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REGULARIZING EFFECTS CONCERNING ELLIPTIC EQUATIONS

WITH A SUPERLINEAR GRADIENT TERM

MARTA LATORRE, MARTINA MAGLIOCCA AND SERGIO SEGURA DE LEÓN

Abstract. We consider the homogeneous Dirichlet problem for an elliptic equation driven by a linear oper-
ator with discontinuous coefficients and having a subquadratic gradient term. This gradient term behaves as
g(u)|∇u|q, where 1 < q < 2 and g(s) is a continuous function. Data belong to Lm(Ω) with 1 ≤ m < N

2
as well

as measure data instead of L1-data, so that unbounded solutions are expected. Our aim is, given 1 ≤ m < N
2

and 1 < q < 2, to find the suitable behaviour of g close to infinity which leads to existence for our problem. We
show that the presence of g has a regularizing effect in the existence and summability of the solution. Moreover,
our results adjust with continuity with known results when either g(s) is constant or q = 2.

1. Introduction

This paper is concerned to an elliptic problem, in an open bounded set Ω ⊂ R
N , whose model is:

{

−∆u = g(u) |∇u|q + f(x) in Ω ,

u = 0 on ∂Ω ,
(1.1)

where

H1. g : R → (0,+∞) is a continuous positive function;
H2. 1 < q < 2;
H3. f ∈ Lm(Ω) such that m ≥ 1. Eventually, we will also consider measures instead of f ∈ L1(Ω).

Our aim is, given q and m, to find the suitable behaviour of g close to infinity which leads to existence for
problem (1.1). We may measure the behaviour of g through the exponent α such that the limit lim|s|→∞ |s|αg(s)
is positive and finite. For the sake of simplicity, we will assume that g is continuous and satisfies g(s) ≤ γ

|s|α ,

with α, γ > 0. So, we look for the possible exponents α for which we can obtain existence of solution to this
problem.
Solutions to (1.1) are considered in a weak sense (i.e., having finite energy) when m ≥ 2N

N+2 . Nevertheless,
this notion has no meaning when m is closer to 1. In these cases the notion of weak solution must be replaced
with the notion of entropy solution or that of renormalized one. Entropy solutions were introduced in [2] for
L1–data and in [5] for measure data which are absolutely continuous with respect to the capacity. On the other
hand, renormalized solutions were handled in [22, 12]. Since both notions are equivalent, in the present paper
renormalized solution is the chosen notion and only the renormalized formulation will be used in what follows.

1.1. Background. Problems related to (1.1) have been widely studied in recent years. Recall that, when
0 ≤ q < 1 and data belong to the dual space H−1(Ω), it can be solved applying the theory of pseudomonotone
operators (see, for instance, [20]). Likewise, this theory also applies when q = 1 and the norm of the source f is
small enough to get coerciveness. Without assuming any smallness condition, an existence result holds true as
proved by Bottaro and Marina in [11] for linear equations, and by Del Vecchio and Porzio in [13] in a nonlinear
framework.
The other growth limit, q = 2, deserves some remarks. With additional hypotheses, equations having gradient

terms with quadratic growth have been studied in a series of papers in the 80’s, mainly by Boccardo, Murat and
Puel. For gradient terms satisfying a sign condition, we refer to [7, 8, 3], while for existence of bounded solutions,
to [9, 10]. The first attempt to study equations with a gradient term having natural growth (without the sign
condition or an additional zero order term), was carried out by Ferone and Murat in [14] (see also [15, 16]

for extensions). They consider the case g(s) constant and prove a sharp smallness condition on f ∈ L
N
2 (Ω)

which leads to an existence result. More precisely, it was proved that if ‖f‖
L

N
2 (Ω)

is small, then there exists

a solution u which also satisfies the further regularity
(

eδ|u| − 1
)

∈ H1
0 (Ω), for δ less than a constant which

only depends on ‖f‖
L

N
2 (Ω)

, the coerciveness of the principal term and the best constant in Sobolev’s inequality.

More general data in this quadratic growth were considered in [26, 24], under the assumption g ∈ L1(R): It
is studied existence for all L1–data (in [26]) and for all Radon measures (in [24]). The assumption g ∈ L1(R)
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turns out to be optimal (see [26, Proposition 5.1]). The exhaustive analysis of the necessary growth condition
on g to obtain a solution for every datum f ∈ Lm(Ω), where m > 1, was made by Porretta and Segura de León
in [25]. The main result of [25], when it is applied to an equation governed by a linear operator, states:

Q1. Given any f ∈ Lm(Ω) with m ≥ N
2 : there exists a solution to problem (1.1), with q = 2, under the

assumption lim
|s|→∞

g(s) = 0; this solution is bounded when m > N
2 .

Q2. Given any f ∈ Lm(Ω) with 2N
N+2 ≤ m < N

2 : if g(s) ≤
γ
|s| , with γ <

N(m−1)
N−2m , then there exists a solution

to problem (1.1), with q = 2, which belongs to H1
0 (Ω) ∩ L

Nm
N−2m (Ω).

Q3. Given any f ∈ Lm(Ω) with 1 < m < 2N
N+2 : if g(s) ≤

γ
|s| , with γ <

N(m−1)
N−2m , then there exists an entropy

solution to problem (1.1), with q = 2, which belongs to W 1,m∗

0 (Ω).

One of the main objectives of the present paper is to extend these results to the case 1 < q < 2. Some
consequences of the quadratic case for our problem are:

C1. If lim
s→±∞

g(s) = 0, then there exists a solution for every f ∈ Lm(Ω), with m ≥ N
2 (see Proposition 2.9

below).

C2. If g ∈ L
2
q (R), then there exists a solution for every f ∈ L1(Ω) (see Remark 2.11 below).

In the subquadratic setting (i.e., 1 < q < 2) and for g(s) constant, the general theory was developed by
Grenon, Murat and Porretta in [17] (for the range 1 + 2

N ≤ q < 2) and [18] (with full generality). Their aim
is to find the “optimal” exponent m, which depends on q, such that there exists a solution for data in Lm(Ω)
satisfying a smallness condition. Moreover, Alvino, Ferone and Mercaldo showed in [1] the sharp condition on
datum f which guarantee the existence of solution. It was proved in [17] that:

S1. If 1 + 2
N ≤ q < 2, m ≥ N(q−1)

q and ‖f‖m is small enough, then there exists a solution u ∈ H1
0 (Ω) to

problem (1.1), with g(s) constant, which satisfies the further regularity |u|σ ∈ H1
0 (Ω), with σ = m(N−2)

2(N−2m) .

The extension studied in [18] leads to:

S2. If N
N−1 < q < 1 + 2

N , m ≥ N(q−1)
q and ‖f‖m is small enough, then there exists a renormalized

solution to problem (1.1), with g(s) constant, which satisfies the regularity (1+ |u|)σ−1u ∈ H1
0 (Ω), with

σ = m(N−2)
2(N−2m) , and |∇u| ∈ LN(q−1)(Ω).

S3. If q = N
N−1 and ‖f‖Lm(Ω) is small enough for certain m > 1, then there exists a renormalized solution to

problem (1.1), with g(s) constant, satisfying the regularity (1 + |u|)σ−1u ∈ H1
0 (Ω), with σ = m(N−2)

2(N−2m) ,

and |∇u| ∈ Lm∗

(Ω).
S4. If 1 < q < N

N−1 , m ≥ 1 and ‖f‖1 is small enough, then there exists a renormalized solution to problem

(1.1), with g(s) constant, which satisfies |u| ∈M
N

N−2 (Ω) and |∇u| ∈M
N

N−1 (Ω). Here, M q(Ω) stands for
the Marcinkiewicz space (see Subsection 3.3 below). Actually, sources more general than L1–functions
are handled, namely, finite Radon measures.

The final picture looks as follows:

1 N
N−1

1 + 2
N

2 q

The right zone indicates solutions of finite energy, the left zone shows the points q where measure data can
be considered while the central zone is where they obtain renormalized solutions with Lm-data.
We point out that, in [18], the authors obtain existence for every datum with a zero order term, which has

a regularizing effect. In some sense, the singular term |∇u|q

|u|α , where α > 0, induces a similar effect, so that we

expect better estimates than those in the case α = 0 (see Remark 3.2). Note, nevertheless, that the term |∇u|q

|u|α

behaves in a superlinear way with respect to the gradient power when α < q − 1 (see Subsection 2.5).
Finally, we remark that a problem similar to (1.1) has recently been studied in [21, Proposition 3.4].

1.2. Our results. As we have mentioned, given q and m, our goal is to look for the best exponent α to get
existence for our problem. The identity we find is

α =
N(q − 1)−mq

N − 2m
for m > 1, 1 < q < 2 . (1.2)

This value of α is intuitively deduced in Subsection 2.5. We remark that, when α = 0, it yields m = N(q−1)
q

recovering the threshold occurring in S1. and S2. above. In general, m = m(q, α) is given by

m =
N(q − 1− α)

q − 2α
. (1.3)

According to the value of m and the connection between α and q, there are two different types of results:
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(1) As in Q2. or S1., if m ≥ 2N
N+2 , then we get finite energy solutions. Otherwise, renormalized ones are

obtained. We also note that there are points (q, α) ∈ [1, 2]× [0, 1] satisfying

N(q − 1− α)

q − 2α
< 1 .

In this area, talking about Lebesgue spaces looses sense. This means that measure data are allowed.
(2) In full agreement with the above picture, we have to deal with three zones. If q > 1 + α, we are

within the superlinear framework. In this setting, we may only expect existence of solutions for sources
satisfying a smallness condition. The limit case q = 1+α corresponds to a linear gradient term in which
we get existence when this term is small enough. Furthermore, the sublinear case q < 1 + α guaranties
existence of solutions for all data and all gradient terms. The informal deduction of this classification
will be shown in Subsection 2.5.

We state our main results in Theorem 2.7 and Theorem 2.8 below, where all possible situations are considered.
Roughly speaking, we may illustrate the relation between α, q, m in the following picture.

α

1

0
21 N

N−1
1 + 2

N
q

Existence for all data

Existence for small measure data

Existence for small Lm–data, 1 < m <
2N

N+2

Existence for small Lm–data, 2N

N+2
≤ m <

N

2

We explicitly point out that, as α increases, the different zones drift to the right, so that the function g
induces a regularizing effect. Moreover, the sublinear zone 0 < α < q − 1 appears, which entails existence for
every datum. The bigger value of α, the wider is this new zone.
This scheme adapts perfectly to what is expected since there is continuity with respect to known results. In

fact, the q–axis coincides with the picture of results in [18], while the line q = 2 depicts the results in [25].

Furthermore, the bound N(m−1)
N−2m , occurring in Q2. above, is the limit as q → 2 of the related bounds obtained

for q < 2 (see Remark 3.6 below); a similar observation applies to Q3.
In order to achieve these bounds in the renormalized framework, we need to fine-tune our estimates as much

as possible. So, we have to introduce a special way of applying known inequalities (see Lemma 3.7). In this
way we managed not to lose information when making our estimates.
To prove our results we use approximation techniques based on

1. estimates of a suitable power of the solutions;
2. the strong convergence in L1 of the gradient term.

Our estimates are obtained with variants of the method introduced by Grenon, Murat and Porretta in which
certain powers of Gk(u) = (|u| − k)+ sign(u) are taken as test functions. The greatest difficulty arises when
studying problem (1.1) with a measure datum µ. In this case one should take Tj(Gk(u)) as a test function
getting

∫

Ω

|∇Tj(Gk(u))|
2 dx ≤ j

[

∫

{|u|>k}

g(u)|∇u|q dx+ ‖µ‖Mb

]

.

An appeal to a lemma on Marcinkiewicz spaces (see [3, Lemma 4.2]) leads to

[

|∇Gk(u)|
]

N
N−1

≤ C

[

∫

{|u|>k}

g(u)|∇u|q dx+ ‖µ‖Mb

]

.

Having in mind that values q > N
N−1 are allowed, an estimate cannot be expected from this inequality. To

overcome this trouble, we take Tj(|Gk(u)|
θ) sign(u) as a test function, with the power θ close to 0, and then, a

suitable generalization of the above lemma (see Lemma 3.12 below) will be applied.

1.3. Plan of the paper. The plan of the paper is the following. Section 2 is devoted to introduce the
assumptions and state the main results (see Theorem 2.7 and Theorem 2.8 below). We also include here our
starting point (see Proposition 2.9), which is a simple consequence of the results of [25]. Section 3 deals with
a priori estimates, while the convergence of approximate solutions is proved in Section 4. We point out that
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not only the superlinear case is seen, since we also deal with the linear case (in which existence for each data
is achieved under a hypothesis of smallness on the gradient term) and even some sublinear cases that, as far

as we know, have not already been handled. In this Section 4 the limit line q = N+α(N−2)
N−1 , which does not fit

into the general scheme, is also studied. In Section 5 we end up analyzing what happens when data enjoy more
summability than that strictly necessary to obtain existence.

2. Assumptions and Statement of results

2.1. Notation. Throughout this paper, Ω stands for a bounded open subset of RN , with N > 2. The Lebesgue
measure of a set E ⊂ Ω will be denoted by |E|. The symbols Ls(Ω) denote the usual Lebesgue spaces and

W 1,s
0 (Ω) the usual Sobolev spaces of measurable functions having weak gradient in Ls(Ω;RN ) and zero trace

on ∂Ω. We will also use the notation H1
0 (Ω) instead of W 1,2

0 (Ω). Let 1 ≤ p < N , in the sequel p∗ = Np
N−p ,

p∗ = Np
Np−N+p and Sp stands for the constant in Sobolev inequality in W 1,p

0 (Ω), that is,

[∫

Ω

|u|p
∗

dx

]1/p∗

≤ Sp

[∫

Ω

|∇u|pdx

]1/p

, for all u ∈W 1,p
0 (Ω) .

We recall that this constant just depend on N and p, and this dependence is continuous on p. On the other
hand, CPF

p stands for the constant in the Poincaré–Friedrichs inequality in W 1,p
0 (Ω), so that

[∫

Ω

|u|pdx

]1/p

≤ CPF
p

[∫

Ω

|∇u|pdx

]1/p

, for all u ∈ W 1,p
0 (Ω) .

This constant depends on Ω and p.
Two auxiliary real functions will be used throughout this paper. For every k > 0, we define Tk : R → R and

Gk : R → R as

Tk(s) =







s if |s| ≤ k ,

k s
|s| if |s| > k ;

Gk(s) = s− Tk(s) = (|s| − k)+ sign(s) .

2.2. Assumptions. We will deal with the problem
{

−div [A(x) · ∇u] = H(x, u,∇u) + f(x) in Ω ,

u = 0 on ∂Ω ,
(2.1)

and we assume the following statements.

(1) A(x) is an N ×N symmetric matrix which satisfies

λ|ξ|2 ≤ [A(x) · ξ] · ξ ≤ Λ|ξ|2 (2.2)

for almost all x ∈ Ω and ξ ∈ R
N , and certain positive constants Λ and λ.

(2) There exist a positive continuous function g : R → (0,+∞) and 1 < q < 2 such that

|H(x, t, ξ)| ≤ g(t)|ξ|q (2.3)

for almost all x ∈ Ω, t ∈ R and ξ ∈ R
N .

(3) The datum f belongs to Lm(Ω), with 1 ≤ m < N
2 . When m = 1, instead of considering an L1–function,

we will choose a Radon measure (see problem (2.10)).

As far as the function g is concerned, we assume that there exist constants γ, α > 0 satisfying

g(t) ≤
γ

|t|α
(2.4)

for all t ∈ R.

Remark 2.1. (i) Throughout this paper, the linearity of the principal part plays no role. We point out that
our results also hold for equations driven by more general operators such as those of the Leray–Lions type
with linear growth.

(ii) We stress that condition (2.4) have to be seen as a condition at infinity, that is, what is essential is

lim
|s|→∞

g(s)|s|α = γ .

We are assuming (2.4) for the sake of simplicity.
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In what follows, we also consider the parameter

σ =
m(N − 2)

N − 2m
, i.e. m =

Nσ

N + 2σ − 2
. (2.5)

Observe that it implies

(σ − 1)m′ =
σ

2
2∗ . (2.6)

It is straightforward that

(1) 1 ≤ σ <∞.
(2) σ = 1 if and only if m = 1.
(3) 1 < σ < 2 if and only if 1 < m < 2N

N+2 .

(4) σ ≥ 2 if and only if 2N
N+2 ≤ m < N

2 .

2.3. Notions of solution. According to the summability of the datum, we will find solutions to problem (2.1)
with finite energy or renormalized solutions. Definitions follow.

Definition 2.2. We will say that a function u ∈ H1
0 (Ω) is a weak solution to problem (2.1) if H(x, u,∇u) ∈

L1(Ω) and
∫

Ω

[A(x) · ∇u] · ∇ϕdx =

∫

Ω

H(x, u,∇u)ϕdx+

∫

Ω

f(x)ϕdx (2.7)

holds for all ϕ ∈ H1
0 (Ω) ∩ L

∞(Ω).

We remark that, as a consequence of Sobolev’s inequality, formulation (2.7) has sense only when m ≥ 2N
N+2 ,

that is, σ ≥ 2. When m < 2N
N+2 (so that σ < 2), a different formulation must be required. The functional

setting for the renormalized formulation lies on the space T 1,2
0 (Ω) of almost everywhere finite functions such

that Tk(u) ∈ H1
0 (Ω) for all k > 0. Functions in this space have a generalized gradient which (grosso modo) is

defined by

∇Tk(u) = (∇u)χ{|u|<k} for all k > 0 ,

(see [2] or [12]).

