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EXISTENCE AND COMPARISON RESULTS FOR AN ELLIPTIC

EQUATION INVOLVING THE 1–LAPLACIAN AND L1–DATA

MARTA LATORRE AND SERGIO SEGURA DE LEÓN

Abstract. This paper is devoted to analyse the Dirichlet problem for a non-
linear elliptic equation involving the 1–Laplacian and a total variation term,
that is, the inhomogeneous case of the equation arising in the level set formu-
lation of the inverse mean curvature flow. We study this problem in an open
bounded set with Lipschitz boundary.

We prove an existence result and a comparison principle for non–negative
L1–data. Moreover, we search the summability that the solution reaches when
more regular Lp–data, with 1 < p < N , are considered and we give evidence
that this summability is optimal.

To prove these results, we apply the theory of L∞–divergence–measure
fields which goes back to Anzellotti (1983). The main difficulties of the
proofs come from the absence of a definition for the pairing of a general L∞–
divergence–measure field and the gradient of an unbounded BV –function.
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1. Introduction

Our aim in this paper is to analyze the following Dirichlet problem:

prob-prinprob-prin (1)







−div

(
Du

|Du|

)

+ |Du| = f(x) in Ω ,

u = 0 on ∂Ω ,
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2 M. LATORRE AND S. SEGURA DE LEÓN

where Ω is a bounded open subset of RN with Lipschitz boundary ∂Ω and f is a
non–negative function belonging to L1(Ω). As usual when the 1–Laplacian operator
is considered, the natural energy space to study this problem is BV (Ω), that is, the
space of all functions of bounded variation.

The homogeneous problem, in an unbounded domain, arises in the level set
formulation of the inverse mean curvature flow, namely,

IMCFIMCF (2)







−div

(
Du

|Du|

)

+ |Du| = 0 in Ω ,

u = 0 on ∂Ω ,

u(x) → ∞ as |x| → ∞ .

The inverse mean curvature flow is a one–parameter family of hypersurfaces {Γt}t≥0

whose normal velocity Vn(t) at each time t equals the inverse of its mean curvature
H(t). Given Γ0, the problem is to find F : Γ0 × [0, T ] → R

N such that

e1imce1imc (3)
∂F

∂t
=

ν

H
, t ≥ 0 ,

where ν(t) denotes the unit outward normal to Γt = F (Γ0, t). The level set formu-

lation (2) was introduced in [13] (see also [14, 21]); observe that div
(

Du
|Du|

)

gives

the mean curvature and |Du| yields the inverse of the speed. In the case that Ω
includes a bounded connected component, it produces a sudden phenomenon called
fattening by which this component disappear instantaneously.

If a non–negative source is considered, as in (1), then (3) becomes

∂F

∂t
=

ν

H + source
≤

ν

H
, t ≥ 0,

so that the datum damps the flux. This inhomogeneous inverse mean curvature
flow was studied in [18].

Although the homogeneous problem is not interesting in bounded domains be-
cause it leads to the trivial solution, this does not occur in the non–homogeneous
case since the source can override the fattening phenomenon (at least when f is not
very small). Problem (1) in bounded domains has been considered in [17] for data
f ∈ Lp(Ω), with p > N , seeking bounded solutions, and in [16] when data belong
to the Marcinkiewicz space LN,∞(Ω), looking for unbounded variational solutions.
Existence and uniqueness results have been obtained in both papers for any given
non–negative datum.

It is worth mentioning that the gradient term is essential to get existence and
uniqueness results. In [15] (see also [9, 19] for more general data) it is shown that
there exist solutions to problem







−div

(
Du

|Du|

)

= f(x) in Ω ,

u = 0 on ∂Ω ,

only when data are small enough. On the other hand, uniqueness cannot be ex-
pected since if u is a solution and g is a real increasing smooth function, then
v = g(u) should be a solution as well. Therefore, the total variation term has a
regularizing effect.

Our purpose is to go a step further and study problem (1) when data are merely
integrable functions. This kind of non–variational problems has extensively been



AN EQUATION INVOLVING THE 1–LAPLACIAN AND L1–DATA 3

studied for problems involving the p–Laplacian (1 < p ≤ N). In this framework,
there are two different formulations: that of entropy solution introduced in [4]
(see also [5]) and that of renormalized solution, for which we refer to [10]. Both
approaches systematically use truncations of solutions. In [2], in the framework
of the 1–Laplacian, the authors also introduce a notion of solution by means of
truncations. We follow the same concept, but adapted to our situation. Indeed,
since the regularizing effect of the total variation yields u

∣
∣
∂Ω

= 0, the boundary
condition holds in the sense of traces.

Another feature deriving from the regularizing effect is u ∈ BV (Ω) without
jump part. Nevertheless, this fact does not allow us to define (following Anzellotti,
see [3]) the pairing of a general L∞–divergence–measure vector field z and the
solution u. Hence, truncations must remain in the definition of solution. Instead of
products of the form (z, Du), we have to handle with products such as (z, De−u)
and (e−uz, Du). Beyond these kind of technical complication, the existence theorem
holds as it was expected, and we will only make explicit those parts of the proof
which are different of that for regular data in [16, Theorem 4.3]. Much more
interesting is the comparison principle. We point out that, even in the context of
bounded solutions, its proof is new and simpler than that of the uniqueness result
in [17]. We also investigate solutions when data belong to Lp(Ω), with 1 < p < N ,

finding that the solution lies in L
Np

N−p (Ω). Note that Lebesgue spaces continuously

adjust with the known cases p = 1 (in which u ∈ BV (Ω) ⊂ L
N

N−1 (Ω)) and p = N

(see [16, Proposition 4.7]).
This paper is organized as follows. In section 2 we introduce some definitions

and notation and we also give some preliminaries results that we will need. Among
these results, we foreground Proposition 2.4 for which we supply a new proof. This
proposition is essential to deal with pairings involving functions of the solution (such
as truncations) through Proposition 2.7. Section 3 is devoted to prove the existence
result and the comparison principle. In section 4 we show the best summability
that the solution can get when data belong to Lp(Ω), with 1 < p < N . Finally, in
the last section we show examples of radial solutions, which give evidence that the
obtained regularity is optimal.
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2. Preliminaries

In this section we will introduce some notation and auxiliary results which will
be used throughout this paper. In what follows, we will consider N ≥ 2 and, given a
set E, we will write HN−1(E) to denote its (N−1)–dimensional Hausdorff measure
and |E| its Lebesgue measure.

In this paper, Ω will always stands for an open subset of RN with Lipschitz
boundary. Thus, an outward normal unit vector ν(x) is defined for HN−1–almost
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every x ∈ ∂Ω. We will make use of the usual Lebesgue and Sobolev spaces, denoted
by Lq(Ω) and W 1,p

0 (Ω), respectively (see for instance [6] or [11]).
We recall that for a Radon measure µ in Ω and a Borel set A ⊆ Ω, the measure

µ A is defined by (µ A)(B) = µ(A ∩B) for any Borel set B ⊆ Ω.
The truncation function will be use throughout this paper. Given k > 0, it is

defined by

truntrun (4) Tk(s) = min{|s|, k} sign(s) ,

for all s ∈ R.

2.1. Functions of bounded variation. The natural energy space to study prob-
lems involving the 1–Laplacian is the space of all functions of bounded variation,
that is, functions u : Ω → R belonging to L1(Ω) whose derivative in the sense of
distributions Du is a Radon measure with finite total variation. This space will be
denoted by BV (Ω).

Let u ∈ BV (Ω), we can decompose the Radon measure Du into its absolutely
continuous part and its singular part with respect to the Lebesgue measure: Du =
Dau+Dsu. We denote by Su the set of all x ∈ Ω which are not Lebesgue points,
that is, x 6∈ Su if there exists ũ(x) such that

lim
ρ↓0

1

|Bρ(x)|

∫

Bρ(x)

|u(y)− ũ(x)| dy = 0 .

