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Abstract

In this paper, we analyze a “concave-convex” type problem involving the 1-Laplacian operator
in a general Lipschitz–continuous domain and prove the existence of two positive solutions. Owing
to 1-Laplacian is 0-homogeneous, the “concave” term must be singular. Hence, we should deal with
an energy functional having two non–differentiable terms: the total variation and that one coming
from the singular term. Due to these difficulties, we do not get solutions as critical points of the
energy functional defined in the BV (Ω) space. Instead, we study problems involving the p-Laplacian
operator and let p goes to 1.
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1 Introduction

This paper is devoted to study multiplicity of positive solutions for an elliptic equation driven by the
1-Laplace operator which combines a singular term and a supercritical 1one. More precisely, we search
for positive solutions to problem −div

(
Du

|Du|

)
=

λ

uγ
+ uq−1 in Ω

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded open set having Lipschitz–continuous boundary, N ≥ 2, λ > 0 and
0 < γ < 1 < q < 1∗ = N/(N − 1). Our aim is to find two positive solutions to (1.1) for λ small enough.

1Here and in what follows, supercritical term means that its growth is bigger than the growth of the term that governs
the equation. For instance, if the equation is driven by the p-Laplacian, whose growth is p−1, then uq−1 is a supercritical
term when p < q.
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In recent years problems involving the 1-Laplacian operator have been extensively studied. One of
the main interests for studying this kind of equations comes from the variational approach to image
restoration after the pioneering paper [34]. The suitable energy space to handle this type of equations is
BV (Ω), the space of functions of bounded variation. The introduction of the proper concept of solution
is due to [19, 3, 4]; it consists of considering a vector field z that plays the role of Du

|Du| by means of the

identity (z, Du) = |Du| (the definition of (z, Du) as a Radon measure is due to [5]). As to the boundary
condition, it does not hold in the sense of traces, but in a very weak sense that involves the weak trace
of the normal component of z. For a precise statement of what we understand as a solution to problem
(1.1), we refer to Definition 2.1 below.

The study of stationary configurations of reaction-diffusion problems forms a relevant research area
in nonlinear partial differential equations. Within this field, a very active subject is that of problems of
concave–convex type. The model problem in a bounded domain Ω ⊂ RN consists of finding a positive
solution to {

−∆u = f(u) in Ω
u = 0 on ∂Ω

where f(t) = λtr + ts satisfies 0 < r < 1 < s < N+2
N−2 , that is, the reaction is made up of a concave

term and a convex one. The combined effects of these two terms leads to an interval (0,Λ) where if
λ ∈ (0,Λ), two positive solutions can be obtained, while only one positive solution exists for λ = Λ and
there is no such a solution for λ > Λ. Already in 1982 the bifurcation diagram for this problem is shown
in [25, Remark 1.7, Case 4]. A milestone to understand this diagram was a paper by Ambrosetti, Brezis
and Cerami [1], in which the authors get the second positive solution applying an interesting result by
Brezis and Nirenberg (see [13]). This paper [1] has been extended and generalized by a large number
of authors. Let us cite [21] in which the equation is driven by the p–Laplacian operator instead of the
Laplacian, and the source is made up of two terms: one subcritical and the other supercritical (that is,
exponents satisfy 0 < r < p − 1 < s < p∗ − 1). It is in this paper that the existence of two positive
solutions in the whole interval (0,Λ) is called global multiplicity of positive solutions. We point out
that we do not reach a global multiplicity result but a local one.

With respect to singular elliptic equations, they have been widely studied. Let us cite the pioneering
work [16], which was followed by the analysis in [26] of a more specific problem: −∆u =

h(x)

uγ
in Ω

u = 0 on ∂Ω

where h is a positive function and γ > 0. The existence of a positive solution is established and it is
proved that regularity of the solution fails when γ is greater than a certain threshold. This problem
was further studied by Boccardo and Orsina [12] for non continuous data, and extended to problems
governed by the p-Laplacian by Mohammed [29] and by De Cave [17] (see also [18] for the limiting case
p = 1). Since these singular terms have a subcritical growth, it was natural to analyze the features
of combining a singular term and a supercritical one (so that the reaction becomes f(t) = λt−γ + ts

with p < s + 1 < p∗). Indeed, this kind of problems has been studied by many authors. For problems
driven by the Laplacian, it was considered in [35, 23, 24, 11, 6, 7]. For the p-Laplacian case, we refer to
[10, 22, 31] (for a related problem, see [32, 33]).

Typically, to get multiplicity of positive solutions of concave–convex problems, the associated energy
functional I must be analyzed and solutions are critical points of it: a solution is a local minimum of
I, while the other is typically a saddle point obtained by applying the Mountain Pass Theorem. The
energy functional associated to (1.1) is I : BV (Ω)→ R, given by

I(u) =

∫
Ω

|Du|+
∫
∂Ω

|u|dHN−1 −
∫

Ω

F (u) dx (1.2)
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where F is the primitive of the real function defined by

f(s) =


λ

sγ
+ sq−1 if s > 0

0 if s ≤ 0.

It is worth noting that this functional includes the total variation
∫

Ω
|Du| and a singular term, and both

terms are not differentiable. We point out that the critical point theory for non–smooth functionals will
not be applied. Instead we study singular problems of concave–convex type involving the p–Laplacian
and let p go to 1. Solutions to these problems are essentially known, but we have to obtain them from
the very beginning to have estimates that do not depend on p and thus be able to arrive at the limit.

The main result of the present paper is stated as follows.

Theorem 1.1 There exist at least two positive solutions to (1.1) for each λ small enough.

The plan of this paper is the following. In Section 2 we introduce our notation and present some basic
results on the space of functions of bounded variation BV (Ω). In Section 3 we obtain two families of
approximate solutions by approximating problem (1.1) through p–Laplacian problems (see (3.1) below).
In Section 4 we show the convergence of the two families and check that their limits are different positive
solutions to problem (1.1).

2 Preliminaries

2.1 Notation

Hereafter, we deal with a bounded open set Ω ⊂ RN , with N ≥ 2 whose boundary is written
by ∂Ω. For a set E ⊂ RN , we denote by |E| its Lebesgue measure, while HN−1(E) stands for its
(N − 1)–dimensional Hausdorff measure. We will always consider domains having Lipschitz–continuous
boundary. Thus, for HN−1–almost all x ∈ ∂Ω there is an outward unit normal vector ν(x).