Definition 2.3. A function u : Ω → R is a renormalized solution to problem (2.1) having datum f ∈ Lm(Ω),
with 1 < m < 2N

N+2 , if it satisfies

(1) u ∈ T 1,2
0 (Ω);

(2) ∇u ∈ L1(Ω;RN );
(3) H(x, u,∇u) ∈ L1(Ω);

and
∫

Ω

S′(u)ϕ[A(x) · ∇u] · ∇u dx+

∫

Ω

S(u)[A(x) · ∇u] · ∇ϕdx

=

∫

Ω

H(x, u,∇u)S(u)ϕdx+

∫

Ω

f(x)S(u)ϕdx (2.8)

holds for any Lipschitz function S : R → R with compact support and for any ϕ ∈ H1(Ω) ∩ L∞(Ω) such that
S(u)ϕ ∈ H1

0 (Ω).

Remark 2.4. Note that Definition 2.3 does not require any asymptotic condition on the energy term such as

lim
n→∞

1

n

∫

{n≤|u|≤2n}

|∇u|2 dx = 0. (2.9)

Indeed, we will prove (in different steps) that

R1. If 1 < σ < 2 (i.e. 1 < m < 2N
N+2 ), then solutions enjoy a certain Sobolev regularity which implies (2.9).

R2. If σ = 1 (i.e. m = 1), then condition (2.9) must be required to solutions.

It is not difficult to check R1 if we assume condition
[

(1 + |u|)
σ
2 − 1

]

∈ H1
0 (Ω) with 1 < σ < 2. Then

|∇u|2

(1 + |u|)2−σ
∈ L1(Ω) .

Thus,

1

n

∫

{n≤|u|≤2n}

|∇u|2dx ≤
1

nσ−1

[

22−σ

∫

{n≤|u|≤2n}

|∇u|2

(1 + |u|)2−σ
dx

]

≤
C

nσ−1

n→∞
−→ 0

and condition (2.9) holds.
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Up to now, we have taken m = N(q−1−α)
q−2α with m > 1. Nonetheless, this ratio can be strictly smaller than 1.

Then we take measure data and so consider problem
{

−div [A(x) · ∇u] = H(x, u,∇u) + µ in Ω ,

u = 0 on ∂Ω ,
(2.10)

being µ ∈ Mb(Ω) a bounded Radon measure, instead of problem (2.1).
As far as bounded Radon measures are concerned, we recall that every µ ∈ Mb(Ω) can be decomposed, in a
unique way, as the sum µ = µ0 + µs, where µ0 ∈ L1(Ω) +H−1(Ω) is the absolutely continuous (with respect to
the capacity) part and µs is the singular one and it is concentrated on a set of null capacity. Further comments
on measures data and the notion of capacity can be found in [5, Section 2], [12, Section 2].

Definition 2.5. A function u : Ω → R is a renormalized solution to problem (2.10) if it satisfies

(1) u ∈ T 1,2
0 (Ω);

(2) ∇u ∈ L1(Ω;RN );
(3) H(x, u,∇u) ∈ L1(Ω);

and
∫

Ω

S′(u)ϕ[A(x) · ∇u] · ∇u dx+

∫

Ω

S(u)[A(x) · ∇u] · ∇ϕdx

=

∫

Ω

H(x, u,∇u)S(u)ϕdx+

∫

Ω

S(u)ϕdµ0 (2.11)

holds for any Lipschitz function S : R → R with compact support and for any ϕ ∈ H1(Ω) ∩ L∞(Ω) such that
S(u)ϕ ∈ H1

0 (Ω), and

lim
n→∞

1

n

∫

{n≤u≤2n}

ϕ[A(x) · ∇u] · ∇u dx =

∫

Ω

ϕdµ+
s , (2.12)

lim
n→∞

1

n

∫

{−2n≤u≤−n}

ϕ[A(x) · ∇u] · ∇u dx =

∫

Ω

ϕdµ−
s , (2.13)

for every ϕ ∈ Cb(Ω), i.e. ϕ continuous and bounded in Ω, and being µ+
s and µ−

s the positive and negative parts
of µs, respectively.

Remark 2.6. Both in Definition 2.3 and Definition 2.5, we will need to use test functions for which function
S has not compact support although S′ has. Most of them can be considered by a standard argument in the
renormalized setting (see [17] for more details). This procedure consists of two steps, which we next apply to
the main example S(s) = Tk(s) in the case f ∈ Lm(Ω) with m > 1.

(1) Take S(s) = Tk(s)ϑh(s), ϕ = 1 in (2.8) with

ϑh(s) =















1 |s| ≤ h ,
2h− |s|

h
h < |s| ≤ 2h ,

0 |s| > 2h .

Observe that ϑh(·) is compactly supported and converges to 1 as h→ ∞. In this way, (2.8) becomes

∫

{|u|<k}

ϑh(u)[A(x) · ∇u] · ∇Tk(u) dx−
1

h

∫

{h<|u|<2h}

|Tk(u)| [A(x) · ∇u] · ∇u dx

=

∫

Ω

H(x, u,∇u)Tk(u)ϑh(u) dx+

∫

Ω

fTk(u)ϑh(u) dx .

(2) Check that letting h go to ∞ is allowed in each term (in the second term, where ϑ′h(u) appears, just apply
condition (2.9). It turns out that

∫

Ω

[A(x) · ∇u] · ∇Tk(u) dx =

∫

Ω

H(x, u,∇u)Tk(u) dx+

∫

Ω

fTk(u) dx .

Analogous comments can be done when measure data are considered, taking the same test functions in (2.11)
and using (2.12)–(2.13) instead of (2.9), we get

∫

Ω

[A(x) · ∇u] · ∇Tk(u) dx =

∫

Ω

H(x, u,∇u)Tk(u) dx+

∫

Ω

fTk(u) dµ0 + kµs(Ω) .

Throughout this paper, we will consider such general test functions without further comments.
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2.4. Main results. As we have seen in the Introduction, we get two different types of results: one in the
superlinear setting and the other in the linear case. To justify this classification, we refer to the next Subsection.
On the other hand, in both situations we should have in mind that, depending on the data, we will obtain finite
energy solutions or renormalized ones.
The results of this paper can be summarized in the following statements.

Theorem 2.7 (Existence results in the superlinear case). Using the above notation, assume that ‖f‖Lm(Ω) is
small enough.

(1) If 2N
N+2 ≤ m < N

2 and N(q−1)−mq
N−2m ≤ α < q − 1, then there exists a weak solution to problem (2.1)

satisfying H(x, u,∇u)u ∈ L1(Ω), H(x, u,∇u) ∈ L
2
q (Ω) and the further regularity |u|

σ
2 ∈ H1

0 (Ω).

(2) If 1 < m < 2N
N+2 and N(q−1)−mq

N−2m ≤ α < q−1, then there exists a renormalized solution to (2.1) satisfying

(1 + |u|)
σ
2 −1u ∈ H1

0 (Ω) and H(x, u,∇u) ∈ Lm(Ω).

(3) If m > 1 and α = N(q−1)−q
N−2 , then there exists a renormalized solution to (2.1) satisfying (1+ |u|)

σ
2 −1u ∈

H1
0 (Ω).

Furthermore, assuming a source µ ∈ Mb(Ω) with ‖µ‖Mb
small enough, if N(q−1)−q

N−2 < α < q − 1, then there

exists a renormalized solution to (2.10).

Theorem 2.8 (Existence results in the linear case). With the same notation as above, assume that α = q − 1
and γ is small enough.

(1) If 2N
N+2 ≤ m < N

2 , then there exists a weak solution to problem (2.1) which also satisfies H(x, u,∇u)u ∈

L1(Ω), H(x, u,∇u) ∈ L
2
q (Ω) and the further regularity |u|σ/2 ∈ H1

0 (Ω).
(2) If 1 < m < 2N

N+2 , then there exists a renormalized solution to (2.1) satisfying the regularity (1 +

|u|)
σ
2 −1u ∈ H1

0 (Ω) and H(x, u,∇u) ∈ Lm(Ω).

Furthermore, for every µ ∈ Mb(Ω) there exists a renormalized solution to (2.10).

2.5. Connection among parameters. The aim of this Subsection is to show the connection among all pa-
rameters of our problem which lead to existence of solution. The key argument is to find the best power σ such
that uσ can be taken as a test function.
We begin estimating the gradient term and seeing the connection between q and α. In order to simplify the

incoming explanation, we consider the problem






−∆u =
F

(1 + u)α
in Ω ,

u = 0 on ∂Ω ,
(2.14)

where α > 0 and 0 < F ∈ Lτ (Ω) with τ < N
2 . Note that u > 0 by the classical maximum principle.

Basically, our aim is to prove a gradient estimate of the type

‖|∇u|b‖L1(Ω) ≤ c‖F‖ζLτ(Ω) ,

for certain values b ≤ 2, ζ > 0. Once this step is concluded, we set F = |∇u|q, i.e.

‖|∇u|b‖L1(Ω) ≤ c‖|∇u|b‖
qζ
b

L
τ q
b (Ω)

,

so we will deduce that

• we close the estimate choosing
τ q

b
= 1;

• we are within the superlinear setting if and only if
qζ

b
> 1.

We take (1 + u)σ−1 − 1 as test function in (2.14) for some σ. Then, defining v = (1 + u)
σ
2 , we obtain

∫

Ω

|∇v|2 dx ≤ c

∫

Ω

F v
2
σ
(σ−1−α) dx . (2.15)

Since Hölder’s inequality with (τ, τ ′) implies
∫

Ω

F v
2
σ
(σ−1−α) dx ≤ ‖F‖Lτ(Ω)‖v‖

2
σ
(σ−1−α)

L
2
σ

τ′(σ−1−α)(Ω)
, (2.16)

we require

τ = τ(σ, α) =
Nσ

(N − 2)(α+ 1) + 2σ
, i.e.

2

σ
τ ′(σ − 1− α) = 2∗ . (2.17)
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We estimate (2.16) by applying Young’s inequality with
(

2τ ′

2∗ ,
2τ ′

2τ ′−2∗

)

=
(

2τ ′

2∗ ,
τ(N−2)
N−2τ

)

. Then, invoking

Sobolev’s embedding too, we obtain
∫

Ω

F v
2
σ
(σ−1−α) dx ≤

1

2
‖v‖2H1

0 (Ω) + c‖F‖
τ(N−2)
N−2τ

Lτ(Ω) .

Note that, having τ < N
2 , this step makes sense. We gather (2.15)–(2.16) and deduce

‖v‖2H1
0(Ω) ≤ c‖F‖

τ(N−2)
N−2τ

Lτ(Ω) . (2.18)

Now, let 0 < b < 2 and take into account ‖|∇u|b‖L1(Ω). We omit the case b = 2 since it can be dealt in the

same way without passing to the change of variable v = (1 + u)
σ
2 . Then, by Hölder’s inequality with

(

2
b ,

2
2−b

)

,

we have that

∫

Ω

|∇u|b dx =

∫

Ω

|∇v
2
σ |b dx ≤ C

(∫

Ω

|∇v|2 dx

)
b
2
(∫

Ω

v
2
σ

b
2−b

(2−σ) dx

)
2−b
2

. (2.19)

We thus require

b = b(σ) =
Nσ

N − 2 + σ
, i.e.

2

σ

b

2− b
(2− σ) = 2∗ . (2.20)

Note that b < 2 if σ < 2. Thanks to Sobolev’s embedding, the inequality in (2.19) becomes

‖|∇u|b‖L1(Ω) ≤ c‖v‖bH1
0(Ω)‖v‖

b 2−σ
σ

L2∗(Ω)
≤ cS2‖v‖

2b
σ

H1
0(Ω)

.

Recalling (2.18) too and taking F = |∇u|q, we finally get

‖|∇u|b‖L1(Ω) ≤ c‖F‖
τ(N−2)
N−2τ

b
σ

Lτ(Ω) ≤ c‖F‖
τ(N−2)
N−2τ

bq
σ

Lτq(Ω) ≤ c‖|∇u|b‖
τ(N−2)
N−2τ

q
σ

Lτ
q
b (Ω)

.

Then

• we close the estimate taking 1 =
τq

b
. Thus, b

q = τ = Nσ
(N−2)(α+1)−2σ (by (2.17)) from where we deduce

taking into account (2.20)

σ =
(N − 2)(q − 1− α)

2− q
(2.21)

and so

τ =
b

q
=
N(q − 1− α)

q(1− α)
.

• We are within the superlinear setting if and only if

τ(N − 2)

N − 2τ

q

σ
=

q

1 + α
> 1 i.e. q > 1 + α .

Since we want to keep us in a superlinear but still subquadratic setting, we will consider

1 + α < q < 2 ,

which implies that 0 < α < 1. In other words, if α ≥ 1, then we are no longer in a superlinear gradient setting.
The linear one appears when q = 1 + α, while we are in the sublinear setting when q < 1 + α.
We now want to determine the relation between the gradient growth parameter q, the power growth parameter

α and the data assumptions f ∈ Lm(Ω). To this end, we focus on the source term f and consider the simple
problem

{

−∆u = f(x) in Ω ,

u = 0 on ∂Ω ,
(2.22)

where 0 < f ∈ Lm(Ω) with m < N
2 . Now, if we take again

(

(1 + u)σ−1 − 1
)

, with σ < 2 defined in (2.21), as
test function in (2.22) and reason as before, then we find that we need

m(σ) =
Nσ

N + 2σ − 2
i.e. m′(σ − 1) = 2∗

σ

2

Gathering this identity with (2.21), we have

m =
N(q − 1− α)

q − 2α
, i.e. α =

N(q − 1)−mq

N − 2m
.

Therefore, we have informally deduced the need of conditions (2.5), (1.3) and (1.2), respectively.
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2.6. Our starting point. We begin with the following result which provides us of solution to approximating
problems in Section 4. It follows from the results of [25].

Proposition 2.9. Consider two continuous functions g1, g2 : R → (0,+∞) such that g1 ∈ L2/q(R) and
lim

s→±∞
g2(s) = 0, and set g = g1 + g2.

(1) If f ∈ Lm(Ω), with m > N/2, then there exists a solution to (2.1) belonging to H1
0 (Ω) ∩ L

∞(Ω).
(2) If f ∈ LN/2(Ω), then there exists a solution to (2.1) which belongs to H1

0 (Ω)∩L
r(Ω) for all 1 ≤ r <∞.

Proof. Note that the expression G(u) =
∫ u

0
g1(s)

2/q ds defines a real bounded function (due to g1 ∈ L2/q(R)).

Now consider ϕ a Lipschitz–continuous and increasing real function such that ϕ(0) = 0. Taking e
|G(u)|

λ ϕ(u) as
test function, λ as in (2.2), in (2.1), it follows from (2.2), (2.3) and Young’s inequality that

λ

∫

Ω

e
|G(u)|

λ ϕ′(u)|∇u|2 dx+

∫

Ω

|ϕ(u)|g1(u)
2/qe

|G(u)|
λ |∇u|2 dx

≤

∫

Ω

H(x, u,∇u)e
|G(u)|

λ ϕ(u) dx +

∫

Ω

|f(x)|e
|G(u)|

λ ϕ(u) dx

≤

∫

Ω

g1(u)ϕ(u)e
|G(u)|

λ |∇u|q dx+

∫

Ω

g2(u)ϕ(u)e
|G(u)|

λ |∇u|q dx+

∫

Ω

|f(x)|e
|G(u)|

λ ϕ(u) dx

≤
q

2

∫

Ω

g1(u)
2/q|ϕ(u)|e

|G(u)|
λ |∇u|2 dx+

q

2

∫

Ω

g2(u)
2/q|ϕ(u)|e

|G(u)|
λ |∇u|2 dx

+ (2− q)

∫

Ω

|ϕ(u)|e
|G(u)|

λ dx+

∫

Ω

|f(x)|e
|G(u)|

λ |ϕ(u)| dx .

Simplifying, we deduce

λ

∫

Ω

e
|G(u)|

λ ϕ′(u)|∇u|2 dx ≤
q

2

∫

Ω

g2(u)
2/q|ϕ(u)|e

|G(u)|
λ |∇u|2 dx+

∫

Ω

[|f(x)|+ (2− q)] e
|G(u)|

λ |ϕ(u)| dx .

Denoting h(x) = C [|f(x)|+ (2− q)], being C an upper bound of e
|G(u)|

λ (recall that G is a bounded function),
we have h ∈ Lm(Ω), here m ≥ N/2. Then

λ

∫

Ω

ϕ′(u)|∇u|2 dx ≤
q

2
C

∫

Ω

g2(u)
2/q|ϕ(u)||∇u|2 dx+

∫

Ω

h(x)|ϕ(u)| dx ,

for every Lipschitz–continuous and increasing real function ϕ such that ϕ(0) = 0. Having in mind that
lims→±∞ g2(s)

2/q = 0, an appeal to the proofs of [25, Theorem 2.1 and Theorem 2.2] shows that this esti-
mate leads to existence for any h ∈ Lm(Ω) and consequently for every f ∈ Lm(Ω).

Remark 2.10. A straightforward consequence of the previous result is the existence of solutions for every
α > 0 when m ≥ N/2. This is the reason to assuming m < N

2 .

Remark 2.11. The argument of the above result can also be applied to L1–functions deducing existence of

solution for any f ∈ L1(Ω) when g ∈ L
2
q (R) (see [26], and [24] for its extension to measure data) and as

consequence it is satisfied if α > q/2 . Nevertheless, this bound is not optimal since we will see that this fact
holds for every α > q− 1 (note that q− 1 < q/2 if 1 < q < 2). This gap will be studied in Theorem 4.15 below.

