un≤1}

Rn

(
1

|un − 1|θ

)
|Dun|2 ≤

(
eγn(1) − 1

) ∫
Ω

|f | ≤ c

∫
Ω

|f | .

Taking now eγn(1) − eγn((un−1)++1) as test function, we deduce

1

α

∫
{un≥1}

sign (un − 1)eγn(un)Rn

(
1

|un − 1|θ

)
a(x, un, Dun) ·Dun

+

∫
{un≥1}

sign (un − 1)
(
eγn(1) − eγn(un)

)
Rn

(
1

|un − 1|θ

)
|Dun|2

=

∫
Ω

(Tn(f))
(
eγn(1) − eγn((un−1)++1)

)
≤ eγn(1)

∫
Ω

|f | ≤ c

∫
Ω

|f | .

Hence, (2.1) implies∫
{un≥1}

Rn

(
1

|un − 1|θ

)
|Dun|2 ≤ c

∫
Ω

|f | .

Adding (3.7) to this inequality, we prove the desired estimate.

Step 3. Uniform estimates of (un)n∈N in H1
0 (Ω).

Let us consider un as a test function in (3.3)−n to get

(3.8) α

∫
Ω

|Dun|2 +
∫
Ω

unsign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2 ≤

∫
Ω

Tn(f)un .

Observe that the second term in the left hand side can be written as∫
Ω

|un − 1|Rn

(
1

|un − 1|θ

)
|Dun|2 +

∫
Ω

sign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2;

so that, dropping a nonnegative term, (3.8) becomes

α

∫
Ω

|Dun|2 +
∫
Ω

sign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2 ≤

∫
Ω

|f | |un| .

Now, Step 2 implies

α

∫
Ω

|Dun|2 ≤
∫
Ω

|f | |un|+ C .
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On account of f ∈ Lm(Ω), with m ≥ (2∗)′, we may apply first Hölder’s inequality
and then Sobolev’s inequality to obtain

α

∫
Ω

|Dun|2 ≤ C∥f∥m
(∫

Ω

|Dun|2
)1/2

+ C .

It follows now from Young’s inequality that

(3.9)

∫
Ω

|Dun|2 ≤ C ∀ n ∈ N .

This estimate implies that there exists u ∈ H1
0 (Ω), such that, up to a subsequence,

un ⇀ u in H1
0 (Ω)(3.10)

un → u a.e. in Ω .(3.11)

Observe that then (3.6) implies ψ(u) ∈ H1
0 (Ω).

Moreover, applying Lemma 1 of [9] (or Theorem 2.1 of [10]) we deduce

(3.12) Dun → Du a.e. in Ω .

This fact and Dun ⇀ Du weakly in L2(Ω;RN ) leads to

(3.13) a(x, un, Dun)⇀ a(x, u,Du) weakly in L2(Ω;RN ) .

To pass to the limit, we still have to handle the gradient term. We will study it
in the following Steps.

Step 4. Strong convergence in H1
0 (Ω) of truncations away from the

singularity.

In this Step, we will prove that the truncations (which do not cross the singu-
larity) of solutions to (3.3)−n converge strongly in H1

0 (Ω). More precisely, we will
prove that

(3.14)
DTm(G1+ε(u

+
n ))

n→+∞−→ DTm(G1+ε(u
+)) strongly in L2(Ω;RN )

∀ m > 1 ∀ ε : 0 < ε < m− 1

where

G1+ε(s) =


s− 1− ε , if s ≥ 1 + ε ;

0 , if − 1− ε ≤ s ≤ 1 + ε ;

s+ 1 + ε , if s ≤ −1− ε ;

and

(3.15)
DT1−ε,m(un)

n→+∞−→ DT1−ε,m(u) strongly in L2(Ω;RN )

∀ m > 0 ∀ ε : 0 < ε < 1

where

T1−ε,m(s) =


1− ε , if s ≥ 1− ε ;

s , if −m ≤ s ≤ 1− ε ;

−m, if s ≤ −m.
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Proof of (3.14): Let us fix m > 1 and 0 < ε < m − 1. We have to distinguish
between the positive and the negative part of Tm(G1+ε(u

+
n ))−Tm(G1+ε(u

+)). Con-
sider first

vn =
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

as test function in (3.3)−n , it follows that

(3.16)

∫
Ω

a(x, un, Dun) ·Dvn

+

∫
Ω

vnsign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2 ≤

∫
Ω

|f | |vn| .

Since∫
Ω

vnsign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2

≥ −
∫
{un<1}

(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

Rn

(
1

|un − 1|θ

)
|Dun|2

= 0 ,

we obtain that (3.16) becomes

(3.17) I =

∫
Ω

a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

≤
∫
Ω

|f | |Tm(G1+ε(u
+
n ))− Tm(G1+ε(u

+))| = ω(n) .