We say that x ∈ Ω is an approximate jump point of u, denoted by x ∈ Ju, if
there exist two real numbers u+(x) > u−(x) and νu(x) with |νu(x)| = 1 such that

lim
ρ↓0

1

|B+
ρ (x, νu(x))|

∫

B
+
ρ (x,νu(x))

|u(y)− u+(x)| dy = 0 ,

lim
ρ↓0

1

|B−
ρ (x, νu(x))|

∫

B
−

ρ (x,νu(x))

|u(y)− u−(x)| dy = 0 ,

where
B+

ρ (x, νu(x)) = {y ∈ Bρ(x) | 〈y − x, νu(x)〉 > 0}

and

B−
ρ (x, νu(x)) = {y ∈ Bρ(x) | 〈y − x, νu(x)〉 < 0} .

We know that Su is countably HN−1–rectifiable and HN−1(Su\Ju) = 0 by the
Federer–Vol’pert Theorem (see [1, Theorem 3.78]). Moreover, we also know

Du Ju = (u+ − u−)νuH
N−1 Ju .

Using Su and Ju, we can split Dsu in its jump part Dju and its Cantor part Dcu,
defined by

Dju = Dsu Ju and Dcu = Dsu (Ω\Su) .

Then, we have

Dju = (u+ − u−)νuH
N−1 Ju .

In addition, if x ∈ Ju, then νu(x) = Du
|Du| (x) where Du

|Du| is the Radon–Nikodým

derivative of Du with respect to its total variation |Du|.
The precise representative u∗ : Ω \ (Su \ Ju) → R of u is defined by

u∗(x) =







ũ(x) if x ∈ Ω \ Su ,
u−(x) + u+(x)

2
if x ∈ Ju .
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For the sake of simplicity, most of the time we will denote both function and its
precise representative by u.

We will use the Chain Rule, but only when u is a bounded variation function
without jump part.

Chain-Rule Proposition 2.1. Let u ∈ BV (Ω) with Dju = 0 and let f be a Lipschitz function

in Ω. Then, v = f ◦ u belongs to BV (Ω) and Dv = f ′(u)Du, so that Djv = 0.

For further information about bounded variation functions we refer to [1], [12]
and [22].

2.2. L∞–divergence–measure fields. We will denote by DM∞(Ω) the set of all
vector fields z ∈ L∞(Ω;RN ) such that div z is a Radon measure in Ω with finite

total variation. Following [2], we will use these vector fields to give a sense to
Du

|Du|
in our equation, even if Du is a Radon measure and, moreover, if it vanishes in
a zone of the domain. More concretely, we seek for a vector field z ∈ L∞(Ω;RN )
satisfying ‖z‖∞ ≤ 1 and (z, DTk(u)) = |DTk(u)| for all k > 0.

Let z ∈ DM∞(Ω) and w ∈ BV (Ω) ∩ C(Ω) ∩ L∞(Ω); for every ϕ ∈ C∞
0 (Ω) we

define the functional

〈(z, Dw), ϕ〉 = −

∫

Ω

wϕdiv z−

∫

Ω

w z · ∇ϕdx .

It was proved in [3] that this distribution has order 0 since satisfies

|〈(z, Dw), ϕ〉| ≤ ‖ϕ‖∞‖z‖∞

∫

Ω

|Dw| .

Thus, it is actually a Radon measure with finite total variation and the following
inequality holds

des-Andes-An (5) |(z, Dw)| ≤ ‖z‖∞|Dw|

as measures in Ω. In particular, the Radon measure (z, Dw) is absolutely continuous
with respect to |Dw|. Denoting by

θ(z, Dw, ·) : Ω → R

the Radon–Nikodým derivative of (z, Dw) with respect to |Dw|, it follows that
∫

B

(z, Dw) =

∫

B

θ(z, Dw, x) |Dw| for all Borel sets B ⊂ Ω ,

and
‖θ(z, Dw, ·)‖L∞(Ω,|Dw|) ≤ ‖z‖∞ .

Moreover, if f : R → R is a Lipschitz continuous increasing function, then

E1paring12E1paring12 (6) θ(z, D(f ◦ w), x) = θ(z, Dw, x) |Dw|–a.e. in Ω .

The Anzellotti theory also provides the definition of a weak trace on ∂Ω to the
normal component of any vector field z ∈ DM∞, denoted by [z, ν]. This weak
trace satisfies ‖[z, ν]‖∞ ≤ ‖z‖∞. Relating the pairing (z, Dw) and the weak trace
[z, ν] a Green’s formula holds.

Green Theorem 2.2. If z ∈ DM∞ and w ∈ BV (Ω) ∩C(Ω) ∩ L∞(Ω), then we have
∫

Ω

w div z+

∫

Ω

(z, Dw) =

∫

∂Ω

w [z, ν] dHN−1 .
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As mentioned, for a general z ∈ DM∞(Ω), Anzellotti’s theory assumes that
w ∈ BV (Ω) ∩ C(Ω) ∩ L∞(Ω) in order to define (z, Dw) and to prove a Green’s
formula. This theory was generalized to consider w ∈ BV (Ω) ∩ L∞(Ω) in [8] using
a different approach, and in [7] and [20] following the same definitions of Anzellotti.
Indeed, given z ∈ DM∞(Ω) and w ∈ BV (Ω) ∩ L∞(Ω); for every ϕ ∈ C∞

0 (Ω) we
may define the functional

〈(z, Dw), ϕ〉 = −

∫

Ω

w∗ ϕdiv z−

∫

Ω

w z · ∇ϕdx .

We explicitly mention that the precise representative w∗ is summable with respect
to div z and that this definition depends on the chosen representative of the function.

Now, we present some results which we use several times in the sequel. Next
proposition was proved in [17].

Prop2.3 Proposition 2.3. Let z ∈ DM∞(Ω) and let u,w ∈ BV (Ω) ∩ L∞(Ω) be functions

such that Dju = Djw = 0. Then

(w z, Du) = w∗(z, Du) as Radon measures in Ω .

In principle, it is not clear that (6) holds in the case that z ∈ DM∞(Ω) and
u ∈ BV (Ω) ∩ L∞(Ω). However, we will see that (6) holds if we assume the jump
part Dju vanishes. This result was proved in [17] but an extra hypothesis is needed
in the proof, namely, the set of discontinuities of u is HN−1–null. We next prove
this result under the general assumption Dju = 0. Following Anzellotti, the main
ingredient to prove the above formula is a “slicing” result that links the measure
(z, Du) with the measures (z, Dχ

Eu,t
), where Eu,t := {x ∈ Ω : u(x) > t}.

rebanada Proposition 2.4. Let z ∈ DM∞(Ω) and consider u ∈ BV (Ω)∩L∞(Ω) with Dju =
0. Let Eu,t := {x ∈ Ω : u(x) > t}. Then for all ϕ ∈ C∞

0 (Ω), the function

t 7→ 〈(z, Dχ
Eu,t

), ϕ〉 is L1–measurable and

e2mejorae2mejora (7) 〈(z, Du), ϕ〉 =

∫ +∞

−∞

〈(z, Dχ
Eu,t

), ϕ〉 dt .

Proof. First we observe that we may assume u ≥ 0; if not, we consider the function
u+ ‖u‖∞.

We also point out that for every measurable set E ⊂ Ω having finite perimeter,
the condition |div z|(∂∗E) = 0 implies

χ
E
div z = χ∗

E
div z .

As a consequence, we obtain the following claim:
If E ⊂ Ω is a measurable set with finite perimeter such that |div z|(∂∗E) = 0, then

〈(z, Dχ
E
), ϕ〉 = −

∫

E

ϕdiv z−

∫

E

z · ∇ϕ

for all ϕ ∈ C∞
0 (Ω).

In what follows, recall that u stands for the precise representative of the BV –
function. Observe that, thanks to the coarea formula, the level sets Eu,t have finite
perimeter for L1–almost all t ∈ R. Moreover, since Dju = 0, it follows that

HN−1 (∂∗Eu,t ∩ ∂
∗Eu,s) = 0 for s 6= t .
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Then, applying |div (z)| ≪ HN−1 (by [8, Proposition 3.1]), we have

|div (z)| (∂∗Eu,t ∩ ∂
∗Eu,s) = 0 if s 6= t .

