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PARABOLIC EQUATIONS WITH NATURAL GROWTH APPROXIMATED BY

NONLOCAL EQUATIONS

T. LEONORI, A. MOLINO SALAS, S. SEGURA DE LEÓN

Abstract. In this paper we study several aspects related with solutions of nonlocal problems whose
prototype is







ut =

∫

RN
J(x− y)

(

u(y, t) − u(x, t)
)

G
(

u(y, t) − u(x, t)
)

dy in Ω× (0, T ) ,

u(x, 0) = u0(x) in Ω,

where we take, as the most important instance, G(s) ∼ 1 + µ

2

s

1+µ2s2
with µ ∈ R as well as u0 ∈ L1(Ω),

J is a smooth symmetric function with compact support and Ω is either a bounded smooth subset of
R
N , with nonlocal Dirichlet boundary condition, or R

N itself.

The results deal with existence, uniqueness, comparison principle and asymptotic behavior. Moreover
we prove that if the kernel rescales in a suitable way, the unique solution of the above problem converges
to a solution of the deterministic Kardar-Parisi-Zhang equation.

1. Introduction

This work is concerned with the study the existence, uniqueness, comparison principle and asymptotic
behavior for the following nonlinear parabolic equation with nonlocal diffusion,

(1.1)







ut(x, t) =

∫

RN

J(x− y)
(

u(y, t)− u(x, t)
)

G
(

u(y, t)− u(x, t)
)

dy in Ω× (0, T ) ,

u(x, 0) = u0(x) in Ω,

for an appropriate functions J and G (see below (J) and (G)), and its relationship with the local problem

(1.2)







ut −∆u = µ|∇u|2 in Ω× (0, T ) ,

u(x, 0) = u0(x) in Ω ,

where

(1) Ω is either RN itself (Cauchy problem) or a bounded smooth subset of RN adding the boundary
condition u(x, t) = h(x, t) on ∂Ω× (0, T ) for h sufficiently smooth (Dirichlet problem);

(2) T > 0 (possibly infinite) and µ ∈ R;
(3) u0 is a smooth enough datum.

1.1. Local problem. The equation ut −∆u = µ|∇u|2 , at least for µ > 0, is known in the literature as
the deterministic Kardar-Parisi-Zhang (KPZ) equation. It was proposed in [13] in the physical theory of
growth and roughening of surfaces. Further developments on physical applications of the KPZ equation
can be found in [3] (for a survey on more recent aspects we refer to [18]).

The Kardar–Parisi–Zhang equation has given rise to a rich mathematical theory which has had a
spectacular recent progress (see [10, 11]). From the point of view of Partial Differential Equations,
equations having a gradient term with the so-called natural growth have been largely studied in the
last decades by many mathematicians: in addition to the classical reference [14] let us just mention the
pioneer paper by Aronson and Serrin [2] and also the result due to Boccardo, Murat and Puel [5].
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1.2. Nonlocal problem. Nonlocal evolution equations have been extensively studied to model diffusion
processes. The prototype example in this framework is the following one

(1.3) ut(x, t) =

∫

RN

K(x, y)(u(y, t)− u(x, t))dy,

where the kernel K : R
N × R

N → R is a nonnegative smooth function (not necessarily symmetric)

satisfying

∫

RN

K(x, y)dx = 1 for any y ∈ R
N (or variations of it, see for instance [1]). If u(y, t) is thought

of as a density at location y at time t and K(x, y) as the probability distribution of jumping from place
y to place x, then the rate at which individuals from any other location go to the place x is given by
∫

RN

K(x, y)u(y, t)dy. On the other hand, the rate at which individuals leave the location x to travel to

all other places is −
∫

RN

K(y, x)u(x, t)dy = −u(x, t). In the absence of external sources this implies that

the density must satisfy equation (1.3).

We are especially interested in symmetric kernels (we denote them by J) that have compact support;
it means that the individuals can jump from a place to other, but they cannot go “too far away”. On
the contrary, for instance, nonlocal operators that allow “long jumps”correspond to a different choice of
kernels. It is the case of the fractional laplacian that involves a kernel that is singular and that does not
have compact support (see, for instance [17] for a survey on this latter class of processes).

In particular, we consider J : RN → R as a nonnegative radial symmetric function such that

J ∈ Cc(Rn),

∫

RN

J(z) dz = 1 and

∫

RN

J(z)z2Ndz <∞, z = (z1, . . . , zN ).

With this choice of the kernel, equation (1.3) changes into a diffusion equation of convolution type,
namely

(1.4) ut(x, t) = (J ∗ u− u)(x, t) =

∫

RN

J(x− y)u(y, t)dy − u(x, t), in Ω× (0, T )

(see for instance [4, 7, 9]).

1.3. Background. One of the most important features of nonlocal equations is that can be rescaled to
approximate local ones.

In [8] (see also [16] for the same type of result in a more general case) it has been proved that, under
an appropriate rescaling kernel, solutions of (1.4) converge uniformly to solutions of heat equation. To
be more specific, solutions of

(1.5) uεt (x, t) =
C

ε2

[
∫

RN

Jε(x − y)u(y, t)dy − u(x, t)

]

in Ω× (0, T )

converge uniformly to solutions of

vt = ∆v in Ω× (0, T ) ,

where C−1 =
1

2

∫

RN

J(z)z2N dz and Jε(s) =
1

εN
J(
s

ε
).

Let us mention that results in this direction, with the presence of a gradient term of convection type
can be found, for instance, in [12]: in such a case the equation is the sum of two terms, one corresponding
to the diffusion one, the other to the convection term.

In general, we consider nonlocal problems of the type

(1.6) ut(x, t) =

∫

RN

J(x− y)
(

u(y, t)− u(x, t)
)

G
(

u(y, t)− u(x, t)
)

dy,

where G : R → R is a suitable continuous function. For instance, if G ≡ 1, then we recover problem
(1.4). Let us mention the case G(s) = |s|p−2, with p ≥ 2 has been treated in [1] where it is proved
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that solutions to the rescaled nonlocal problem converge to solutions of the Dirichilet problem for the
p–Laplacian evolution equation.

On the contrary, the kind of kernels G we consider does not have the same structure of the previous
ones, since they are bounded and do not satisfy any symmetry assumptions (neither odd nor even).

With this background, it is not surprising that problem (1.2) can be approximated by nonlocal equa-
tions. The question is to identify what kind of nonlocal equation approximates, under rescaling, problem
(1.2). At first glance, one could think that a good approximation for (1.2) might be a nonlocal equation
such as

ut(x, t) =

∫

RN

J(x− y)
(

u(y, t)− u(x, t)
)

dy + µ

∫

RN

J(x− y)|u(y, t)− u(x, t)|2 dy,

that is, taking G(s) = 1 + µs in (1.6). We explicitly point out that this is an unbounded function that
satisfies G(0) = 1 and G′(0) = µ (compare with condition (G) below). Anyway, for our approach the
lack of boundedness of G leads to an obstacle for proving the existence of a solution to (1.6) via a fixed
point argument. By the other hand, we recall that one of the main tools to deal with problem (1.2) is
the so–called Hopf–Cole change of unknown which is defined by w(x, t) = eµu(x,t). This transforms every
classical solution to (1.2) into a classical solution to problem

{

wt(x, t) = ∆w(x, t) in Ω× (0, T ) ,

w(x, 0) = eµu0(x) in Ω ,

for a smooth enough datum u0. However, the same kind of difficulty are found if one try to reproduce
the Hopf–Cole transformation and try to approximate the solution of (1.2) by something of the form

ut(x, t) =

∫

RN

J(x− y)
(

eµu(y,t) − eµu(x,t)
)

dy .

1.4. Main results. To conclude this introduction we want to state the most relevant results of our work.
In order to not enter in technicalities, let us fix a family of kernels Gµ that are the easiest (not trivial)
example we can consider: for µ ∈ R let

Gµ(s) = 1 +
µs

2(1 + µ2s2)
, s ∈ R , µ ∈ R,

and the corresponding family of nonlocal Dirichlet problems

(1.7)



















ut(x, t) =

∫

RN

J(x− y)
(

u(y, t)− u(x, t)
)

Gµ

(

u(y, t)− u(x, t)
)

dy in Ω× (0, T ) ,

u(x, 0) = u0(x) in Ω ,

u(x, t) = h(x, t) in (RN \ Ω)× (0, T ) .

with Ω a bounded domain and u0 and h smooth enough.

After have proved the existence, uniqueness (see Theorem 2.3) and a Comparison Principle (see The-
orem 2.5) for solutions of (1.7), we face the problem of rescaled kernels.

The result we prove, in this model case, reads like this.

Let u be the unique smooth solution to (1.2), with suitable initial data u0 and boundary condition
u(x, t) = h(x, t) on ∂Ω× (0, T ). Then there exists a family of functions {uε}, ε > 0, such that uε solves
the approximating nonlocal problem






















uεt (x, t) =
C

ε2

∫

ΩJε

Jε(x− y)

[

(

uε(y, t)− uε(x, t)
)

+
µ

2

(

uε(y, t)− uε(x, t)
)2

1 + µ2
(

uε(y, t)− uε(x, t)
)2

]

dy in Ω× (0, T ),

uε(x, 0) = u0(x) in Ω,

uε(x, t) = h(x, t) in (ΩJε\Ω)× (0, T ),
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with C a suitable constant, ΩJε = Ω + supp Jε and the family {uε} satisfies

lim
ε→0

sup
t∈[0,T ]

∥

∥

∥
uε(x, t)− u(x, t)

∥

∥

∥

L∞(Ω)
= 0 .