The left hand side of (3.17) may be split into two parts as I = I1 + I2, where

I1 =

∫
{1+ε+m<un}

a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

,

I2 =

∫
{1+ε<un≤1+ε+m}

a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

,

since ∫
{un≤1+ε}

a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

= 0 .

To deal with I1, first apply (2.1) to get

I1 ≥ −
∫
{1+ε+m<un}∩{u+

n≥u+}
a(x, un, Dun) ·DTm(G1+ε(u

+)) .

Observe that the sequence (|a(x, un, Dun)|)n is bounded in L2(Ω) and

|DTm(G1+ε(u
+))|χ{m<G1+ε(u

+
n )} −→ 0

strongly in L2(Ω), so it implies

(3.18) I1 ≥ −
∫
{1+ε+m<un}∩{u+

n≥u+}
a(x, un, Dun) ·DTm(G1+ε(u

+)) = ω(n) .

Having in mind that

I2 =

∫
Ω

a(x, un, DTm(G1+ε(u
+
n ))) ·D

(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

,
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it follows from (3.17) and (3.18), that

(3.19)

∫
Ω

a(x, un, DTm(G1+ε(u
+
n ))) ·D

(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

≤ ω(n) .

Now is when we will exploit the weak convergence

DTm(G1+εu
+
n )⇀ DTm(G1+εu

+)

in L2(Ω;RN ) since this convergence implies∫
Ω

a(x, un, DTm(G1+ε(u
+))) ·D

(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

= ω(n) .

This fact and (3.19) yield

(3.20) lim sup
n→∞

∫
Ω

(
a(x, un, DTm(G1+ε(u

+
n )))− a(x, un, DTm(G1+ε(u

+)))
)

·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

≤ 0 .

A similar inequality can be obtained for
(
Tm(G1+ε(u

+
n ))−Tm(G1+ε(u

+))
)−

. To

get it, take

vn = −eγn(1+(un−1)+)
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

as test function in (3.3)−n Then, cancelling similar terms and taking into account
the sign of the remaining terms,

(3.21)

J = −
∫
Ω

eγn(1+(un−1)+)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

≤
∫
Ω

|f | |vn| = ω(n)

As before, let us split J , but now into three terms as J = J1 + J2 + J3, where

J1 = −
∫
{un>1+ε+m}

eγn(un)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

J2 = −
∫
{1+ε<un≤1+ε+m}

eγn(un)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

J3 = −
∫
{un≤1+ε}

eγn(1+(un−1)+)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

.

We have, by (2.1),
(3.22)

J1 ≥ −
∫
{un>1+ε+m}∩{u+

n≤u+}
eγn(un)a(x, un, Dun) ·DTm(G1+ε(u

+)) = ω(n)
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and

J3 ≥ −
∫
{un<1+ε}∩{u+

n≤u+}
eγn(1+(un−1)+)a(x, un, Dun) ·DTm(G1+ε(u

+))

= ω(n) .

Therefore, by (3.21), J2 ≤ ω(n). So that writing J2 as

−
∫
{1+ε<un≤1+ε+m}

eγn(un)a(x, un, DTm(G1+ε(u
+
n )))

·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

,

and performing similar computations as before, we obtain

lim sup
n→∞

∫
{1+ε<un≤1+ε+m}

−eγn(un)(
a(x, un, DTm(G1+ε(u

+
n )))− a(x, un, DTm(G1+ε(u

+)))
)

·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

≤ 0 .

Having in mind that the integrand is nonnegative and

0 < c = eγn(1+m+ε) ≤ eγn(un)χ{1+ε<un≤1+ε+m} ,

we deduce

(3.23) lim sup
n→∞

∫
Ω

−
(
a(x, un, DTm(G1+ε(u

+
n )))− a(x, un, DTm(G1+ε(u

+)))
)

·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

≤ 0 .

Finally, adding (3.20) and (3.23), we get

lim sup
n→∞

∫
Ω

(
a(x, un, DTm(G1+ε(u

+
n )))− a(x, un, DTm(G1+ε(u

+)))
)

·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)
≤ 0 .

from where, applying a well–known lemma by Browder (see [15]), (3.14) follows.

Proof of (3.15): As in the previous proof, we have to distinguish two cases. We
begin by taking

eγn(1−(1−un)
+)
(
T1−ε,m(un)− T1−ε,m(u)

)+
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as test function in (3.3)−n to get

(3.24)

∫
Ω

eγn(1−(1−un)
+)a(x, un, Dun) ·D

(
T1−ε,m(un)− T1−ε,m(u)

)+

+

∫
{un≤1}

1

α
Rn

(
1

|un − 1|θ

)
eγn(un)

(
T1−ε,m(un)−T1−ε,m(u)

)+

a(x, un, Dun) ·Dun

+

∫
Ω

sign (un−1)eγn(1−(1−un)
+)
(
T1−ε,m(un)−T1−ε,m(u)

)+

Rn

(
1

|un − 1|θ

)
|Dun|2

=

∫
Ω

feγn(1−(1−un)
+)
(
T1−ε,m(un)− T1−ε,m(u)

)+

.