Therefore, there exists A ⊂ R numerable such that

|div (z)| (∂∗Eu,t) = 0 if t ∈ R\A .

In other words, we have seen that |div (z)| (∂∗Eu,t) = 0 for L1–almost all t > 0.
Thus, our claim implies that if ϕ ∈ C∞

0 (Ω), then

ec:1ec:1 (8) 〈(z, Dχ
Eu,t

), ϕ〉 = −

∫

Eu,t

ϕdiv z−

∫

Eu,t

z ·∇ϕdx , for L1–almost all t > 0 .

Considering ϕ ∈ C∞
0 (Ω), we apply the slicing formula for integrable functions

(see, for instance, [22, Lemma 1.5.1]) and (8) to get that the function

t 7→ −

∫

Eu,t

ϕdiv z dt−

∫

Eu,t

z · ∇ϕdx

is L1–measurable and

〈(z, Du), ϕ〉 = −

∫

Ω

u∗ϕdiv z−

∫

Ω

u z · ∇ϕ

=

∫ ∞

0

[

−

∫

Eu,t

ϕdiv z dt−

∫

Eu,t

z · ∇ϕdx

]

dt

=

∫ ∞

0

〈(z, Dχ
Eu,t

), ϕ〉 dt ,

as desired. �

rebanada1 Proposition 2.5. Let z ∈ DM∞(Ω) and consider u ∈ BV (Ω)∩L∞(Ω) with Dju =
0. Let Eu,t := {x ∈ Ω : u(x) > t}. Then for all Borel set B ⊂ Ω, the function

t 7→
∫

B
(z, Dχ

Eu,t
) is L1–measurable and

e3mejorae3mejora (9)

∫

B

(z, Du) =

∫ +∞

−∞

[∫

B

(z, Dχ
Eu,t

)

]

dt.

Proof. Let S denote a countable set in C∞
0 (Ω) which is dense with respect to the

uniform convergence. Then, for every t ∈ R such that Eu,t has finite perimeter and
for every ϕ ∈ C∞

0 (Ω) with ϕ ≥ 0, it yields

〈(z, Dχ
Eu,t

)+, ϕ〉 = sup{〈(z, Dχ
Eu,t

), ψ〉 : ψ ∈ S , 0 ≤ ψ ≤ ϕ} .

Thus the positive part of the measure t 7→ 〈(z, Dχ
Eu,t

)+, ϕ〉 defines a L1–measurable

function since it is the supremum of a countable quantity of L1–measurable func-
tions. Recalling the Riesz Representation Theorem, we may go further considering
an open set B ⊂ Ω: it follows from

∫

B

(z, Dχ
Eu,t

)+ = sup{〈(z, Dχ
Eu,t

)+, ψ〉 : ψ ∈ S , 0 ≤ ψ ≤ χ
B
} ,

that t 7→
∫

B
(z, Dχ

Eu,t
)+ defines a L1–measurable function. The regularity of the

measures lead to the same conclusion for an arbitrary Borel set. This function is
L1–summable since

∫

B

(z, Dχ
Eu,t

)+ ≤

∫

B

|(z, Dχ
Eu,t

)| ≤ ‖z‖∞

∫

B

|Dχ
Eu,t

| ,
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for L1–almost all t ∈ R, and t 7→
∫

B
|Dχ

Eu,t
| defines an L1–summable function,

due to the coarea formula.
On the other hand, a similar argument can be done for the negative part of

the measures (z, Dχ
Eu,t

), so that t 7→
∫

B
(z, Dχ

Eu,t
)− defines an L1–summable

function for every Borel set B ⊂ Ω. As a consequence, t 7→
∫

B
(z, Dχ

Eu,t
) defines

an L1–summable function for every Borel set B ⊂ Ω.
Finally, consider a distribution µ defined by

〈µ, ϕ〉 = 〈(z, Du), ϕ〉 −

∫ +∞

−∞

〈(z, Dχ
Eu,t

), ϕ〉 dt .

Proposition 2.4 implies that 〈µ, ϕ〉 = 0 for all ϕ ∈ C∞
0 (Ω), wherewith µ is a Radon

measure which vanishes identically. Therefore, (9) holds true. �

Corollary 2.6. Let z ∈ DM∞(Ω) and consider u ∈ BV (Ω)∩L∞(Ω) with Dju = 0.
Then

e1mejorae1mejora (10) θ(z, Du, x) = θ(z, Dχ
Eu,t

, x) |Dχ
Eu,t

|–a.e. in Ω for L1–almost all t ∈ R ,

Proof. Let a, b ∈ R, with a < b and let B ⊂ Ω be a Borel set. Applying (9) to the
set {x ∈ Ω : a ≤ u(x) ≤ b} ∩B, we obtain

basicbasic (11)

∫

{a≤u≤b}∩B

(z, Du) =

∫ b

a

[∫

B

(z, Dχ
Eu,t

)

]

dt .

Now we are analyzing both sides of (11). On the one hand, the coarea formula
implies

∫

{a≤u≤b}∩B

(z, Du) =

∫

{a≤u≤b}∩B

θ(z, Du, x)|Du|

=

∫ b

a

[∫

B

θ(z, Du, x)|Dχ
Eu,t

|

]

dt .

On the other,
∫ b

a

[∫

B

(z, Dχ
Eu,t

)

]

dt =

∫ b

a

[∫

B

θ(z, Dχ
Eu,t

, x)|Dχ
Eu,t

|

]

dt .

Hence (11) becomes

∫ b

a

[∫

B

θ(z, Du, x)|Dχ
Eu,t

|

]

dt =

∫ b

a

[∫

B

θ(z, Dχ
Eu,t

, x)|Dχ
Eu,t

|

]

dt .

It follows that, for L1–almost all t ∈ R,
∫

B

θ(z, Du, x)|Dχ
Eu,t

| =

∫

B

θ(z, Dχ
Eu,t

, x)|Dχ
Eu,t

|

holds for every Borel set B. The desired equality (10) is proved. �

Prop2.2 Proposition 2.7. Let z ∈ DM∞(Ω) and consider u ∈ BV (Ω)∩L∞(Ω) with Dju =
0. If f : R → R is a Lipschitz continuous non–decreasing function, then

E1paring1200E1paring1200 (12) θ(z, D(f ◦ u), x) = θ(z, Du, x) |D(f ◦ u)|–a.e. in Ω .
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Proof. Wemay follow Anzellotti (see [3, Proposition 2.8]) for the case of a increasing
function. For the general case, consider f non–decreasing and let ǫ > 0. Since the
function given by t 7→ f(t) + ǫt is increasing, it follows that

(z, D(f ◦ u)) + ǫ(z, Du) = (z, D((f ◦ u) + ǫu))

= θ(z, Du, x)|D((f ◦ u) + ǫu)| = θ(z, Du, x)(f ′(u) + ǫ)|Du|

as measures in Ω. Letting ǫ→ 0, we deduce

(z, D(f ◦ u)) = θ(z, Du, x)|D(f ◦ u)| as measures in Ω .

Therefore, we have seen that (12) holds. �

3. Main results

In this section, we prove our main results, namely the existence theorem and
the comparison principle. We begin by stating our concept of solution to problem
(1). The first difficulty we have to deal with is that we are not able to define the
distribution (z, Du) when data are just integrable functions. Following [2], we will
solve this problem introducing truncations in the concept of solution used in [16].

def-sol Definition 3.1. We say that u ∈ BV (Ω) is a solution to problem (1) if Dju = 0
and there exists a vector field z ∈ DM∞(Ω) with ‖z‖∞ ≤ 1 such that

cond-ditribucioncond-ditribucion (13) − div z+ |Du| = f in D′(Ω) ,

cond-medidacond-medida (14) (z, DTk(u)) = |DTk(u)| as measures in Ω (for every k > 0) ,

and

cond-fronteracond-frontera (15) u
∣
∣
∂Ω

= 0 .