The same kind of results (i.e. existence, uniqueness and convergence for a suitable rescaled kernel
to a solution of a local problem) are also proved for the corresponding Cauchy problem associated (i.e.,
Ω = R

N ).

In addition, we deal with the asymptotic behavior of the solutions of problem (1.1). Concretely, we
have two kind of results: if Ω is a bounded domain of RN , we prove that the solutions of (1.7) converge
uniformly to the stationary one. On the other hand, if Ω = R

N , we prove that the L2-norm of the
solution has a suitable decay in time, depending on the nature (absorption or reaction) of the kernel (see
for more details Theorems 2.16 and 2.17, respectively).

Plan of the paper. Section 2 is devoted to show the precise statements of the main results. Preliminaries
are contained in Section 3. Section 4 deals with the Dirichlet problem in a bounded domain, while the
results concerning the Cauchy problem can be found in Section 5.

2. Statement of the results

This section is devoted to the statement of the main results we prove in the present paper.
Let us consider the following equation:

(2.1) ut(x, t) =

∫

RN

J(x − y)u(y;x, t)G(x, u(y;x, t)) dy,

where J : RN → R is a nonnegative radial symmetric function such that

(J) J ∈ Cc(Rn),

∫

RN

J(z) dz = 1 and C(J) :=

∫

RN

J(z)z2Ndz <∞, z = (z1, z2, . . . , zN )

and where, here and throughout the paper, we denote u(y;x, t) := u(y, t)− u(x, t).
As far as the function G is concerned, we assume that G : RN ×R → R is a nonnegative Carathéodory

function (namely, G(·, s) is measurable for every s ∈ R and G(x, ·) is continuous for almost every x ∈ R
N )

satisfying

(G) ∃ α2 ≥ α1 > 0 : α1 ≤ G(x, s)s − G(x, σ)σ
s− σ

≤ α2, ∀s, σ ∈ R s 6= σ , and for a.e. x ∈ R
N .

Let us first point out that the above condition implies that G is a positive bounded function, since
taking σ = 0 in (G), we get

0 < α1 ≤ G(x, s) ≤ α2, for any s ∈ R and for a.e. x ∈ R
N .

Moreove observe that the above condition relies to be a sort of uniform ellipticity for the operator, while
(G) corresponds to a strong monotonicity.

Further remarks about the condition on G are addressed to Section 3.

Anyway, let us stress again that, in contrast with all the known results about nonlocal equation of the
above type, in our case we do not require any symmetry (neither odd nor even) assumption to G.

The prototype of G we have in mind (we will come back on this example later) is the following one:

Gµ(x, s) = 1 +
µ(x) s

2(1 + µ(x)2s2)
, x ∈ Ω, s ∈ R ,

where µ : Ω → R stands for a measurable function.
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2.1. Dirichlet problem. The first kind of results we want to prove deals with the existence and unique-
ness of solutions of a nonlocal Dirichlet boundary value problem. More precisely, consider the following
problem in a bounded domain Ω ⊂ R

N , N ≥ 1.


















ut(x, t) =

∫

RN

J(x− y)u(y;x, t)G(x, u(y;x, t)) dy, in Ω× (0, T )

u(x, t) = h(x, t), in (RN \ Ω)× (0, T ),

u(x, 0) = u0(x), in Ω,

with h ∈ L1
(

(RN \ Ω)× (0,∞)
)

and u0 ∈ L1(Ω).

Let us first observe that the integral expression vanishes outside of ΩJ = Ω + supp(J). In this way, h
is only needed to be fixed, in fact, in ΩJ \ Ω and we can rewrite the above problem as

(P )



















ut(x, t) =

∫

ΩJ

J(x− y)u(y;x, t)G(x, u(y;x, t)) dy, in Ω× (0, T ),

u(x, t) = h(x, t), in (ΩJ \ Ω)× (0, T ),

u(x, 0) = u0(x), in Ω,

where T > 0 may be finite or +∞.

Due to the aim of the paper, we give now two definitions of solution.

Definition 2.1. Assume that J and G satisfy (J) and (G), respectively.
For h(x, t) ∈ L1((ΩJ \ Ω) × (0, T )) and u0(x) ∈ L1(Ω), we define a weak solution of problem (P ) a
function u ∈ C([0, T );L1(Ω)) such that:

u(x, t) =

∫ t

0

∫

ΩJ

J(x− y)u(y;x, τ)G(x, u(y;x, τ)) dy dτ + u0(x), for a.e. x ∈ Ω, t ∈ (0, T ),(2.2)

u(y, t) = h(y, t) for a.e. y ∈ ΩJ \ Ω and t ∈ (0, T )

lim
t→0+

‖u(x, t)− u0(x)‖L1(Ω) = 0 .

Moreover, if h(x, t) ∈ C((ΩJ \ Ω)× (0, T )) and u0(x) ∈ C(Ω), we define a regular solution of problem
(P ) as a function u ∈ C([0,∞); C(Ω)) such that:

u(x, t) =

∫ t

0

∫

ΩJ

J(x− y)u(y;x, τ)G(x, u(y;x, τ)) dy dτ + u0(x), for any x ∈ Ω, t ∈ (0, T ),

u(y, t) = h(y, t) for any y ∈ ΩJ \ Ω and t ∈ (0, T )

lim
t→0+

‖u(x, t)− u0(x)‖C(Ω) = 0 .

Some more remarks about the meaning of weak and regular solutions are in order to be given.

Remark 2.2.

i) Observe that, in addition to the different smoothness of the boundary condition and/or the initial
datum, the main difference lies on the prescription of data on ∂Ω. Indeed, for weak solutions,
h is prescribed in (ΩJ \ Ω) × (0, T ) and u0 in Ω, while for regular solutions, h is prescribed in
(ΩJ \ Ω)× (0, T ) and u0 in Ω.

ii) As already noticed in [7] (in a different context) the boundary conditions cannot be meant in a
classical way, i.e. it is not true that the solutions of problem (P ) pointwise coincide with the
prescribed boundary data h(x, t). This is due to the fact that the value at any point (x, t) ∈
∂Ω× (0, T ) depends both on the values of u inside Ω× [0, T ] and on the boundary datum h(x, t),
since

u(x, t) =

∫ t

0

∫

Ω∩suppJ

J(x− y)u(y;x, τ) G
(

x, u(y, τ)− u(x, τ)
)

dy dτ

+

∫ t

0

∫

Ωc∩suppJ

J(x − y)
(

h(y, τ)− u(x, τ)
)

G
(

x, h(y, τ) − u(x, τ)
)

dy dτ + u0(x) .
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Consequently, in contrast with the local case, the equation is solved up to the boundary, depending,
near ∂Ω, also of the prescribed boundary condition.

iii) Let us stress that the regularity required in the definition of weak solutions is the less restrictive
in order to give sense to the formulation and to the boundary and initial conditions. Anyway
from (2.2) we deduce that the time derivative ut(x, t) of u also belongs to C((0,∞);L1(Ω)).

Let us also point out that the weak solutions framework is the more natural one in order to
prove the existence of a solution. Indeed we only require an L1 regularity to prove the existence
of a solution.

Finally we want to underline that the nonlocal operator involved in such equation does not have
the regularizing effect that is typical of the Laplacian, but leave unchanged the regularity of the
initial and boundary data.

Our existence result is the following.

Theorem 2.3. [Existence] Consider problem (P ) and suppose that (J) and (G) are in force. Then:

i) For any u0 ∈ L1(Ω) and h ∈ L1((ΩJ \ Ω)× (0, T )) there exists a unique weak solution;
ii) For any u0 ∈ C(Ω) and h ∈ C((ΩJ \Ω)×[0, T )) there exists a unique regular solution and moreover

its time derivative belongs to C(Ω× (0, T )).

Once we have deduced the existence of a solution, one important tool is to compare two solutions, or,
more generally a sub and a supersolution. Here we recall what we mean by those concepts in our setting.

Definition 2.4. A function u ∈ C(Ω × [0, T ]) is a regular subsolution to problem (P ) if it satisfies
ut ∈ C(Ω× (0, T )) and

(2.3)



















ut(x, t) ≤
∫

ΩJ

J(x − y)u(y;x, t)G(x, u(y;x, t)) dy, in Ω× (0, T ),

u(x, t) ≤ h(x, t), in (ΩJ \ Ω)× (0, T ),

u(x, 0) ≤ u0(x), in Ω,

with u0(x) ∈ C(Ω) and h(x, t) ∈ C((ΩJ \ Ω)× (0, T )).
As usual, a regular supersolution is defined analogously by replacing “≤” with “≥”. Clearly, a regular
solution is both a regular subsolution and a regular supersolution.

Next, we state our comparison principle.

Theorem 2.5. [Comparison Principle] Let u an v be a regular subsolution and a regular supersolution
of problem (P ), respectively, with boundary data h1(x, t) and h2(x, t) and initial data u0(x) and v0(x),
respectively. If h1(x, t) ≤ h2(x, t) in ΩJ \ Ω and u0(x) ≤ v0(x) in Ω, then u ≤ v in Ω× [0, T ].

Remark 2.6. The existence, uniqueness and comparison principle are also true relaxing the hypotheses
on the kernel J(x− y) by considering a more general one of the form K : RN ×R

N → R
+ with compact

support in Ω×B(0, ρ), with ρ > 0 such that

0 < sup
y∈B(0,ρ)

K(x, y) = R(x) ∈ L∞(Ω).