We say that a function u : Ω → R is nonnegative if u(x) ≥ 0 a.e. in Ω and we write u ≥ 0, and it
is positive if u(x) > 0 a.e. in Ω and then we write u > 0.

We will make use of the usual Lebesgue and Sobolev spaces, denoted by Lq(Ω) (with norm ‖·‖q) and

W 1,p
0 (Ω) (whose norm is given by ‖u‖W 1,p

0
=
(∫

Ω
|∇u|p dx

)1/p
), respectively. Recall that by Sobolev’s

embedding, there exists a constant Sp > 0 satisfying Sp‖u‖pp∗ ≤ ‖u‖
p

W 1,p
0

for all u ∈W 1,p
0 (Ω).

2.2 The energy space BV (Ω)

We say that u is a function of bounded variation, if u ∈ L1(Ω), and its distributional derivative Du
is a vector Radon measure. We then write u ∈ BV (Ω). It can be proved that u ∈ BV (Ω) if and only if
u ∈ L1(Ω) and its total variation is finite, that is,∫

Ω

|Du| := sup

{∫
Ω

udivφdx; φ ∈ C1
c (Ω,RN ), ‖φ‖∞ ≤ 1

}
< +∞.

The space BV (Ω) is a Banach space when endowed with the norm

‖u‖ :=

∫
Ω

|Du|+
∫

Ω

|u|dx.
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It can also be seen that a trace operator BV (Ω) ↪→ L1(∂Ω) is well defined. Using this trace, we define
the norm

‖u‖BV :=

∫
Ω

|Du|+
∫
∂Ω

|u|dHN−1,

which is equivalent to ‖ · ‖. The space BV (Ω) is continuously embedded into Lr(Ω) for all r ∈ [1, 1∗],
where 1∗ = N/(N −1). We denote as S1 > 0 a constant satisfying S1‖u‖1∗ ≤ ‖u‖BV for all u ∈ BV (Ω).
We may assume that S1 = limp→1 Sp.

A compactness result in BV (Ω) will be used in what follows. It states that every bounded sequence
in BV (Ω) has a subsequence which strongly converges in Lr(Ω) for all r ∈ [1, 1∗) to a certain u ∈ BV (Ω).
To pass to the limit we will often apply that some functionals defined on BV (Ω) are lower semicontinuous
with respect to the convergence in L1(Ω). The most important are the total variation u 7→

∫
Ω
|Du| and

the norm u 7→
∫

Ω
|Du|+

∫
∂Ω
|u|dHN−1.

For a given u ∈ BV (Ω), in several arguments it is important to handle with its precise representative,
denoted by u∗. It is defined HN−1–a.e. in Ω and satisfies the following property: if (ρε)ε>0 is a mollifier
family, then

u ∗ ρε → u∗ (as ε→ 0+) HN−1–a.e. in Ω . (2.1)

We point out that, as a consequence, if u > 0 a.e., then u∗ > 0 HN−1–a.e.

For further information on functions of bounded variation, we refer to [2, 9].

2.3 L∞–divergence–measure vector fields

The theory of L∞–divergence–measure vector fields provides, under some conditions, a “dot product”
of a vector field z ∈ L∞(Ω,RN ) and Du the gradient of a function of bounded variation, together with
a generalized Green’s formula. It was introduced in [5] and extended in [15] and it will be essential in
our notion of solution to (1.1).

Let us denote by DM∞(Ω) the space of all vector fields z ∈ L∞(Ω,RN ) whose divergence in the
sense of distribution is a Radon measure with finite total variation. It should be remarked that, for every
z ∈ DM∞(Ω), a weak trace on ∂Ω of the normal component of z can be defined (see [5]). It is denoted
[z, ν] and satisfies ‖[z, ν]‖∞ ≤ ‖z‖∞. The symbol X(Ω)1 stands for the subset of those z ∈ DM∞(Ω)
such that div z ∈ L1(Ω). On the other hand, we denote by DM∞loc(Ω) the set of vector fields belonging
to DM∞(ω) for all open set ω ⊂⊂ Ω.

The Anzellotti theory states that the pairing (z, Du) is a Radon measure if z ∈ DM∞(Ω) and
u ∈ BV (Ω) ∩ C(Ω) ∩ L∞(Ω). Moreover, the above pairing is a Radon measure when z ∈ X(Ω)1 and
u ∈ BV (Ω) ∩ L∞(Ω). It was extended in [15] for z ∈ DM∞(Ω) and u ∈ BV (Ω) ∩ L∞(Ω) (see also [14,
Section 5] and [28, Apendix A]). A further extension z ∈ DM∞loc(Ω) and u ∈ BVloc(Ω) ∩ L∞(Ω) can be
found in [18]

Let u ∈ BV (Ω) ∩ L∞(Ω) and z ∈ DM∞(Ω). Note that, by (2.1) and the fact that |div z| � HN−1,
we have that

u ∗ ρε → u∗ |div z|–a.e. in Ω (2.2)

and so, the precise representative u∗ is |div z|–summable. Let u ∈ BVloc(Ω)∩L∞(Ω) and z ∈ DM∞loc(Ω).
Define the distribution (z, Du) : C∞c (Ω)→ R by

〈(z, Du), ϕ〉 = −
∫

Ω

u∗ϕdiv z−
∫

Ω

uz · ∇ϕdx ∀ϕ ∈ C∞c (Ω) . (2.3)

Since all the terms have sense, (z, Du) is well–defined. Notice, however, that this definition depends
on the precise representative of u; if we choose another representative, the above functional can be
different. Nevertheless, it is independent of the representative when z ∈ X(Ω)1.
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Proposition 2.1 Let u ∈ BVloc(Ω)∩L∞(Ω) and let z ∈ DM∞loc(Ω). Then the functional (z, Du) satisfy

|〈(z, Du), ϕ〉| ≤ ‖ϕ‖∞‖z‖L∞(A)

∫
A

|Du| , (2.4)

for all open set A ⊂⊂ Ω and for all ϕ ∈ C∞c (A). Hence (z, Du) is a Radon measure in Ω.