3.1. Existence Theorem.

Theorem 3.2. Let Ω be an open and bounded subset of RN with Lipschitz boundary

and let f be a non–negative function in L1(Ω). Then, problem (1) has at least one

solution.

Proof. The same proof of [16, Theorem 4.3] works with minor modifications. Nev-
ertheless, some remarks are in order.

The first remark is concerning the pairing (e−u z, Du). If u is integrable with
respect to the measure div (e−uz) and ϕ ∈ C∞

0 (Ω), then the integrals
∫

Ω

ϕu div (e−uz) and

∫

Ω

u e−uz · ∇ϕdx

are both finite; notice that the second integral is bounded due to the inequality
u e−u ≤ e−1. Therefore,

〈(e−u z, Du), ϕ〉 = −

∫

Ω

ϕu div (e−uz)−

∫

Ω

u e−uz · ∇ϕdx

is a well–defined distribution (although the distribution (z, Du) is not). Moreover,
we may apply the Anzellotti procedure and obtain a Radon measure.

Taking this fact in mind, we may follow the proof of [16, Theorem 4.3]. Starting
from suitable approximating problems, we get a limit of the approximate solutions



10 M. LATORRE AND S. SEGURA DE LEÓN

u ∈ BV (Ω) such that Dju = 0. In addition, we also get a vector field z ∈ DM∞(Ω)
such that ‖z‖∞ ≤ 1. Moreover, the equation (13) holds and

−div (e−uz) = e−uf .

This last equality implies that u is integrable with respect to the measure div (e−uz)
and so (e−u z, Du) is a Radon measure.

Two conditions of Definition 3.1 must still be proved, namely, (14) and (15). We
begin by seeing

medidas-T_kmedidas-T_k (16) (z, DTk(u)) = |DTk(u)| as measures in Ω

for every k > 0.
To see (16) we start with the following equality as measures (proved in [16,

Theorem 4.3]):

des-previades-previa (17) |De−u| ≤ (e−uz, Du) .

First, we will show

|De−Tk(u)| ≤ (e−uz, DTk(u)) .

On the one hand, considering the restriction to the set {u ≥ k} we have

|De−Tk(u)| {u ≥ k} = e−Tk(u)|DTk(u)| {u ≥ k} = 0 ,

and on the other hand

|(e−uz, DTk(u))| {u ≥ k} ≤ |DTk(u))| {u ≥ k} = 0 .

Now, we just work with the restriction to the set {u < k}. For every ϕ ∈ C∞
0 (Ω)

such that ϕ ≥ 0, using the definition of the distribution and applying (17) we arrive
at

〈(e−uz, DTk(u)) {u < k}, ϕ〉 = −

∫

{u<k}

ϕu div (e−uz)−

∫

{u<k}

u e−uz · ∇ϕdx

= 〈(e−uz, Du) {u < k}, ϕ〉 ≥

∫

{u<k}

ϕ |De−u|

=

∫

Ω

ϕe−u|DTk(u)| =

∫

Ω

ϕ |De−Tk(u)| .

Now, we have to prove that (z, DTk(u)) = |DTk(u)| as measures in Ω. We use
Proposition 2.3 and the Chain Rule to get

|De−Tk(u)| ≤ (e−uz, DTk(u)) = e−u(z, DTk(u)) ≤ e−u|DTk(u)| = |De−Tk(u)| .

Then, the inequality becomes equality and e−u(z, DTk(u)) = e−u|DTk(u)| as mea-
sures in Ω. We deduce that

(z, DTk(u)) = |DTk(u)|

as measures in Ω, since e−u = 0 yields Tk(u) = k for every k > 0.
To check the boundary condition (15) we consider the real function defined by

J1(s) =

∫ s

0

T1(σ) dσ .
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Then, in the same way than in [16, Theorem 4.3], we obtain

des-frontdes-front (18)

∫

Ω

|DT1(u)|+

∫

∂Ω

|T1(u)| dH
N−1 +

∫

Ω

|DJ1(u)|+

∫

∂Ω

|J1(u)| dH
N−1

≤

∫

Ω

f T1(u) dx .

Using the equation and the previous step, and applying the Green’s formula and
the Chain Rule, we get
∫

Ω

f T1(u) dx = −

∫

Ω

T1(u) div z+

∫

Ω

T1(u)|Du|

=

∫

Ω

(z, DT1(u))−

∫

∂Ω

T1(u)[z, ν] dH
N−1 +

∫

Ω

|DJ1(u)|

=

∫

Ω

|DT1(u)| −

∫

∂Ω

T1(u)[z, ν] dH
N−1 +

∫

Ω

|DJ1(u)| .

Going back to (18) and simplifying, it follows that
∫

∂Ω

|T1(u)|+ T1(u)[z, ν] dH
N−1 +

∫

∂Ω

|J1(u)| dH
N−1 ≤ 0 .

Observe that both integrals are non–negative, so that both vanish. In particular,
J1(u) = 0 HN−1–a.e. on ∂Ω. Therefore, the boundary condition holds true. �

3.2. Comparison principle. Before proving the comparison principle we need to
present some preliminary results.

prop-medidas Proposition 3.3. Let z be a vector field in DM∞(Ω) and let u be a function

of bounded variation with Dju = 0 and such that (z, DTk(u)) = |DTk(u)| for

every k > 0. If g : Ω → R is a bounded, increasing and Lipschitz function, then

(z, Dg(u)) = |Dg(u)| holds as measures.

Proof. Since (z, DTk(u)) = |DTk(u)|, the Radon–Nikodým derivative of (z, DTk(u))
with respect its total variation |DTk(u)| is θ(z, DTk(u), x) = 1. Moreover, using
Proposition 2.7 we get

θ(z, Dg(Tk(u)), x) = θ(z, DTk(u), x) = 1 ,

that is, (z, Dg(Tk(u))) = |Dg(Tk(u))| for every k > 0. Now, by the Dominated
Convergence Theorem, we take limits in this expression when k goes to ∞ and it
leads to

(z, Dg(u)) = g′(u) |Du| = |Dg(u)| .

�

prop-1 Proposition 3.4. Let f ∈ L1(Ω). If u ∈ BV (Ω) is a solution to problem (1) and

z ∈ DM∞(Ω) is the associated vector field, then the following equality holds:

−div (e−uz) = e−uf in D′(Ω) .

Proof. Let ϕ ∈ C∞
0 (Ω), we take the test function e−uϕ in problem (1) and we

obtain

−

∫

Ω

e−uϕdiv z+

∫

Ω

e−uϕ |Du| =

∫

Ω

e−uϕf dx .
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Now, since e−u is bounded, we can use the definition of pairing (z, De−u) and the
former equality becomes

∫

Ω

e−uz · ∇ϕdx +

∫

Ω

ϕ (z, De−u) +

∫

Ω

e−uϕ |Du| =

∫

Ω

e−uϕf dx .

Finally, using (z, De−u) = −e−u|Du| (see Proposition 3.3) and Green’s formula we
deduce

−div (e−uz) = e−uf in D′(Ω) .

�

Theorem 3.5. Let f1 and f2 be two non–negative functions in L1(Ω) with f1 ≤ f2,

and consider problems

prob-u1prob-u1 (19)







−div

(
Du1

|Du1|

)

+ |Du1| = f1(x) in Ω ,

u1 = 0 on ∂Ω ,

and

prob-u2prob-u2 (20)







−div

(
Du2

|Du2|

)

+ |Du2| = f2(x) in Ω ,

u2 = 0 on ∂Ω .

If u1 is a solution to problem (19) and u2 is a solution to problem (20), then

u1 ≤ u2.

Proof. For each i = 1, 2, we know that solution ui ∈ BV (Ω) satisfies Djui = 0 and
there exists a vector field zi ∈ DM∞(Ω) such that ‖zi‖∞ ≤ 1. Moreover,

−div zi + |Dui| = fi in D′(Ω) ,

(zi, DTk(ui)) = |DTk(ui)| as measures in Ω (for every k > 0) ,

and

ui
∣
∣
∂Ω

= 0 .

We are seeking that u1 ≤ u2, to this end we divide the proof in several steps.