The next result we want to prove relates solutions of local and nonlocal equations. In order to do it,
let us fix a Hölder continuous function µ : Ω → R with exponent α ∈ (0, 1), and consider

(2.4) Gµ(x, s) = 1 +
µ(x) s

2(1 + µ(x)2s2)
, (x, s) ∈ Ω× R.

The local problem we are interested in is the following

(2.5)















vt(x, t) = ∆v(x, t) + µ(x)|∇v(x, t)|2 in Ω× (0, T ),

v(x, t) = h0(x, t) on ∂Ω× (0, T ),

v(x, 0) = v0(x) in Ω .
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Observe that if, for the same 0 < α < 1, we have ∂Ω ∈ C2+α, v0 ∈ C1+α(Ω), h ∈ C1+α,1+α/2(∂Ω× [0, T ])
with v0 and h compatible (namely, they are globally a C1+α,1+α/2 function of the parabolic boundary of
the cylinder) and the equation holds up to the boundary, then Theorem 6.1 of Chapter V in [14] provides
a solution v ∈ C2+α,1+α/2(Ω× (0, T ]).

Such a result becomes trivial if we assume µ(x) = µ ∈ R, after the Hopf–Cole transformation, since
solutions of the heat equation satisfy the required regularity.

We set here the definition of classical solution.

Definition 2.7. We say that v ∈ C(Ω × [0, T ]) ∩ C2+α,1+α/2(Ω × (0, T )) is a classical solution for the
Dirichlet problem (2.5) if it satisfies both the equations and the boundary and initial conditions in a
pointwise sense.

Consider now, for any ε > 0 the rescaling nonlocal problem

(2.6)



















uεt (x, t) =
C(x)

ε2

∫

ΩJε

Jε(x− y)uε(y;x, t)Gµ(x, u
ε(y;x, t))dy in Ω× (0, T ),

uε(x, t) = h(x, t) in (ΩJε \ Ω)× (0, T ),

uε(x, 0) = u0(x) in Ω,

where Gµ defined in (2.4) and C(x), u0 and h are suitable measurable functions.

Here we state our converging result.

Theorem 2.8. Let Ω be a C2+α, with α ∈ (0, 1), bounded domain of RN , N ≥ 1, and let v be a classical
solution of the quasilinear problem (2.5) with h ∈ C1+α (ΩJε\Ω× (0, T ]) such that h

∣

∣

∂Ω×(0,T )
= h0(x, t)

and v0 ∈ C1+α(Ω). Assume that J satisfies (J) and that for a.e. x in Ω, G(x, s) is a C1+α function with
respect to the s variable such that that (G) holds true. For any ε > 0, let uε denote the solution to

(2.7)



















uεt (x, t) =
C(x)

ε2

∫

ΩJε

Jε(x− y)uε(y;x, t)G(x, uε(y;x, t))dy in Ω× (0, T ),

uε(x, t) = h(x, t) in (ΩJε \ Ω)× (0, T ),

uε(x, 0) = v0(x) in Ω,

with C(x)−1 = 1
2C(J)G(x, 0) and µ(x) =

2G′
s(x, 0)

G(x, 0) for any a.e. x ∈ Ω. Then we have

lim
ε→0

sup
t∈[0,T ]

∥

∥

∥
uε(x, t)− v(x, t)

∥

∥

∥

L∞(Ω)
= 0 .

Let us stress that the same kind of result (as well as the existence, uniqueness and Comparison
Principle one) can be proved in a more general framework. First of all, we might consider the same
equation adding on the right hand side a (smooth enough) function. On the other hand, a more general
kernel, that depends also on y could be considered (see Remark 4.3 for some more details). We decided
to skip these generalizations in order to keep the paper more readable.

The last type of results of this section deals with the asymptotic behavior of the solutions to (P ).
More precisely we prove, as it is usual for parabolic equations, that a solution of problem (P ) converges,
for large times, to a stationary solution of the same problem.

In order to avoid technicalities, we assume that the lateral condition is homogeneous, i.e. h(x, t) ≡ 0.

Here we state our result that asserts such a convergence, even if, under some additional hypotheses,
we provide results on the rate of convergence (see Remark 4.6 for more details).
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Theorem 2.9. For every 0 ≤ u0 ∈ C0(Ω), the regular solution to problem

(2.8)



















ut(x, t) =

∫

ΩJ

J(x− y)u(y;x, t) G(x, u(y;x, t)) dy in Ω× (0,+∞),

u(x, t) = 0, in ΩJ \ Ω× (0,+∞), t > 0,

u(x, 0) = u0(x) in Ω,

satisfies

lim
t→∞

u(x, t) = 0 uniformly in Ω .

Remark 2.10. We want to stress that the hypothesis u0 ≥ 0 is not, in fact, necessary, but we assume it
just to let the proof easier.

Let us just point out that we have two special cases whose asymptotic behavior is well known in the
local setting. If we assume that

∃β > 0 : G(x, s)s ≤ βs, ∀s ∈ R, for a.e. x ∈ R
N ,(2.9)

it corresponds to the absorption case, i.e. the case in which we have (at least) the same decay estimates
as if G ≡ 1. In fact we can deduce (see Remark 4.6) that in the absorption case the rate of convergence
at 0 is of exponential type. On the other hand, if

∃β > 0 : G(x, s)s ≥ βs, ∀s ∈ R, for a.e. x ∈ R
N .(2.10)

the result is more surprising since it correspond to the reaction case. In this framework it is crucial to
deal with smooth solutions, since we exploit, in the proof, the comparison principle.

2.2. Cauchy problem. This section deals with the Cauchy Problem related to (2.1), that is

(C)







ut(x, t)=

∫

RN

J(x− y)u(y;x, t) G(x, u(y;x, t)) dy in R
N × (0, T ),

u(x, 0) = u0(x) in R
N ,

with G as in (G), J as in (J) and u0 ∈ C(RN). First let us give the notion of solution.

Definition 2.11. Given u0 ∈ C(RN ) we define a solution of problem (C) as a function u ∈ C
(

[0, T ); C(RN)
)

such that it satisfies

u(x, t) =

∫ t

0

∫

RN

J(x − y)u(y;x, τ)G(x, u(y;x, τ))dydτ + u0(x) in R
N × (0, T ).

Consequently, due to the integral expression above, u ∈ C1
(

(0, T ); C(RN)
)

.

The first result we want to present in this framework deals with the existence of a bounded solution.

Theorem 2.12. [Existence] For every continuous and bounded initial data u0 there exists a unique
solution u ∈ C

(

[0, T ); C(RN) ∩ L∞(RN )
)

of problem (C).

We continue this section proving the comparison principle for our problem. For this purpose, we first
set the notion of sub and supersolution.

Definition 2.13. A function u ∈ C0
(

[0, T ), C(RN)
)

∩C1
(

(0, T ), C(RN)
)

is a subsolution of problem (C)
if it satisfies







ut(x, t)≤
∫

RN

J(x− y)u(y;x, t)G(x, u(y;x, t))dy, in R
N × (0, T ),

u(x, 0) ≤ u0(x), in R
N .

As usual, a supersolution is defined analogously by replacing “ ≤ ” by “ ≥ ”.

Next we state the comparison principle in this framework.
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Theorem 2.14. [Comparison Principle] Let u, v be a subsolution and supersolution respectively of prob-
lem (C) with initial data u0 ∈ C(RN) ∩ L∞(RN ) and v0 ∈ C(RN ) ∩ L∞(RN ), respectively, such that
u0 ≤ v0 in R

N . Then u ≤ v in R
N × (0, T ).

Now, we prove that given a classical solution (i.e., v ∈ C2+α,1+α/2
(

R
N × [0, T ]

)

) of the parabolic
problem with a quadratic gradient term of the form

(2.11)

{

vt(x, t) = ∆v(x, t) + µ(x)|∇v(x, t)|2 in R
N × (0, T )

v(x, 0) = v0(x) in R
N ,

with v0 ∈ C(RN )∩L∞(RN ) and µ(x) ∈ Cα
(

R
N
)

∩L∞(RN ), it can be approximated by a solution of the
nonlocal problem

(2.12)







uεt =
C(x)

ε2

∫

RN

Jε(x− y)uε(y;x, t)G(x, uε(y;x, t))dy in R
N × (0, T ),

uε(x, 0) = v0(x), in R
N ,

such that
2G′

s(x, 0)

G(x, 0) = µ(x). As usual C(x)−1 = 1
2C(J)G(x, 0) 6= 0 and Jε(s) =

1
εN J(

s
ε ).

Theorem 2.15. Let v be a classical solution of quasilinear differential equation (2.11). Let, for a given
ε > 0, uε be the solution to (2.12), with the same initial datum v0 ∈ C(RN ) ∩ L∞(RN ). Then, we have

lim
ε→0

sup
t∈[0,T ]

∥

∥uε(·, t)− v(·, t)
∥

∥

L∞(RN )
= 0 .

Finally, we study the asymptotic behavior of the solutions associated to the Cauchy problem.
Our result depends on the nature of G, i.e. if it is of absorption or reaction type.