Corollary 2.1 The measures (z, Du) and |(z, Du)| are absolutely continuous with respect to the measure
|Du| in Ω and one has

|(z, Du)| ≤ ‖z‖∞|Du| ,

as measures in Ω.

We remark that if u ∈ BV (Ω), then the measure (z, Du) has finite total variation.

Proposition 2.2 Let z ∈ X(Ω)1 and u ∈ BV (Ω)∩L∞(Ω) . Then the following Green’s Formula holds∫
Ω

u div z +

∫
Ω

(z, Du) =

∫
∂Ω

u[z, ν] dHN−1 . (2.5)

2.4 Definition of solution to problem (1.1)

The above subsections allow us to define what we mean by a solution of (1.1).

Definition 2.1 We say that u ∈ BV (Ω) ∩ L∞(Ω) is a solution of (1.1) if

a) u > 0 a.e. in Ω,

b) 1
uγ ∈ L

1(Ω),

and there exists z ∈ X(Ω)1 such that ‖z‖∞ ≤ 1,

c) −div z = λ
uγ + uq−1 in D′(Ω),

d) (z, Du) = |Du| as mesures in Ω,

e) [z, ν] ∈ sign(−u) HN−1–a.e. on ∂Ω.

3 An approximate singular problem driven by the p–Laplacian

In this section, we consider the following quasilinear elliptic problem −∆pu =
λ

uγ
+ uq−1 in Ω,

u = 0 on ∂Ω.

(3.1)

where λ > 0 and 0 < γ < 1 < q < 1∗.

To find positive solutions of (3.1), we must consider the energy functional associated to (3.1), defined
in W 1,p

0 (Ω) by

Ip(u) =
1

p

∫
Ω

|∇u|pdx−
∫

Ω

F (u) dx. (3.2)
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where

F (s) =

{ λ
1−γ s

1−γ + 1
q s
q if s > 0

0 if s ≤ 0
,

which is the same function considered in the definition of functional I. The objective of this section is
to find two positive solutions up and vp to problem (3.1), where up is a local minimum of Ip, while vp
is a critical point of Ip.

In the next section we will study the convergence of families (up) and (vp) as p goes to 1. We
have mentioned that the study of problems and functionals related to (3.1) and Ip is an active area of
research. Hence, these solutions have already been obtained. Nevertheless, we have to get again the
above solutions since the convergence of both families lies in deducing estimates not depending on p (at
least for p close to 1).

3.1 Connecting the functionals Ip and I

This subsection is devoted to analyze the connection between the geometry of Ip and that of I. We
prove that we can pass continuously from the parameters associated to Ip to those associated to I.

Lemma 3.1 For each

0 < ρ <
(
qSq1 |Ω|

q−1∗
1∗
) 1
q−1

there exist λ∗(ρ), β(ρ) > 0 such that
I(u) ≥ β(ρ),

for all 0 < λ < λ∗(ρ) and noonnegative u ∈ BV (Ω) with ‖u‖BV = ρ.

Proof. From Hölder’s inequality and Sobolev’s embedding for BV (Ω), it follows that

I(u) ≥ ‖u‖BV

(
1− λ

1− γ
Sγ−1

1 |Ω|
1∗+γ−1

1∗ ‖u‖−γBV −
S−q1

q
|Ω|

1∗−q
1∗ ‖u‖q−1

BV

)
.

Note that if 0 < ρ <
(
qSq1 |Ω|

q−1∗
1∗

) 1
q−1

, then

1− S−q1

q
|Ω|

1∗−q
1∗ ρq−1 > 0.

Now choose λ∗(ρ) > 0 such that

1− λ∗(ρ)

1− γ
Sγ−1

1 |Ω|
1∗+γ−1

1∗ ρ−γ − S−q1

q
|Ω|

1∗−q
1∗ ρq−1 = 0

and take 0 < λ < λ∗(ρ). Then it is easy to see that

I(u) ≥ ρ

(
1− λ

1− γ
Sγ−1

1 |Ω|
1∗+γ−1

1∗ ρ−γ − S−q1

q
|Ω|

1∗−q
1∗ ρq−1

)
= β(ρ) > 0,

for all nonnegative u ∈ BV (Ω) such that ‖u‖BV = ρ. �

Lemma 3.2 For each

0 < ρp <

(
q

p
S
q
p
p |Ω|

q−p∗
p∗

) 1
q−p
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there exist λ∗p(ρp), βp(ρp) > 0 such that
Ip(u) ≥ βp(ρp).

Moreover, we may assume that the families ρp, βp(ρp) and λ∗p(ρp) satisfy

lim
p→1+

ρp = ρ, lim
p→1+

βp(ρp) = β(ρ) and lim
p→1+

λ∗p(ρp) = λ∗(ρ).

Proof. From Hölder’s inequality and Sobolev’s embedding for W 1,p
0 (Ω), it follows that

Ip(u) ≥ ‖u‖p
W 1,p

0

1

p
− λ

1− γ
S
γ−1
p

p |Ω|
p∗+γ−1
p∗ ‖u‖1−γ−p

W 1,p
0

− S
−q
p
p

q
|Ω|

p∗−q
p∗ ‖u‖q−p

W 1,p
0

 .

Standard calculations imply that if 0 < ρp <
(
q
pS

q
p
p |Ω|

q−p∗
p∗
) 1
q−p

, then

1

p
− S

−q
p
p

q
|Ω|

p∗−q
p∗ ρq−pp > 0.

Observe that, owing to limp→1+ Sp = S1, we get

lim
p→1+

(
q

p
S
q
p
p |Ω|

q−p∗
p∗

) 1
q−p

=
(
qSq1 |Ω|

q−1∗
1∗
) 1
q−1

,

so that ρp can be taken in such a way that limp→1+ ρp = ρ.

Then it is enough to choose λ∗p(ρp) > 0 such that

1

p
−
λ∗p(ρp)

1− γ
S
γ−1
p

p |Ω|
p∗+γ−1
p∗ ρ1−p−γ

p − S
−q
p
p

q
|Ω|

p∗−q
p∗ ρq−pp = 0.