Let us point out that∫
Ω

sign (un−1)eγn(1−(1−un)
+)
(
T1−ε,m(un)−T1−ε,m(u)

)+

Rn

(
1

|un − 1|θ

)
|Dun|2

=

∫
{un≥1}

eγn(1)
(
T1−ε,m(un)− T1−ε,m(u)

)+

Rn

(
1

|un − 1|θ

)
|Dun|2

−
∫
{un≤1}

eγn(un)
(
T1−ε,m(un)− T1−ε,m(u)

)+

Rn

(
1

|un − 1|θ

)
|Dun|2

≥ −
∫
{un≤1}

eγn(un)
(
T1−ε,m(un)− T1−ε,m(u)

)+

Rn

(
1

|un − 1|θ

)
|Dun|2 .

Hence, using (2.1), (3.24) becomes∫
Ω

eγn(1−(1−un)
+)a(x, un, Dun) ·D

(
T1−ε,m(un)− T1−ε,m(u)

)+

≤
∫
Ω

|f | eγn(1−(1−un)
+)|T1−ε,m(un)− T1−ε,m(u)|

≤ eγn(1)

∫
Ω

|f | |T1−ε,m(un)− T1−ε,m(u)| = ω(n) .

Splitting suitably the left hand side and taking into account that

DT1−ε,m(un)⇀ DT1−ε,m(u)

weakly in L2(Ω;RN ), we may follow the same procedure as above to obtain

lim sup
n→∞

∫
Ω

eγn(T1−ε,m(un))
(
a(x, un, DT1−ε,m(un))− a(x, un, DT1−ε,m(u))

)
·D

(
T1−ε,m(un))− T1−ε,m(u))

)+

≤ 0 .

Since 0 < c ≤ eγn(−m) ≤ eγn(T1−ε,m(un)), it follows that

(3.25) lim sup
n→∞

∫
Ω

(
a(x, un, DT1−ε,m(un))− a(x, un, DT1−ε,m(u))

)
·D

(
T1−ε,m(un))− T1−ε,m(u))

)+

≤ 0 .

To deal with the negative part, we just take

−
(
T1−ε,m(un)− T1−ε,m(u)

)−
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as test function in (3.3)−n . Then we have

−
∫
Ω

a(x, un, Dun) ·D
(
T1−ε,m(un)− T1−ε,m(u)

)−
≤

≤ −
∫
Ω

f
(
T1−ε,m(un)− T1−ε,m(u)

)−

≤
∫
Ω

|f | |T1−ε,m(un)− T1−ε,m(u)| = ω(n) .

Performing similar computations as above, it implies

(3.26) lim sup
n→∞

∫
Ω

−
(
a(x, un, DT1−ε,m(un))− a(x, un, DT1−ε,m(u))

)
·D

(
T1−ε,m(un))− T1−ε,m(u))

)−
≤ 0 .

From (3.25) and (3.26), having in mind the Browder lemma, we get (3.15).

Step 5. limε→0

∫
{|un−1|<ϵ}Rn

(
1

|un−1|θ

)
|Dun|2 = 0 uniformly in n.

Fix ε such that 0 < ε < 1, we will see that∫
{|un−1|<ε}

Rn

(
1

|un − 1|θ

)
|Dun|2 = ω(ε) .

Let us take

e

(
γn(1−(1−un)

+)−γn(1−ε)
)+

− 1

as test function in (3.3)−n . Observe that the points where this function is different
from zero are those belonging to {1 − ε < un} and its derivative is different from
zero in {1− ε < un < 1}. So that∫

{1−ε<un<1}

1

α
Rn

(
1

|un − 1|θ

)
e

(
γn(un)−γn(1−ε)

)+

a(x, un, Dun) ·Dun

−
∫
{1−ε<un<1}

Rn

(
1

|un − 1|θ

)
|Dun|2

(
e

(
γn(1−(1−un)

+)−γn(1−ε)
)+

− 1
)

+

∫
{1<un}

Rn

(
1

|un − 1|θ

)
|Dun|2

(
e

(
γn(1)−γn(1−ε)

)
− 1

)
≤

∫
Ω

Tn(f)
(
e

(
γn(1−(1−un)

+)−γn(1−ε)
)+

− 1
)
.

Apply (2.1), cancel similar terms and drop a nonnegative one, then∫
{1−ε<un<1}

Rn

(
1

|un − 1|θ

)
|Dun|2 ≤

(
e

(
γn(1)−γn(1−ε)

)
− 1

)∫
Ω

|f | .