Summarizing, we obtain the following results:

Theorem 2.16. For N ≥ 1, Llet u be a solution of Cauchy problem (C) satisfying (2.9) and positive
initial datum u0 ∈ L1(RN ) ∩ L∞(RN ) ∩ C(RN). Then there exists C = C(J,N, β, q) > 0 such that

‖u(·, t)‖Lq(RN ) ≤ C‖u0‖L1(RN ) t
−N

2 (1− 1
q ), for any q ∈ [1,∞),

for t sufficiently large.

Theorem 2.17. For N ≥ 1, let u be a solution of of Cauchy problem (C) with G ≡ Gµ, 0 ≤ µ ∈ L∞(RN )
and positive initial datum u0 ∈ L1(RN ) ∩ L∞(RN ) ∩ C(RN ) satisfying

(2.13) ‖u0‖L∞(RN )‖µ‖L∞(RN ) < 1 .

Then,

‖u(·, t)‖2L2(RN ) ≤ C̃‖u0‖L1(RN ) t
−N

2 ,

for some C̃ = C̃(‖µ‖L∞(RN ), ‖u0‖L∞(RN ), N, J) > 0 and for t sufficiently large.

3. Preliminaries

Notation. Throughout this paper, we always use the following notation:
we denote in a short way u(y;x, t) = u(y, t)− u(x, t). Moreover the time variable will always get values
between 0 and T , with T > 0. As far as the kernel J is concerned, we assume that it is defined as in (J)
and such that G satisfies (G) and C = 2C(J)−1, Jε(s) =

1
εN
J( sε ).

As far as the the function G(x, s) is concerned, we observe that, for a function G differentiable with
respect to s we have, thanks to the Mean Value Theorem, that

(3.1) α1 ≤ G′
s(x, s)s+ G(x, s) ≤ α2, for any s ∈ R a.e. in x ∈ R

N .
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Moreover, if G is differentiable with respect to s, condition (G) is equivalent to define ψ : RN×R×R → R

with

0 < α1 ≤ ψ(x, s, σ) ≤ α2 for a.e. x ∈ Ω, ∀s, σ ∈ R,

such that

(3.2) ψ(x, s, σ) =







G(x, s)s − G(x, σ)σ
s− σ

if s 6= σ ,

G′
s(x, s)s+ G(x, s) if s = σ.

We also remark that, in particular, condition (G) implies G(x, 0) 6= 0 for any x ∈ R
N .

Here, we state the following technical result which allow us to see that the function defined in (2.4)
satisfies the basic condition (G).

Proposition 3.1. Let p, q and k be real numbers, then the following properties hold true

3

4
≤ 1 +

kp

2(1 + k2p2)
≤ 5

4
,

p

[

1 +
kp

2(1 + k2p2)

]

− q

[

1 +
kq

2(1 + k2q2)

]

= (p− q)

[

1 +
k(p+ q)

2(1 + k2p2)(1 + k2q2)

]

,

1− 3
√
3

16
≤ 1 +

k(p+ q)

2(1 + k2p2)(1 + k2q2)
≤ 1 +

3
√
3

16
.

Moreover, for any measurable function µ : RN → R, the function defined by Gµ(x, s) = 1+
µ(x)s

2(1 + µ(x)2s2)
satisfies the following conditions

(i)
(

1− 3
√
3

16

)

(s− σ) ≤ Gµ(x, s)s− Gµ(x, σ)σ ≤
(

1 + 3
√
3

16

)

(s− σ), for s > σ, x ∈ R
N ;

(ii) if µ ≥ 0, then Gµ(x, s)s ≤ s, for any (x, s) ∈ R
N × R;

(iii) if µ ≤ 0 then Gµ(x, s)s ≥ s, for any (x, s) ∈ R
N × R.

Proof. The first two inequalities are straightforward while for the third one we just remark that the
function given by

f(x, y) =
|x|+ |y|

(1 + x2)(1 + y2)

attains its maximum 3
√
3

8 at the point (13 ,
1
3 ).

Now, (i) is a consequence of the previous inequalities. Conditions (ii) and (iii) follow by the fact that
{

3
4 ≤ Gµ(x, s) ≤ 1, if (x, s) ∈ R

N × [0,∞),

1 ≤ Gµ(x, s) ≤ 5
4 , if (x, s) ∈ R

N × (−∞, 0],

for µ(x) ≤ 0, and
{

1 ≤ Gµ(x, s) ≤ 5
4 , if (x, s) ∈ R

N × [0,∞),

3
4 ≤ Gµ(x, s) ≤ 1, if (x, s) ∈ R

N × (−∞, 0],

for µ(x) ≥ 0. �

Remark 3.2. Let us stress that in the above result we only assume that µ(x) is measurable, without any
hypotheses on its regularity.

Lemma 3.3. Let q ≥ 1, there exists c(q) > 0 such that

(3.3) (a− b)(aq−1 − bq−1) ≥ c(q) (a
q
2 − b

q
2 )2, for any a, b ≥ 0.
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Proof. Without loss of generality we assume a > b. Therefore, (3.3) is equivalent to prove that the
function

F (θ) =
(1− θ)(1 − θq−1)

(1− θ
q
2 )2

θ ∈ [0, 1),

is bounded below by a 0 < c(q), being θ = b/a.
The result just follows by computing the derivative of F and noticing that it is decreasing. Hence the

minimum of F is achieved at θ = 1, and lim
θ→1−

F (θ) = 4
q − 1

q2
. �

4. Proofs of results about Dirichlet Problem

We start by proving the existence result.

Proof of Theorem 2.3. i) Fixed an arbitrary T > 0, we set the Banach space XT = C([0, T ];L1(Ω))
endowed with norm

(4.1) |||v||| = max
0≤t≤T

e−Mt‖v(·, t)‖L1(Ω) ,

for some M ≥ C̃ = α2 ‖J‖L∞(Ω) (|Ω|+ |supp(J)|).
Let T : XT → XT be the operator defined by

T (v)(x, t) =

∫ t

0

∫

ΩJ

J(x− y)v(y;x, τ)G(x, v(y;x, τ)) dy dτ + u0(x),

with v(y, t) = h(y, t) for y ∈ ΩJ \ Ω. Then, we prove the existence and uniqueness of solutions of (P )
via the standard Banach contraction principle applied to the operator T . In this way, using Fubini’s
Theorem and since G is bounded, we obtain

(4.2)

‖T (v(·, t))‖L1(Ω) ≤ ‖u0‖L1(Ω) + α2

∫ t

0

∫

Ω

∫

ΩJ

J(x− y)|v(y;x, τ)| dy dx dτ

≤ ‖u0‖L1(Ω) + α2

∫ t

0

(
∫

Ω

∫

ΩJ

J(x − y)|v(y, τ)| dy dx +

∫

Ω

∫

ΩJ

J(x− y)|v(x, τ)| dy dx
)

dτ

≤ ‖u0‖L1(Ω) +
C̃1

M

(

eMt − 1
)

|||v|||+ C̃2 ,

where C̃1 = α2‖J‖L∞(RN ) (|Ω|+ |supp(J)|) and C̃2 = α2‖J‖L∞(RN )|Ω| ‖h‖L1((ΩJ\Ω)×(0,∞)) . Therefore

|||T (v)||| ≤ max
0≤t≤T

(

e−Mt(‖u0‖L1(Ω) + C̃2) +
C̃1

M

(

1− e−Mt
)

|||v|||
)

≤ ‖u0‖L1(Ω) + C̃2 +
C̃1

M
|||v||| .

Hence, T maps XT into itself. Note that all the involved constants do not depend on the value T .
Now, by virtue of (G), we can assert that for every w, z ∈ XT

∣

∣(T (w) − T (z))(x, t)
∣

∣ ≤
∫ t

0

∫

ΩJ

J(x − y)
∣

∣w(y;x, τ)G(x,w(y;x, τ)) − z(y;x, τ)G(x, z(y;x, τ))
∣

∣ dy dτ

≤ α2

∫ t

0

∫

ΩJ

J(x− y) |w(y;x, τ) − z(y;x, τ)| dy dτ.

Therefore, arguing as in (4.2), we get

‖T (w) − T (z)‖L1(Ω) ≤
C̃1

M

(

eMt − 1
)

|||w − z||| .

Thus, since M > C̃, we get

|||T (w) − T (z)||| ≤ ϑ|||w − z||| ,
with 0 < ϑ < 1. Hence T is a contraction and by the Banach’s Fixed Point Theorem there exists a unique
u ∈ XT such that T (u) = u, i.e., consequently we get local existence and uniqueness of problem (P ) for
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0 ≤ t ≤ T . Moreover, since this argument is independent of the value T , we obtain a unique solution
u ∈ C([0,∞);L1(Ω)) of problem (P ).

ii) For the second part it is sufficient to change the definition of ||| · ||| in (4.1), replacing L1(Ω) with
C(Ω). The regularity of ut easily follows by using the equation solved by u. �

Next we deal with the proof of the comparison principle.

Proof of Theorem 2.5. We denote by w = u − v. Obviously w ∈ C(Ω× [0, T ]), wt ∈ C(Ω× (0, T )) and it
satisfies



















wt(x, t) ≤
∫

ΩJ

J(x− y)(w(y, t)− w(x, t))ψ(w(y;x, t)) dy, in Ω× (0, T ),

w(x, t) ≤ 0, in ΩJ \ Ω× (0, T ),

w(x, 0) ≤ 0, in Ω,

where ψ is the function defined in (3.2).
Assume by contradiction that w(x, t) is positive at some point (x̃, t̃) that, without loss of generality, we

can assume that belongs to Ω× (0, T ]. Thus, by the continuity of u and v, there exists a δ > 0 such that
w(x̃, t̃)− δt̃ > 0. Let us denote by (x0, t0) the maximum point of w(x, t) − δt which is, by construction,
positive. Consequently being ut continuous in Ω× (0, T ), we have that

wt(x0, t0)− δ ≥ 0 .