Hence, if 0 < λ < λ∗p(ρp), then

Ip(u) ≥ ρp

1

p
− λ

1− γ
S
γ−1
p

p |Ω|
p∗+γ−1
p∗ ρ1−p−γ

p − S
−q
p
p

q
|Ω|

p∗−q
p∗ ρq−pp

 = βp(ρp) > 0,

for all u ∈W 1,p
0 (Ω) such that ‖u‖W 1,p

0
= ρp. We point out that 0 < λ < λ∗(ρp) can be chosen to satisfy

0 < λ < λ∗p(ρp) for all p close enough to 1 and so limp→1+ βp(ρp) = β(ρ) holds. �

From now on, we fix 0 < λ < λ∗(ρ) and assume that p0 is such that, for every 1 < p < p0, we have
that 0 < λ < λ∗p(ρp). Later on, we will require further restrictions on the parameter λ and p0 and we
will consider λ∗ = λ∗(ρ), β = β(ρ), λ∗p = λ∗p(ρp) and βp = βp(ρp) if there is no confusion.

Lemma 3.3 Let φ ∈ C∞c (Ω) be such that φ ≥ 0 and φ 6= 0. If t > 0 is small enough, then Ip(tφ) < 0
and also I(tφ) < 0.

Proof. If t > 0 is small enough, then we may write

Ip(tφ) = t1−γ
(
tp−1+γ

p
‖φ‖p

W 1,p
0

− λ

(1− γ)

∫
Ω

φ1−γdx− tq−1+γ

q

∫
Ω

φqdx

)
< 0

and the same arguments apply to I. The result is just a consequence of limp→1 I
p(tφ) = I(tφ). �
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3.2 Critical points of (3.2)

In this subsection, we find two different nonnegative critical points of Ip (named up and vp) satisfying

Ip(up) < 0 < βp ≤ Ip(vp) . (3.3)

First of all, let us define the well known Nehari manifold (even though it is not a manifold properly)
associated to (3.1)

Np =

{
u ∈W 1,p

0 (Ω)\{0} ;

∫
Ω

|∇u|p dx−
∫

Ω

|u|q − λ
∫

Ω

|u|1−γ dx = 0

}
,

as well as some subsets of it

N+
p =

{
u ∈ Np ; (p− 1 + γ)

∫
Ω

|∇u|p dx− (q − 1 + γ)

∫
Ω

|u|q > 0

}
,

N−p =

{
u ∈ Np ; (p− 1 + γ)

∫
Ω

|∇u|p dx− (q − 1 + γ)

∫
Ω

|u|q < 0

}
and

N 0
p =

{
u ∈ Np ; (p− 1 + γ)

∫
Ω

|∇u|p dx− (q − 1 + γ)

∫
Ω

|u|q = 0

}
.

For a given u ∈W 1,p
0 (Ω), u 6= 0, let us denote

ϕu(t) := Ip(tu). (3.4)

It is straightforward to see that

Np =
{
u ∈W 1,p

0 (Ω)\{0} ; ϕ′u(1) = 0
}
,

and also that
N+
p = {u ∈ Np ; ϕ′′u(1) > 0} ,

N−p = {u ∈ Np ; ϕ′′u(1) < 0} ,
and

N 0
p = {u ∈ Np ; ϕ′′u(1) = 0} .

Now, we are going to analyze functions ϕu and deduce some crucial geometric and compactness
properties about these subsets of the Nehari manifold. In Figure 1 a typical profile of ϕu is shown.

Lemma 3.4 Let 0 < λ < λp, where

λp := S
q+γ−1
q−p

p |Ω|−σpCp,q,γ ,

σp =
p(p∗ − q)
p∗q

(q + γ − 1)

(q − p)
+
q + γ − 1

q

and

Cp,q,γ =

(
p+ γ − 1

q + γ − 1

) p+γ−1
q−p

−
(
p+ γ − 1

q + γ − 1

) q+γ−1
q−p

=

(
q − p

q + γ − 1

)(
p+ γ − 1

q + γ − 1

) p+γ−1
q−p

.

Then, for each nonnegative u ∈W 1,p
0 (Ω), u 6= 0, there exist unique real numbers 0 < t+ < t−, such that

t+u ∈ N+
p and t−u ∈ N−p . Moreover,

Ip(t−u) = max
t>0

Ip(tu)

and, for u ∈W 1,p
0 (Ω), t− = 1 if, and only if, u ∈ N−p .
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t

ϕu(t)

t+

t−

Figure 1: Typical profile of ϕu

Proof. Fix one of those functions u ∈ W 1,p
0 (Ω) and let ϕu be as in (3.4). Note that ϕ′u(t) = t−γη(t),

being

η(t) = ‖u‖p
W 1,p

0

tp+γ−1 − ‖u‖qqtq+γ−1 − λ
∫

Ω

|u|1−γdx.

It is straightforward that ϕ′u and η have the same roots. Main features of η are η(0) < 0 and
limt→+∞ η(t) = −∞ for all p < p0 < q. Moreover, differentiating η, we deduce it admits a unique
maximum point t, which is given by

t =

(
(p+ γ − 1)‖u‖p

W 1,p
0

(q + γ − 1)‖u‖qq

) 1
q−p

.

Simple calculations show that

η(t) = Cp,q,γ
‖u‖p

q+γ−1
q−p

W 1,p
0

‖u‖q
p+γ−1
q−p

q

− λ
∫

Ω

|u|1−γdx.

Now the Sobolev and Hölder inequalities imply

η(t) ≥
(
Cp,q,γS

q+γ−1
q−p

p |Ω|−p
p∗−q
qp∗

q+γ−1
q−p − λ|Ω|

q+γ−1
q

)
‖u‖1−γq

and so this maximum point is positive, as far as 0 < λ < λp. Then, taking our hypothesis into account,
we have that there exist unique real numbers 0 < t+ < t < t−, such that η(t+) = η(t−) = 0, so that
ϕ′u(t+) = ϕ′u(t−) = 0. We also deduce that ϕ′′u(t+) > 0 and ϕ′′u(t−) < 0. Hence, since ϕ′′tu(1) = t2ϕ′′u(t)
for all t ∈ R, it follows that

t+u ∈ N+
p and t−u ∈ N−p .