3. A priori estimates

Following [17, 18], the basic idea to get a priori estimates is to choose |Gk(u)|
σ−1 sign(u) as test function

in problem (2.1). Hence, we will consider three cases according to the value of the exponent σ − 1. Roughly
speaking, the easiest case is when 2N

N+2 ≤ m < N
2 (that is σ ≥ 2) since then |Gk(u)|

σ−1 sign(u) can be

directly taken as test function. In the case 1 < m < 2N
N+2 (that is 1 < σ < 2), we have to replace it with

[

(ε+ |Gk(u)|)
σ−1 − εσ−1

]

sign(u) since now the exponent does not define a Lipschitz–continuous function of
Gk(u). (Actually, we cannot take this function in the renormalized formulation, however we may follow the
steps of Remark 2.6 to approximate

[

(ε+ |Gk(u)|)
σ−1 − εσ−1

]

sign(u) and lead to a similar estimate.) The last
case is m = 1 when the exponent vanishes and the test function must be bounded.

3.1. Finite energy solutions.

Proposition 3.1. Let f ∈ Lm(Ω) with 2N
N+2 ≤ m < N

2 and let α = N(q−1)−mq
N−2m . Assume (2.2), (2.3), (2.4) and

that u is a solution to problem (2.1) in the sense of Definition 2.2 such that |u|
σ
2 ∈ H1

0 (Ω). (Observe that it

yields σ = (N−2)(q−1−α)
2−q and m = N(q−1−α)

q−2α .)

Then, if ‖f‖Lm(Ω) is small enough, every such solution u satisfies the following estimate:
∫

Ω

|u|σ−2|∇u|2 dx ≤M ,
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where M is a positive constant which only depends on N , q, m, λ, γ and ‖f‖Lm(Ω).

Proof. Let k > 0. We start taking the test function |Gk(u)|
σ−1 sign(u) in problem (2.1). Then, by (2.3), we

obtain
∫

Ω

[A(x) · ∇u] · ∇(|Gk(u)|
σ−1 sign(u))

≤

∫

Ω

g(u) |Gk(u)|
σ−1 sign(u)|∇u|q dx +

∫

Ω

f |Gk(u)|
σ−1 sign(u) dx . (3.1)

On the left hand side, thanks to (2.2), we get
∫

Ω

[A(x) · ∇u] · ∇(|Gk(u)|
σ−1 sign(u)) ≥ λ

∫

Ω

∇u · ∇
[

|Gk(u)|
σ−1 sign(u)

]

dx

= λ(σ − 1)

∫

Ω

|Gk(u)|
σ−2 |∇Gk(u)|

2 dx = λ
4(σ − 1)

σ2

∫

Ω

|∇|Gk(u)|
σ
2 |2 dx .

Recalling also (2.4), inequality (3.1) becomes

λ
4(σ − 1)

σ2

∫

Ω

|∇|Gk(u)|
σ
2 |2 ≤

∫

Ω

g(u) |Gk(u)|
σ−1 sign(u)|∇u|q dx+

∫

Ω

f |Gk(u)|
σ−1 sign(u) dx

≤ γ

∫

Ω

|Gk(u)|
σ−1

|u|α
|∇u|q dx+

∫

Ω

|f | |Gk(u)|
σ−1 dx = I1 + I2 . (3.2)

We start by performing some simple computations on the gradient term I1.

I1 = γ

∫

Ω

|Gk(u)|
σ−1

|u|α
|∇u|q dx ≤ γ

∫

{|u|>k}

|Gk(u)|
σ−1

|Gk(u)|α
|∇u|q dx

= γ

∫

{|u|>k}

|Gk(u)|
σ−1−α |Gk(u)|

( σ
2 −1)q

|Gk(u)|(
σ
2 −1)q

|∇Gk(u)|
q dx

= γ
2q

σq

∫

Ω

|Gk(u)|
σ−1−α−(σ

2 −1)q|∇|Gk(u)|
σ
2 |q dx ,

where we have used that 0 < α and that |Gk(u)| ≤ |u| hold; we remark that no singularity appears since we are
integrating on the set {|u| > k}. Then, applying Hölder’s inequality, we deduce

I1 ≤ γ
2q

σq

(∫

Ω

|Gk(u)|
[σ−1−α−(σ

2 −1)q] 2
2−q dx

)
2−q
2
(∫

Ω

|∇|Gk(u)|
σ
2 |2 dx

)
q
2

. (3.3)

Now, we will apply Sobolev’s inequality. Indeed, since σ = (N−2)(q−1−α)
2−q , the power of Gk(u) in the first factor

in (3.3) changes to
[

σ − 1− α−
(σ

2
− 1
)

q
] 2

2− q
=
σ

2
2∗ . (3.4)

Therefore, it follows that

I1 ≤ γ
2q

σq

(∫

Ω

|Gk(u)|
σ
2 2

∗

dx

)
2−q
2

‖|Gk(u)|
σ
2 ‖q

H1
0 (Ω)

≤ γ
2q

σq

(

S2
2

∫

Ω

|∇|Gk(u)|
σ
2 |2 dx

)
2∗

2
2−q
2

‖|Gk(u)|
σ
2 ‖q

H1
0(Ω)

= γ
2q

σq
S
2∗ 2−q

2
2 ‖|Gk(u)|

σ
2 ‖

q+2∗ 2−q
2

H1
0 (Ω)

= γ
2q

σq
S
2∗ 2−q

2
2 ‖|Gk(u)|

σ
2 ‖

2N−q
N−2

H1
0 (Ω)

.

On the other hand, we use Hölder’s inequality on I2 to get

I2 =

∫

Ω

|f | |Gk(u)|
σ−1 dx ≤

(∫

Ω

|f |m dx

)
1
m
(∫

Ω

|Gk(u)|
(σ−1)m′

dx

)
1

m′

.

Therefore, having in mind (2.6),

I2 ≤ ‖f‖Lm(Ω)

(∫

Ω

|Gk(u)|
σ
2 2

∗

dx

)
1

m′

≤ ‖f‖Lm(Ω)

(

S2
2

∫

Ω

|∇|Gk(u)|
σ
2 |2 dx

)
2∗

2
1

m′

= ‖f‖Lm(Ω)S
2σ−1

σ

2 ‖|Gk(u)|
σ
2 ‖

2σ−1
σ

H1
0 (Ω)

.
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Thus, inequality (3.2) becomes

C1‖|Gk(u)|
σ
2 ‖2H1

0 (Ω) ≤ γC2‖|Gk(u)|
σ
2 ‖

2N−q
N−2

H1
0(Ω)

+ C3‖f‖Lm(Ω)‖|Gk(u)|
σ
2 ‖

2σ−1
σ

H1
0 (Ω)

,

for some positive constants Ci only depending onN , q, λ andm (this one through σ, by (2.5)). This is equivalent
to

C1‖|Gk(u)|
σ
2 ‖

2
σ

H1
0(Ω)

− γC2‖|Gk(u)|
σ
2 ‖

2N−q
N−2−2σ−1

σ

H1
0(Ω)

≤ C3‖f‖Lm(Ω) .

If we denote Yk = ‖|Gk(u)|
σ
2 ‖2

H1
0 (Ω)

and define the function

F (y) = C1y
1
σ − γC2y

N−q
N−2−

σ−1
σ , y ≥ 0 ,

we have obtained

F (Yk) ≤ C3‖f‖Lm(Ω) ∀k > 0 . (3.5)

Note that the continuous function F (y) satisfies F (0) = 0, limy→+∞ F (y) = −∞, it is increasing until reaching
certain y∗ and then it is decreasing, so that it has a maximun M∗ at y∗, i.e., M∗ = F (y∗) = maxy F (y). We
explicitly remark that M∗ depends on γ as well as on q, N , λ and m. Choosing constant

K =
M∗

C3
,

if we require ‖f‖Lm(Ω) < K, then the equation F (y) = C3‖f‖Lm(Ω) < M∗ has two roots:

Y − and Y + , with Y − < y∗ < Y + .

It follows from |u|
σ
2 ∈ H1

0 (Ω), that function k 7→ Yk is continuous and goes to 0 when k → ∞. This fact implies
Yk ≤ Y − for all k > 0, and so

σ2

4

∫

Ω

|Gk(u)|
σ−2|∇Gk(u)|

2 dx =

∫

Ω

|∇|Gk(u)|
σ
2 |2 dx ≤ Y − ,

for all k > 0. Therefore,

∫

Ω

|u|σ−2|∇u|2 dx ≤
4

σ2
Y −.

Remark 3.2. We explicitly point out that our choice m = N(q−1−α)
q−2α and our assumption α > 0 implies

m <
N(q − 1)

q
, so that the range for parameter m is actually 2N

N+2 ≤ m < N(q−1)
q . A simple consequence is

that then q ≥ αN−2
N + 1 + 2

N , which, in particular, yields q > 1 +
2

N
.

If q < α
N − 2

N
+ 1 +

2

N
, then we are allowed to consider data with a lower summability with respect to the

case α = 0.

Remark 3.3. The proof of Proposition 3.1 for the case N(q−1)−mq
N−2m < α < q − 1 is similar to that of the limit

case. The only differences begin in (3.4) since now

β :=
[

σ − 1− α−
(σ

2
− 1
)

q
] 2

2− q
<
σ

2
2∗ .

Therefore, Hölder’s inequality must be applied once again in (3.3):

I1 ≤ γ
2q

σq

(∫

Ω

|Gk(u)|
β dx

)
2−q
2

‖|Gk(u)|
σ
2 ‖q

H1
0 (Ω)

≤ γ
2q

σq
|Ω|(2−q)( 1

2−
β

2∗σ
)

(∫

Ω

|Gk(u)|
σ
2 2∗ dx

)

β(2−q)
2∗σ

‖|Gk(u)|
σ
2 ‖q

H1
0 (Ω)

≤ γ
2q

σq
|Ω|(2−q)( 1

2−
β

2∗σ
)

(

S2
2

∫

Ω

|∇|Gk(u)|
σ
2 |2 dx

)

β(2−q)
2σ

‖|Gk(u)|
σ
2 ‖q

H1
0 (Ω)

= γ
2q

σq
S

β(2−q)
σ

2 |Ω|(2−q)( 1
2−

β

2∗σ
)‖|Gk(u)|

σ
2 ‖

q+β(2−q)
σ

H1
0(Ω)

.

From this point on, we can follow the same proof, we just note that now the constants also depend on α and
|Ω|.
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Remark 3.4. A relevant case occurs when α attains its limit value α = q − 1. Then β = σ and so we have

I1 ≤ γ
2q

σq
S2−q
2 |Ω|

2−q
N ‖ |Gk(u)|

σ
2 ‖2H1

0(Ω) .

A more accurate estimate follows from the Poincaré–Friedrichs inequality. It yields

I1 ≤ γ
2q

σq
(CPF

2 )2−q‖ |Gk(u)|
σ
2 ‖2H1

0 (Ω) .

As a consequence, inequality (3.2) becomes

λ
4(σ − 1)

σ2
‖ |Gk(u)|

σ
2 ‖2H1

0 (Ω) ≤ γ
2q

σq
(CPF

2 )2−q‖ |Gk(u)|
σ
2 ‖2H1

0(Ω) + ‖f‖Lm(Ω)S
2σ−1

σ

2 ‖ |Gk(u)|
σ
2 ‖

2σ−1
σ

H1
0 (Ω)

and an estimate for every f ∈ Lm(Ω) holds if

γ
2q

σq
(CPF

2 )2−q < λ
4(σ − 1)

σ2
.

Hence, we have arrived at the following result.

Proposition 3.5. Let f ∈ Lm(Ω) with 2N
N+2 ≤ m < N

2 and let α = q − 1. Assume (2.2), (2.3), (2.4) and that

u is a solution to problem (2.1) in the sense of Definition 2.2 such that |u|
σ
2 ∈ H1

0 (Ω).
If

γ < λ
22−q

σ2−q(CPF
2 )2−q

(σ − 1) ,

then such a solution u satisfies the following estimate:
∫

Ω

|u|σ−2|∇u|2 dx ≤M ,

for every ‖f‖Lm(Ω), where M is a positive constant which only depends on N , q, m, Ω, λ and γ.

Remark 3.6. Noting that σ − 1 =
N(m− 1)

N − 2m
, it follows that the condition we have found in Proposition 3.5

can be written as

γ < λC2−qN(m− 1)

N − 2m
for C =

2

σCPF
2

.

We point out that letting q go to 2, we obtain the same critical value appearing in [25].

3.2. Renormalized solutions with Lm(Ω) data. In order to show that the parameters involved in all the
cases are adjusted with continuity, the following result is necessary, it allows us to estimate sharply.

Lemma 3.7. Let v be a nonnegative function belonging to W 1,p
0 (Ω) and consider ϕε(v) = (ε + v)ν for ε > 0

and 0 < ν < 1. Then
(

∫

Ω

ϕp∗

ε dx
)1/p∗

≤ Sp

(

A(ε) +

∫

Ω

|∇ϕε|
p dx

)1/p

,

where A is a positive real function such that limε→0 A(ε) = 0.

Proof. First note that ϕε ∈ W 1,p(Ω) since ϕε is defined through a Lipschitz–continuous real function. Now,
extend ϕε to be εν in R

N\Ω. We denote by Br the ball centered at the origin with radius r. Fix 0 < r < R in
such a way that Ω ⊂ Br and consider the cut–off function η ∈W 1,∞(RN ) with 0 ≤ η ≤ 1 defined as

η(x) = 1 x ∈ Br ;

η(x) = 0 x /∈ BR ;

|∇η(x)| = 1
R−r x ∈ BR\Br .

It follows from ϕεη ∈ W 1,p(RN ), that
(

∫

RN

(ϕεη)
p∗

dx
)1/p∗

≤ Sp

(

∫

RN

|∇(ϕεη)|
p dx

)1/p

.

As a consequence,
(

∫

Ω

ϕp∗

ε dx
)1/p∗

=
(

∫

Ω

(ϕεη)
p∗

dx
)1/p∗

≤
(

∫

RN

(ϕεη)
p∗

dx
)1/p∗

≤ Sp

(

∫

RN

|∇(ϕεη)|
p dx

)1/p

= Sp

(

∫

BR\Br

ϕp
ε |∇η|

p dx+

∫

Ω

ηp|∇ϕε|
p dx

)1/p

= Sp

( εpν

(R− r)p
|BR\Br|+

∫

Ω

|∇ϕε|
p dx

)1/p

,

as desired.
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Remark 3.8. We explicitly point out that a similar result holds for the Poincaré–Friedrichs inequality with
CPF

p instead of Sp.

Proposition 3.9. Let f ∈ Lm(Ω) with 1 < m < 2N
N+2 and let α = N(q−1)−mq

N−2m . Assume (2.2), (2.3), (2.4) and

that u is a renormalized solution to problem (2.1) in the sense of Definition 2.3 such that (1+|u|)
σ
2 −1u ∈ H1

0 (Ω).

(Observe that then σ = (N−2)(q−1−α)
2−q and m = N(q−1−α)

q−2α .)

Then, if ‖f‖Lm(Ω) is small enough, every such a solution u satisfies the following estimate:
∫

Ω

(1 + |u|)σ−2|∇u|2 dx ≤M ,

where M is a positive constant which only depends on N , q, m, γ, λ and ‖f‖Lm(Ω).

Proof. Let k > 0 and fix ε such that 0 < ε < min{1, k}. We recall Remark 2.6 and take the test function
Sn,k(u)ϕ, with

Sn,k(u) =

∫ Tn(Gk(u))

0

(ε+ |t|)σ−2 dt =
1

σ − 1

[

(ε+ |Tn(Gk(u))|)
σ−1 − εσ−1

]

sign(u), and ϕ = 1 ,

and so, by the growth condition (2.3),
∫

Ω

[A(x) · ∇u] · ∇Sn,k(u) dx ≤

∫

Ω

g(u) |Sn,k(u)| |∇u|
q dx+

∫

Ω

|f | |Sn,k(u)| dx

=

∫

{|u|>k}

g(u) |Sn,k(u)| |∇u|
q dx+

∫

Ω

|f | |Sn,k(u)| dx ,

since Sn,k(u) vanishes in the set {|u| ≤ k}. On the left hand side we get
∫

Ω

[A(x) · ∇u] · ∇Sn,k(u) dx =

∫

Ω

(ε+ |Tn(Gk(u))|)
σ−2[A(x) · ∇u] · ∇Tn(Gk(u)) dx

≥ λ
4

σ2

∫

Ω

∣

∣∇(ε+ |Tn(Gk(u))|)
σ
2

∣

∣

2
dx

by (2.2).
Therefore, we obtain

λ
4

σ2

∫

Ω

∣

∣∇(ε+ |Tn(Gk(u))|)
σ
2

∣

∣

2
dx ≤

∫

{|u|>k}

g(u)|Sn,k(u)||∇u|
q dx+

∫

Ω

|f | |Sn,k(u)| dx ,

and letting n→ ∞ (which is licit thanks to the σ
2 –power regularity), we have

λ
4

σ2

∫

Ω

|∇ϕk
ε (u)|

2 dx ≤

∫

{|u|>k}

g(u)|Sk(u)||∇u|
q dx+

∫

Ω

|f | |Sk(u)| dx = I1 + I2 , (3.6)

where we have denoted

Sk(u) =
1

σ − 1
(ε+ |Gk(u)|)

σ−1 ,

and

ϕk
ε (u) = (ε+ |Gk(u)|)

σ
2 .

We start making some computations on I1.