On the other hand, plugging it into the equation in (2.3), we get

wt(x0, t0) ≤
∫

ΩJ

J(x0 − y)
(

w(y, t0)− w(x0, t0)
)

ψ
(

w(y, t0)− w(x0, t0)
)

dy

=

∫

Ω

J(x0 − y)
(

(w(y, t0)− δt0)− (w(x0, t0)− δt0)
)

ψ
(

(w(y, t0)− δt0)− (w(x0, t0)− δt0)
)

dy

+

∫

ΩJ\Ω
J(x0 − y)

(

(w(y, t0)− δt0)− (w(x0, t0)− δt0)
)

ψ
(

(w(y, t0)− δt0)− (w(x0, t0)− δt0)
)

dy ,

and the last two integrals are nonpositive. Indeed as far as the first one is concerned, we observe that
(x0, t0) is a maximum point, while ψ is positive; moreover outside Ω we use that the boundary condition
is negative and that w(x0, t0)− δt0 > 0, as well as the positivity of ψ. Hence we get a contradiction. �

Our goal is now to get a proof of Theorem 2.8. Here, we start with a preliminary Lemma.

Lemma 4.1. Let u ∈ C2+α,1+α/2
(

R
N × [0, T ]

)

, G(x, s) a C1+α function with respect to variable s such
that G(x, 0) 6= 0 for a.e. x ∈ Ω, and let Lε be the following operator

(4.3) Lε(u(x, t)) =
C(x)

ε2

∫

RN

Jε(x− y)u(y;x, t)G(x, u(y;x, t)) dy,

where 1
C(x) =

1
2C(J) G(x, 0). Then, ∃ c = c(T ) > 0 such that, ∀ε > 0

sup
t∈[0,T ]

∥

∥

∥
Lε(u(x, t))−∆u(x, t)− µ(x)|∇u(x, t)|2

∥

∥

∥

L∞(Ω)
≤ c εα

where µ(x) =
2G′

s(x, 0)

G(x, 0) .

Remark 4.2. Observe that the integral expression above vanishes outside of ΩJε = Ω+ε supp(J). In this
way, h is only needed to be prescribed in ΩJε \Ω. Observe also that, thanks to the hypothesis of Theorem
2.8 we use, in the following, that

h(x, t) = h0(x, t) +O(ε) in Ω \ ΩJε .
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Proof. In order to compute Lε(u(x, t)) we make the change of variables y = x− εz, and we get

(4.4) Lε(u(x, t)) =
C(x)

ε2

∫

RN

J(z)u(x− εz;x, t)G(x, u(x− εz;x, t))dz.

Moreover by Taylor formula we have that G(x, δ) = G(x, 0) + G′
s(x, 0)δ +O(δ1+α), and

u(x− εz;x, t) = −ε
∑

i

∂u(x, t)

∂xi
zi +

ε2

2

∑

i,j

∂2u(x, t)

∂xi∂xj
zizj +O

(

ε2+α
)

,

Consequently

(4.5) Lε(u(x, t)) = S1(x, t) + S2(x, t) + S3(x, t)

being

S1(x, t) =
C(x)G(x, 0)

ε2

∫

RN

J(z)u(x− εz;x, t) dz,

S2(x, t) =
C(x)G′

s(x, 0)

ε2

∫

RN

J(z)u(x− εz;x, t)2 dz,

S3(x, t) =
C(x)

ε2

∫

RN

J(z)u(x− εz;x, t)2+α dz = O(εα).

First, we deal with S1(x, t) and we obtain

S1(x, t) = −C
ε

∑

i

∂u(x, t)

∂xi

∫

RN

J(z)zidz + C(J)−1
∑

i,j

∂2u(x, t)

∂xi∂xj

∫

RN

J(z)zizj +O (εα)

=
∑

i,j

∂2u(x, t)

∂xi∂xj
+O (εα) ,(4.6)

using in the last equality that J is radially symmetric, that is,

∫

RN

J(z)zidz = 0 and

∫

RN

J(z)zizj dz = 0 if i 6= j .

In order to compute S2(x, t), using the expansion of u(x− εz;x, t) up to the first order, we get
(4.7)

S2(x, t) =
C(x)G′

s(x, 0)

ε2

∫

RN

J(z)

(

−ε
∑

i

∂u(x, t)

∂xi
zi +O

(

ε1+α
)

)2

dz

= C(x)G′
s(x, 0)

∑

i,j

∂u(x, t)

∂xi

∂u(x, t)

∂xj

∫

RN

J(z)zizjdz +O (εα) =
2G′

s(x, 0)

G(x, 0)
∑

i

(

∂u(x, t)

∂xi

)2

+O (εα) ,

using again, in the last equality, that J is radially symmetric. Finally, setting u(x − εz;x, t) = O(ε),
we obtain that S3(x, t) = O (εα) and gathering together (4.5) with (4.6) and (4.7), we deduce that (4.4)
becomes

Lε(u(x, t)) = ∆u(x, t) + µ(x)|∇u(x, t)|2 +O (εα)

concluding the proof. �

Remark 4.3. Arguing as the in the proof of the above Lemma, we can state the following assertion: the
operator defined as

L̃ε(u(x, t)) =
C(x)

ε2

∫

RN

Jε(x− y)u(y;x, t)G(y, u(y;x, t)) dy,
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converges uniformly in [0, T ]× Ω, as ε→ 0, to the operator

∆u(x, t) +∇yη(x, 0)∇u(x, t) + η′s(x, 0)|∇u(x, t)|2,
being η(x, s) = logG(x, s)2. Therefore, the role of the variables is not symmetric.

Remark 4.4. Let us recall that given µ : RN → R, then Gµ(x, s) defined in (2.4) satisfies
2G′

s(x,0)
G(x,0) = µ(x),

for any x ∈ R
N .

Now, we prove the main result of this section. That is, classical solutions of (2.5) can be approximated
by solutions of problem (2.6) which in a general setting reads as follows,

Proof of Theorem 2.8. Let ṽ be a C2+α,1+α/2
(

R
N × [0, T ]

)

extension of v, the solution to (2.5). Denote

by h(x, t) = ṽ(x, t) for any (x, t) ∈ (RN\Ω) × (0, T ]. Then h is smooth and h(x, t) = h0(x, t) if x ∈ ∂Ω
and we get

(4.8) h(x, t) = h0(x, t) +O(ε), for x ∈ ΩJε \ Ω.
Observe that ṽ verifies















ṽt(x, t) = ∆ṽ(x, t) + µ(x)|∇ṽ(x, t)|2 in Ω,

ṽ(x, t) = h(x, t) in (ΩJε \ Ω)× (0, T ),

ṽ(x, 0) = v0(x) in Ω.

Theorem 2.3 asserts that, for any given ε > 0, there exists a unique uε which is solution to (2.7).
Set wε := ṽ − uε, which satisfies

(4.9)















wε
t (x, t) = ∆ṽ(x, t) + µ(x)|∇ṽ(x, t)|2 − Lε(u

ε(x, t)) in Ω× (0, T ),

wε(x, t) = 0 in (ΩJε \ Ω)× (0, T ),

wε(x, 0) = 0 in Ω.

By using condition (3.2), we set

Mε(w
ε(x, t)) := Lε(ṽ(x, t)) − Lε(u

ε(x, t))

=
C(x)

ε2

∫

ΩJε

Jε(x− y)ψ (x, ṽ(y;x, t), uε(y;x, t)) wε(y;x, t)dy.

Λε(ṽ(x, t)) := ∆ṽ(x, t) + µ(x)|∇ṽ(x, t)|2 − Lε(ṽ(x, t)).

In this way, we replace equation (4.9) by the following

(4.10)















wε
t (x, t) = Λε(ṽ(x, t)) +Mε(w

ε(x, t)), in Ω× (0, T ),

wε(x, t) = 0 , in (ΩJε \ Ω)× (0, T ),

wε(x, 0) = 0, in Ω.

We begin by proving that for K1,K2 > 0 sufficiently large, w(x, t) = K1ε
αt +K2ε is a supersolution of

(4.10). Indeed, taking into account Lemma 4.1 and that Mε(w(x, t)) = 0, we obtain

wt(x, t) = K1ε
α ≥ Λε(ṽ(x, t)) = Λε(ṽ(x, t)) +Mε(w(x, t)),

for x ∈ Ω, t ∈ (0, T ]. Moreover, w(x, 0) > 0 and by (4.8), we have that w(x, t) ≥ K2ε ≥ O(ε), for
x ∈ ΩJε \ Ω and t ∈ (0, T ]. Consequently, w is a supersolution of (4.10).
Now, by the comparison principle stated in Theorem 2.5, we get

(4.11) ṽ − uε ≤ K1ε
αt+K2ε.

By the other hand, similar arguments applied to the case w = −w leads us to assert that w is a subsolution
of (4.10) and using again the comparison principle we obtain

(4.12) ṽ − uε ≥ −K1ε
αt−K2ε.
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Hence, by virtue of (4.11) and (4.12)

sup
t∈[0,T ]

‖uε(·, t)− v(·, t)‖L∞(Ω) ≤ K1ε
αT +K2ε,

that vanishes as ε goes to 0. �

Here, we deal with the asymptotic behavior of the solution. In order to prove the main result (i.e.
Theorem 2.9), we start with an intermediate result.