STEP 1: (z1 − z2,D(Tk(u1)−Tk(u2))
+) is a positive Radon measure

for all k > 0.

Let ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0. Then, the measure (z1 − z2, D(Tk(u1)−Tk(u2))

+))
actually is
∫

Ω

ϕ (z1−z2, D(Tk(u1)−Tk(u2))
+) =

∫

{Tk(u1)>Tk(u2)}

ϕ (z1−z2, D(Tk(u1)−Tk(u2)))

=

∫

{Tk(u1)>Tk(u2)}

ϕ

[

(z1, DTk(u1))−(z2, DTk(u1))−(z1, DTk(u2))+(z2, DTk(u2))

]

=

∫

{Tk(u1)>Tk(u2)}

ϕ

[

|DTk(u1)| − (z2, DTk(u1))− (z1, DTk(u2)) + |DTk(u2)|

]

≥ 0 ,

because (zi, Duj) ≤ |Duj| for i, j = 1, 2.
Therefore, we conclude that (z1 − z2, D(Tk(u1)− Tk(u2))

+) is a positive Radon
measure.
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STEP 2: Prove that

∫

{u1>u2}

(e−u2 − e−u1)(|Du1| − |Du2|) ≥ 0.

First, we take the test function (e−u2 −e−u1)+ in problem (19) and since (e−u2 −
e−u1)+ 6= 0 if u1 > u2, we get

ec-u1ec-u1 (21)

∫

{u1>u2}

(z1, D(e−u2 − e−u1)) +

∫

{u1>u2}

(e−u2 − e−u1) |Du1|

=

∫

Ω

(e−u2 − e−u1)+f1 dx .

Moreover, using that e−u2 − e−u1 = (1 − e−u1)− (1− e−u2) we also have

ec2-u1ec2-u1 (22)
∫

Ω

(e−u2 − e−u1)+f1 dx =

∫

{u1>u2}

(z1, D(1− e−u1))−

∫

{u1>u2}

(z1, D(1− e−u2))

+

∫

{u1>u2}

e−u2 |Du1| −

∫

{u1>u2}

e−u1 |Du1|

=

∫

{u1>u2}

|D(1− e−u1)| −

∫

{u1>u2}

(z1, D(1− e−u2))

+

∫

{u1>u2}

e−u2 |Du1| −

∫

{u1>u2}

e−u1 |Du1|

= −

∫

{u1>u2}

(z1, D(1 − e−u2)) +

∫

{u1>u2}

e−u2 |Du1| ,

where we have used Proposition 2.7 and the Chain Rule.
Now, taking the same test function (e−u2 − e−u1)+ in problem (20) and making

similar computations we obtain

ec2-u2ec2-u2 (23)

∫

Ω

(e−u2 − e−u1)+f2 dx =

∫

{u1>u2}

(z2, D(1− e−u1))−

∫

{u1>u2}

e−u1 |Du2| .

Since f1 ≤ f2, we can join expressions (22) and (23) to get the following inequality:

∫

{u1>u2}

e−u1 |Du2|+

∫

{u1>u2}

e−u2 |Du1|

≤

∫

{u1>u2}

(z1, D(1 − e−u2)) +

∫

{u1>u2}

(z2, D(1− e−u1))

≤

∫

{u1>u2}

|(z1, D(1 − e−u2))|+

∫

{u1>u2}

|(z2, D(1 − e−u1))|

≤

∫

{u1>u2}

|D(1− e−u2)|+

∫

{u1>u2}

|D(1 − e−u1)|

=

∫

{u1>u2}

e−u2 |Du2|+

∫

{u1>u2}

e−u1 |Du1| ,

where we have used that ‖zi‖ ≤ 1 for i = 1, 2 and the Chain Rule.
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In conclusion, we have just proved
∫

{u1>u2}

e−u2 |Du2|+

∫

{u1>u2}

e−u1 |Du1|−

∫

{u1>u2}

e−u1 |Du2|−

∫

{u1>u2}

e−u2 |Du1| ≤ 0 ,

and we are done.

STEP 3: The Radon measure (z1 − z2,D(Tk(u1)−Tk(u2))
+) vanishes

for all k > 0.

Since u1 is a solution to problem (19) and u2 is a solution to problem (20), the
following equalities hold in D′(Ω) (see Proposition 3.4):

dis-u1dis-u1 (24) − div (e−u1z1) = e−u1f1

and

dis-u2dis-u2 (25) − div (e−u2z2) = e−u2f2 .

Firstly, let k > 0 we choose the test function (Tk(u1)−Tk(u2))
+ in equality (24).

Applying Green’s formula we get

dis2-u1dis2-u1 (26)

∫

Ω

(e−u1z1, D(Tk(u1)− Tk(u2))
+) =

∫

Ω

(Tk(u1)− Tk(u2))
+e−u1f1 dx ,

and using the same test function but now in equality (25) we have

dis2-u2dis2-u2 (27)

∫

Ω

(e−u2z2, D(Tk(u1)− Tk(u2))
+) =

∫

Ω

(Tk(u1)− Tk(u2))
+e−u2f2 dx .

Now, we put together (26) and (27) to obtain

ec-2ec-2 (28)

∫

Ω

(Tk(u1)− Tk(u2))
+(e−u1f1 − e−u2f2) dx

=

∫

Ω

(e−u1z1 − e−u2z2, D(Tk(u1)− Tk(u2))
+)

=

∫

{Tk(u1)>Tk(u2)}

(e−u2z2 − e−u1z1, D(Tk(u2)− Tk(u1))) .

Observe that the integral on the left hand side is non–positive since e−u1f1 −
e−u2f2 ≤ 0 where Tk(u1)− Tk(u2) > 0. Our aim is to prove the following limit:

limitelimite (29) lim
k→∞

∫

Ω

(e−u1z1 − e−u2z2, D(Tk(u1)− Tk(u2))
+) = 0 ,

which is non–positive because of (28). To this end, we write
∫

{Tk(u1)>Tk(u2)}

(e−u2z2 − e−u1z1, D(Tk(u2)− Tk(u1)))

=

∫

{Tk(u1)>Tk(u2)}

((e−u2 − e−u1) z2, D(Tk(u2)− Tk(u1)))

︸ ︷︷ ︸

(I.1)

+

∫

{Tk(u1)>Tk(u2)}

(e−u1(z2 − z1), D(Tk(u2)− Tk(u1)))

︸ ︷︷ ︸

(I.2)

,
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and will see that the limits as k goes to ∞ of (I.1) and of (I.2) are non–negative
and so (29) holds.

On the one hand, we know that
∫

{Tk(u1)>Tk(u2)}

((e−u2 − e−u1) z2, D(Tk(u2)− Tk(u1)))

≥

∫

{Tk(u1)>Tk(u2)}

(e−u2−e−u1)χ{u2<k}|Du2|−

∫

{Tk(u1)>Tk(u2)}

(e−u2−e−u1)χ{u1<k}|Du1| ,

and when we take limits when k goes to ∞, we get

lim
k→∞

∫

{Tk(u1)>Tk(u2)}

((e−u2 − e−u1) z2, D(Tk(u2)− Tk(u1)))

=

∫

{u1>u2}

(e−u2 − e−u1)(|Du2| − |Du1|) ≥ 0 ,

which is non–negative due to Step 2.
On the other hand, we already know that integral (I.2) is non–negative (because

of Step 1), therefore the limit when k → ∞ is non–negative too.
In short, we have proved

lim
k→∞

∫

{Tk(u1)>Tk(u2)}

(Tk(u1)− Tk(u2))(e
−u1f1 − e−u2f2) dx

= lim
k→∞

∫

Ω

(e−u1z1 − e−u2z2, D(Tk(u1)− Tk(u2))
+) = 0 .

Furthermore, since (28)=(I.1)+(I.2) and the limits of integral (I.1) and (I.2) are
both non–negative, it follows that both limits vanish.

Now, some remarks on Radon–Nikodým derivatives of these measures are in
order. Let θ1k(z2, DTk(u1), x) be the Radon–Nikodým derivative of (z2, DTk(u1))
with respect to |DTk(u1)|:

θ1k(z2, DTk(u1), x) |DTk(u1)| = (z2, DTk(u1)) .