I1 ≤ γ

∫

{|u|>k}

|Sk(u)|

|u|α
|∇u|q dx

=
γ

σ − 1

∫

{|u|>k}

(ε+ |Gk(u)|)
σ−1

|u|α
|∇u|q dx

≤
γ

σ − 1

∫

{|u|>k}

(ε+ |Gk(u)|)
σ−1−α|∇Gk(u)|

q dx

owed to α > 0 and the fact that the inequality ε+ |Gk(u)| ≤ |u| holds in {|u| > k}. Thus,

I1 ≤
γ

σ − 1

2q

σq

∫

Ω

(ε+ |Gk(u)|)
σ−1−α 1

(ε+ |Gk(u)|)(
σ
2 −1)q

|∇(ε+ |Gk(u)|)
σ
2 |q dx

=
γ

σ − 1

2q

σq

∫

Ω

(ε+ |Gk(u)|)
σ−1−α−( σ

2 −1)q|∇ϕk
ε (u)|

q dx .

Moreover, applying Hölder’s inequality we arrive at

I1 ≤
γ

σ − 1

2q

σq

(∫

Ω

(ε+ |Gk(u)|)
[σ−1−α−( σ

2 −1)q] 2
2−q dx

)
2−q
2
(∫

Ω

|∇ϕk
ε (u)|

2 dx

)
q
2

. (3.7)
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Since we have choosen σ = (N−2)(q−1−α)
2−q , the power of (ε+ |Gk(u)|) in the first integrand is actually

[

σ − 1− α−
(σ

2
− 1
)

q
] 2

2− q
=
σ

2
2∗ .

Therefore, inequality (3.7) becomes

I1 ≤
γ

σ − 1

2q

σq

(∫

Ω

|ϕk
ε (u)|

2∗ dx

)
2−q
2

‖∇ϕk
ε(u)‖

q
L2(Ω) .

Thanks to Lemma 3.7, we may perform the following manipulations:

I1 ≤
γ

σ − 1

2q

σq
S
2∗ 2−q

2
2

(∫

Ω

|∇ϕk
ε (u)|

2 dx+A(ε)

)
2∗

2
2−q
2

‖∇ϕk
ε (u)‖

q
L2(Ω)

=
γ

σ − 1

2q

σq
S
2∗ 2−q

2
2

(

‖∇ϕk
ε(u)‖

2
L2(Ω) +A(ε)

)
2∗

2
2−q
2

‖∇ϕk
ε (u)‖

q
L2(Ω)

≤
γ

σ − 1

2q

σq
S
2∗ 2−q

2
2

(

‖∇ϕk
ε(u)‖

2
L2(Ω) +A(ε)

)
2∗

2
2−q
2 + q

2

.

On the other hand, we use Hölder’s inequality in I2 to get

I2 =
1

σ − 1

∫

Ω

|f | (ε+ |Gk(u)|)
σ−1 dx ≤

1

σ − 1

(∫

Ω

|f |m dx

)
1
m
(∫

Ω

(ε+ |Gk(u)|)
(σ−1)m′

dx

)
1

m′

.

Therefore, on account of (2.6) and applying Lemma 3.7 again,

I2 ≤
1

σ − 1
‖f‖Lm(Ω)

(∫

Ω

(ε+ |Gk(u)|)
σ
2 2∗ dx

)
1

m′

=
1

σ − 1
‖f‖Lm(Ω)

(∫

Ω

ϕk
ε (u)

2∗ dx

)
1

m′

≤
1

σ − 1
‖f‖Lm(Ω)S

2∗

m′

2

(∫

Ω

|∇ϕk
ε (u)|

2 dx+A(ε)

)
2∗

2
1

m′

.

Thus, inequality (3.6) becomes

λ
4

σ2
‖∇ϕk

ε (u)‖
2
L2(Ω) ≤ I1 + I2 ≤

γ

σ − 1

2q

σq
S
2∗ 2−q

2
2

(

‖∇ϕk
ε(u)‖

2
L2(Ω) +A(ε)

)
2∗

2
2−q
2 + q

2

(3.8)

+
1

σ − 1
‖f‖Lm(Ω)S

2∗

m′

2

(

‖∇ϕk
ε(u)‖

2
L2(Ω) +A(ε)

)
2∗

2m′

.

If k satisfies Gk(u) = 0, then ‖ϕk
ε (u)‖H1

0 (Ω) = 0 and we are done. So, we will assume that Gk(u) 6= 0 and

consequently limε→0 ‖ϕ
k
ε (u)‖H1

0 (Ω) 6= 0. Then, we rearrange the terms of (3.8), obtaining

λ
4

σ2
‖∇ϕk

ε (u)‖
2− 2∗

m′

L2(Ω) ≤
γ

σ − 1

2q

σq
S
2∗ 2−q

2
2 ‖∇ϕk

ε (u)‖
2∗ 2−q

2 +q− 2∗

m′

L2(Ω)

+B(ε) +
1

σ − 1
‖f‖Lm(Ω)S

2∗

m′

2

(

1 +
A(ε)

‖∇ϕk
ε (u)‖

2
L2(Ω)

)
2∗

2m′

, (3.9)

where

B(ε) =
γ

σ − 1

2q

σq
S
2∗ 2−q

2
2

(

‖∇ϕk
ε (u)‖

2
L2(Ω) +A(ε)

)
2∗

2
2−q
2 + q

2

− ‖∇ϕk
ε (u)‖

2∗ 2−q
2 +q

L2(Ω)

‖∇ϕk
ε (u)‖

2∗

m′

L2(Ω)

defines a positive function which satisfies limε→0 B(ε) = 0. Denoting Yk = ‖|Gk(u)|
σ
2 ‖2H1

0(Ω) and Yk,ε =

‖∇ϕk
ε (u)‖

2
L2(Ω), inequality (3.9) changes to

C1Y
1− 2∗

2m′

k,ε − γC2Y
2∗

2
2−q
2 + q

2−
2∗

2m′

k,ε ≤ B(ε) + C3‖f‖Lm(Ω)

(

1 +
A(ε)

‖∇ϕk
ε (u)‖

2
L2(Ω)

)
2∗

2m′

,

where each Ci denotes a positive constant depending on q, N , λ and m.

Now, we consider again the function

F (y) = C1y
1− 2∗

2m′ − γC2y
2∗

2
2−q
2 + q

2−
2∗

2m′ ,
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(note that 1− 2∗

2m′ =
1
σ and 2∗

2
2−q
q + q

2 −
2∗

2m′ =
N−q
N−2

σ−1
σ ) which has a maximun M∗ achieved at certain y∗, i.e.,

M∗ = F (y∗) = maxy F (y). Choosing constant

K =
M∗

C3
,

and requiring ‖f‖Lm(Ω) < K, there exists ε0 ∈ (0, 1) such that

F (Yk,ε) ≤Mε = B(ε) + C3‖f‖Lm(Ω)

(

1 +
A(ε)

‖∇ϕk
ε (u)‖

2
L2(Ω)

)
2∗

2m′

< M∗

for all 0 < ε < ε0, and so the equation F (y) =Mε has two roots:

Y −
ε and Y +

ε , with Y −
ε < y∗ < Y +

ε .

Observe that the continuity of F leads to the continuity of the function ε 7→ Y −
ε .

From our hypothesis (1 + |u|)
σ
2 −1u ∈ H1

0 (Ω), we have that function k 7→ Yk,ε is continuous and goes to 0 when
k → ∞. Hence, F (Yk,ε) < M∗ implies Yk,ε ≤ Y −

ε for all k > ε and, as a consequence,

σ2

4

∫

Ω

(1 + |Gk(u)|)
σ−2|∇Gk(u)|

2 dx ≤
σ2

4

∫

Ω

(ε+ |Gk(u)|)
σ−2|∇Gk(u)|

2 dx

=

∫

Ω

|∇(ε+ |Gk(u)|)
σ
2 |2 dx ≤ (Y −

ε )2 ,

for all k > ε. We point out that equation F (y) = C3‖f‖Lm(Ω) has two roots which will be denoted by Y − and

Y +, with Y − < Y −
ε < y∗ < Y +

ε < Y +. Due to the continuity of function F and since limε→0Mε = C3‖f‖Lm(Ω),

it follows that limε→0 Y
−
ε = Y −. Hence,

∫

Ω

(1 + |Gk(u)|)
σ−2|∇Gk(u)|

2 dx ≤
4

σ2
(Y −)2

for all k > 0 from where the desired estimate follows.

Remark 3.10. As in Remark 3.3, we may extend the above result to the range N(q−1)−mq
N−2m < α < q − 1 with

a constant depending also on α and |Ω|.

In the same spirit than Proposition 3.5, a consequence of Proposition 3.9 in the limit case α = q − 1 can be
obtained. We also point out that when q tends to 2, it yields the same critical value found in [25].

Proposition 3.11. Let f ∈ Lm(Ω) with 1 < m < 2N
N+2 and let α = q − 1. Assume (2.2), (2.3), (2.4) and that

u is a renormalized solution to problem (2.1) in the sense of Definition 2.3 such that (1 + |u|)
σ
2 −1u ∈ H1

0 (Ω).
If

γ < λ
22−q

σ2−q(CPF
2 )2−q

(σ − 1) ,

then such solution u satisfies the following estimate:
∫

Ω

(1 + |u|)σ−2|∇u|2 dx ≤M ,

where M is a positive constant which only depends on N , q, m, Ω, λ, ‖f‖Lm(Ω) and γ.

Proof. We may follow the same argument of the proof of Proposition 3.9 until we reach the inequality (3.7),
which now is

I1 ≤
γ

σ − 1

2q

σq

(∫

Ω

(ε+ |Gk(u)|)
σ
2 2 dx

)
2−q
2
(∫

Ω

|∇ϕk
ε (u)|

2 dx

)
q
2

.

Thus, the Poincaré–Friedrichs inequality yields

I1 ≤
γ

σ − 1

2q

σq
(CPF

2 )2−q

(∫

Ω

|∇ϕk
ε (u)|

2 dx+A(ε)

)
2−q
2
(∫

Ω

|∇ϕk
ε (u)|

2 dx

)
q
2

and so (3.8) becomes

λ
4

σ2
‖∇ϕk

ε (u)‖
2
L2(Ω) ≤

γ

σ − 1

2q

σq
(CPF

2 )2−q
(

‖∇ϕk
ε (u)‖

2
L2(Ω) +A(ε)

)

+
1

σ − 1
‖f‖Lm(Ω)S

2∗

m′

2

(

‖∇ϕk
ε (u)‖

2
L2(Ω) +A(ε)

)
2∗

2m′

.
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Therefore, the condition γ
σ−1

2q

σq (C
PF
2 )2−q < λ 4

σ2 implies a uniform estimate of ∇ϕk
ε (u) in L

2(Ω;RN ). We then
infer the estimate

∫

Ω

(1 + |u|)σ−2|∇u|2 dx ≤M .

3.3. Renormalized solutions with measure data. We recall here the definition and a few properties of
Marcinkiewicz spaces we are going to employ when dealing with the measure setting.
Let 0 < ζ <∞. Then, the Marcinkiewicz space M ζ(Ω) is defined as the set of measurable functions u : Ω → R

such that

[u ]ζ = sup
k>0

{

kζ |{x ∈ Ω : |u(x)| > k}|
}

1
ζ <∞ .

Furthermore, the following continuous embeddings hold

Lζ(Ω) →֒M ζ(Ω) →֒ Lζ−ω(Ω)

for every ω > 0 such that ζ − ω > 1. More precisely,

‖f‖Lζ−ω(Ω) ≤

(

ζ

ω

)
1

ζ−ω

|Ω|
ω

ζ(ζ−ω) [ f ]ζ (3.10)

holds for all f ∈ M ζ(Ω). We point out that the constant in the embedding depends on ζ, ω and |Ω|, and it
blows up just when ω tends to 0.

Lemma 3.12. Let Ω ⊂ R
N be a bounded open set. Let 1 < p < N and 0 < r < p. Consider u : Ω → R a

measurable and a.e. finite function satisfying

Tℓ(u) ∈ W 1,p
0 (Ω) , for all ℓ > 0 .

Assume that there exists M > 0 such that
∫

Ω

|∇Tℓ(u)|
p ≤ ℓrM , for all ℓ > 0 .

Then

[u ] N
N−p

(p−r) ≤ C1(N, p, r)M
1/(p−r) ; (3.11)

[ |∇u| ] N
N−r

(p−r) ≤ C2(N, p, r)M
1/(p−r) . (3.12)

Proof. Applying Sobolev’s inequality (and denoting by Sp the Sobolev constant), we obtain

|{|u| > ℓ}| ≤ |{|Tℓ(u)| ≥ ℓ}| ≤

∫

Ω

|Tℓ(u)|
p∗

ℓp∗ ≤
Sp∗

p

(∫

Ω |∇Tℓ(u)|
p
)p∗/p

ℓp∗

≤ Sp∗

p M
N

N−p ℓ−
N

N−p
(p−r) ,

from where (3.11) follows.
To see (3.12), perform the following manipulations:

|{|∇u| > j}| ≤ |{|∇Tℓ(u)| > j}|+ |{|u| > ℓ}|

≤

∫

Ω

|∇Tℓ(u)|
p

jp
+ Sp∗

p M
N

N−p ℓ−
N

N−p
(p−r)

≤
ℓrM

jp
+ Sp∗

p M
N

N−p ℓ−
N

N−p
(p−r) .

Since the minimum is obtained for

ℓ∗ =
( N

N − p

p− r

r
Sp∗

p

)
N−p

p(N−r)

j
N−p
N−rM

1
N−r ,

we deduce that

|{|∇u| > j}| ≤ C(N, p, r)M
N

N−r j−
N(p−r)
N−r ,

wherewith (3.12) holds.

Remark 3.13. For further references, it is convenient to explicit the above constant C2(N, p, r). It is easy to
check that

C2(N, p, r) = C(N, p, r)
N−r

N(p−r)

and

C(N, p, r) =





(

N(p− r)

r(N − p)

)

r(N−p)
p(N−r)

+

(

N(p− r)

r(N − p)

)−N(p−r)
p(N−r)



S
Nr

N−r
p .
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We point out that
lim
r→0

C(N, p, r) = 1 .

Theorem 3.14. Assume (2.2), (2.3), (2.4). Let µ ∈ Mb(Ω) and N(q−1)−q
N−2 < α < q − 1. If ‖µ‖Mb(Ω) is small

enough, then every renormalized solution to problem (2.10) in the sense of Definition 2.5 satisfies
∫

Ω

|∇Tj(u)|
2 dx ≤Mj , for all j > 0 , (3.13)

and
∫

Ω

g(u)|∇u|q dx ≤ C0 ,

where M and C0 are positive constants which only depends on N , q, γ, α, λ and ‖µ‖Mb(Ω). Moreover, for each
k > 0, the following estimate holds

∫

{|u|>k}

g(u)|∇u|q dx ≤ Ck ,

where Ck is a constant which only depends on the above parameters of the problem and it satisfies

lim
k→∞

Ck = 0 .

Proof. Most of the proof consists of estimating the gradient term in L1(Ω).
The case we are considering does not states any σ

2 –class as in the previous results (see, however, Remark 3.15
below). We thus want to “recreate” an analogous tool.
We choose

θ =
2qN − sq − 2αN + 2αs−Ns

s(N − q)
,

with s such that

q < s <
2N(q − α)

N + q − 2α
,

in order to have θ > 0. Note that this condition is not restrictive since q > α+ 1 > 2α.
We now analyze the connection among all these parameters. Observe that 0 < 1 − 2α

q holds because of the

restriction α < q
2 , and q < s implies

θ < 1−
2α

q
.

On the other hand, it follows from
N(q − 1)− q

N − 2
< α that

0 < θ <
N(2− s)

s(N − 2)
. (3.14)

Let 0 < j, k and let ε > 0 satisfy ε < k. We start by taking ψ(u) = Tj((ε + |Gk(u)|)
θ − εθ) as test function

in problem (2.10). Notice that ψ(u) vanishes on the set {|u| ≤ k}. Then, thanks to (2.3),
∫

Ω

[A(x) · ∇u] · ∇ψ(u) dx ≤ j

∫

{|u|>k}

g(u)|∇u|q dx+ j‖µ‖Mb(Ω) . (3.15)

On the left hand side we get
∫

Ω

[A(x) · ∇u] · ∇ψ(u) dx =

∫

Ω

[A(x) · ∇u] · ∇Tj((ε+ |Gk(u)|)
θ − εθ) dx

= θ

∫

{(ε+|Gk(u)|)θ−εθ<j}

(ε+ |Gk(u)|)
θ−1[A(x) · ∇u] · ∇Gk(u) dx

≥ θ

∫

{(ε+|Gk(u)|)θ<j}

(ε+ |Gk(u)|)
θ−1[A(x) · ∇u] · ∇Gk(u) dx

≥ λθ

∫

{ε+|Gk(u)|<j
1
θ }

(ε+ |Gk(u)|)
θ−1|∇Gk(u)|

2 dx

= λθ

∫

{(ε+|Gk(u)|)
θ+1
2 <j

θ+1
2θ }

[

(ε+ |Gk(u)|)
θ−1
2 |∇Gk(u)|

]2
dx

= λθ
4

(θ + 1)2

∫

Ω

|∇T
j
θ+1
2θ

(ε+ |Gk(u)|)
θ+1
2 |2 dx ,

due to (2.2).
Thus, invoking (2.4) too, (3.15) becomes

λ
4θ

(θ + 1)2

∫

Ω

|∇T
j
θ+1
2θ

(ε+ |Gk(u)|)
θ+1
2 |2 dx ≤ j

∫

{|u|>k}

g(u)|∇u|q dx+ j‖µ‖Mb(Ω)
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≤ j

{

γ

∫

{|u|>k}

1

|u|α
|∇u|q dx + ‖µ‖Mb(Ω)

}

= j(I + ‖µ‖Mb(Ω)) ,

where I = γ

∫

{|u|>k}

1

|u|α
|∇u|q dx. Moreover, writing ℓ = j

θ+1
2θ and r = 2θ

θ+1 (i.e., θ = r
2−r ), we get

λ
4θ

(θ + 1)2

∫

Ω

|∇Tℓ(ε+ |Gk(u)|)
θ+1
2 |2 dx ≤ ℓr(I + ‖µ‖Mb(Ω)) . (3.16)

We note that it follows from θ <
N(2− s)

s(N − 2)
(see (3.14)) that s <

N(2− r)

N − r
.