Theorem 4.5. Given λ 6= 0, consider the problem

(4.13)



















ut(x, t) =

∫

ΩJ

J(x− y)G(x, u(y;x, t))u(y;x, t) dy, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ΩJ \ Ω, t > 0.

u(x, 0) = λ, x ∈ Ω.

Then the unique solution to problem (4.13) satisfies

(4.14) lim
t→∞

u(·, t) = 0 , uniformly in Ω .

Proof. We assume that λ > 0, the other case may similarly be proved.
Let u ∈ C(Ω × [0,∞)) be the unique solution to problem (4.13) with λ > 0. Since v1(x, t) = λ

and v2(x, t) = 0 define a supersolution and a subsolution, respectively, it follows from the Comparison
Principle that

(4.15) 0 ≤ u(x, t) ≤ λ , for every in Ω× (0,+∞) .

Moreover, fixed τ > 0, the function uτ (x, t) = u(x, t+ τ) defines a solution with initial datum uτ0(x) =
u(x, τ). Thus, the basic inequality (4.15) implies 0 ≤ uτ0(x) ≤ λ. Appealing again to the Comparison
Principle, it yields

0 ≤ u(x, t+ τ) ≤ u(x, t) , for every in Ω and for any τ > 0 .

Hence, we obtain that our solution is nonincreasing with respect to t. As a consequence, there exists

w(x) = lim
t→∞

u(x, t) , for any x ∈ Ω .

We have to prove that w(x) = 0 for any x ∈ Ω. Observe that this limit function satisfies

w(x) =

∫ ∞

0

∫

ΩJ

J(x− y)G(x, u(y;x, t))u(y;x, t) dy dt+ λ , x ∈ Ω

and w∣
∣

ΩJ\Ω

≡ 0.

Fixed any x ∈ Ω, consider a sequence {tn}n∈N satisfying tn → ∞. We deduce that

lim
n→∞

ut(x, tn) =

∫

ΩJ

J(x − y)G(x,w(y;x))w(y;x) dy ,

and so this limit does not depend on the chosen sequence. Thus, there exists limt→∞ ut(x, t) = ℓ and
this limit is nonpositive since our solution is nonincreasing in t. (We remark that the limit ℓ depends on
the considered point x.) Assume by contradiction that ℓ < 0. Then there exists t0 > 0 such that

ut(x, t) <
ℓ

2
, for any t ≥ t0 .

It follows that u(x, t) − u(x, t0) <
ℓ
2 (t − t0), which implies u(x, t) < λ + ℓ

2 (t − t0) and this quantity is
negative for t large enough. Since this contradicts (4.15), we have ℓ = 0. Obviously, this argument holds
for every x ∈ Ω, wherewith

lim
t→∞

ut(x, t) =

∫

ΩJ

J(x− y)G(x,w(y;x))w(y;x) dy = 0 , x in Ω .
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By continuity, we conclude that

(4.16)

∫

ΩJ

J(x− y)G(x,w(y;x))w(y;x) dy = 0 , x in Ω .

Recalling that the function w is the limit of a nonincreasing family of continuous functions, we deduce
that w is lower semicontinuous in Ω. So w attains its maximum in Ω; let x0 ∈ Ω satisfy w(x) ≤ w(x0)
for any x ∈ Ω.

Since the function J is radial symmetric, it is positive in an open ball centered at the origin; we denote
its radius is r Let n be the integer part of dist(x0, ∂Ω)/r. Applying (4.16) it yields

∫

ΩJ

J(x − y)G(x,w(y) − w(x0))(w(y) − w(x0)) dy = 0 .

Since the integrand is nonpositive, it vanishes, so that w(y) = w(x0) for any y ∈ Ω satisfying y − x0 ∈
supp J , that is, for any y ∈ Ω ∩B1(x0). If n ≥ 1 and so Br(x0) ⊂ Ω, taking y0 close to the boundary of
Br(x0) and applying the same argument, we infer that w(y) = w(x0) for any y ∈ Ω ∩ B2r(x0). We may
follow this procedure n times to find some x ∈ Ω such that w(x) = w(x0) and dist(x, ∂Ω) < r (this fact
can already be attained in the first step if n = 0). Then

0 =

∫

Ω

J(x − y)G(x,w(y) − w(x))(w(y) − w(x)) dy +

∫

ΩJ\Ω
J(x− y)G(x,−w(x))(−w(x)) dy .

Notice that both integrands are nonpositive, so that both vanish. We deduce from the first integral
that w is constant in Ω ∩ Br(x) and from the second one that this constant is equal to 0. Therefore,
w(x0) = w(x) = 0 and as a consequence w(x) = 0 for any x ∈ Ω.

Recalling that the function u(x, t) is nonincreasing in t and lim
t→∞

u(x, t) = 0 for any x ∈ Ω, we deduce

from Dini’s Theorem that this convergence is uniform. �

With the help of Theorem 4.5, we are ready to prove Theorem 2.9.

Proof of Theorem 2.9. Consider u1 the solution to (2.8) with initial datum u10(x) = ‖u0‖L∞(Ω), and

u2 ≡ 0. On the one hand, it follows from the Comparison Principle that

0 ≤ u(x, t) ≤ u1(x, t) , for any x ∈ Ω and t > 0 .

On the other hand, we deduce from Proposition 4.5 that

lim
t→∞

u1(x, t) = 0 , uniformly in Ω

and thus the result follows. �

Remark 4.6. As already mentioned, if hypothesis (2.9) holds true, we have that the decay at 0 is of
exponential type. Indeed,

d

dt

∫

Ω

u2(x, t)dx = 2

∫

RN

∫

RN

J(x− y)G(x, u(y;x, t))u(y;x, t)u(x, t) dy dx

= −β
∫

RN

∫

RN

J(x− y)(u(y, t)− u(x, t))2 dy dx.

Now, due to [7], there exists a pair (λ1, φ(x)) ∈ R
+ × C(Ω) such that

0 < λ1 = inf
u∈L2(Ω)\{0}

1

2

∫

RN

∫

RN

J(x − y)(u(y)− u(x))2dy dx
∫

Ω

u(x)2dx

and a function φ(x) where the infimum is attained. Consequently, we conclude that

d

dt

∫

Ω

u2(x, t)dx ≤ −2βλ1

∫

Ω

u(x, t)2dx,



PARABOLIC EQUATIONS WITH NATURAL GROWTH APPROXIMATED BY NONLOCAL EQUATIONS 17

and integrating over [0, t], we have that ‖u(·, t)‖L2(Ω) ≤ ‖u0‖L2(Ω) e
−λ1β t .

5. Proofs of results about Cauchy Problem

As in the previous Section, we start by proving the existence and uniqueness result.

Proof of Theorem 2.12. For T > 0 we consider the Banach space

X = C
(

[0, T ]; C(RN) ∩ L∞(RN )
)

,

endowed with the norm

|||w||| = max
0≤t≤T

e−kMt‖w(·, t)‖L∞(RN ).

Here M = 2α2 and k ≥ 1.
Now, let Y be the closed ball of X with radius k‖u0‖L∞(RN ) and centered at the origin. Note that Y

is a complete metric space with the induced metric d(w1, w2) = |||w1 − w2|||.
In order to establish the existence and uniqueness of solutions of (C) via Banach contraction principle,

we define the operator T : Y −→ Y by

T (w)(x, t) =

∫ t

0

∫

RN

J(x− y)w(y;x, τ)G(x,w(y;x, τ))dydτ + u0(x).

Let us first prove that this operator is well defined. Clearly T (w) is belongs to X and satisfies
(5.1)

‖T (w)(·, t)‖L∞(RN ) ≤ α2 max
x∈RN

∫ t

0

∫

RN

J(x− y)|w(y;x, s)|dyds+ ‖u0‖L∞(RN )

≤ 2α2

∫ t

0

‖w(·, s)‖L∞(RN )ds+ ‖u0‖L∞(RN ) ≤ 2α2|||w|||
∫ t

0

ekMsds+ ‖u0‖L∞(RN ) ≤ ekMt‖u0‖L∞(RN ).

Therefore,

|||T (w)||| = max
0≤t≤T

e−kMt‖T (w)(·, t)‖L∞(RN ) ≤ ‖u0‖L∞(RN ).

Since k > 1, we obtain that |||T (w)||| ≤ k‖u0‖L∞(RN ) and T (w) belongs to Y .
Now, let us show that the operator T is a contraction. By using that G satisfies (G) and arguing as

(5.1), we obtain

‖ (T (w1)− T (w2)) (·, t)‖L∞(RN ) ≤ α2 max
x∈RN

∫ t

0

∫

RN

J(x− y)|w1(y;x, τ) − w2(y;x, τ)|dydτ

≤ 2α2

∫ t

0

‖w1(·, τ)− w2(·, τ)‖L∞(RN )dτ ≤ 2α2|||w1 − w2|||
∫ t

0

ekMτdτ ≤ 1

k

(

ekMt − 1
)

|||w1 − w2|||.

Therefore,

d(T (w1), T (w2)) ≤
1

k
|||w1 − w2||| max

0≤t≤T

(

1− e−kMt
)

≤ 1

k
d(w1, w2).