To end up with the proof, it follows straightforwardly from the definition of N−p and ϕu, that t− = 1 if
and only if u ∈ N−p . �

Lemma 3.5 Let

λ̃p =

(
q − p+ 2γ − 2

q − 1 + γ

)(
p− 1 + γ

q − 1 + γ

) 1−γ−p
p−q

C
−p−p( 1−γ−p

p−q )
p |Ω|

1−q−γ
q ,

where Cp is the best constant of the Sobolev embedding W 1,p
0 (Ω) ↪→ Lq(Ω). Then for all λ ∈ (0, λ̃p) it

holds that:

i) N 0
p = ∅;

ii) N−p is a closed set in W 1,p
0 (Ω).

Proof. The proof just follows as in [8, Lemma 2.2]. �
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Remark 3.1 Note that, as p→ 1+, λp → λ1 =: λ and λ̃p → λ̃1 =: λ̃.

Lemma 3.6 Given u ∈ N−p , there exist ε > 0 and a continuous function h > 0 defined in

Bε(0) ⊂W 1,p
0 (Ω), such that

h(0) = 1, h(w)(u+ w) ∈ N−p , ∀w ∈ Bε(0).

Proof. Just follow the proof in [8, Lemma 2.4]. �

Lemma 3.7 Let 0 < λ < min{λ∗p, λp}, where λ∗p and λp are given as in Lemmas 3.2 and 3.4,
respectively. Then

inf
u∈N−p

Ip(u) ≥ βp > 0,

where βp is given in Lemma 3.2.

Proof. Given u ∈ N−p , let t− > 0 be such that t−u ∈ N−p and Ip(t−u) = maxt>0 I
p(tu), which exists

by Lemma 3.4. Let βp and ρp be as in Lemma 3.2. Then

Ip(t−u) ≥ Ip
(
ρp

u

‖u‖W 1,p
0

)
≥ βp.

�

Lemma 3.8 Assume that there exists u0 ∈ Np, u0 > 0, such that

0 ≤
∫

Ω

|∇u0|p−2∇u0 · ∇φdx− λ
∫

Ω

u−γ0 φdx−
∫

Ω

uq−1
0 φdx, ∀φ ∈W 1,p

0 (Ω), φ ≥ 0. (3.5)

Then u0 is a weak solution of (3.1).

Proof. Let φ ∈W 1,p
0 (Ω) and ε > 0, and define w ∈W 1,p

0 (Ω) by

w ≡ (u0 + εφ)+.

Using w as test function in (3.5) and taking into account that (Ip)′(u0)u0 = 0, we obtain

0 ≤
∫

Ω

(
|∇u0|p−2∇u0 · ∇w − uq−1

0 w − λu−γ0 w
)
dx

=

∫
[u0+εφ≥0]

(
|∇u0|p−2∇u0 · ∇(u0 + εφ)− uq−1

0 (u0 + εφ)− λu−γ0 (u0 + εφ)
)
dx

=

(∫
Ω

−
∫

[u0+εφ<0]

)(
|∇u0|p−2∇u0 · ∇(u0 + εφ)− uq−1

0 (u0 + εφ)− λu−γ0 (u0 + εφ)
)
dx

=

∫
Ω

|∇u0|p dx−
∫

Ω

uq0 dx− λ
∫

Ω

u1−γ
0 dx

+ε

(∫
Ω

|∇u0|p−2∇u0 · ∇φ−
∫

Ω

uq−1
0 φdx− λ

∫
Ω

u−γ0 φdx

)
−
∫

[u0+εφ<0]

(
|∇u0|p−2∇u0 · ∇(u0 + εφ)− uq−1

0 (u0 + εφ)− λu−γ0 (u0 + εφ)
)
dx

≤ ε

(∫
Ω

|∇u0|p−2∇u0 · ∇φ−
∫

Ω

uq−1
0 φdx− λ

∫
Ω

u−γ0 φdx

)
−ε
∫

[u0+εφ<0]

|∇u0|p−2∇u0 · ∇φdx. (3.6)
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Since limε→0+ |[u0 + εφ < 0]| = 0 we have

lim
ε→0

∫
[u0+εφ<0]

|∇u0|p−2∇u0 · ∇φdx = 0.

Thus, dividing (3.6) by ε and letting ε→ 0, we have that

0 ≤
∫

Ω

|∇u0|p−2∇u0 · ∇φ−
∫

Ω

uq−1
0 φdx− λ

∫
Ω

u−γ0 φdx. (3.7)

Since this inequality holds for every φ ∈ W 1,p
0 (Ω), by taking −φ as test function, we get the opposite

inequality and, thus, the equality itself. Therefore, u0 is a weak positive solution of (3.1) . �

Now let us show the existence of two positive solutions for (3.1), one with a positive energy level
and another with a negative one.

Lemma 3.9 The functional Ip is bounded from below in Bρp(0), where Bρp(0) = {u ∈
W 1,p

0 (Ω); ‖u‖W 1,p
0

< ρp}.

Proof. Note that, for nonnegative u ∈ W 1,p
0 (Ω) such that ‖u‖W 1,p

0
≤ ρp, the Hölder and Sobolev

inequalities imply

|Ip(u)| ≤ 1

p
‖u‖p

W 1,p
0

+
λ

1− γ
‖u‖

1−γ
q

q |Ω|
q−1+γ
q +

1

q
‖u‖qq

≤ 1

p
‖u‖p

W 1,p
0

+ C
λ

1− γ
‖u‖

1−γ
q

W 1,p
0

|Ω|
q−1+γ
q +

C

q
‖u‖q

W 1,p
0

≤ 1

p
ρpp + C

λ

1− γ
ρ

1−γ
q

p |Ω|
q−1+γ
q +

Cρqp
q

.

�

From the last lemma, it is straightforward to see that Ip attains a local minimum in Bρp(0). Hence,
there exists up ∈ Bρp(0) such that

Ip(up) = αp := inf
v∈Bρp (0)

Ip(v). (3.8)

By Lemma 3.3, we have αp < 0. Moreover, fixing φ ∈ C∞c (0) and choosing t > 0 in such a way that
‖tφ‖W 1,p

0
< ρp and ‖tφ‖BV < ρ, since Ip(tφ)→ I(tφ), as p→ 1+, it follows that

Ip(up) = αp <
α

2
< 0, (3.9)

for p sufficiently close to 1, where α := I(tφ).