We go on by performing some simple computations on the gradient term I.

I = γ

∫

{|u|>k}

1

|u|α
|∇u|q dx ≤ γ

∫

{|u|>k}

(ε+ |Gk(u)|)
−α|∇Gk(u)|

q dx

= γ

∫

{|u|>k}

(ε+ |Gk(u)|)
−α (ε+ |Gk(u)|)

θ−1
2 q

(ε+ |Gk(u)|)
θ−1
2 q

|∇Gk(u)|
q dx

= γ
2q

(θ + 1)q

∫

Ω

(ε+ |Gk(u)|)
−α− θ−1

2 q|∇(ε+ |Gk(u)|)
θ+1
2 |q dx ,

where we have used that 0 < α and that ε + |Gk(u)| ≤ |u| holds; we remark that no singularity appears since

we are integrating on the set {|u| > k}. Then, applying Hölder’s inequality with
(

s
q ,

s
s−q

)

, we deduce

I ≤ γ
2q

(θ + 1)q

(∫

Ω

(ε+ |Gk(u)|)
[−α− θ−1

2 q] s
s−q dx

)
s−q
s
(∫

Ω

|∇(ε+ |Gk(u)|)
θ+1
2 |s dx

)
q
s

. (3.17)

The next step is to estimate I in terms of the function

ϕk
ε (u) = (ε+ |Gk(u)|)

θ+1
2 .

To this end, we will apply Sobolev’s inequality taking into account Lemma 3.7. Indeed, the definition of θ
implies that the power of (ǫ+ |Gk(u)|) in the first integrand in (3.17) changes to

[

1− θ

2
q − α

]

s

s− q
=
θ + 1

2
s∗ . (3.18)

Therefore, estimate (3.17) becomes

I ≤ γ
2q

(θ + 1)q

(∫

Ω

(ε+ |Gk(u)|)
θ+1
2 s∗ dx

)
s−q
s

‖∇ϕk
ε (u)‖

q
Ls(Ω) (3.19)

≤ γ
2q

(θ + 1)q
S
s∗ s−q

s
s

(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)s∗ s−q

s2

‖∇ϕk
ε (u)‖

q
Ls(Ω) .

Going back to inequality (3.16), we deduce

∫

Ω

|∇Tℓ(ϕ
k
ε (u))|

2 dx

≤ ℓr

[

γ C1(r, s)

(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)s∗ s−q

s2

‖∇ϕk
ε (u)‖

q
Ls(Ω) + C2(r, s)‖µ‖Mb(Ω)

]

,

being

C1(r, s) =
(θ + 1)2−q

22−q

S
s∗ s−q

s
s

λθ
and C2(r, s) =

(θ + 1)2

4θλ
. (3.20)

Note that Ci(r, s), i = 1, 2, continuously depend on r and s (besides depending on N , λ and q). Using Lemma
3.12 it yields

[

|∇ϕk
ε (u)|

]

N(2−r)
N−r

≤ c0(r, s)

[

γ C1(r, s)

(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)s∗ s−q

s2

‖∇ϕk
ε (u)‖

q
Ls(Ω) + C2(r, s)‖µ‖Mb(Ω)

]

1
2−r

,

for some c0(r, s) continuously depending on r and s, besides N .
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Now recall we have taken s < N(2−r)
N−r , so that for each (r, s) there exists a positive constant C0(r, s) continu-

ously depending on r and s, jointly with N and |Ω|, such that

‖∇ϕk
ε (u)‖Ls(Ω) ≤ C0(r, s)

[

|∇ϕk
ε (u)|

]

N(2−r)
N−r

.

Indeed, by (3.10), we have

C0(r, s) =

(

N(2− r)

N(2− r)− s(N − r)

)
1
s

|Ω|
N(2−r)−s(N−r)

sN(2−r) .

Note that C0(r, s) only blows up when s→ N(2−r)
N−r , which is impossible once α is fixed. Hence,

‖∇ϕk
ε (u)‖Ls(Ω) ≤ C0(r, s)

[

|∇ϕk
ε (u)|

]

N(2−r)
N−r

≤ c0(r, s)C0(r, s)

[

γ C1(r, s)

(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)s∗ s−q

s2

‖∇ϕk
ε (u)‖

q
Ls(Ω) + C2(r, s)‖µ‖Mb(Ω)

]

1
2−r

≤ γ
1

2−rC3(r, s)

(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)s∗ s−q

s2
1

2−r

‖∇ϕk
ε (u)‖

q
2−r

Ls(Ω) + C4(r, s)‖µ‖
1

2−r

Mb(Ω)

≤ γ
1

2−rC3(r, s)‖∇ϕ
k
ε (u)‖

(s∗ s−q
s

+q) 1
2−r

Ls(Ω) + C4(r, s)‖µ‖
1

2−r

Mb(Ω) +B(ε) ,

where

B(ε) = γ
1

2−rC3(r, s)

[

(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)s∗ s−q

s2
1

2−r

− ‖∇ϕk
ε (u)‖

s∗ s−q
s

1
2−r

Ls(Ω)

]

‖∇ϕk
ε(u)‖

q
2−r

Ls(Ω)

satisfies limε→0B(ε) = 0. Now, denoting Yk,ε = ‖∇ϕk
ε (u)‖Ls(Ω), we have

Yk,ε − γ
1

2−rC3(r, s)Y
(s∗ s−q

s
+q) 1

2−r

k,ε ≤ C4(r, s)‖µ‖
1

2−r

Mb(Ω) +B(ε) .

We explicitly note that the power of Yk,ε does not depend on either r or s. Indeed, it is straightforward
(

s∗
s− q

s
+ q

)

1

2− r
=
s(N − q)

N − s

1

2− r

and our definitions of θ and r yield

r

2− r
= θ =

2qN − sq − 2αN + 2αs−Ns

s(N − q)
and r =

2qN − sq − 2αN + 2αs−Ns

(N − s)(q − 2α)
,

so that
s(N − q)

N − s

1

2− r
=

2qN − sq − 2αN + 2αs−Ns

r(N − s)
= q − α .

We define the family of functions (r > 0 and q < s < 2N(q−α)
N+q−2α )

Fr,s(y) = y − γ
1

2−rC3(r, s)y
q−α , y > 0 ,

each one satisfying the same properties of that considered in the previous theorems and having a maximum

M∗
r,s at the point y∗r,s. We remark that we are not able to take limits when r → 0 ⇔ θ → 0 ⇔ s → 2N(q−α)

N+q−2α

since in this case the constants C3 and C4 blow up. Choose µ such that

‖µ‖
1

2−r

Mb(Ω) <
M∗

r,s

C4(r, s)
,

for some r > 0 and q < s < 2N(q−α)
N+q−2α . From now on, we fix such parameters r and s. Since limε→0 B(ε) = 0

(note that B(ε) also depends on r and s), it follows that there exists ε0 > 0 such that

Mε := C4(r, s)‖µ‖
1

2−r

Mb(Ω) +B(ε) < M∗
r,s ,

for all 0 < ε < ε0.
Observe that the equation Fr,s(y) =Mε has two roots:

(Y −
ε )r,s and (Y +

ε )r,s , with (Y −
ε )r,s < y∗r,s < (Y +

ε )r,s ,

and the continuity of Fr,s leads to the continuity of the function ε 7→ (Y −
ε )r,s.

Since the function k 7→ Yk,ε is also continuous and goes to 0 when k → ∞, it follows from F (Yk,ε) < M∗ that
Yk,ε ≤ (Y −

ε )r,s for all k > ε. As a consequence,

‖∇ϕk
ε(u)‖Ls(Ω) ≤ (Y −

ε )r,s ,
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and so
(

θ + 1

2

)s ∫

{|u|>k}

|∇u|s

|u|
(1−θ)s

2

dx ≤

(

θ + 1

2

)s ∫

Ω

|∇Gk(u)|
s

(ε+ |Gk(u)|)
(1−θ)s

2

dx ≤ (Y −
ε )r,s

for all k > ε such that ε < 1. Letting ε→ 0, we obtain
∫

{|u|>k}

|∇|u|
θ+1
2 |s dx ≤ (Y −)r,s , (3.21)

for all k > 0. Here (Y −)r,s stands for the smaller root of equation Fr,s(y) = C4(r, s)‖µ‖
1

2−r

Mb(Ω). It is then

straightforward that

lim
k→∞

∫

{|u|>k}

|∇|u|
θ+1
2 |s dx = 0 . (3.22)

Taking into account (2.4) and (3.19), it yields
∫

{|u|>k}

g(u)|∇u|q dx ≤ γ

∫

{|u|>k}

1

|u|α
|∇u|q dx

≤ γ
2q

(θ + 1)q
S
s∗ s−q

s
s

(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)s∗ s−q

s2

‖∇ϕk
ε (u)‖

q
Ls(Ω) ,

and so, letting ε→ 0,

∫

{|u|>k}

g(u)|∇u|q dx ≤ γ
2q

(θ + 1)q
S
s∗ s−q

s
s

(∫

{|u|>k}

|∇|u|
θ+1
2 |s dx

)s∗ s−q

s2
+ q

s

=: Ck .

This is the key estimate we are looking for. Now it is enough to choose C0 = limk→0 Ck (on account of the
estimate (3.21)) and to realise that limk→∞ Ck = 0 (see (3.22)).
It just remains to check that (3.13) holds. We take Tj(u) as test function in problem (2.10). It follows that

λ

∫

Ω

|∇Tj(u)|
2 dx ≤ jγ

∫

Ω

g(u)|∇u|q dx+ j‖µ‖Mb(Ω) ≤ j
(

C0 + ‖µ‖Mb(Ω)

)

and we are done.

Remark 3.15. In contrast to what happens in Proposition 3.1 and Proposition 3.9, in Theorem 3.14 we do not
provide any regularity condition on the solution. It is worth finding the regularity that results in our problem
with measure datum. We point out that it is inadvisable to use (3.21) because the values of θ and s do not
necessarily supply optimal regularity, besides they are not fully determined.
In problems with measure data, the regularity one obtains is

∫

Ω

|∇u|2

(1 + |u|)1+ρ
dx ≤

M

ρ
∀ρ > 0 ,

here M is the same constant stated in (3.13). This inequality is easily deduced by taking

S(u) =

(

1−
1

(1 + |u|)ρ

)

sign(u)

as test function (in the sense of Remark 2.6).

We now turn to analyze the limit case α = q − 1.

Proposition 3.16. Let µ ∈ Mb(Ω) and let α = q − 1. Assume (2.2), (2.3), (2.4) and that u is a renormalized
solution to problem (2.10) in the sense of Definition 2.11.
If there exists q < s < 2 satisfying

γ < λ
(2 − s)2

Nsq−1c0(s)(CPF
s )s−q|Ω|

2−s
N

,

where

c0(s) =





(

Ns

(N − 2)(2− s)

)

(N−2)(2−s)
2(N−2+s)

+

(

Ns

(N − 2)(2− s)

)− Ns
2(N−2+s)



S
N(2−s)
N−2+s

2 , (3.23)

then every such solution u satisfies the following estimate:
∫

Ω

|∇Tk(u)|
2 dx ≤Mk ,

and
∫

{|u|>k}

g(u)|∇u|q dx ≤ Ck ,
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for every k > 0, where M and Ck are positive constants which only depend on N , q, s, λ, Ω, ‖µ‖Mb(Ω) and γ,
and limk→∞ Ck = 0.

Proof. Since we follow a similar argument that that of the previous proof, we just sketch the proof. Take s
such that q < s < 2 and if we define r = 2− s and θ = (2− s)/s (i.e. r = 2θ/(θ + 1)), then 0 < θ < (s− q)/q.
Fix j > 0 and 0 < ε < k, and take again the test function ψ(u) = Tj((ε + |Gk(u)|)

θ − εθ) in problem (2.1).
Arguing as in the previous proof we also obtain (3.16) and (3.17). Nevertheless, we now have

[

1− θ

2
q − q + 1

]

s

s− q
=
θ + 1

2
s

instead of (3.18), and so (3.17) becomes

∫

{|u|>k}

g(u)|∇u|qdx ≤ γ
2q

(θ + 1)q

(∫

Ω

(ε+ |Gk(u)|)
θ+1
2 s dx

)
s−q
s

‖∇ϕk
ε (u)‖

q
Ls(Ω) .

Applying the Poincaré–Friedrichs inequality (recall Lemma 3.7 and Remark 3.8) we deduce that
∫

{|u|>k}

g(u)|∇u|qdx ≤ γ
2q

(θ + 1)q
(CPF

s )s−q
(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)
s−q
s

‖∇ϕk
ε (u)‖

q
Ls(Ω) (3.24)

and then (3.16) leads to
∫

Ω

|∇Tℓ(ϕ
k
ε (u))|

2 dx

≤ ℓr

[

γ
(θ + 1)2−q

λθ22−q
(CPF

s )s−q

(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)s∗ s−q

s2

‖∇ϕk
ε (u)‖

q
Ls(Ω) +

(θ + 1)2

4λθ
‖µ‖Mb(Ω)

]

.

Therefore, recalling that 2− r = s, Lemma 3.12 gives
[

|∇ϕk
ε (u)|

]s

Ns
N−2+s

≤ c0(s)

(

γ
(θ + 1)2−q

λθ22−q
(CPF

s )s−q

(

‖∇ϕk
ε(u)‖

s
Ls(Ω) +A(ε)

)
s−q
s

‖∇ϕk
ε (u)‖

q
Ls(Ω) +

(θ + 1)2

4λθ
‖µ‖Mb(Ω)

)

.

Taking on account Remark 3.13, we deduce that c0(s) is given by (3.23). Now observe that s < Ns
N−2+s and so,

having in mind (3.10), there exists a constant C0(s) > 0 such that

‖∇ϕk
ε (u)‖Ls(Ω) ≤ C0(s)

[

|∇ϕk
ε (u)|

]

Ns
N−2+s

and C0(s) tends to +∞ as s→ 2; indeed,

C0(s) =

(

N

2− s

)
1
s

|Ω|
2−s
Ns .

Hence,

‖∇ϕk
ε (u)‖

s
Ls(Ω) ≤ c0(s)C0(s)

s
[

|∇ϕk
ε (u)|

]s
Ns

N−2+s

≤ c0(s)C0(s)
sγ

(θ + 1)2−q

λθ22−q
(CPF

s )s−q

(

‖∇ϕk
ε (u)‖

s
Ls(Ω) +A(ε)

)
s−q
s

‖∇ϕk
ε (u)‖

q
Ls(Ω)

+ c0(s)C0(s)
s (θ + 1)2

4λθ
‖µ‖Mb(Ω) .

Thus, recalling that θ = (2− s)/s, we have obtained an estimate for

ϕ(u) = (1 + |u|)
θ+1
2 − 1 = (1 + |u|)

1
s − 1

in W 1,s
0 (Ω) if

γ < λ
(2 − s)

sq−1(CPF
s )s−qc0(s)C0(s)s

= λ
(2 − s)2

Nsq−1c0(s)(CPF
s )s−q|Ω|

2−s
N

.

Going back to (3.24), letting ε go to 0 and denoting ϕk(u) = (1 + |Gk(u)|)
θ+1
2 , we obtain

∫

{|u|>k}

g(u)|∇u|qdx ≤ γ
2q

(θ + 1)q
(CPF

s )s−q‖∇ϕk(u)‖sLs(Ω) ≤ γ
2q−s

(θ + 1)q−s
(CPF

s )s−q

∫

{|u|>k}

|∇|u|
θ+1
2 |sdx ,

wherewith
∫

{|u|>k} g(u)|∇u|
qdx ≤ Ck for certain Ck such that limk→∞ Ck = 0.

Finally, since the gradient term is bounded in L1(Ω), it follows that the remaining estimate holds.

21



Remark 3.17. It is worth remarking what happens when s → 2 (i.e. θ → 0). Observe that it is not possible

to choose any θ ∈
(

0, 2−q
q

)

, so that the above proof does not apply. Furthermore, since lims→2 c0(s) = 1, it

follows that

lim
s→2

(2− s)2

Nsq−1c0(s)(CPF
s )s−q|Ω|

2−s
N

= 0 .

Thus, no estimate is obtained for the equation

−∆u = γ
|∇u|2

|u|
+ f(x)

when f ∈ L1(Ω) and γ > 0. This is in total agreement with [25, Proposition 5.1].

3.4. The sublinear case with measure data. When α > q − 1, our problem lies in the sublinear setting.
Then we expect existence of a solution for each datum that is a finite Radon measure. To our knowledge, the
range q − 1 < α ≤ q

2 is not covered in previous papers, so that it will next be studied. We remark that the
above proof can be extended to α satisfying q − 1 < α < q

2 by choosing q
q−α < s < 2. Nevertheless, it does not

work for α = q
2 . Hence, we will use very different test functions in the proof of the following result, which does

not apply Lemma 3.12.