Since k > 1, T is a contraction. Hence, using Banach’s Fixed Point Theorem there exists u a fix point of
T , that is the unique solution of problem (C) for t ∈ [0, T ] and belongs to Y . Finally, since T is arbitrary,
we obtain a global solution, u ∈ C

(

[0,∞); C(RN ) ∩ L∞(RN )
)

. �

Now we can prove the Comparison Principle.

Proof of Theorem 2.14. Set w = u− v, then in virtue of (3.2) w satisfies

(5.2)







wt(x, t) =

∫

RN

J(x− y)w(y;x, t) ψ(x, u(y;x, t), v(y;x, t))dy in R
N × (0,+∞)

w(x, 0) ≤ 0, in R
N ,



18 T. LEONORI, A. MOLINO SALAS, S. SEGURA DE LEÓN

where ψ is the function defined in (3.2). Let us consider the following function

ς(x, t) =

{

1 if w(x, t) ≥ 0,

0 if w(x, t) < 0.

Multiplying (5.2) by ς(x, t) and taking into account that wt(x, t)ς(x, t) = (w+)t (x, t) and w(y, t)ς(x, t) ≤
w+(y, t), we obtain, dropping the positive term w(x, t)ς(x, t), that

(w+)t (x, t) =

∫

RN

J(x − y) (w(y, t)ς(x, t) − w(x, t)ς(x, t))ψ(x, u(y;x, t), v(y;x, t))dy

≤
∫

RN

J(x − y)w+(y, t)ψ(x, u(y;x, t), v(y;x, t))dy ≤ α2

∫

RN

J(x− y)w+(y, t)dy,

integrating in R
N and by using

∫

RN

J(z)dz = 1, we get

∫

RN

(w+)t (x, t)dx ≤ α2

∫

RN

w+(y, t)dy.

Finally, integrating in (0, T ] and since w+(x, 0) = 0 we can assert, using Fubini’s theorem, that

(5.3) k(t) ≤ α2

∫ t

0

k(τ)dτ, where k(t) =

∫

RN

w+(x, t)dx.

Hence, applying Gronwall’s Lemma in (5.3), we conclude that

k(t) ≤ 0.

Now, since w+(x, t) ≥ 0 and by the continuity of w+, we get that w+(x, t) = 0 and, consequently,

u(x, t) ≤ v(x, t)

for any x ∈ R
N , t > 0. �

Note that the previous proof works locally in time, that is, a supersolution v and a subsolution u
defined both for t ∈ [0, T ] verify u(x, t) ≤ v(x, t) for any x ∈ R

N , 0 ≤ t < T .

Proof of Theorem 2.15. By Theorem 2.12, for any ε > 0 there exists uε the unique solution of problem
(2.12). Set wε := v − uε, wich satisfies

(5.4)







wε
t (x, t) = ∆v(x, t) + µ(x)|∇v(x, t)|2 − Lε(u

ε(x, t)), in R
N × (0, T ],

wε(x, 0) = 0, in R
N ,

being

Lε(u
ε(x, t)) =

C(x)

ε2

∫

RN

Jε(x− y)uε(y;x, t)G(x, uε(y;x, t))dy.

Now, the proof follows the one of Theorem 2.3.
Choosing w(x, t) = Kεαt and w(x, t) = −w(x, t). Then for K sufficiently large we have that w and w are
super and subsolution of (5.4) respectively. Therefore, by the principle comparison of Theorem 2.14 we
obtain w ≤ wε ≤ w and the proof is straightforward. �

As far as the asymptotic behavior is concerned, we observe that Ĵ(ξ), the Fourier transform of J ,
satisfies

Ĵ(ξ) ≤ 1− C(J)|ξ|2 + o(|ξ|2), as ξ → 0 .

where the above estimates follows since
1

2
∂2ξiξi Ĵ(0) =

1

2

∫

RN

J(z)z2Ndz =
1

2
C(J) <∞,

thanks to (J).

For the convenience of the reader we repeat the following Lemma that is proved in [6] including also
a sketch of the proof (in order to make this part of the paper self-contained).
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Lemma 5.1. Let u ∈ L1(RN ) ∩ L2(RN ) and J satisfying hypothesys (J). In addition, consider

DJ(u) =

∫

RN

(

1− Ĵ(ξ)
)

|û(ξ)|2dξ.

Then, ∃ C̃ = C̃(N, J) > 0 such that

‖u‖2L2(RN ) ≤ C̃max

{

‖u‖
4

N+2

L12(RN )
DJ(u)

N
N+2 , DJ(u)

}

,

and consequently

(5.5)

∫

RN

∫

RN

J(x− y) (u(y)− u(x))2 dxdy ≥ K min
{

‖u‖−
4
N

L1(RN )
‖u‖2+

4
N

L2(RN )
, ‖u‖2L2(RN )

}

.

Proof. First, we set the following quantities

C = max
|ξ|≥1

1

1− Ĵ(ξ)
> 0, δ0 =

(

C DJ(u)

C(N)‖u‖2L1(RN )C(J)

)
1

N+2

,

where C(N) = NπN/2

2Γ(N
2 +1)

and Γ denotes the Gamma function. Since u ∈ L1(RN )∩L2(RN ) it follows that

û ∈ L2(RN ) and consequently we obtain for 0 < δ ≤ 1 that

‖û‖2L2(RN ) =

∫

|ξ|≤δ

|û(ξ)|2dξ +
∫

|ξ|>δ

|û(ξ)|2dξ ≤ ‖u‖2L1(RN )

2C(N)

N
δN +

C

C(J) δ2
DJ(u) .(5.6)

Now, if we assume that δ0 ≤ 1. Replacing δ by δ0 in (5.6), we have

‖û‖2L2(RN ) ≤ C1‖u‖
4

N+2

L1(RN )DJ(u)
N

N+2 ,(5.7)

where C1 =
(

2
N + 1

)

C(N)
2

N+2C
N

N+2 . Alternatively, if we assume that δ0 > 1, i.e.,

C(N) ‖u‖2L1(RN ) < C DJ(u),

choosing δ = 1 in (5.6) and using the above inequality, we get

‖û‖2L2(RN ) ≤ ‖u‖2L1(RN )

2C(N)

N
+ C DJ(u) ≤

(

2

N
+ 1

)

C DJ(u).(5.8)

Finally, using Plancherel’s theorem on ‖û‖2L2(RN ) and summarizing (5.7) and (5.8), it follows that

‖u‖2L2(RN ) ≤ C̃max

{

‖u‖
4

N+2

L1(RN )DJ(u)
N

N+2 , DJ(u)

}

where C̃ = max
{

C1,
(

2
N + 1

)

C
}

and the proof is concluded. Due to the above formula, we can state the
following inequality

DJ(u) ≥ K min
{

‖u‖−
4
N

L1(RN )
‖u‖2+

4
N

L2(RN )
, ‖u‖2L2(RN )

}

,

being K = K(N, J). Thus, it is easy to check that
∫

RN

∫

RN

J(x− y) (u(y)− u(x))
2
dxdy = −2

∫

RN

(J ∗ u− u)(x)u(x) dx,

having in mind that Fourier transform preserves inner product we deduce (5.5) �

Next Lemma gives the L1 boundedness from above or from below of solutions depending on how the
function G(x, s)s behaves. To be more specific we have the following result.

Lemma 5.2. Let u be a solution of Cauchy problem (C) with 0 ≤ u0 ∈ L1(RN ). Then

(i) If G satisfies (2.9), it follows that t 7→ ‖u(·, t)‖L1(RN ) is decreasing on [0,∞), therefore

‖u(·, t)‖L1(RN ) ≤ ‖u0‖L1(RN ) .
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(ii) If G satisfies (2.10), it follows that t 7→ ‖u(·, t)‖L1(RN ) is increasing on [0,∞), therefore

‖u(·, t)‖L1(RN ) ≥ ‖u0‖L1(RN ) .

Proof. Since 0 ≤ u0 and Comparison Principle of Proposition 2.14 we can assume that u(x, t) ≥ 0.
Furthermore, if G(x, s)s ≤ βs for any (x, s) ∈ R

N × R, since

d

dt

∫

RN

u(x, t)dx =

∫

RN

∫

RN

J(x − y)u(y;x, t) G(x, u(y;x, t))dydx

≤ β

∫

RN

∫

RN

J(x− y)(u(y, t)− u(x, t))dydx = 0,

where the last identity follows since, by Fubini Theorem,
∫

RN

∫

RN

J(x− y)(u(y, t)− u(x, t))dydx =

∫

RN

∫

RN

J(x − y)(u(x, t)− u(y, t))dxdy .

Hence ‖u(·, t)‖L1(RN ) is nonincreasing in time and we state (i). Equivalently, if G(x, s)s ≥ βs for any

(x, s) ∈ R
N × R, reasoning as above we obtain the opposite inequality and, consequently, ‖u(·, t)‖L1(RN )

is nondecreasing in time and (ii) is proved. �

Now we can prove the asymptotic behavior of the solution for G satisfying (2.9),

Theorem 5.3. Let u be a solution of Cauchy problem (C) with G satisfying (2.9) and positive prescribed
data u0 ∈ L1(RN ) ∩ Lq(RN ) for q ≥ 2. Then there exists C = C(J,N, β, q) > 0 such that

‖u(·, t)‖Lq(RN ) ≤ C‖u0‖L1(RN )t
−N

2 (1− 1
q ),

for any t sufficiently large.