Noting that γn(1)− γn(1− ε) ≤ γ(1)− γ(1− ε) = ε1−θ

α(1−θ) , the previous inequality

becomes∫
{1−ε<un<1}

Rn

(
1

|un − 1|θ

)
|Dun|2 ≤

(
e

ε1−θ

α(1−θ) − 1
)∫

Ω

|f | = ω(ε) ,

so that ∫
{1−ε<un<1}

Rn

(
1

|un − 1|θ

)
|Dun|2 = ω(ε) ,



QUASILINEAR STATIONARY PROBLEMS WITH A QUADRATIC GRADIENT TERM 15

uniformly in n.
Considering now

e

(
γn(1)−γn(1+ε)

)
− e

(
γn((un−1)++1)−γn(1+ε)

)+

as test function in (3.3)−n and performing similar manipulations, we get∫
{1<un<1+ε}

Rn

(
1

|un − 1|θ

)
|Dun|2 ≤ ω(ε) ,

uniformly in n. Therefore,∫
{|un−1|<ε}

Rn

(
1

|un − 1|θ

)
|Dun|2 = ω(ε) ,

uniformly in n.

Step 6. Equiintegrability of
(
Rn

(
1

|un−1|θ

)
|Dun|2

)
n∈N

.

In this Step we are going to prove that for every η > 0 there exists δη > 0
satisfying

(3.27) ∀E ⊆ Ω : |E| < δη sup
n

∫
E

Rn

(
1

|un − 1|θ

)
|Dun|2 < η .

Indeed, if m > 1 and 0 < ε < m− 1, then

(3.28)

∫
E

Rn

(
1

|un − 1|θ

)
|Dun|2 =

∫
E∩{|un−1|<ε}

Rn

(
1

|un − 1|θ

)
|Dun|2

+

∫
E∩{|un|>m}

Rn

(
1

|un − 1|θ

)
|Dun|2

+

∫
E∩{|un|≤m}∩{|un−1|≥ε}

Rn

(
1

|un − 1|θ

)
|Dun|2 .

The first integral at the right hand side of (3.28) goes to zero as ε→ 0 uniformly
in n, by Step 5.

The second integral at the right hand side of (3.28) can be estimated as∫
E∩{|un|>m}

Rn

(
1

|un − 1|θ

)
|Dun|2 ≤

∫
{|un−1|>m−1}

1

|un − 1|θ
|Dun|2 ≤

≤ 1

(m− 1)θ

∫
Ω

|Dun|2 ≤ ω(m) ,

due to (3.9). Let η > 0 be given. As a consequence of (3.28) and the previous
estimates of its right hand side, we may find ϵ ∈ (0, 1) and m ∈ N, with m ≥ 2,
satisfying∫
E

Rn

(
1

|un − 1|θ

)
|Dun|2 ≤ η

2
+

∫
E∩{|un|≤m}∩{|un−1|≥ε}

Rn

(
1

|un − 1|θ

)
|Dun|2 .
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With ϵ > 0 and m ∈ N already chosen, we may estimate the last integral in (3.28):∫
E∩{|un|≤m}∩{|un−1|≥ε}

Rn

(
1

|un − 1|θ

)
|Dun|2

≤ 1

εθ

∫
E∩{|un|≤m}∩{|un−1|≥ε}

|Dun|2

=
1

εθ

∫
E

|DTm−1−ε(G1+ε(u
+
n ))|2 +

1

εθ

∫
E

|DT1−ε,m(un))|2 .

By (3.14) and (3.15), the integrals∫
E

|DTm−1−ε(G1+ε(u
+
n ))|2 and

∫
E

|DT1−ε,m(un))|2

are uniformly small in n if |E| is small enough. Therefore (3.27) holds true.

As a consequence of this Step 6, (3.11) and (3.12), we obtain that

|Du|2

|u− 1|θ
χ{u̸=1} ∈ L1(Ω) .

Now Lemma 2.2 implies
|Du|2

|u− 1|θ
∈ L1(Ω) .

Step 7. Weak convergence of the gradient term in L1(Ω).

As a consequence of (3.11), (3.12) and Step 6, we already know that

sign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2 → sign (u− 1)

|u− 1|θ
|Du|2 ,

strongly in L1({u ̸= 1}). However, this Step is not straightforward, since we do not
know what happens in {u = 1}.

Fixed φ ∈ L∞(Ω), we will see that

(3.29) lim
n→∞

∫
Ω

sign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2φ =

∫
Ω

sign (u− 1)

|u− 1|θ
|Du|2φ .

We obviously split the integral

H1 =

∫
{u̸=1}

sign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2φ ,

H2 =

∫
{u=1}

sign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2φ .

By (3.11), (3.12), Step 6 and Vitali’s theorem, we pass to the limit on n in the term
H1 getting ∫

Ω

sign (u− 1)

|u− 1|θ
|Du|2χ{u̸=1} φ .