Proposition 3.18. Let µ ∈ Mb(Ω). Assume (2.2), (2.3), (2.4) and that u is a renormalized solution to problem
(2.10) in the sense of Definition 2.5.
If q − 1 < α ≤ q

2 , then every such solution u satisfies the following estimates:
∫

Ω

|∇Tk(u)|
2 dx ≤Mk ,

and
∫

{|u|>k}

g(u)|∇u|q dx ≤ Ck ,

for every k > 0, where M and Ck are positive constants only depending on the parameters of our problem, and
limk→∞ Ck = 0.

Proof. We take

ϕk(u) = 1−
1

(1 + |Gk(u)|)θ

as test function in (2.10); here k > 1 and θ is a positive parameter to be chosen. Then

λθ

∫

{|u|>k}

|∇u|2

(1 + |Gk(u)|)1+θ
dx ≤

∫

{|u|>k}

g(u)|∇u|q dx+ ‖µ‖Mb(Ω) (3.25)

≤ γ

∫

{|u|>k}

|∇u|q

(1 + |Gk(u)|)α
dx+ ‖µ‖Mb(Ω) .

In order to estimate the right hand side, we apply Hölder’s inequality with exponents
(

2
q ,

2
2−q

)

, getting

I =

∫

{|u|>k}

|∇u|q

(1 + |Gk(u)|)α
dx =

∫

{|u|>k}

|∇u|q

[(1 + |Gk(u)|)1+θ]
q
2

(1 + |Gk(u)|)
(1+θ) q

2−α dx

≤

(

∫

{|u|>k}

|∇u|2

(1 + |Gk(u)|)1+θ
dx

)
q
2
(

∫

{|u|>k}

(1 + |Gk(u)|)
(1+θ) q

2−q
−α 2

2−q dx

)
2−q
2

.

Now θ is chosen to satisfy 0 < θ < 1+α− q, so that (1 + θ) q
2−q −α 2

2−q < 1− θ wherewith β := (1−θ)(2−q)
(1+θ)q−2α > 1.

Hölder’s inequality, now with exponents (β, β′), and the Poincaré–Friedrichs inequality lead to

I ≤

(∫

Ω

|∇Gk(u)|
2

(1 + |Gk(u)|)1+θ
dx

)

q
2
(∫

Ω

[

(1 + |Gk(u)|)
1−θ
2

]2

dx

)
2−q
2β

|Ω|
2−q

2β′

≤ |Ω|
2−q

2β′ (CPF
2 )

2−q
β

(∫

Ω

|∇Gk(u)|
2

(1 + |Gk(u)|)1+θ
dx

)

q
2
(∫

Ω

∣

∣

∣∇(1 + |Gk(u)|)
1−θ
2

∣

∣

∣

2

dx+A(1)

)
2−q
2β

≤ |Ω|
2−q

2β′

(

1− θ

2

)
2−q
β

(CPF
2 )

2−q
β

(∫

Ω

|∇Gk(u)|
2

(1 + |Gk(u)|)1+θ
dx

)

q
2
(∫

Ω

|∇Gk(u)|
2

(1 + |Gk(u)|)1+θ
dx+A(1)

)

2−q
2β

.

Going back to (3.25) we obtain

λθ

∫

{|u|>k}

|∇u|2

(1 + |Gk(u)|)1+θ
dx ≤ ‖µ‖Mb(Ω)
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+ γ|Ω|
2−q

2β′

(

1− θ

2

)
2−q
β

(CPF
2 )

2−q
β

(∫

Ω

|∇Gk(u)|
2

(1 + |Gk(u)|)1+θ
dx

)

q
2
(∫

Ω

|∇Gk(u)|
2

(1 + |Gk(u)|)1+θ
dx +A(1)

)

2−q
2β

and it follows from q
2 + 2−q

2β < 1 that there exists M1 > 0 satisfying
∫

Ω

|∇Gk(u)|
2

(1 + |Gk(u)|)1+θ
dx ≤M1 for all k > 1 ,

where M1 only depends on λ, q, γ, α, Ω and ‖µ‖Mb(Ω). As a consequence of the above procedure, we also find
M2 > 0, depending on the same parameters, such that

∫

Ω

|∇Gk(u)|
q

(1 + |Gk(u)|)α
dx ≤M2 for all k > 1 .

A further estimate can be obtained observing that

∫

{|u|>k}

g(u)|∇u|q dx ≤ γ

(

∫

{|u|>k}

|∇u|2

(1 + |Gk(u)|)1+θ
dx

)
q
2
(

∫

{|u|>k}

(1 + |Gk(u)|)
(1+θ) q

2−q
−α 2

2−q dx

)
2−q
2

≤ γ

(∫

Ω

|∇Gk(u)|
2

(1 + |Gk(u)|)1+θ
dx

)

q
2
(∫

Ω

[

(1 + |Gk(u)|)
1−θ
2

]2

dx

)
2−q
2β

|{|u| > k}|
2−q

2β′

≤M3|{|u| > k}|
2−q

2β′ = Ck ,

that holds, at least, for every k > 1.
Taking Tk(u), for some k > 1 fixed, as test function in (2.10), we derive

λ

∫

Ω

|∇Tk(u)|
2 dx ≤ γ

∫

{|u|<k}

|∇u|q|u|1−α dx+ k

∫

{|u|≥k}

g(u)|∇u|q dx+ k‖µ‖Mb(Ω)

≤ γk1−α

∫

Ω

|∇Tk(u)|
q dx+ kCk + k‖µ‖Mb(Ω)

≤ γk1−
q
2

∫

Ω

|∇Tk(u)|
q dx+ kCk + k‖µ‖Mb(Ω) .

Then Young’s inequality implies an estimate of Tk(u) in H
1
0 (Ω) for every k > 1 (and so for every k > 0). We

finally deduce an estimate of the gradient term in L1(Ω). Indeed, fix k > 1, denote ḡk = sup|s|≤k |g(s)| and
split the gradient term as follows

∫

Ω

g(u)|∇u|q dx =

∫

{|u|≤k}

g(u)|∇u|q dx+

∫

{|u|>k}

g(u)|∇u|q dx

≤ ḡk

∫

Ω

|∇Tk(u)|
q dx+ Ck .

Once the gradient term is estimated in L1(Ω), the remaining estimate is easy.

4. Compactness and convergence results

Let us consider the approximating problems






−div [A(x) · ∇un] = H(x, un,∇un) + fn(x) in Ω ,

un = 0 on ∂Ω ,
(4.1)

with fn = Tn(f). Proposition 2.9 implies that there exists at least a solution un ∈ L∞(Ω) ∩H1
0 (Ω) such that

∫

Ω

[A(x) · ∇un] · ∇ϕdx =

∫

Ω

H(x, un,∇un)ϕdx +

∫

Ω

Tn(f(x))ϕdx ∀ϕ ∈ L∞(Ω) ∩H1
0 (Ω). (4.2)

We also handle measure data in Subsection 4.4 but considering different approximating problems for (2.10).
This Section is devoted to check that, up to subsequences, {un}n converges to a solution to problem (2.1).

4.1. The case of solutions with finite energy.

Proposition 4.1. Let f ∈ Lm(Ω) with 2N
N+2 ≤ m < N

2 , α = N(q−1)−mq
N−2m , σ = (N−2)m

N−2m and {un}n be a sequence

of solutions of (4.1). Assume also (2.2), (2.3) and (2.4). Then

{|un|
σ
2 }n is uniformly bounded in H1

0 (Ω) , (4.3)

{un}n is uniformly bounded in H1
0 (Ω) , (4.4)

and
{H(x, un,∇un)un}n is uniformly bounded in L1(Ω) . (4.5)
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Furthermore, up to subsequences, there exists a function u such that

un ⇀ u in H1
0 (Ω) , (4.6)

and

un → u a.e. in Ω . (4.7)

Proof. We apply Proposition 3.1 to (4.1) and deduce (4.3).
Taking ϕ = un in (4.2) and recalling (2.2), (2.3) and (2.4), we get

λ

∫

Ω

|∇un|
2 dx ≤ γ

∫

Ω

|∇un|
q|un|

1−α dx+

∫

Ω

|f ||un| dx.

We apply Hölder’s inequality with indices
(

2
q ,

2
2−q

)

and (m,m′), respectively, on the integrals on the right hand

side obtaining

λ‖un‖
2
H1

0 (Ω) ≤ γ‖un‖
q
H1

0(Ω)

(∫

Ω

|un|
2(1−α)
2−q dx

)
2−q
2

+ ‖f‖Lm(Ω)‖un‖Lm′(Ω)

≤ γ‖un‖
q
H1

0(Ω)

(∫

Ω

|un|
2(1−α)
2−q dx

)
2−q
2

+ |Ω|
1

m′ −
1
2∗ ‖f‖Lm(Ω)‖un‖L2∗(Ω)

≤ γ‖un‖
q
H1

0(Ω)

(∫

Ω

|un|
2(1−α)
2−q dx

)
2−q
2

+ S2|Ω|
1

m′ −
1
2∗ ‖f‖Lm(Ω)‖un‖H1

0 (Ω)

thanks, also, to Lebesgue spaces inclusion (indeed m′ ≤ 2∗ by assumptions) and to Sobolev’s embedding. Then,

twice applications of Young’s inequality with
(

2
q ,

2
2−q

)

and (2, 2) yield to

λ

(

2− q − ε

2

)

‖un‖
2
H1

0(Ω) ≤
2− q

2

γ
2

2−q

λ
q

2−q

∫

Ω

|un|
2(1−α)
2−q dx+

S2
2

2ελ
|Ω|

2
m′ −

2
2∗ ‖f‖2Lm(Ω) . (4.8)

We now take advantage of the power regularity in (4.3), namely: {un}n is bounded in L
2∗σ
2 (Ω). Observe that

1− α =
(N −m)(2− q)

N − 2m
≤
Nm(2− q)

2(N − 2m)
,

owed to m ≥ 2N
N+2 . Hence,

2(1− α)

2− q
≤

Nm

N − 2m
=

2∗σ

2
,

so that the right hand side of (4.8) is uniformly bounded in n and this means that (4.4) holds. In particular we
deduce (4.6) and (4.7) too.
As far as the L1–bound (4.5) is concerned, it is also a consequence of the inequality

γ

∫

Ω

|∇un|
q|un|

1−α dx ≤ γ‖un‖
q
H1

0 (Ω)

(∫

Ω

|un|
2(1−α)
2−q dx

)
2−q
2

which we already know being bounded.

Proposition 4.2. Let f ∈ Lm(Ω) with 2N
N+2 ≤ m < N

2 , α = N(q−1)−mq
N−2m and {un}n be a sequence of solutions

of (4.1). Assume also (2.2), (2.3) and (2.4). Then,

H(x, un,∇un) is equi–integrable in L1(Ω) . (4.9)

Moreover, up to subsequences, we have

∇un → ∇u a.e. in Ω. (4.10)

In particular

H(x, un,∇un) → H(x, u,∇u) in L1(Ω). (4.11)

Furthermore,

H(x, u,∇u)u ∈ L1(Ω) (4.12)

and

H(x, u,∇u) ∈ L2/q(Ω).
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Proof. We begin by showing that the sequence {H(x, un,∇un)}n is uniformly bounded in L
2
q (Ω). In fact,

∫

Ω

|H(x, un,∇un)|
2
q dx ≤ ḡ1

2
q

∫

{|un|<1}

|∇un|
2 dx+ γ

2
q

∫

{|un|≥1}

|∇un|
2 dx ≤ (ḡ1

2
q + γ

2
q ) C ,

where ḡ1 = max
{|s|≤1}

|g(s)| <∞, being g(·) a continuous function and for some positive constant C depending on

n (thanks to (4.4)). Therefore, (4.9) follows.
As far as the proof of (4.10) is concerned, we want to apply [6, Theorem 2.1 and Remark 2.2]. To this aim,

we need (4.6), (4.7) as well as the L1–estimate of {H(x, un,∇un)}n.

Having (4.9), (4.7) and (4.10), we are allowed to apply Vitali’s Theorem and conclude with (4.11). Finally
(4.12) follows from Fatou’s Lemma and the a.e. convergences (4.7) and (4.10).

Theorem 4.3. Let f ∈ Lm(Ω) with 2N
N+2 ≤ m < N

2 and α = N(q−1)−mq
N−2m . Assume (2.2), (2.3) and (2.4). Then,

there exists at least a solution u ∈ H1
0 (Ω) of (2.1) in the sense of Definition 2.2 such that H(x, u,∇u) ∈ L2/q(Ω),

H(x, u,∇u)u ∈ L1(Ω) and
∫

Ω

|u|σ−2|∇u|2 dx < M, (4.13)

that is, |u|
σ
2 ∈ H1

0 (Ω).

Proof. We can take the limit in n → ∞ in the approximating formulation (4.2) thanks to (4.6)–(4.11),
recovering (2.7). The regularity (4.13) follows from (4.3).

Remark 4.4. Having in mind Remark 3.3, we have a similar a priori estimate when

N(q − 1)−mq

N − 2m
< α < q − 1 .

Thus, we may follow the proofs of Propositions 4.1 and 4.2 with this new exponent α. We point out that we
only need to check that

2(1− α)

2− q
≤

2∗σ

2
which obviously holds with a bigger α. Therefore, the above existence result applies as well.
The limit case α = q − 1 also holds taking into account the a priori estimate stated in Proposition 3.5.

4.2. The case of renormalized solutions.

Proposition 4.5. Let f ∈ Lm(Ω) with 1 < m < 2N
N+2 , α = N(q−1)−mq

N−2m and {un}n be a sequence of solutions of

(4.1). Assume also (2.2), (2.3) and (2.4). Then, up to subsequences, there exists a function u such that

un → u a.e. in Ω. (4.14)

Proof. We claim that the uniform bound
∫

Ω

(1 + |un|)
σ−2|∇un|

2 dx ≤M (4.15)

holds. Indeed, Proposition 3.9 applies with the same test function evaluated in un.
Now, set 1 < r < 2 to be determined. Then, the above inequality allows us to estimate

∫

Ω

|∇un|
r dx ≤

(∫

Ω

(1 + |un|)
σ−2|∇un|

2 dx

)
r
2
(∫

Ω

(1 + |un|)
r(2−σ)
2−r dx

)
2−r
2

.

Requiring r(2−σ)
2−r = r∗ (that is r(2−σ)

2−r = σ
2 2

∗), we obtain r = Nσ
N+σ−2 > 1 since 1 < σ < 2. Note that

r = m∗ = N(q−1−α)
1−α which, for α = 0, becomes the exponent of the gradient regularity in [18]. Since {un} is

bounded in W 1,r
0 (Ω), an appeal to the compact embedding allows us to conclude (4.14).

Proposition 4.6. Let f ∈ Lm(Ω) with 1 < m < 2N
N+2 , α = N(q−1)−mq

N−2m and {un}n be a sequence of solutions of

(4.1). Assume also (2.2), (2.3) and (2.4). Then,

H(x, un,∇un) is bounded in Lm(Ω) , (4.16)

and
H(x, un,∇un) is equi–integrable in L1(Ω) . (4.17)

Furthermore, up to subsequences, we have

∇un → ∇u a.e. in Ω , (4.18)

H(x, un,∇un) → H(x, u,∇u) in L1(Ω) , (4.19)
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and, for all j > 0.
Tj(un) → Tj(u) strongly in H1

0 (Ω) . (4.20)

Proof. Let us begin with the proof of (4.16). Again, due to the assumption (2.3) on H(x, t, ξ) and to the
regularity of f , we focus only on the gradient term. Observe that, for some γ0 > γ, it holds that

∫

Ω

|g(un)|∇un|
q|b dx ≤ γ0

∫

Ω

|∇un|
qb(1 + |un|)

bq(σ−2)
2

(1 + |un|)αb(1 + |un|)
bq(σ−2)

2

dx

≤ γ0

(∫

Ω

|∇un|
2(1 + |un|)

σ−2 dx

)
qb
2
(∫

Ω

(1 + |un|)
bq(2−σ)
2−bq

− 2αb
2−bq dx

)
bq−2

2

(4.21)

thanks to Hölder’s inequality with
(

2
qb ,

2
2−bq

)

. We impose

bq(2− σ)

2− bq
−

2αb

2− bq
= 2∗

σ

2

and by (4.15), the integral (4.21) is bounded. Now, thanks also to the definitions of σ = σ(q, α) andm = m(q, α),
we deduce

b =
Nσ

q(N − 2 + σ) − α(N − 2)
=
N(q − 1− α)

q − 2α
= m > 1.

Once we have obtained (4.21), then (4.17) follows by observing that
∫

E

|g(un)||∇un|
q dx ≤ |E|

1
m′

(∫

Ω

|g(un)|∇un|
q|

m
dx

)
1
m

for every E ⊂ Ω.

If, in particular, we take E = Ω, then we have proved that the right hand side of (4.1) is uniformly bounded
in L1(Ω) and this fact yields to (4.18) thanks to [4] (see also [23, Theorem 2.1]). Note that the limit function
u satisfies |∇u| ∈ Lr(Ω) with the same r as in Proposition 4.5.

Having (4.17), (4.14) and (4.18), we are allowed to apply Vitali’s Theorem and conclude with (4.19).

The uniform boundedness in (4.15) implies that Tj(un) is uniformly bounded in H1
0 (Ω). We deduce the

compactness of Tj(un) in H
1
0 (Ω) from the compactness of the right hand side in L1(Ω) (see [22] or [19]).