Proof of Theorem 5.3. Let q ≥ 2 and let us multiply the equation in (C) by uq−1(x, t) (observe that
u ≥ 0): thus we have

d

dt

1

q

∫

RN

u(x, t)qdx =

∫

RN

ut(x, t)u(x, t)
q−1dx

≤ β

∫

RN

∫

RN

J(x− y)(u(y, t)− u(x, t))u(x, t)q−1dxdy

= −β
2

∫

RN

∫

RN

J(x− y)(u(y, t)− u(x, t))(u(y, t)q−1 − u(x, t)q−1)dxdy

≤ −C(q, β)
∫

RN

∫

RN

J(x− y)(u(y, t)q/2 − u(x, t)q/2)2dxdy,

where in the last inequality we have used Lemma 3.3. Hence by (5.5), we get

d

dt

∫

RN

u(x, t)qdx ≤ −C min

{

‖u(·, t)‖−
2q
N

L
q
2 (RN )

‖u(·, t)‖q(1+
2
N )

Lq(RN )
, ‖u(·, t)‖q

Lq(RN )

}

where C = C(q, β,N, J). Now, by interpolation ‖u(·, t)‖
L

q
2 (RN )

≤ ‖u(·, t)‖
1

q−1

L1(RN ) ‖u(·, t)‖
q−2
q−1

Lq(RN ) and

denoting by Y (t) = ‖u(·, t)‖q
Lq(RN )

, we obtain, in virtue of Lemma 5.2, the following differential inequality

(5.9) Y ′(t) ≤ −C min
{

‖u0‖−qγ
L1(RN )Y (t)1+γ , Y (t)

}

being γ =
2

N(q − 1)
. Therefore, Y (t) is decreasing. We claim that there exists t0 ≥ 0 such that

Y (t) ≤ ‖u0‖qL1(RN )
, t ≥ t0.
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Indeed, otherwise, using that Y (t) is decreasing, we would have that ‖u0‖qL1(RN )
≤ Y (t) for any t ≥ t0.

Replacing in (5.9) we obtain
Y ′(t) ≤ −C Y (t), t ≥ t0,

and integrating on [t0, t] we get that Y (t) ≤ Y (t0)e
−C(t−t0) → 0 as t→ ∞ which leads to a contradiction

and the claim is proved.
Thus, since

Y (t) = Y (t)1+γY (t)−γ ≥ Y (t)1+γY (t0)
−γ ≥ Y (t)1+γ‖u0‖−qγ

L1(RN ),

it follows, by inequality (5.9), that

Y ′(t) ≤ −C ‖u0‖−qγ
L1(RN )

Y (t)1+γ , t ≥ t0.

Integrating on [t0, t] we get

Y (t) ≤
‖u0‖qL1(RN )

(γ C)1/γ
(t− t0)

−1/γ .

Having in mind that Y (t) = ‖u(·, t)‖q
Lq(RN )

and
−1

q γ
= −N

2

(

1− 1

q

)

we conclude that, for any time t

large enough, ∃ C = C(J,N, β, q), such that

‖u(·, t)‖Lq(RN ) ≤ C‖u0‖L1(RN ) t
−N

2 (1− 1
q ) .

�

With the help of the above result, we can now prove Theorem 2.16.

Proof of Theorem 2.16. Theorem 5.3 covers the case q ≥ 2, while for q ∈ (1, 2] the interpolation inequality
yields to

‖u(·, t)‖Lq(RN ) ≤ ‖u(·, t)‖
2
q−1

L1(RN )
‖u(·, t)‖2(1−

1
q )

L2(RN )
≤ C‖u0‖L1(RN ) t

−N
2 (1− 1

q ),

being C = C(J,N, β, q) a positive constant. �

In order to obtain a decay estimate of the norm of the solution u, for functions Gµ with µ(x) ≥ 0, a
L1 boundedness from above of u is required. For this purpose, we must to control de L∞-norm of initial
data u0 with respect to function µ.

Lemma 5.4. Let u be a solution of of Cauchy problem (C) with G ≡ Gµ, 0 ≤ µ ∈ L∞(RN ) and positive
prescribed data u0 ∈ L∞(RN ) ∩ C(RN ) satisfying ‖u0‖L∞(RN )‖µ‖L∞(RN ) = θ < 1. Then

(5.10)
d

dt
‖u(·, t)‖2L2(RN ) ≤ −(1− θ)

∫

RN

∫

RN

J(x− y)(u(y, t)− u(x, t))2dydx.

If, in addition, u0 ∈ L1(RN ) then

(5.11) ‖u(·, t)‖L1(RN ) ≤ c‖u0‖L1(RN ),

with c = c(‖u0‖L∞(RN ), ‖µ‖L∞(RN )) > 1.

Proof. Since u0 ∈ L∞(RN )∩C(RN ), by Theorem 2.12 there exists a unique solution of problem (C) and it
satisfies u ∈ C

(

[0,∞); C(RN ) ∩ L∞(RN )
)

. Moreover, since 0 and ‖u0‖L∞(RN ) are sub and supersolution
respectively of problem (C), we get, due the comparison principle Theorem 2.14, that

0 ≤ u(x, t) ≤ ‖u0‖L∞(RN ), (x, t) ∈ R
N × [0,∞).

Let us multiply the equation in (C) by u(x, t) and integrate in R
N , so that

d

dt
‖u(·, t)‖2L2(RN ) = 2

∫

RN

ut(x, t)u(x, t)dx = 2

∫

RN

∫

RN

J(x− y)u(y;x, t) Gµ(u(y;x, t))u(x, t) dydx

= 2

∫

RN

∫

RN

J(x − y)u(y;x, t) u(x, t)dydx +

∫

RN

∫

RN

J(x− y)
µ(x)u(y;x, t)2

1 + µ2(x)u(y;x, t)2
u(x, t)dydx



22 T. LEONORI, A. MOLINO SALAS, S. SEGURA DE LEÓN

≤ −
∫

RN

∫

RN

J(x − y)u(y;x, t)2dydx+

∫

RN

∫

RN

J(x− y)µ(x)u(y;x, t)2u(x, t)dydx

= −
∫

RN

∫

RN

J(x− y)u(y;x, t)2(1− µ(x)u(x, t))dydx

≤ −(1− θ)

∫

RN

∫

RN

J(x − y)(u(y, t)− u(x, t))2dydx,

which proves the first part of lemma.
In order to get (5.11), we compute the derivate of L1-norm of u, and we get

d

dt
‖u(·, t)‖L1(RN ) =

∫

RN

∫

RN

J(x− y)Gµ

(

u(y, t)− u(x, t)
)(

u(y, t)− u(x, t)
)

dydx

=

∫

RN

∫

RN

J(x− y)
µ(x)

2

(

u(y, t)− u(x, t)
)2

1 + µ2(x)
(

u(y, t)− u(x, t)
)2 dxdy

≤
‖µ‖L∞(RN )

2

∫

RN

∫

RN

J(x− y)
(

u(y, t)− u(x, t)
)2
dydx

≤ −
‖µ‖L∞(RN )

2

1

1− θ

d

dt
‖u(·, t)‖2L2(RN ),

where we have used (5.10) in the last inequality. Hence, we obtain the following differential inequality:

∃ c1 > 0 :
d

dt
‖u(·, t)‖L1(RN ) + c1

d

dt
‖u(·, t)‖2L2(RN ) ≤ 0,

being c1 =
‖µ‖L∞(RN )

2(1−θ) > 0. Consequently, integrating on [0, t],

‖u(·, t)‖L1(RN ) + c1‖u(·, t)‖2L2(RN ) ≤ ‖u0‖L1(RN ) + c1‖u0‖L∞(RN ) ‖u0‖L1(RN ),

where we have used the interpolation formula, ‖u0‖2L2(RN ) ≤ ‖u0‖L∞(RN ) ‖u0‖L1(RN ). Finally we conclude

that ‖u(·, t)‖L1(RN ) ≤ c‖u0‖L1(RN ), for c = 1 + c1‖u0‖L∞(RN ).
�

Proof of Theorem 2.17. Applying inequality (5.5) in (5.10) from Lemma 5.4, it follows

d

dt
‖u(·, t)‖2L2(RN ) ≤ −C1 min

{

‖u(·, t)‖−
4
N

L1(RN )
‖u(·, t)‖2+

4
N

L2(RN )
, ‖u(·, t)‖2L2(RN )

}

,

where C1 = C1(‖µ‖L∞(RN ), ‖u0‖L∞(RN ), N, J) > 0. Writing X(t) = ‖u(·, t)‖2L2(RN ) and using the bound-

edness of L1-norm in inequality (5.11) we have that

X ′(t) ≤ −C2 min
{

‖u0‖−
4
N

L1(RN )
X(t)1+

2
N , X(t)

}

,

where C2 = C2(‖µ‖L∞(RN ), ‖u0‖L∞(RN ), N, J) > 0. Thus, arguing as in proof of Theorem 5.3, we can

assume that there exists t0 ≥ 0 such that X(t) ≤ ‖u0‖2L1(RN ) for t ≥ t0 and therefore,

X ′(t) ≤ −C2‖u0‖−
4
N

L1(RN )
X(t)1+

2
N , t ≥ t0.

Finally, integrating on [t0, t], we obtain the L2-norm decay estimate for any t sufficiently large. �
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Avenida Fuentenueva S/N,18071 Granada, Spain
E-mail address: leonori@ugr.es

Alexis Molino Salas
Departamento de Análisis Matemático, Universidad de Granada,
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