As far as the term H2 is concerned, we observe that, by Egorov’s theorem, for every
δ > 0 there exists Ωδ ⊆ Ω satisfying |Ωδ| < δ and un → u uniformly in Ω\Ωδ. Then,
fixed η > 0, it yields∫

{u=1}∩Ωδ

Rn

(
1

|un − 1|θ

)
|Dun|2φ <

η

2
∀n ∈ N
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for all δ ∈ (0, δ η
2∥φ∥∞

), where δ η
2∥φ∥∞

is that given by (3.27).

On the other hand, for every ε > 0 we may apply the uniform convergence to
find n0 ∈ N such that if n ≥ n0, then |un − 1| < ε in the set {u = 1} ∩ (Ω\Ωδ). So,
it follows from this fact and Step 6 that∫

{u=1}∩(Ω\Ωδ)

Rn

(
1

|un − 1|θ

)
|Dun|2φ

≤
∫
{|un−1|<ε}

Rn

(
1

|un − 1|θ

)
|Dun|2φ <

η

2
,

for n big enough. Thus, limn→+∞H2 = 0.
Summing up and having in mind Lemma 2.2, we have proved (3.29).

Step 8. Passage to the limit in (3.3)−n .

Let us fix φ ∈ H1
0 (Ω) ∩ L∞(Ω) and take it as test function in (3.3)−n . Then

(3.30)

∫
Ω

a(x, un, Dun) ·Dφ+

∫
Ω

sign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2φ

=

∫
Ω

Tn(f)φ .

To pass to the limit in the principal part, we only have to apply (3.13), while
Step 7 is enough to handle the second term. Since obviously Tn(f) → f in L1(Ω),
it follows that we pass to the limit in (3.30) obtaining (2.11). �

Remark 3.2. After proving Step 7 in the above proof, we may apply Theorem 3.1
in [10] to improve Step 4. Indeed, we get the strong convergence in H1

0 (Ω) of every
truncation, not only those away from the singularity.

Proof of Theorem 2.4: We pass now to deal with problem (2.4)+ i.e.−div(a(x, u,Du)) =
sign (u− 1)

|u− 1|θ
|Du|2 + f in Ω

u = 0 on ∂Ω .

On the datum, we assume

(3.31) f ∈ Lm(Ω) , with m ≥ N

2
.

Note that in this case, lim|s|→+∞ γ(s) = +∞ and

(3.32) lim
|s|→+∞

eγn(s)

ψn(s)
= 0 uniformly in n

as can easily be proved. Moreover, since each γn is bounded from below by γn(1),
and γn(1) is bounded from below by γ(1), there exists a constant C satisfying

(3.33) 0 < C < eγn(un) , for all n ∈ N .
We remark that all the test function used in the following proof are admissible

since un ∈ H1
0 (Ω) ∩ L∞(Ω).

We have to modify Steps 1–5, due to the different behaviour of function γ(s)
and ψ(s).
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Step 1′. Uniform estimates on (ψn(un))n∈N and ((un))n∈N in H1
0 (Ω).

We take in (3.3)+n the function

vn = eγn(un)ψn(un) ∈ H1
0 (Ω) ∩ L∞(Ω) .

With the same arguments we get the following estimate, for any ε > 0 fixed∫
Ω

|Dψn(un)|2 ≤
∫
Ω

|f |eγn(un)ψn(un) ≤ ε

∫
Ω

|f |ψ2
n(un) + C(ε)

∫
Ω

|f |

≤ ε∥f∥
L

N
2
·
(∫

Ω

|ψn(un)|
2N

N−2

)N−2
N

+ C(ε)∥f∥L1 .

Therefore, applying Sobolev’s inequality and choosing ε sufficiently small, we get
the desired estimate:

(3.34)

∫
Ω

|Dψn(un)|2 ≤ C for all n ∈ N .

We point out that as a bonus we have obtained an estimate of ψn(un) in L
2N/(N−2)(Ω).

As a consequence of (3.32), we have also proved the existence of a positive constant
C satisfying

(3.35)

∫
Ω

(
eγn(un)

)2N/(N−2) ≤ C for all n ∈ N .

Taking (3.33) into account, the estimate (3.34) also implies an uniform estimate on
(un)n∈N in H1

0 (Ω).

Step 2′. Uniform L1(Ω)- estimates for |Dun|2Rn(
1

|un−1|θ ).

Define the function

ζn(s) =


γn(s)− γn(1) , if s > 1 ;

0 , if 0 ≤ s ≤ 1 ;

−γn(s) , if s < 0 ;

Observe that it is a nondecreasing function satisfying ζn(s)sign (s− 1) ≥ 0 and

|ζn(s)| ≤ γn(s)− γn(1) ≤ e(γn(s)−γn(1)) = e−γn(1)eγn(s) .

We also remark that its derivative is given by

ζ ′n(s) =
1

α
Rn

( 1

|s− 1|θ
)

if s /∈ [0, 1] .