Since |(z2, DTk(u1))| ≤ |DTk(u1)|, it follows that |θ1k(z2, DTk(u1), x)| ≤ 1. We
point out that this function is |DTk(u1)|–measurable and, taking θ1k(z2, DTk(u1), x) =
0 in {u1 ≥ k}, it is |Du1|–measurable.

On the other hand, it holds that (z2, DTk+1(u1)) {u1 < k} = (z2, DTk(u1)).
Therefore

θ1k+1(z2, DTk+1(u1), x)χ{u1<k}(x) = θ1k(z2, DTk(u1), x) ,

and θ1k(z2, DTk(u1), x) defines a non–decreasing sequence of |Du1|–measurable func-
tions.

Likewise, if we denote by θ2k(z1, DTk(u2), x) the Radon–Nikodým derivative
of (z1, DTk(u2)) with respect to |DTk(u2)|, then we may deduce the inequality
|θ2k(z1, DTk(u2), x)| ≤ 1. Moreover, θ2k(z1, DTk(u2), x) defines a non–decreasing
sequence of |Du2|–measurable functions.

Now, we define the functions θ1(x) and θ2(x) such that

θ1(x) = θ1k(z2, DTk(u1), x) if u1(x) < k ,

and

θ2(x) = θ2k(z1, DTk(u2), x) if u2(x) < k .
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We know that θ1 and θ2 are |Du1| and |Du2|–measurable, respectively, and satisfy
|θ1| ≤ 1 and |θ2| ≤ 1.

So let us get back to expression (I.2). We know that
∫

Ω

(e−u1(z1 − z2), D(Tk(u1)− Tk(u2))
+)

=

∫

{Tk(u1)>Tk(u2)}

e−u1

[

(z1, DTk(u1))−(z2, DTk(u1))−(z1, DTk(u2))+(z2, DTk(u2))

]

=

∫

Ω

e−u1χ{Tk(u1)>Tk(u2)}∩{u1<k}(1− θ1(x))|Du1|

+

∫

Ω

e−u1χ{Tk(u1)>Tk(u2)}∩{u2<k}(1 − θ2(x))|Du2| ,

and using the Convergence Dominated Theorem we can take limit when k → ∞ to
arrive at

0 =

∫

{u1>u2}

e−u1(1− θ1(x))|Du1|+

∫

{u1>u2}

e−u1(1− θ2(x))|Du2| .

Since both integrals are non–negative, it yields

0 =

∫

{u1>u2}

e−u1(1 − θ1(x))|Du1| =

∫

{u1>u2}

e−u1(1− θ2(x))|Du2| .

Therefore, we deduce that 1 − θi(x) = 0 |Dui|–a.e. in {u1 > u2} for i = 1, 2 and
then, the Radon–Nikodým derivative is θik = 1 |Dui|–a.e. in {u1 > u2} ∩ {ui < k}
with i = 1, 2 for every k > 0. That is, we have the following equalities as measures:

med-1med-1 (30) |DTk(u1)| {u1 > u2} = (z2, DTk(u1)) {u1 > u2} ,

and

med-2med-2 (31) |DTk(u2)| {u1 > u2} = (z1, DTk(u2)) {u1 > u2} .

Finally, noting that {Tk(u1) > Tk(u2)} ⊆ {u1 > u2} and the measure (z1 −
z2, D(Tk(u1)− Tk(u2))

+) is non–negative:

(z1 − z2, D(Tk(u1)− Tk(u2))
+)

=

[

|DTk(u1)| − (z2, DTk(u1))− (z1, DTk(u2)) + |DTk(u2)|

]

{Tk(u1) > Tk(u2)}

≤

[

|DTk(u1)| − (z2, DTk(u1))− (z1, DTk(u2)) + |DTk(u2)|

]

{u1 > u2}

= 0 .

STEP 4: (zi,DTk(uj)) {Tk(u1) > Tk(u2)} = |DTk(uj)| {Tk(u1) > Tk(u2)}
as measures for i, j = 1,2 and k > 0.

Since {Tk(u1) > Tk(u2)} ⊆ {u1 > u2} and we have proved equalities (30) and
(31), Step 4 is straightforward.

STEP 5: If u1 > u2, then f1 = f2 = 0.

In Step 3 we have proved that the limit of expression (28) when k goes to ∞ is
0. Then, using the Monotone Convergence Theorem, we get

0 =

∫

Ω

(u1 − u2)
+(e−u1f1 − e−u2f2) dx .
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Notice that if u1 > u2, then e−u1f1 = e−u2f2 and f1 = e−(u2−u1)f2 > f2 when
f2 6= 0. We conclude that u1 > u2 implies f2 = f1 = 0.

STEP 6: Prove that

∫

{u1>u2}

|Du1| =

∫

{u1>u2}

|Du2|.

Firstly, we take Tε((Tk(u1)− Tk(u2))
+) as a test function in problems (19) and

(20) and using the previous step we get the following equalities:

ec3-u1ec3-u1 (32) 0 =

∫

{Tk(u1)>Tk(u2)}

(z1, DTε(Tk(u1)− Tk(u2)))

+

∫

{Tk(u1)>Tk(u2)}

Tε(Tk(u1)− Tk(u2)) |Du1| ,

and

ec3-u2ec3-u2 (33) 0 =

∫

{Tk(u1)>Tk(u2)}

(z2, DTε(Tk(u1)− Tk(u2)))

+

∫

{Tk(u1)>Tk(u2)}

Tε(Tk(u1)− Tk(u2)) |Du2| .

Now, we use Step 3 to have:

(z1 − z2, D(Tk(u1)− Tk(u2))) {Tk(u1) > Tk(u2)} = 0 .

Furthermore, when we take the restriction to the set {0 < Tk(u1)−Tk(u2) < ε} for
all ε > 0, we also get that the measure vanishes. Due to this fact, when we consider
together equations (32) and (33), we obtain
∫

{Tk(u1)>Tk(u2)}

Tε(Tk(u1)− Tk(u2)) |Du1|

=

∫

{Tk(u1)>Tk(u2)}

Tε(Tk(u1)− Tk(u2)) |Du2| .

Now, dividing both integrals by ε and using the Dominated Convergence Theorem
we can take limits as ε goes to 0 and then we get

∫

{Tk(u1)>Tk(u2)}

|Du1| =

∫

{Tk(u1)>Tk(u2)}

|Du2| .

Finally, the Dominated Convergence Theorem also allows us to take limits as k → ∞
and so we arrive at

ec-3ec-3 (34)

∫

{u1>u2}

|Du1| =

∫

{u1>u2}

|Du2| .

STEP 7: Prove Du1 = Du2 = 0 in {u1 > u2}.
We begin taking the test function (Tk(u1)−Tk(u2))

+ in problem (19) and having
in mind Step 4 and Step 5, we get:

ec-4ec-4 (35) 0 =

∫

{Tk(u1)>Tk(u2)}

|DTk(u1)| −

∫

{Tk(u1)>Tk(u2)}

|DTk(u2)|

+

∫

{Tk(u1)>Tk(u2)}

(Tk(u1)− Tk(u2)) |Du1| .



18 M. LATORRE AND S. SEGURA DE LEÓN

Now, the first two integrals are convergent as k → ∞ due to the Dominated
Convergence Theorem and the last one converges by the Monotone Convergence
Theorem. Hence, when k goes to ∞ in (35) we get

0 =

∫

{u1>u2}

(|Du1| − |Du2|) +

∫

{u1>u2}

(u1 − u2) |Du1| ,

and since the first integral is finite, the last one is finite too.
On the other hand, we have proved in Step 6 that the first integral vanishes,

then the above equality becomes

0 =

∫

{u1>u2}

(u1 − u2) |Du1| ,

and we deduce that |Du1| {u1 > u2} = 0 and also Du1 = 0 in {u1 > u2}.
To prove that Du2 = 0 in {u1 > u2} we use (34) and since we already know that

Du1 = 0 in {u1 > u2}, it becomes

0 =

∫

{u1>u2}

|Du2| .