Lemma 3.10 up defined as in (3.8) is a weak solution of (3.1)

Proof. As in [35], one can show that
−∆pup ≥ 0 in Ω,

which, by the Strong Maximum Principle for this operator (see [36]), implies that up > 0 a.e. in Ω.
Again, as in [35], one can show that up ∈ Np and also that

0 ≤
∫

Ω

|∇up|p−2∇up · ∇φdx− λ
∫

Ω

u−γp φdx−
∫

Ω

uq−1
p φdx, ∀φ ∈W 1,p

0 (Ω), φ ≥ 0. (3.10)

Hence, from (3.10) and Lemma 3.8, it follows that up is a weak solution of (3.1). �
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Lemma 3.11 There exists a weak solution vp of (3.1) satisfying βp < Ip(vp).

Proof. Let us consider 0 < λ < Λ, where Λ = 1
2 min{λ∗, λ, λ̃}. From Lemma 3.2 and Remark 3.1, there

exists p0 such that λ < min{λ∗p, λp, λ̃p}, for all 1 < p < p0. First of all note that Ip is coercive on Np.
Indeed, if u ∈ Np, then Hölder’s inequality implies that

Ip(u) =

(
1

p
− 1

q

)
‖u‖p

W 1,p
0

− λ
(

1

1− γ
− 1

q

)∫
Ω

|u|1−γ dx

≥
(

1

p
− 1

q

)
‖u‖p

W 1,p
0

− λ
(

1

1− γ
− 1

q

)
C‖u‖1−γ

W 1,p
0

.

Hence, since 1− γ < 1 < p, it follows that Ip is coercive on Np.

Now, from Lemma 3.5, N−p is a closed set in W 1,p
0 (Ω). Moreover, from the compact embeddings,

the Lebesgue Dominated Convergence Theorem and since p < q < q∗, it follows that Ip is lower
semicontinuous. Then, by Ekeland’s Variational Principle, there exists a minimizing sequence (vn) ⊂
N−p such that

Ip(vn) < inf
N−p

Ip +
1

n
, (3.11)

and

Ip(u) ≥ Ip(vn)− 1

n
‖u− vn‖W 1,p

0
, ∀u ∈ N−p . (3.12)

Moreover, we can choose vn ≥ 0 in Ω for all n ∈ N, since Ip(|u|) = Ip(u), for all u ∈W 1,p
0 (Ω). Since Ip

is coercive on N−p , it follows that (vn) is bounded in W 1,p
0 (Ω) and so, there exists vp ∈ W 1,p

0 (Ω) such
that, up to a subsequence, as n→∞,

vn ⇀ vp in W 1,p
0 (Ω)

vn → vp in Lr(Ω), for all 1 ≤ r < p∗,
(3.13)

where we have used the compactness of the embeddings of W 1,p
0 (Ω).

A remark is in order. Our aim is to apply Lemma 3.8, so that we have to check vp ∈ Np, vp > 0 and
that inequality (3.5) holds. We cannot infer that vp belongs to N−p , since it is just the weak limit of a
sequence in N−p and N−p is only closed with respect to the strong convergence.

To begin with, we are seeing that vp 6= 0. Note that the Sobolev and Hölder inequalities imply that

‖vn‖pW 1,p
0

≥ Sp
|Ω|α
‖vn‖pq ,

where α = p(p∗ − q)/p∗q. On the other hand, since vn ∈ N−p , it yields ‖vn‖qq ≥
p+γ−1
q+γ−1‖vn‖

p

W 1,p
0

. Then

we obtain

‖vn‖q ≥
[
Sp(p− 1 + γ)

|Ω|α(q − 1 + γ)

] 1
q−p

. (3.14)

Using (3.13) and passing to the limit as n→∞, we get vp 6= 0.

From Lemma 3.6 with u = vn and w = tφ, φ ∈ W 1,p
0 (Ω), φ ≥ 0 and t > 0 small enough, we find

hn(t) := hn(tφ) such that
hn(0) = 1 and hn(t)(vn + tφ) ∈ N−p .

As in [35], one can prove that the right derivative h′+n (0) is well defined and

|h′+n (0)| ≤ C, ∀n ∈ N,

12



where C > 0 does not depend on n.

Now we show that vp ∈ N−p and it is a weak positive solution of (3.1). From (3.12), we obtain

1

n

[
|hn(t)− 1| ‖vn‖W 1,p

0
+ thn(t)‖φ‖W 1,p

0

]
≥ Ip(vn)− Ip(hn(t)(vn + tφ))

= −1

p
(hpn(t)− 1)‖vn‖pW 1,p

0

+
1

p
hpn(t)

(
‖vn‖pW 1,p

0

− ‖vn + tφ‖p
W 1,p

0

)
+

1

q
(hqn(t)− 1)‖vn + tφ‖qq +

1

q

(
‖vn + tφ‖qq − ‖vn‖qq

)
+

λ

1− γ
(h1−γ
n (t)− 1)

∫
Ω

|vn + tφ|1−γ dx

+
λ

1− γ

∫
Ω

(
|vn + tφ|1−γ − |vn|1−γ

)
dx.

Dividing by t > 0, calculating the lim inf as t → 0+, recalling that hn(0) = 1 and taking into account
that vn ∈ Np, it yields

1

n
(|h′+n (0)|‖vn‖W 1,p

0
+ ‖φ‖W 1,p

0
) (3.15)

≥ −h′+n (0)‖vn‖pW 1,p
0

−
∫

Ω

|∇vn|p−2∇vn · ∇φdx+ h′+n (0)‖vn‖qq +

∫
Ω

vq−1
n φdx

+ λh′+n (0)

∫
Ω

v1−γ
n dx+ lim inf

t→0+

λ

1− γ

∫
Ω

(vn + tφ)1−γ − v1−γ
n

t
dx

= −h′+n (0)

(
‖vn‖pW 1,p

0

− ‖vn‖qq − λ
∫

Ω

v1−γ
n dx

)
−
∫

Ω

|∇vn|p−2∇vn · ∇φdx

+

∫
Ω

vq−1
n φdx+ lim inf

t→0+

λ

1− γ

∫
Ω

(vn + tφ)1−γ − v1−γ
n

t

= −
∫

Ω

|∇vn|p−2∇vn · φdx+

∫
Ω

vq−1
n φdx

+ lim inf
t→0+

λ

1− γ

∫
Ω

(vn + tφ)1−γ − v1−γ
n

t
dx .