We now use in (3.3)+n the test function vn = ζn(un)e
γn(un). Then cancelling

similar terms, we get∫
{un /∈[0,1]}

eγn(un)Rn

( 1

|un − 1|θ
)
|Dun|2 ≤

∫
Ω

Tn(f)e
γn(un)ζn(un)

≤ e−γn(1)

∫
Ω

|f |e2γn(un) .

Applying (3.31) and (3.35), we deduce that the last term is bounded. So that,
by (3.33),

(3.36)

∫
{un /∈[0,1]}

Rn

(
1

|un − 1|θ

)
|Dun|2 ≤ C ∀n ∈ N .
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On the other hand, consider 0 < k < 1 and take Tk(u
+
n ) as a test function in

(3.3)+n . We obtain∫
{0≤un≤k}

a(x, un, Dun) ·Dun = −
∫
{0≤un≤1}

Tk(un)Rn

( 1

|un − 1|θ
)
|Dun|2

+ k

∫
{un>1}

Rn

( 1

|un − 1|θ
)
|Dun|2 +

∫
Ω

Tn(f)Tk(u
+
n ) .

Since the left hand side is nonnegative, it follows that∫
{0≤un≤1}

Tk(un)Rn

( 1

|un − 1|θ
)
|Dun|2

≤ k

∫
{un>1}

Rn

( 1

|un − 1|θ
)
|Dun|2 + k

∫
Ω

|f | .

Hence, by (3.36), it yields∫
{0≤un≤1}

Tk(un)

k
Rn

( 1

|un − 1|θ
)
|Dun|2

≤
∫
{un>1}

Rn

( 1

|un − 1|θ
)
|Dun|2 +

∫
Ω

|f | ≤ C .

Letting k goes to 0, Fatou’s lemma implies

(3.37)

∫
{0≤un≤1}

Rn

( 1

|un − 1|θ
)
|Dun|2 ≤ C , for all n ∈ N .

Adding (3.36) to (3.37), the uniform estimate in L1(Ω) of |Dun|2Rn(
1

|un−1|θ ) is

proved.

Step 4′. Strong convergence in H1
0 (Ω) of truncations away from the

singularity.

Keeping in mind the notations of Step 4, we have to prove (3.14) and (3.15).
Proof of (3.14). If we take as test function in (3.3)+n

vn = eγn(1+(un−1)+)
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

we get, cancelling similar terms and neglecting a negative term of the right hand
side,

(3.38)

∫
Ω

eγn(1+(un−1)+)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

≤
∫
{un≤1}

vnsign (un − 1)Rn

(
1

|un − 1|θ

)
|Dun|2 +

∫
Ω

|f | |vn|

≤
∫
Ω

|f | eγn(1+(un−1)+)
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

= ω(n) .

The last equality is due to (3.31), (3.35)), and to the fact that the sequence(
Tm(G1+ε(u

+
n )) − Tm(G1+ε(u

+))
)+

converges strongly to zero in Ls(Ω) for any
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s ≥ 1. The left hand side of (3.38) may be split into two parts as I = I1+I2, where

I1 =

∫
{1+ε+m<un}

eγn(un)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

,

I2 =

∫
{1+ε<un≤1+ε+m}

eγn(un)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

,

since∫
{un≤1+ε}

eγn(1+(un−1)+)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))−Tm(G1+ε(u

+))
)+

= 0 .

To deal with I1, first apply (2.1) to get

I1 ≥ −
∫
{1+ε+m<un}∩{u+

n≥u+}
eγn(un)a(x, un, Dun) ·DTm(G1+ε(u

+)) .

Observe that the sequence (eγn(un)|a(x, un, Dun)|)n∈N is bounded in L2(Ω) due to
(2.2) and Step 1′. Moreover

|DTm(G1+ε(u
+))|χ{m<G1+ε(u

+
n )} −→ 0

strongly in L2(Ω), so it implies

(3.39) I1 ≥ ω(n) .

Having in mind that

I2 =

∫
Ω

eγn(un)a(x, un, DTm(G1+ε(u
+
n ))) ·D

(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

,

it follows from (3.38), (3.39) that

(3.40)

∫
{1+ϵ≤un≤m+1+ϵ}

eγn(un)a(x, un, DTm(G1+ε(u
+
n )))

·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

≤ ω(n) .

Next the weak convergence

DTm(G1+εu
+
n )⇀ DTm(G1+εu

+)

in L2(Ω;RN ), (3.40) and (3.33), yield

(3.41) lim sup
n→∞

∫
{1+ϵ≤un≤m+1+ϵ}

eγn(un)(
a(x, un, DTm(G1+ε(u

+
n )))− a(x, un, DTm(G1+ε(u

+)))
)

·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)+

≤ 0 .