Therefore we have that Du2 = 0 in {u1 > u2}.

STEP 8: u1 ≤ u2 in Ω.

We have seen that D(u1 − u2) = 0 in {u1 > u2} and since Dj(u1 − u2) = 0, it
holds that D(u1 − u2)

+ = 0 in Ω. Moreover, we know that (u1 − u2)
+ = 0 in ∂Ω,

therefore we get that 0 = (u1 − u2)
+ in Ω. �

Corollary 3.6. Let Ω be a bounded open subset of RN with Lipschitz boundary.

Let f be a non–negative function in L1(Ω). Then, problem







−div

(
Du

|Du|

)

+ |Du| = f(x) in Ω ,

u = 0 on ∂Ω ,

has a unique solution u ∈ BV (Ω).

4. Better summability

In Section 3 we have seen that problem (1) has a solution for every non–negative

datum of L1(Ω), and this solution belongs to BV (Ω) ⊂ L
N

N−1 (Ω). We expect that
the solution satisfies a better summability if the datum belongs to Lp(Ω), p > 1.
In this regard we recall that, when data f are in the space Lp(Ω) with p > N , it
is proved in [17] that the solution is always bounded. For datum f ∈ LN (Ω), we
proved in [16] that the solution belongs to Lq(Ω) with 1 < q <∞.

In this section, we are showing that solutions belong to L
Np

N−p (Ω) if data are in
Lp(Ω) with 1 < p < N . Observe that this result adjust continuously for p = 1 and
p = N with the known facts.
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Data Solution

f ∈ Lp(Ω) with p > N u ∈ L∞(Ω)

f ∈ LN(Ω) u ∈ Lq(Ω) with 1 ≤ q <∞

f ∈ Lp(Ω) with 1 < p < N u ∈ L
Np

N−p (Ω)

f ∈ L1(Ω) u ∈ L
N

N−1 (Ω)

The proof of our theorem relies on certain preliminary results. The first one
enable us to take a power of our solution uq as a test function in problem (1).

proposition-1 Proposition 4.1. If u ∈ BV (Ω) is a solution to problem (1) satisfying uq ∈ Lp′

(Ω)
for certain q > 1, then uq and uq+1 ∈ BV (Ω). Moreover,

ec-propec-prop (36)

∫

Ω

|Duq|+

∫

Ω

uq |Du| =

∫

Ω

uq f .

Proof. Fixed k > 0, we define the function Gk(s) = s−Tk(s), and we take the test
function Gδ(Tk(u)

q) with δ, k > 0 in problem (1) obtaining the following equality:
∫

Ω

(z, DGδ(Tk(u)
q)) +

∫

Ω

Gδ(Tk(u)
q) |Du| =

∫

Ω

Gδ(Tk(u)
q)f dx .

Since we know that the Radon–Nikodým derivative of (z, DGδ(Tk(u)
q)) and (z, DTk(u))

with respect their respective total variations are the same (Proposition 2.7) and
(z, DTk(u)) = |DTk(u)| holds for all k > 0, we deduce that

(z, Gδ(Tk(u)
q)) = |DGδ((Tk(u))

q)| .

Then we can write:

lim-ademaslim-ademas (37)

∫

Ω

|DGδ(Tk(u)
q)|+

∫

Ω

Gδ(Tk(u)
q) |Du| =

∫

Ω

Gδ(Tk(u)
q)f dx .

Now, we use the inequality Gδ(Tk(u)
q) ≤ uq and Hölder’s inequality to get the

following bound:
∫

Ω

Gδ(Tk(u)
q)f dx ≤

∫

Ω

uqf dx ≤ ‖uq‖p′‖f‖p <∞ .

Therefore, each integral in left hand side of (37) is also bounded:

BV-qBV-q (38)

∫

Ω

|DGδ(Tk(u)
q)| ≤ ‖uq‖p′‖f‖p <∞ ,

and

BV-q+1BV-q+1 (39)

∫

Ω

Gδ(Tk(u)
q) |Du| ≤ ‖uq‖p′‖f‖p <∞ .
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We will take advantage of these bounds to take limits in (37).
Now, we are able to prove uq ∈ BV (Ω). Using the Chain Rule in (38) we can

write the following inequalities
∫

Ω

χ{u<k}∩{uq>δ}|Du
q| =

∫

Ω

|DGδ(Tk(u)
q)| ≤ ‖uq‖p′‖f‖p <∞ ,

and, using Monotone Convergence Theorem, we let δ → 0+ to get
∫

Ω

χ{u<k}|Du
q| ≤ ‖uq‖p′‖f‖p <∞ .

Lastly, we let k goes to ∞ and appealing to the Monotone Convergence Theorem
once more, it works out that uq is a bounded variation function.

Let 0 < δ < 1 and keeping in mind (39), we get the following bound
∫

Ω

χ{u<k}∩{uq+1>δ}|Du
q+1| = (q + 1)

∫

Ω

uqχ{u<k}∩{uq+1>δ}|Du|

≤ (q + 1)

∫

Ω

(Gδ(Tk(u)
q) + δ) |Du|

≤ (q + 1)(‖uq‖p′‖f‖p + δ‖u‖BV ) <∞ .

Taking limits when δ → 0+ and also when k → ∞ we get

exp-1exp-1 (40)

∫

Ω

|Duq+1| ≤ (q + 1)‖uq‖p′‖f‖p <∞ ,

that is, uq+1 ∈ BV (Ω).
To conclude, we take limits in (37) firstly when δ → 0+ and secondly when

k → ∞ and then we obtain
∫

Ω

|Duq|+

∫

Ω

uq|Du| =

∫

Ω

uq f .

�

teo-induccion Theorem 4.2. Let 1 < p < N and let f ∈ Lp(Ω) be a non–negative function.

Then the solution to problem (1) belongs to BV (Ω)∩Ls(Ω) for every 1 ≤ s < Np
N−p

.

Proof. Let u ∈ BV (Ω) denote the unique solution to problem (1). For every j ∈ N,
we will prove that u ∈ Lsj (Ω) where

sj = N ′

j
∑

k=0

(
N ′

p′

)k

.

It should be noted that lim
j→∞

sj = N ′
∞∑

k=0

(
N ′

p′

)k

=
Np

N − p
. Thus, proving u ∈

Lsj (Ω) for all j ∈ N, we are done.

Firstly, we choose q = N ′

p′
and since uq ∈ Lp′

(Ω), we may apply Proposition 4.1

to conclude that uq+1 ∈ BV (Ω) ⊆ LN ′

(Ω) and therefore u ∈ L
N ′

(

N′

p′
+1

)

(Ω), that
is, u ∈ Ls1(Ω).

Assuming now that u ∈ Lsj (Ω), we take

q =
N ′

p′

j
∑

k=0

(
N ′

p′

)k

.
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By hypothesis, we already know that u ∈ Lqp′

(Ω), and using Proposition 4.1 we

get uq+1 ∈ BV (Ω) ⊆ LN ′

(Ω). Hence, u ∈ LN ′(q+1)(Ω) = Lsj+1(Ω). �

Now we are ready to prove the main result of this section.

teo-regularidad Theorem 4.3. Let f be a non–negative function belonging to Lp(Ω) with 1 < p <

N . Then the unique solution u to problem (1) satisfies u ∈ BV (Ω) ∩ L
Np

N−p (Ω).

Proof. To show that u ∈ L
Np

N−p (Ω), we first claim that inequality (42) below holds

for every 0 < q <
N(p− 1)

N − p
.

If we choose 0 < q <
N(p− 1)

N − p
, then we have that qp′ <

N(p− 1)

N − p

p

p− 1
=

Np

N − p
. Therefore, applying Theorem 4.2 and Proposition 4.1 we arrive at uq+1 ∈

BV (Ω).
Now, we use Sobolev’s inequality and inequality (40) to get

exp-2exp-2 (41)

(∫

Ω

u(q+1)N ′

dx

) 1
N′

≤ C(p,N)

∫

Ω

|Duq+1|

≤ C(p,N)(q + 1)‖f‖p

(∫

Ω

uqp
′

dx

) 1
p′

.