Theorem 4.7. Let f ∈ Lm(Ω) with 1 < m < 2N
N+2 and let α = N(q−1)−mq

N−2m . Assume (2.2), (2.3) and (2.4) as

well. Then, there exists at least a solution u of (2.1) in the sense of Definition 2.3 such that H(x, u,∇u) ∈ Lm(Ω)
and

∫

Ω

(1 + |u|)σ−2|∇u|2 dx < M, (4.22)

that is, (1 + |u|)
σ
2 −1u ∈ H1

0 (Ω).

Proof. Consider in (4.2) a test function of the kind S(un)ϕ, where ϕ ∈ H1(Ω) ∩ L∞(Ω) and S : R → R is a
Lipschitz function having compact support, say supp(S(un)) ⊆ [−j, j], and such that S(u)ϕ ∈ H1

0 (Ω). Then
∫

Ω

[A(x) · ∇un] · ∇(S(un)ϕ) dx =

∫

Ω

H(x, un,∇un)S(un)ϕdx +

∫

Ω

Tn(f)S(un)ϕdx.

Due to the support assumption on S(un), the above equation only takes into account Tj(un), and so we rewrite
the approximating formulation as

∫

Ω

[A(x) · ∇Tj(un)] · ∇ϕS(un) dx+

∫

Ω

[A(x) · ∇Tj(un)] · ∇Tj(un)S
′(un)ϕdx

=

∫

Ω

H(x, un,∇un)S(un)ϕdx+

∫

Ω

Tn(f)S(un)ϕdx.

The convergence of the right hand side follows from (4.19) and (4.14). Furthermore
∫

Ω

[A(x) · ∇Tj(un)] · ∇ϕS(un) dx→

∫

Ω

[A(x) · ∇Tj(u)] · ∇ϕS(u) dx =

∫

Ω

[A(x) · ∇u] · ∇ϕS(u) dx

and
∫

Ω

[A(x) · ∇Tj(un)] · ∇Tj(un)S
′(un)ϕdx→

∫

Ω

[A(x) · ∇Tj(u)] · ∇Tj(u)S
′(u)ϕdx

=

∫

Ω

[A(x) · ∇u] · ∇uS′(u)ϕdx
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thanks to (4.14) and (4.20).
We point out that (4.16) and Fatou’s lemma imply that H(x, u,∇u) ∈ Lm(Ω) holds.
The regularity (4.22) directly follows from Proposition 3.9 applied on (4.1).

Remark 4.8. As in Remark 4.4, we may consider exponents satisfying

N(q − 1)−mq

N − 2m
< α < q − 1 .

Indeed, it is enough to have in mind Remark 3.10 and follow the proofs of Propositions 4.5 and 4.6 as well as
Theorem 4.7 with this new exponent α. We point out that now we have to check that

bq(2− σ)

2− bq
−

2αb

2− bq
≤ 2∗

σ

2

which obviously holds with a bigger exponent b. Therefore, the above existence result applies as well.
The limit case α = q − 1 also holds taking into account the a priori estimate stated in Proposition 3.11.

4.3. The limit case. We have already analyzed the situation when q > N+α(N−2)
N−1 with data f ∈ Lm(Ω)

(m > 1). It remains to study the limit case q = N+α(N−2)
N−1 , where existence of a renormalized solution with

L1–data should be expected. Nevertheless, this is not so as a variant of [18, Example 4.1] shows.

Example 4.9. Let q = N+α(N−2)
N−1 , and consider a nonnegative f ∈ L1(Ω) and a continuous function g : R →

(0,+∞) satisfying g(s) = s−α for s > k0 > 0.
Assume that there exists a renormalized solution u to problem

{

−∆u = g(u) |∇u|q + f(x) in Ω ,

u = 0 on ∂Ω ,

which is obviously nonnegative. Then g(u) |∇u|q ∈ L1(Ω), so that g(k+Gk(u)) |∇Gk(u)|
q ∈ L1(Ω) for all k > 0.

Fixing k > k0, we deduce that
∣

∣

∣∇
(

(k +Gk(u))
1−α

q − k1−
α
q

)∣

∣

∣

q

∈ L1(Ω) ,

that is,

(k +Gk(u))
1−α

q − k1−
α
q ∈W 1,q

0 (Ω) .

Hence, the Sobolev embedding implies (k + Gk(u))
1−α

q ∈ L
Nq

N−q (Ω) and consequently it follows from 0 ≤ u ≤

k +Gk(u) that u ∈ L
N(q−α)
N−q (Ω), where q = N+α(N−2)

N−1 . Observing that

N(q − α)

N − q
=

N

N − 2
,

it yields u ∈ L
N

N−2 (Ω). To get a contradiction, we just need to compare with the unique renormalized solution of
{

−∆v = f(x) in Ω ,

v = 0 on ∂Ω ,

which satisfies 0 ≤ v ≤ u and so v ∈ L
N

N−2 (Ω), but this summability does not hold for a general L1-data.

We may expect existence of solution to problem (2.1) when we take q = N+α(N−2)
N−1 and the datum belongs

to the Orlicz space L1((logL)N ). However, since we are focus in the setting of Lebesgue spaces, we must
assume data f ∈ Lm(Ω) (with m > 1) to deal with this limit case. Observe that it is enough to consider

1 < m < N(q−1)
q due to embeddings in Lebesgue spaces. In this situation we have existence for a problem with

exponent α0 = N(q−1)−mq
N−2m . Owed to Remark 4.8, then we obtain an existence result for

α =
N(q − 1)− q

N − 2
>
N(q − 1)−mq

N − 2m
= α0 .

Therefore, we have proved the following result.

Theorem 4.10. Let f ∈ Lm(Ω) with m > 1 and let σ = m(N−2)
N−2m . Take α = N(q−1)−q

N−2 and assume (2.2),

(2.3) and (2.4). Then, there exists at least a solution u of (2.1) in the sense of Definition 2.3 such that
(1 + |u|)

σ
2 −1u ∈ H1

0 (Ω).
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4.4. The case of measure data. We now discuss the case with measure data. Since we reason, as we have
done before, through approximation techniques, we make some comments on the approximating problem we
are going to consider.
Given µ ∈ Mb(Ω), we choose a sequence {µn}n in L∞(Ω) which approximates µ as in [12, Section 3] and
satisfies

‖µn‖L1(Ω) ≤ ‖µ‖Mb(Ω).

Now consider the following approximating problems of (2.10):
{

−div [A(x) · ∇un] = H(x, un,∇un) + µn in Ω ,

un = 0 on ∂Ω .
(4.23)

We already know that there exists solutions un ∈ H1
0 (Ω)∩L

∞(Ω) to problem (4.23). We recall that the definition
of the sequence {µn}n in [12, Section 3] is made in such a way that the following result holds.

Proposition 4.11. Using the same notation as above, consider a Lipschitz–continuous function S : R → R such
that S′ has compact support and denote by S(+∞) and S(−∞) the limits of S(t) at +∞ and −∞, respectively.
Take ϕ ∈ W 1,r(Ω) ∩ L∞(Ω), with r > N , such that S(u)ϕ ∈ H1

0 (Ω).
If, for some function u,

un(x) → u(x) a.e. in Ω

∇un(x) → ∇u(x) a.e. in Ω

Tk(un)⇀ Tk(u) weakly in H1
0 (Ω) for all k > 0

un → u strongly in W 1,s
0 (Ω) for all 1 ≤ s <

N

N − 1
,

then

lim
n→∞

∫

Ω

S(un)ϕµn dx =

∫

Ω

S(u)ϕdµ0 + S(+∞)

∫

Ω

ϕdµ+
s − S(−∞)

∫

Ω

ϕdµ−
s .

Proposition 4.12. Let µ ∈ Mb(Ω) have a norm small enough. Let N(q−1)−q
N−2 < α < q − 1 and {un}n be a

sequence of solutions of (4.23). Assume also (2.2), (2.3) and (2.4). Then, the a.e. convergences (4.14) and
(4.18), the equi–integrability (4.17) and the strong convergences (4.19), (4.20) and

un → u in W 1,s
0 (Ω) (4.24)

for all 1 ≤ s < N
N−1 .

Proof. Theorem 3.14 implies that
∫

Ω

|∇Tk(un)|
2 dx ≤Mk , for all k > 0 , (4.25)

and then, using Lemma 3.12 we get

|{|∇un| > k}| ≤ C
M

N
N−1

k
N

N−1

, for all k > 0 .

Hence, the sequence {un} is bounded in W 1,s
0 (Ω) for all 1 ≤ s < N

N−1 and there exist u ∈ W 1,s
0 (Ω) and a

subsequence (not relabelled) such that

un ⇀ u weakly in W 1,s
0 (Ω) , (4.26)

un → u in Ls(Ω) ,

un → u a.e. in Ω . (4.27)

Moreover, condition (4.25) also implies that

∇Tk(un)⇀ ∇Tk(u) weakly in L2(Ω;RN ) . (4.28)

To prove the equi-integrability of the right hand side we use that
∫

{|u|>k}

g(un)|∇un|
q dx ≤ Ck for all k > 0 , (4.29)

with limk→∞ Ck = 0 (see Theorem 3.14). Thus, given ε > 0 we may find k0 > 0 such that
∫

{|u|>k}

g(un)|∇un|
q dx ≤

ε

2
for all k ≥ k0 and for all n ∈ N .

Let E ⊂ Ω and let k ≥ k0 be fixed. Denoting ḡk = sup|s|≤k |g(s)|, the following inequalities hold:
∫

E

g(un)|∇un|
q dx =

∫

E∩{|un|≤k}

g(un)|∇un|
q dx+

∫

E∩{|un|>k}

g(un)|∇un|
q dx
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≤ ḡk

∫

E

|∇Tk(un)| dx+

∫

{|u|>k}

g(un)|∇Gk(un)|
q dx

≤ ḡk

(∫

Ω

|∇Tk(un)|
2 dx

)
q
2

|E|1−
q
2 +

ε

2

≤ ḡk (Mk)
q
2 |E|1−

q
2 +

ε

2
,

which goes to 0 when |E| is small and so (4.17) is proved.
On the other hand, taking E = Ω and applying [6, Lemma 1] we deduce (4.24). As a consequence we get

∇un → ∇u a.e. in Ω ,

g(un)|∇un|
q → g(u)|∇u|q in L1(Ω) .

This last convergence implies (4.19). Finally, appealing to the proof of [12, Theorem 3.4, Step 5], we deduce
(4.20).

Theorem 4.13. Assume N(q−1)−q
N−2 < α < q−1, (2.2), (2.3) and (2.4). If µ ∈ Mb(Ω) has a norm small enough,

then there exists at least a renormalized solution to problem (2.10) in the sense of Definition 2.5.

Proof. We take advantage of the results contained in [12, Theorem 2.33].

Proposition 4.12 provides us with u ∈ T 1,2
0 (Ω) (by (4.28)), u ∈ W 1,s

0 (Ω) for all 1 ≤ s < N
N−1 (by (4.26)) and

H(x, u,∇u) ∈ L1(Ω) (by (4.19)).
Now, consider a Lipschitz–continuous function S : R → R such that S′ has compact support and a ϕ ∈

W 1,r(Ω) ∩ L∞(Ω), with r > N , such that S(u)ϕ ∈ H1
0 (Ω). Since S

′ has compact support, it follows that there
exists j > 0 such that S′(un)∇un = S′(un)∇Tj(un). As a consequence, we get

∫

Ω

|∇S(un)|
2dx =

∫

Ω

S′(un)
2|∇Tj(un)|

2dx ≤ ‖S′‖∞

∫

Ω

|∇Tj(un)|
2dx <∞

and so
S′(un)∇Tj(un)⇀ S′(u)∇Tj(u) weakly in L2(Ω;RN ) . (4.30)

Taking S(un)ϕ as test function in problem (4.23), we have
∫

Ω

ϕS′(un)[A(x) · ∇un] · ∇un dx+

∫

Ω

S(un)[A(x) · ∇un] · ∇ϕdx

=

∫

Ω

S(un)ϕH(x, un,∇un) dx +

∫

Ω

S(un)ϕµn dx . (4.31)

The first term on the left hand side can be written as
∫

Ω

ϕS′(un)[A(x) · ∇un] · ∇un dx =

∫

Ω

ϕS′(un)[A(x) · ∇Tj(un)] · ∇Tj(un) dx

Hence, the strong convergence of A(x) · ∇Tj(un) to A(x) · ∇Tj(u) in L
2(Ω;RN ) (due to (4.20)) and the weak

convergence of S′(un)∇Tj(un) to S
′(u)∇Tj(u) (by (4.30)) imply the convergence of this first term to

∫

Ω

ϕS′(u)[A(x) · ∇Tj(u)] · ∇Tj(u) dx =

∫

Ω

ϕS′(u)[A(x) · ∇u] · ∇u dx .

The convergence of the second term follows from (4.27), the boundedness of function S and (4.24).
As far as the right hand side of (4.31) is concerned, the convergence in the first term yields as a consequence

of S(un)
∗
⇀S(u) in L∞(Ω) and (4.19). We deal with the second term applying Proposition 4.11. Therefore, we

can pass to limit in (4.31) obtaining
∫

Ω

ϕS′(u)[A(x) · ∇u] · ∇u dx+

∫

Ω

S(u)[A(x) · ∇u] · ∇ϕdx

=

∫

Ω

S(u)ϕH(x, u,∇u) dx+

∫

Ω

S(u)ϕdµ0 + S(+∞)

∫

Ω

ϕdµ+
s − S(−∞)

∫

Ω

ϕdµ−
s .

Since we have proved one of the equivalent definitions of renormalized solution stated in [12], we are done.

Applying Proposition 3.16 and Proposition 3.18 in Proposition 4.12, instead of Theorem 3.14, it leads to
Theorem 4.14 and Theorem 4.15, respectively.

Theorem 4.14. Let µ ∈ Mb(Ω) and α = q − 1. Assume (2.2), (2.3) and (2.4), and γ is small enough. Then,
there exists at least a renormalized solution to problem (2.10) in the sense of Definition 2.5.

Theorem 4.15. Let µ ∈ Mb(Ω) and q − 1 < α ≤ q
2 . Assume also (2.2), (2.3) and (2.4). Then, there exists at

least a renormalized solution to problem (2.10) in the sense of Definition 2.5.

29



5. Results on further regularity

Throughout this paper, we have shown that the features of our problem can be shortened in the parameters
q and α and illustrated by a (q, α)–plane (recall pictures in the introduction). In this way, the linear setting
corresponds to the line α = q − 1, whereas the superlinear one coincides with a triangle whose sides are that
line, α = 0 and q = 2. In this triangle, points may be grouped according to the suitable summability of sources.
Thus, between lines α = q− 1 and α = N−1

N−2q−
N

N−2 , we may take measure data. In the remaining triangle the

best line that enables data f ∈ Lm(Ω) is given by

α =
N −m

N − 2m
q −

N

N − 2m
, 1 < m <

N

2
.

The existence result also works if we have a bigger α (as was emphasized several times) or if a smaller q is
considered. On the other hand, fixed q and α, if we have more regular data, then existence is guaranteed by
embeddings between Lebesgue spaces. In this case, however, the solution should be more regular as well.
In this Section, we propose an analogous of the bootstrapping results contained in [18] in the case of being g

constant in (2.3), that is, when g(s) = γ for all s ∈ R. It is worth comparing the results between the cases [18,
g(s) ≡ γ] and g(s) ≤ γ

|s|α below. In the constant case it is proved

R1. u ∈ L∞(Ω) if f ∈ Ls(Ω), s > N
2 (see [18, Theorems 3.8 & 4.9 points (i) & Theorem 5.8]), while solutions

to (2.1) are bounded even for f ∈ Lr(Ω) with N
2 < s < r;

R2. u ∈ Ld(Ω), d < ∞, if f ∈ L
N
2 (Ω) (see [18, Theorems 3.8 & 4.9 points (ii) & Theorem 5.8]) while, if

(2.4) is in force, then the same holds for greater values of q;

R3. |u|
t
2 ∈ H1

0 (Ω) if f ∈ Lr(Ω), 2∗ < r < N
2 (see [18, Theorems 3.8 & 4.9 points (iii) & Theorem 5.8]),

while solutions to (2.1) with f ∈ Ls(Ω) and (eventually) 2∗ < s < r < N
2 verify |u|

τ
2 ∈ H1

0 (Ω) for τ > t;

R4. (1 + |u|)
t
2−1u ∈ H1

0 (Ω) if f ∈ Lr(Ω), N(q−1)
q < r ≤ 2∗ (see [18, Theorems 4.9 point (iv) & Theorem

5.8] ), while solutions to (2.1) with f ∈ Ls(Ω) (eventually) for N(q−(1+α))
q−2α < s < N(q−1)

q < r ≤ 2∗ verify

(1 + |u|)
τ
2 −1u ∈ H1

0 (Ω) for τ > t.

In our case, both R1 and R2 directly follow from Proposition 2.9. So we will focus on R3 and R4. Notice
that the assumption (2.4) (which generalise the constant case) in (2.3) allows us to get the same results of the
Theorems quoted above for lower data regularity/greater values of q with respect to [18]. Indeed the values s
in Theorems 5.1 and 5.3 can be taken

N(q − 1− α)

q − 2α
< s <

N(q − 1)

q
.

5.1. The case
(N−2)(q−1−α)

2−q ≥ 2.