A similar inequality can be obtained for
(
Tm(G1+ε(u

+
n )) − Tm(G1+ε(u

+))
)−

. To

get it, take

vn = −eγn(1−(1−un)
+)
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−
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as test function in (3.3)+n . Then, with the usual arguments,

(3.42)

J = −
∫
Ω

eγn(1−(1−un)
+)a(x, un, Dun) ·D

(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

≤
∫
Ω

|f | eγn(1−(1−un)
+
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

= ω(n)

The last equality follows from inequalities (3.31), (3.35)), and from the convergence

of
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

to zero strongly in Ls(Ω) for any s ≥ 1. As

before, let us split J , but now into three terms as J = J1 + J2 + J3, where

J1 = −
∫
{un>1+ε+m}

eγn(1)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

J2 = −
∫
{1+ε<un≤1+ε+m}

eγn(1)a(x, un, Dun) ·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

J3 = −
∫
{un≤1+ε}

eγn(1−(1−un)
+)a(x, un, Dun) ·D

(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

.

We have

J1 ≥ −
∫
{un>1+ε+m}∩{u+

n≤u+}
eγn(1)a(x, un, Dun) ·DTm(G1+ε(u

+)) = 0

and

J3 ≥ −
∫
{un<1+ε}∩{u+

n≤u+}
eγn(1−(1−un)

+)a(x, un, Dun) ·DTm(G1+ε(u
+)) = ω(n) .

Therefore, by (3.42), J2 ≤ ω(n). So, arguing as before, we easily obtain also

(3.43) lim sup
n→∞

∫
Ω

−
(
a(x, un, DTm(G1+ε(u

+
n )))− a(x, un, DTm(G1+ε(u

+)))
)

·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)−

≤ 0 .

Finally, adding (3.41) and (3.43), we get

lim sup
n→∞

∫
Ω

(
a(x, un, DTm(G1+ε(u

+
n )))− a(x, un, DTm(G1+ε(u

+)))
)

·D
(
Tm(G1+ε(u

+
n ))− Tm(G1+ε(u

+))
)
≤ 0 .

from where, applying again Browder’s Lemma (see [15]), (3.14) follows.

Proof of (3.15). As in the previous proof, we have to distinguish two cases. We
begin by taking

vn = eγn(1+(1−un)
−)
(
T1−ε,m(un)− T1−ε,m(u)

)+
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as test function in (3.3)+n to get, by (3.31) and (3.35), that∫
Ω

eγn(1+(1−un)
−)a(x, un, Dun) ·D

(
T1−ε,m(un)− T1−ε,m(u)

)+

≤
∫
Ω

|f |eγn(1+(1−un)
−)
(
T1−ε,m(un)− T1−ε,m(u)

)+

= ω(n) .

This estimate implies, splitting as before the first integral and observing that

eγn(1−(1−T1−ε,m(un))
−) = eγ(1),

lim sup
n→∞

∫
Ω

a(x, un, DT1−ε,mun) ·D
(
T1−ε,m(un)− T1−ε,m(u)

)+

≤ 0 .

Taking into account that

DT1−ε,m(un)⇀ DT1−ε,m(u)

weakly in L2(Ω;RN ), we have also

(3.44) lim sup
n→∞

∫
Ω

(
a(x, un, DT1−ε,m(un))− a(x, un, DT1−ε,m(u))

)
·D

(
T1−ε,m(un))− T1−ε,m(u))

)+

≤ 0 .

To deal with the negative part, we just take

vn = −eγn(1−(1−un)
+)
(
T1−ε,m(un)− T1−ε,m(u)

)−

as test function in (3.3)+n . Then we have

−
∫
Ω

eγn(1−(1−un)
+)a(x, un, Dun) ·D

(
T1−ε,m(un)− T1−ε,m(u)

)−
≤

≤
∫
Ω

|f | e(1−(1−un)
+)
(
T1−ε,m(un)− T1−ε,m(u)

)−
= ω(n) ,

by (3.31) and (3.35). Performing similar computations as above, it implies

(3.45)

lim sup
n→∞

∫
Ω

−eγn(T1−ε,m(un))
(
a(x, un, DT1−ε,m(un))− a(x, un, DT1−ε,m(u))

)
·D

(
T1−ε,m(un))− T1−ε,m(u))

)−
≤ 0 .

Since eγn(T1−ε,m(un)) ≥ eγn(1) ≥ eγ(1), from (3.44) and (3.45), on account of the
Browder lemma, we get (3.15).

Step 5′. limε→0

∫
{|un−1|<ε} |Dun|

2Rn

(
1

|un−1|θ

)
= 0 uniformly in n.

Consider the function given by

ξn(s) =


0 , if s ≤ 1 ;

γn(s)− γn(1) , if 1 ≤ s ≤ 1 + ϵ ;

γn(1 + ϵ)− γn(1) , if s ≥ 1 + ϵ .

It is a nonnegative and nondecreasing function such that

0 ≤ ξn(s) ≤ γn(1 + ϵ)− γn(1) ≤ γ(1 + ϵ)− γ(1)
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holds for all n ∈ N and all s ∈ R. We use as test function in (3.3)+n

vn = ξn(un)e
γn(un) .