Note that, by Fatou’s Lemma, we get

λ

∫
Ω

v−γn φdx ≤ lim inf
t→0+

λ

1− γ

∫
Ω

(vn + tφ)1−γ − v1−γ
n

t
dx . (3.16)

Using (3.16) in (3.15) we obtain

λ

∫
Ω

v−γn φdx ≤ 1

n
(|h′+n (0)|‖vn‖W 1,p

0
+ ‖φ‖W 1,p

0
) +

∫
Ω

|∇vn|p−2∇vn · ∇φdx−
∫

Ω

vq−1
n φdx (3.17)

≤ 1

n
(CC1 + ‖φ‖W 1,p

0
) +

∫
Ω

|∇vn|p−2∇vn · ∇φdx−
∫

Ω

vq−1
n φdx. (3.18)

Now, calculating the limit as n→ +∞ and using once more Fatou’s Lemma, we have

λ

∫
Ω

v−γp φdx ≤
∫

Ω

|∇vp|p−2∇vp · ∇φdx−
∫

Ω

vq−1
p φdx .

Hence ∫
Ω

|∇vp|p−2∇v · ∇φdx−
∫

Ω

vq−1
p φdx− λ

∫
Ω

v−γp φdx ≥ 0 , ∀φ ∈W 1,p
0 (Ω) , φ ≥ 0 , (3.19)
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which implies that vp satisfies in the weak sense

−∆pvp ≥ 0 in Ω ,

since vp ≥ 0 and vp 6= 0 in Ω. Hence, from the Strong Maximum Principle (see [36]), it holds

vp > 0 in Ω .

To apply Lemma 3.8 we still have to check that vp ∈ Np. Note that, for φ = vp in (3.19), we have

‖vp‖pW 1,p
0

≥ ‖vp‖qq + λ

∫
Ω

v1−γ
p dx. (3.20)

On the other hand, by the weakly lower semi-continuity of the norm,

‖vp‖pW 1,p
0

≤ lim inf
n→∞

‖vn‖pW 1,p
0

(3.21)

≤ lim sup
n→∞

‖vn‖pW 1,p
0

= lim
n→∞

[
‖vn‖qq + λ

∫
Ω

v1−γ
n dx

]
= ‖vp‖qq + λ

∫
Ω

v1−γ
p dx.

Thus, from (3.20) and (3.21), it follows that

‖vp‖pW 1,p
0

= lim
n→∞

‖vn‖pW 1,p
0

= ‖vp‖qq + λ

∫
Ω

v1−γ
p dx . (3.22)

Then, since ∇vn ⇀ ∇vp in Lp(Ω;RN ) and ‖∇vn‖p → ‖∇vp‖p, the Radon-Riesz theorem implies
that in fact

vn → vp in W 1,p
0 (Ω), as n→ +∞. (3.23)

This, in turn, thanks to Lemma 3.5, implies that vp ∈ N−p and also that

Ip(vp) = inf
N−p

Ip. (3.24)

Therefore, from Lemma 3.8, (3.19) and (3.24), it follows that vp is a weak solution of (3.1). �

Hence, we have proved that there exist two weak solutions of (3.1), up and vp, such that, by Lemmas
3.2 and 3.7 and by (3.9), it holds that

Ip(up) <
α

2
< 0 <

β

2
< βp < Ip(vp), (3.25)

for all p > 1 sufficiently close to 1.

3.3 BV-estimates

In this subsection, we are checking that both families of critical points of Ip are bounded in BV (Ω).

Lemma 3.12 The family (up)1<p<p0 is bounded in BV (Ω).

14



Proof. From its definition, ‖up‖W 1,p
0

< ρp. On the other hand, since ρp → ρ as p → 1+, then there

exists M > 0 such that ∫
Ω

|∇up|pdx ≤M, for all 1 < p < p0. (3.26)

Then, by using Young’s inequality and (3.26),

‖up‖ =

∫
Ω

|∇up|dx

≤ 1

p

∫
Ω

|∇up|pdx+
p− 1

p
|Ω|

≤ M + |Ω| = M1 (3.27)

and this proves that (up)1<p<p0 is bounded in BV (Ω). �

In order to show that the family (vp)1<p<p0 is also bounded in BV (Ω), let us follow the arguments
of [20], which was inspired by those in [30]. First of all, let us define

Jp(u) = Ip(u) +
p− 1

p
|Ω|. (3.28)

Observe that Ip and Jp have the same critical points. Moreover, by their definition,

Jp(vp) = inf
N−p

Jp. (3.29)

By Young’s inequality, the following monotone property holds,

p1 ≤ p2 ⇒ Jp1(u) ≤ Jp2(u) ∀u ∈W 1,p1
0 (Ω). (3.30)

Moreover, the statement of Lemma 3.4 also holds for Jp.

Lemma 3.13 The family (vp)1<p<p0 is bounded in BV (Ω).

Proof. Let 1 < p1 ≤ p2 < N and consider vp1 ∈ W
1,p1
0 (Ω) and vp2 ∈ W

1,p2
0 (Ω) such that (3.29) holds

for Jp1 and Jp2 , respectively. Since p2 ≥ p1, then W 1,p2
0 (Ω) ⊂W 1,p1

0 (Ω). From Lemma 3.4, there exists
t > 0 such that

tvp2 ∈ N−p1 . (3.31)

Then, from Lemma 3.4 and (3.30), it follows that

Jp2(vp2) ≥ Jp2(tvp2)

≥ Jp1(tvp2)

≥ Jp1(vp1).

Then, for 1 < p < p0, it follows that

Jp(vp) < Jp0(vp0) =: C. (3.32)

By (3.32), Hölder’s inequality and the definition of Sp leads to

C ≥ Jp(vp)

= Jp(vp)−
1

q
(Jp)′(vp)vp

=

(
1

p
− 1

q

)
‖vp‖pW 1,p

0

− λ
(

1

1− γ
− 1

q

)∫
Ω

|vp|1−γdx

≥
(

1

p
− 1

q

)
‖vp‖pW 1,p

0

− λ
(

1

1− γ
− 1

q

)
S
γ−1
p

p |Ω|
p∗(p+γ−1)+(1−γ)(p∗−p)

pp∗ ‖vp‖1−γW 1,p
0

. (3.33)

15



Then, since 1 − γ < p, it follows that ‖vp‖W 1,p
0

is bounded and there exists M > 0 (which does not

depend on p), such that ∫
Ω

|∇vp|pdx ≤M, for all 1 < p < p0. (3.34)

Then, as in (3.27), it follows that (vp)1<p<p0 is bounded in BV (Ω). �

4 Convergence to positive solutions

In this section, we prove that the families of solutions (up)1<p<p0 and (vp)1<p<p0 to (3.1) converge
to functions which are positive solutions to (1.1). Actually, in order to calculate their limits, we just
need that they are bounded in BV (Ω). Hence, we just detail the convergence of (up)1<p<p0 , since the
other convergence can be obtained by repeating the proof verbatim.