Theorem 5.1. Let f ∈ Ls(Ω) with s > m = N(q−1−α)
q−2α and αN−2

N + 2
N + 1 ≤ q < 2 (i.e. m ≥ 2∗ and

σ = m(N−2)
N−2m = (N−2)(q−1−α)

2−q ≥ 2). Assume also (2.2), (2.3) and (2.4). Then, solutions u to (2.1) in the sense

of Definition 2.2, verifying (4.13) and 2∗ < s < N
2 satisfy |u|

τ
2 ∈ H1

0 (Ω), u ∈ L2∗τ (Ω) and

‖|u|
τ
2 ‖H1

0 (Ω) + ‖u‖Ls∗∗(Ω) ≤M for τ =
s(N − 2)

N − 2s
. (5.1)

The constant M depends on q, m, N, λ, γ, α, |Ω| and on ‖f‖Ls(Ω), ‖u‖L1(Ω).

Note that τ > σ = m(N−2)
N−2m since s > m.

Proof. We take ϕn(u) = Φn(Gk(u)) in (2.7) with

Φn(w) =

∫ w

0

|Tn(z)|
τ−2 dz, τ > σ .

Then, the assumptions (2.2), (2.3), (2.4) lead us to

λ

∫

Ω

|∇Gk(u)|
2|Tn(Gk(u))|

τ−2 dx

≤ γ

∫

Ω

|∇Gk(u)|
q|Φn(Gk(u))|

|u|α
dx+

∫

Ω

|f ||Φn(Gk(u))| dx . (5.2)

Observe that

|Φn(w)| ≤ |Tn(w)|
q( τ

2 −1)
∫ w

0

|Tn(ξ)|
(2−q)( τ

2 −1) dξ ≤ |Tn(w)|
q( τ

2 −1)
(∫ w

0

|Tn(ξ)|
τ
2 −1 dξ

)2−q

|w|q−1
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by Hölder’s inequality with indices
(

1
2−q ,

1
q−1

)

. This fact allows us to estimate the first integral on the right

hand side of (5.2) as

I =

∫

Ω

|∇Gk(u)|
q|Φn(Gk(u))|

|u|α
dx

≤

∫

Ω

[

(

|∇Gk(u)|
q|Tn(Gk(u))|

q( τ
2 −1)

)

(

∫ |Gk(u)|

0

|Tn(ξ)|
τ
2 −1 dξ

)2−q

|Gk(u)|
q−1−α

]

dx .

We now apply Hölder’s inequality with three indices
(

2
q ,

2∗

2−q ,
N
2−q

)

in the right hand side above, so we get

I ≤

(
∫

Ω

|∇Gk(u)|
2|Tn(Gk(u))|

τ−2 dx

)
q
2





∫

Ω

(

∫ |Gk(u)|

0

|Tn(ξ)|
τ
2 −1 dξ

)2∗

dx





2−q

2∗

×

(∫

Ω

|Gk(u)|
N(q−1−α)

2−q dx

)
2−q
N

.

Then, since




∫

Ω

(

∫ Gk(u)

0

|Tn(ξ)|
τ
2 −1 dξ

)2∗

dx





2−q

2∗

≤ S
2−q
2

2

(∫

Ω

|∇Gk(u)|
2|Tn(Gk(u))|

τ−2 dx

)
2−q
2

by Sobolev’s embedding and N(q−1−α)
2−q = 2∗ σ

2 (which is due to the definition of σ), we rewrite

I ≤ S
2−q
2

2

(∫

Ω

|∇Gk(u)|
2|Tn(Gk(u))|

τ−2 dx

)(∫

Ω

|Gk(u)|
2∗ σ

2 dx

)
2−q
N

. (5.3)

Take k0 such that

S
2−q
2

2 γ‖|Gk(u)|
σ
2 ‖

2∗

N
(2−q)

L2∗(Ω)
≤
λ

2
∀k ≥ k0,

so that combining (5.2)–(5.3) we obtain

λ

2

∫

Ω

|∇Gk(u)|
2|Tn(Gk(u))|

τ−2 dx ≤

∫

Ω

|f ||Φn(Gk(u))| dx

for k ≥ k0.
Defining ψn(w) =

∫ w

0
|Tn(z)|

τ
2 −1 dz, we are left with the study of

λ

2

∫

Ω

|∇ψn(Gk(u))|
2 dx ≤

∫

Ω

|f ||Φn(Gk(u))| dx ,

and our current aim becomes finding the relation between Φn(·) and ψn(·), in order to obtain an inequality
only involving ψn(·). Using the definition of ψn and considering the sets {|w| < n} and {|w| ≥ n}, we get the
inequality |ψn(w)| ≥

2
τ |Tn(w)|

τ
2 −1|w|. And then, since function |Tn(z)|

τ−2 is non-decreasing, we deduce

|Φn(w)| ≤ |Tn(w)|
τ−2|w| ≤ |Tn(w)|

τ−2|w|

(

|w|

|Tn(w)|

)
τ−2
τ

=
[

|Tn(w)|
τ
2 −1|w|

]2 τ−1
τ

.

Hence,

|Φn(w)| ≤ c|ψn(w)|
2 τ−1

τ

for some constant c, which does not depend on n. This estimate and Hölder’s inequality with (s, s′) provide us
with

λ

2

∫

Ω

|∇ψn(Gk(u))|
2 dx ≤ c

∫

Ω

|f ||ψn(Gk(u))|
2 τ−1

τ dx

≤ c‖f‖Ls(Ω)

(∫

Ω

|ψn(Gk(u))|
2s′ τ−1

τ dx

)
1
s′

. (5.4)

Now, by Sobolev’s embedding and since the definition of τ implies 2s′ τ−1
τ = 2∗, we obtain

λ

2S2

(∫

Ω

|ψn(Gk(u))|
2∗ dx

)
2
2∗

−2 τ−1
2∗τ

≤ c‖f‖Ls(Ω) . (5.5)

We point out that 2
2∗ − 2 τ−1

2∗τ = 2
2∗τ > 0. Then we let n→ ∞ in (5.5) getting u ∈ L2∗ τ

2 (Ω).

We are now allowed to consider the limit n→ ∞ in (5.4), deducing |u|
τ
2 ∈ H1

0 (Ω).
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Remark 5.2. The dependence of M in (5.1) on ‖u‖L1(Ω) follows from the following fact.
Let us come back to (3.5). Recalling that the integral in the right hand side of (3.1) is evaluated over {|u| > k}
and proceeding as in the proof of Proposition 3.1, we get the same results with C3‖|f |χ{|u|>k}‖Lm(Ω) instead of
C3‖f‖Lm(Ω). Thus, we rewrite (3.5) as

F (Yk) ≤ C3‖|f |χ{|u|>k}‖Lm(Ω) ∀k > 0 .

Observe that Hölder’s inequality gives

C3‖|f |χ{|u|>k}‖Lm(Ω) ≤ C3‖f‖Ls(Ω)

(

‖u‖L1(Ω)

k

)

s−m
sm

and this value will be less than M∗ for k large enough. This fact implies that the constants M in Proposition
3.1 depend (in this case) on ‖u‖L1(Ω) too.

5.2. The case 1 < (N−2)(q−1−α)
2−q < 2.

Theorem 5.3. Let f ∈ Ls(Ω) with s > m = N(q−1−α)
q−2α and 1 + 1

N−1 + αN−2
N−1 < q < αN−2

N + 2
N + 1 (i.e.

1 < m < 2∗ and 1 < σ = m(N−2)
N−2m = (N−2)(q−1−α)

2−q < 2). Then, solutions u to (2.1) in the sense of Definition

2.3, verifying (4.22) and

(i) 2∗ ≤ s < N
2 satisfy |u|

τ
2 ∈ H1

0 (Ω), u ∈ L2∗ τ
2 (Ω) and

‖|u|
τ
2 ‖H1

0 (Ω) + ‖u‖
L2∗ τ

2 (Ω)
≤M for τ =

s(N − 2)

N − 2s
≥ 2 > σ ;

(ii) m < s < 2∗ satisfy (1 + |u|)
τ
2 −1u ∈ H1

0 (Ω), |∇u| ∈ Ls∗(Ω) and

‖(1 + |u|)
τ
2 −1u‖H1

0 (Ω) + ‖|∇u|‖Ls∗(Ω) ≤M for τ =
s(N − 2)

N − 2s
∈ (σ, 2) . (5.6)

The constants M above depend on q, s, N, λ, γ, α, |Ω| and on ‖f‖Ls(Ω), ‖u‖L1(Ω).

Here, cases (i) and (ii) differ in how the interval (σ,∞) is split by the parameter τ as τ ≥ 2(> σ) and
σ < τ < 2, respectively.
Proof. First consider a function Φ ∈W 1,∞(R) satisfying

0 ≤ Φ′(w) ≤ L(1 + |w|)σ−2, L > 0 , (5.7)

and

|Φ(w)| ≤ C(Φ′(w))
q
2

∫ |w|

0

(Φ′(z))
2−q
2 dz, C > 0 . (5.8)

We remark that Hölder’s inequality yields

|Φ(w)| ≤ C(Φ′(w))
q
2

∫ |w|

0

(Φ′(z))
2−q
2 dz ≤ C(Φ′(w))

q
2

[

∫ |w|

0

(Φ′(z))
1
2 dz

]2−q

|w|q−1 . (5.9)

We take Φ(Gk(u)) as test function. Note that the condition (5.7) is needed in order to make the test function
admissible. Recalling (2.2), (2.3) and (2.4), we have

λ

∫

Ω

Φ′(Gk(u))|∇Gk(u)|
2 dx ≤

∫

Ω

g(Gk(u))|∇Gk(u)|
qΦ(Gk(u)) dx+

∫

Ω

|f ||Φ(Gk(u))| dx . (5.10)

We use (5.9) and Hölder’s inequality with indices
(

2
q ,

2∗

2−q ,
N

2−q

)

to estimate the integral involving the gradient

term in the right hand side as
∫

Ω

g(u)|∇Gk(u)|
qΦ(Gk(u)) dx ≤ γ

∫

Ω

|∇Gk(u)|
q

|u|α
Φ(Gk(u)) dx

≤ Cγ

∫

Ω

|∇Gk(u)|
q(Φ′(Gk(u)))

q
2

(

∫ |Gk(u)|

0

(Φ′(z))
1
2 dz

)2−q

|Gk(u)|
q−1−α dx

≤ Cγ

(∫

Ω

|∇Gk(u)|
2Φ′(Gk(u)) dx

)
q
2





∫

Ω

(

∫ |Gk(u)|

0

(Φ′(z))
1
2 dz

)2∗

dx





2−q

2∗

×

(∫

Ω

|Gk(u)|
N(q−1−α)

2−q dx

)
2−q
N

≤ CγS2−q
2

(∫

Ω

|∇Gk(u)|
2Φ′(Gk(u)) dx

)(∫

Ω

|Gk(u)|
σ
2 2∗ dx

)
2−q
N

,
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thanks to Sobolev’s embedding too. Now we choose k0 such that

γCS2−q
2 ‖|Gk(u)|

σ
2 ‖

2∗(2−q)
N

L2∗(Ω)
≤
λ

2
∀k ≥ k0 .

Going back to (5.10), we have found that

λ

2

∫

Ω

|∇Gk(u)|
2Φ′(Gk(u)) dx ≤

∫

Ω

|f ||Φ(Gk(u))| dx . (5.11)

If τ ≥ 2, we argue as in Theorem 5.1. Instead, if τ < 2, we set

Φ(w) =

∫ w

0

(1 + |z|)σ−2(1 + |Tn(z)|)
τ−σ dz .

It is straightforward that Φ satisfies (5.7). We are showing that (5.8) holds as well. To this end, we study the
limits at 0 and at +∞:

lim
w→0

|Φ(w)|

(Φ′(w))
q
2

∫ |w|

0
(Φ′(z))

2−q
2 dz

=
τ(2 − q) + 2(q − 1)

2(τ − 1)
.

lim
w→+∞

|Φ(w)|

(Φ′(w))
q
2

∫ |w|

0 (Φ′(z))
2−q
2 dz

=
σ(2 − q) + 2q(q − 1)

2(σ − 1)
.

Hence, (5.8) follows. We also consider

ψ(w) =

∫ w

0

(1 + |z|)
σ−2
2 (1 + |Tn(z)|)

τ−σ
2 dz

with τ = s(N−2)
N−2s > σ = m(N−2)

N−2m (i.e. τ2∗ = (2τ − 1)s′ as in Theorem 5.1).
We are now considering the function

w 7→
|Φ(w)|

|Ψ(w)|2
τ−1
τ

to check that it is bounded. It is easy to see that this quotient defines an even function which is increasing in
{0 ≤ w ≤ n} and decreasing in {w > n}. Since

lim
w→∞

∫ w

0
(1 + z)τ−2dz

[

∫ w

0
(1 + z)

τ−2
2 dz

]2 τ−1
τ

=
(τ

2

)2 τ−1
τ 1

τ − 1
, (5.12)

it follows that

|Φ(w)| ≤ c|Ψ(w)|2
τ−1
τ

for certain constant c not depending on n. Observe that the choice of the exponent involving τ in (5.12) is
justified to argue as in Theorem 5.1. Indeed, an analogous inequality as (5.4) can be recovered reasoning in a
similar way.
We just remark that the regularity (1 + |u|)

τ
2 −1u ∈ H1

0 (Ω) in point (ii) implies that

∫

Ω

|∇u|s
∗

dx ≤

(∫

Ω

|∇u|2(1 + |u|)τ−2 dx

)
s∗

2
(∫

Ω

(1 + |u|)2
∗ τ

2 dx

)
2−s∗

2

,

so (5.6) follows.

Remark 5.4. An analogous of Remark 5.2 holds in this case.

5.3. The case
(N−2)(q−1−α)

2−q < 1. In this Subsection, we consider the case m = 1 = σ.

Theorem 5.5. Let f ∈ Ls(Ω) with s > 1 and N(q−1)−q
N−2 < α < q − 1 (i.e. α + 1 < q < 1 + 1

N−1 + αN−2
N−1).

Assume also (2.2), (2.3), (2.4) and that u is a solution u to (2.10) in the sense of Definition 2.3. Then

(i) 2∗ ≤ s < N
2 satisfy |u|

τ
2 ∈ H1

0 (Ω), u ∈ L2∗ τ
2 (Ω) and

‖|u|
τ
2 ‖H1

0(Ω) + ‖u‖
L2∗ τ

2 (Ω)
≤M for τ =

s(N − 2)

N − 2s
≥ 2 ;

(ii) 1 < s < 2∗, then (1 + |u|)
τ
2 −1u ∈ H1

0 (Ω), |∇u| ∈ Ls∗(Ω) and

‖(1 + |u|)
τ
2 −1u‖H1

0 (Ω) + ‖|∇u|‖Ls∗(Ω) ≤M for τ =
s(N − 2)

N − 2s
∈ (1, 2) .

The constants M above depend on q, s, N, λ, γ, α, |Ω| and on ‖f‖Ls(Ω), ‖u‖L1(Ω).
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Proof. The proof follows the same argument of Theorem 5.3, although some changes in the case 1 < τ < 2
must be done. Indeed, we first choose 0 < ρ < 1 and consider the function given by

Φ(w) =

∫ w

0

(1 + |Tn(z)|)
τ−1+ρ

(1 + |z|)1+ρ
dz ,

which is a bounded function and so can be taken as test function (in the sense of Remark 2.6). It can be checked
as in Theorem 5.3 that it also satisfies condition (5.8). Arguing as above, we arrive at the inequality
∫

Ω

g(u)|∇Gk(u)|
qΦ(Gk(u)) dx ≤

Cγ

(∫

Ω

|∇Gk(u)|
2Φ′(Gk(u)) dx

)(∫

Ω

|Gk(u)|
N(q−1−α)

2−q dx

)
2−q
N

.

Next, we use the fact that
N(q − 1− α)

2− q
<

2∗

2

and take into account Remark 3.15. So, an inequality similar to (5.11) may be deduced.
On the other hand, we set

Ψ(w) =

∫ w

0

(1 + |Tn(z)|)
τ−1+ρ

2

(1 + |z|)
1+ρ
2

dz .

Contrary to what happens in the above theorem, now the function

w 7→
|Φ(w)|

|Ψ(w)|2
τ−1
τ

is increasing in the whole interval [0,+∞). Nevertheless, it is not difficult to find a bound:

τ−1+ρ
ρ(τ−1)(1 + n)τ−1

(

2
τ

)2 τ−1
τ
[

(1 + n)
τ
2 − 1

]2 τ−1
τ

≤
(τ

2

)2 τ−1
τ τ − 1 + ρ

ρ(τ − 1)

[

2
τ
2

2
τ
2 − 1

]2 τ−1
τ

and it does not depend on n. Hence, the analogous of (5.5) follows because 2s′ τ−1
τ = 2∗.

Acknowledgements

The third author has been partially supported by the Spanish Ministerio de Ciencia, Innovación y Universi-
dades and FEDER, under project PGC2018–094775–B–I00.

References

[1] A. Alvino, V. Ferone & A. Mercaldo, Sharp a priori estimates for a class of nonlinear elliptic equations with lower order
terms, Ann. Mat. Pura Appl. (4) 194 (2015), no. 4, 1169–1201.

[2] Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre & J.L. Vázquez,
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VI, Technical report R93023, (1993).

[23] A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data, Houston J.
Math., Vol. 26 (2000), pp. 183-–213.

[24] A. Porretta, Nonlinear equations with natural growth terms and measure data, Electron. J. Differ. Equ. 2002, Conf. 09,
(2002) 183–202.

[25] A. Porretta & S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures
Appl. (9) 85, No 3, (2006), pp. 465–492.

[26] S. Segura de León, Existence and uniqueness for L1 data of some elliptic equations with natural growth, Adv. Differ. Equ.
8, No. 11, (2003) 1377–1408.
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