Moreover, since qp′ < (q + 1)N ′, we can apply Hölder’s inequality and we also get

∫

Ω

uqp
′

dx ≤

(∫

Ω

(uqp
′

)
(q+1)N′

qp′ dx

) qp′

(q+1)N′

|Ω|
1− qp′

(q+1)N′ .

Summing up, we have
(∫

Ω

u(q+1)N ′

dx

) 1
N′

≤ C(p,N)(q + 1)‖f‖p

(∫

Ω

u(q+1)N ′

dx

) q

(q+1)N′

|Ω|
1
p′

− q

(q+1)N′ ,

that is, we have proved our claim:

claim0claim0 (42)

(∫

Ω

u(q+1)N ′

dx

) 1
N′ (1− q

q+1 )
≤ C(p,N)(q + 1)‖f‖p|Ω|

1
p′

− q

(q+1)N′ .

Now, let 0 < qn <
N(p− 1)

N − p
define a non–decreasing sequence convergent to

N(p−1)
N−p

. Hence, for every n ∈ N it holds

(∫

Ω

u(qn+1)N ′

dx

) 1
N′

1
qn+1

≤ C(p,N)(qn + 1)‖f‖p|Ω|
1
p′

− qn
(qn+1)N′ .

Thanks to Fatou’s lemma, letting n→ ∞, we get
∫

Ω

u
p (N−1)
N−p

N ′

dx ≤ lim inf
n→∞

[

C(p,N)(qn + 1)‖f‖p|Ω|
1
p′

− qn
(qn+1)N′

]N ′(qn+1)

≤

[

C(p,N)
p (N − 1)

N − p
‖f‖p

] Np
N−p

.

Therefore, u ∈ L
Np

N−p (Ω) holds. �
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Remark 4.4. Going back to Proposition 4.1, it follows from u
N(p−1)
N−p ∈ Lp′

(Ω) that

u
N(p−1)
N−p can be taken as a test function in problem (1), that is,

∫

Ω

|D(u
N(p−1)
N−p )|+

∫

Ω

u
N(p−1)
N−p |Du| =

∫

Ω

fu
N(p−1)
N−p .

5. Explicit examples

This section is devoted to show radial examples of solutions in a ball. These ex-
amples allow us to provide evidence that our regularity result is sharp (see Remark
5.2 below).

In the sequel, we denote by BR(0) the open ball centered at 0 and of radius R.

ej-1 Example 5.1. Let R > 0, we consider problem

ejemplo-1ejemplo-1 (43)







−div

(
Du

|Du|

)

+ |Du| =
λ

|x|q
in BR(0) ,

u = 0 on ∂BR(0) ,

with 1 < q < N and λ > 0.

We know that solution u to problem (43) must be a non–negative function
of bounded variation with no jump part and there also exists a vector field z ∈
DM∞(Ω) with ‖z‖∞ ≤ 1 such that

cond-distribucioncond-distribucion (44) − div z+ |Du| =
λ

|x|q
in D′(Ω) ,

(z, DTk(u)) = |DTk(u)| as measures in Ω (for every k > 0) ,

and

u
∣
∣
∂Ω

= 0 .

We assume that the solution is radial, that is, u(x) = h(|x|) = h(r). Moreover, in
order to satisfy the Dirichlet condition, we want that h(R) = 0 holds. In addition,
we also assume h′(r) ≤ 0 for all 0 ≤ r ≤ R.

If h′(r) < 0 in an interval, then the vector field is given by z(x) = h′(|x|)
|h′(|x|)| = − x

|x|

and div z(x) = −N−1
|x| .

Therefore, equation (44) becomes

dinardinar (45)
N − 1

r
− h′(r) =

λ

rq
.

Since we are assuming that h′(r) < 0, then

N − 1

r
−
λ

rq
< 0 .

Now, we define

ρλ =

(
N − 1

λ

) 1
1−q

.

Thus, if r ≤ ρλ, then h
′(r) < 0 may hold, and if r > ρλ the solution must satisfy

h′(r) = 0.
We assume 0 < ρλ < R. Then, when ρλ ≤ r ≤ R the solution to problem (43)

is constant, and since we know that h(R) = 0 we deduce that h(r) = 0 for all
ρλ ≤ r ≤ R.
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On account of (45), if 0 ≤ r < ρλ, then solution is given by

h(ρλ)− h(r) =

∫ ρλ

r

h′(s) ds =

∫ ρλ

r

(
N − 1

s
−
λ

sq

)

ds

= (N − 1) log
(ρλ

r

)

+
λ

1− q
(r1−q − ρ

1−q
λ ) .

Therefore,

u(x) =







(N − 1) log

(
|x|

ρλ

)

+
λ

1− q
(ρ1−q

λ − |x|1−q) if 0 ≤ |x| < ρλ ,

0 if ρλ < |x| ≤ R .

The vector field z must be identified. When ρλ ≤ r ≤ R we know that the vector
field is z(x) = − x

|x| , and when 0 ≤ r < ρλ, we assume that the vector field is radial:

z(x) = x ξ(|x|). Thus, div z(x) = N ξ(|x|) + |x| ξ′(|x|), and equation (44) becomes

−(N ξ(r) + r ξ′(r)) =
λ

rq
.

That is,

−rN ξ(r) = −

∫
(
rN ξ(r)

)′
dr =

∫

λ rN−1−q dr =
λ

N − q
rN−q + C ,

for some constant C to be determinate. Then

ξ(r) = −
λ

N − q
r−q − C r−N .

Since we need a continuous vector field and we know that z(x) = − x
ρλ

for x with

|x| = ρλ, we get the following equation

ρ−1
λ =

λ

N − q
ρ
−q
λ + C ρ−N

λ .

Finally, using that λ = (N − 1) ρq−1
λ we deduce

C = ρN−1
λ

1− q

N − q
,

and therefore, the vector field is given by

z(x) =







−
x

|x|
if 0 ≤ |x| < ρλ ,

−
x

N − q

(

(N − 1)
ρ
q−1
λ

|x|q
+ (1− q)

ρN−1
λ

|x|N

)

if ρλ < |x| ≤ R .

regul Remark 5.2. In our Theorem 4.3 we have prove that if f ∈ L
N
q (BR(0)), then u ∈

L
N

q−1 (BR(0)). Since λ
|x|q ∈ Ls(BR(0)) for all s < N

q
, it follows that u ∈ Lr(BR(0))

for all r < N
q−1 . This is exactly what it is shown.

Remark 5.3. In [16, Proposition 4.4] it was proved that for any “small” datum

f ∈ W−1,∞(BR(0)), the solution to problem (1) is always trivial. Nevertheless, in

our examples we always get a positive solution. This is due to the fact that the

datum f(x) = λ |x|−q when 1 < q < N is not in the space W−1,∞(BR(0)):

Let s = N−q, then function v(x) = |x|−s−R−s ∈W
1,1
0 (BR(0)) since s < N−1.

However, the product f(x)v(x) = λ|x|−N − f(x)R−s 6∈ L1(BR(0)). We conclude

that f 6∈W−1,∞(BR(0)).
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It may be worth comparing our example with that occurring when the datum is
λ

|x|q , with 0 < q < 1. In the same way as in Example 5.1, the solution to problem

(43) depends on a value

rλ =

(
N − q

λ

) 1
1−q

.

When 0 < q < 1, the solution to problem (43) is given by

u(x) =







(N − 1) log
(rλ

R

)

+
λ

1− q
(R1−q − r

1−q
λ ) if 0 ≤ |x| ≤ rλ ,

(N − 1) log

(
|x|

R

)

+
λ

1− q
(R1−q − |x|1−q) if rλ < |x| ≤ R ,

and the vector field associated is

z(x) =







−
λ

N − q
x|x|−q if 0 ≤ |x| ≤ rλ ,

−
x

|x|
if rλ < |x| ≤ R .

It is easy to see that, since 0 < q < 1, this solution is always bounded.
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