Then we deduce∫
Ω

ξ′n(un)e
γn(un)a(x, un, Dun) ·Dun ≤

∫
Ω

Tn(f)ξn(un)e
γn(un) ,

and so∫
{1≤un<1+ϵ}

eγn(un)Rn

( 1

|un − 1|θ
)
|Dun|2 ≤ (γ(1 + ϵ) − γ(1))

∫
Ω

|f |eγn(un) .

Finally, it follows from (3.33), (3.31) and (3.35), that

(3.46)

∫
{1≤un<1+ϵ}

Rn

( 1

|un − 1|θ
)
|Dun|2 ≤ C(γ(1 + ϵ)− γ(1)) = ω(ϵ) .

Consider now the function defined by

ξ̄n(s) =


0 , if s ≤ 1− ϵ ;

γn(1− ϵ)− γn(s) , if 1− ϵ ≤ s ≤ 1 ;

γn(1− ϵ)− γn(1) , if s ≥ 1 ,

which is nonnegative and nondecreasing. It also satisfies

0 ≤ ξ̄n(s) ≤ γn(1− ϵ)− γn(1) ≤ γ(1− ϵ)− γ(1)

for all n ∈ N and all s ∈ R. Taking

vn = ξ̄n(un)e
γn(1+(un−1)+)

as test function in (3.3)+n , simplifying and dropping a negative term of the right
hand side, it yields∫

{1−ϵ<un≤1}
eγn(1)Rn

( 1

|un − 1|θ
)
|Dun|2 ≤

∫
Ω

Tn(f)ξ̄n(un)e
γn(1+(un−1)+)

≤ (γ(1− ϵ)− γ(1))

∫
Ω

|f |eγn(un) .

Applying (3.33), (3.31) and (3.35), we obtain∫
{1−ϵ<un≤1}

Rn

(
1

|un − 1|θ

)
|Dun|2 ≤ ω(ε) .

This estimate and (3.46) prove Step 5′.
The remaining Steps 6, 7, 8 are proved exactly as in the first part. This concludes

the proof. �
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Proof of Proposition 2.5: Assume, to get a contradiction, that there exists
u ∈ H1

0 (Ω) which satisfies u < 1 and is a solution of

(3.47)

{
−∆u− |Du|2

|u−1|θ = λf , in Ω ;

u = 0 , on ∂Ω .

Take

(
e−

1−(1−u)1−θ

1−θ + C

)
ϕ1 as test function, where C is a positive constant to be

determined. Then∫
Ω

(
e−

1−(1−u)1−θ

1−θ + C

)
Du ·Dϕ1 −

∫
Ω

|Du|2

|1− u|θ
e−

1−(1−u)1−θ

1−θ ϕ1

−
∫
Ω

|Du|2

|u− 1|θ

(
e−

1−(1−u)1−θ

1−θ + C

)
ϕ1 =

∫
Ω

λf

(
e−

1−(1−u)1−θ

1−θ + C

)
ϕ1 .

Denoting

Ψ(s) =

∫ s

0

e−
1−(1−σ)1−θ

1−θ + C dσ ,

the above equality becomes

(3.48)

∫
Ω

DΨ(u) ·Dϕ1 − λfϕ1

(
e−

1−(1−u)1−θ

1−θ + C

)
=

∫
Ω

(
2e−

1−(1−u)1−θ

1−θ + C

)
|Du|2

|u− 1|θ
ϕ1 ≥ 0 .

On the other hand, we may take Ψ(u) as test function in (2.13) obtaining∫
Ω

DΨ(u) ·Dϕ1 =

∫
Ω

λ1fϕ1Ψ(u) .

Substituting this equality in (3.48), we get

(3.49)

∫
Ω

fϕ1

[
λ1Ψ(u)− λ

(
e−

1−(1−u)1−θ

1−θ + C

)]
≥ 0 .

Consider now the function defined by

Φ(s) = Ψ(s)− λ

λ1

(
e−

1−(1−s)1−θ

1−θ + C

)
.

Denoting I =
∫ 1

0
e−

1−(1−σ)1−θ

1−θ dσ, it is straightforward that

Φ′(s) = e−
1−(1−s)1−θ

1−θ + C +
λ

λ1

e−
1−(1−s)1−θ

1−θ

|1− s|θ
> 0

Φ(1) = I + C − λ

λ1
(e−

1
1−θ + C) < 0

whenever C >
I − (λ/λ1)e

− 1
1−θ

(λ/λ1)− 1
. Hence, Φ(s) is negative if s < 1 and so the

integrand in (3.49) is a nonpositive function. Thus, f(x)Φ1(x) = 0 a.e. in Ω and,
by (2.13),

0 = λ1

∫
Ω

fϕ21 =

∫
Ω

|Dϕ1|2 .

This contradiction proves Proposition 2.5. �
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