First of all, let us recall that the BV –estimate implies that there exists u0 such that, up to
subsequences,

up → u0 in Lr(Ω) , ∀ r ∈ [1, 1∗). (4.1)

as p→ 1+. Moreover,
up ⇀ u0 in L1∗(Ω) as p→ 1+ . (4.2)

4.1 Comparison with a simpler singular problem

In this subsection, we connect critical points of functional Ip with the positive solution of a simpler
problem, namely,  −∆pw =

λ

wγ
in Ω,

w = 0 on ∂Ω.

(4.3)

Existence and uniqueness to this problem has been studied in [17] (see also [18]); we next state its main
properties:
There exists a unique solution wp ∈ W 1,p

0 (Ω) ∩ L∞(Ω) to problem (4.3) in the sense that 1
wγp
∈ L1(Ω)

and ∫
Ω

|∇wp|p−2∇wp · ∇ϕdx =

∫
Ω

λ

wγp
ϕdx , (4.4)

for every ϕ ∈ W 1,p
0 (Ω). Moreover, this solution satisfies the following positiveness feature: for every

open set ω ⊂⊂ Ω there exists cω > 0 such that wp ≥ cω a.e. in ω.

Proposition 4.1 The inequality up ≥ wp holds for every p > 1.

Proof. Take (wp − up)+ as test function in both formulations and subtract them, then we deduce∫
Ω

(|∇wp|p−2∇wp − |∇up|p−2∇up) · ∇(wp − up)+

= λ

∫
Ω

(
1

wγp
− 1

uγp

)
(wp − up)+ −

∫
Ω

uq−1
p (wp − up)+.

Now it is enough to realize that the left hand side is nonnegative while the right hand side is nonpositive.
So, both sides vanish and we conclude that (wp − up)+ = 0. �

In [18] the family (wp)1<p<p0 is considered. It is proved that there exists w0 ∈ BV (Ω) satisfying
w0 > 0, 1

wγ0
∈ L1(Ω) and

wp → w0 in Lr(Ω) for all 1 ≤ r < N/(N − 1).
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Corollary 4.1 Inequality u0 ≥ w0 holds. As a consequence, u0 > 0 and 1
uγ0
∈ L1(Ω).

4.2 L∞-estimate

This subsection is devoted to check that u0 ∈ L∞(Ω).

Lemma 4.1 Let u0 be as in (4.1). Then

u0 ∈ L∞(Ω) .

Proof. Taking Gk(up) = (up − k)+ as test function in (3.1), we get∫
Ω

|∇Gk(up)|p dx = λ

∫
Ω

1

uγp
Gk(up) dx+

∫
Ω

uq−1
p Gk(up) dx .

Since Hölder’s inequality implies that∫
Ω

1

uγp
Gk(up) dx ≤

1

kγ
‖Gk(up)‖ N

N−1
|Ω| 1N

and ∫
Ω

uq−1
p Gk(up) dx ≤

(∫
Ak,p

u(q−1)N
p dx

) 1
N

‖Gk(up)‖ N
N−1

,

where Ak,p := {x ∈ Ω ; up(x) > k}, we have

∫
Ω

|∇Gk(up)|p dx ≤

 λ

kγ
|Ω| 1N +

(∫
Ak,p

u(q−1)N
p dx

) 1
N

 ‖Gk(up)‖ N
N−1

. (4.5)

Thus, by the definition of S1 (see Lemma 3.1), Young’s inequality and (4.5), we have(∫
Ω

|Gk(up)|
N
N−1 dx

)N−1
N

≤ S−1
1

∫
Ω

|∇Gk(up)| dx

≤ S−1
1

(
1

p

∫
Ω

|∇Gk(up)|p dx+
p− 1

p
|Ω|
)

(4.6)

≤ S−1
1

p

 λ

kγ
|Ω| 1N +

(∫
Ak,p

u(q−1)N
p dx

) 1
N

 ‖Gk(up)‖ N
N−1

+
S−1

1 (p− 1)

p
|Ω| ,

or equivalently,1− S−1
1

p

 λ

kγ
|Ω| 1N +

(∫
Ak,p

u(q−1)N
p dx

) 1
N

 ‖Gk(up)‖ N
N−1
≤ S−1

1 (p− 1)

p
|Ω| . (4.7)

We claim that, there exists k0 > 0 and p0 > 1 such that∫
Ak,p

u(q−1)N
p dx < ε ∀ k ≥ k0 ,∀ p ∈ (1, p0) . (4.8)
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Indeed, since

|Ak,p| ≤
1

k
N
N−1

∫
Ak,p

u
N
N−1
p dx ,

we have, by (3.27) and Hölder’s inequality, that

∫
Ak,p

u(q−1)N
p dx ≤

(∫
Ak,p

u
N
N−1
p dx

)(q−1)(N−1)

|Ak,p|1−(q−1)(N−1)

≤

(∫
Ak,p

u
N
N−1
p dx

)(q−1)(N−1)
1

k
N[1−(q−1)(N−1)

N−1

(∫
Ak,p

u
N
N−1
p dx

)1−(q−1)(N−1)

≤ 1

k
N[1−(q−1)(N−1)]

N−1

∫
Ak,p

u
N
N−1
p dx

≤ 1

k
N[1−(q−1)(N−1)]

N−1

S
−N
N−1

1

(∫
Ω

|∇up| dx
) N
N−1

≤ 1

k
N[1−(q−1)(N−1)]

N−1

S
−N
N−1

1 M
N
N−1

1 ,

for all p ∈ (1, p0). Since q < N/(N − 1) implies 1− (q − 1)(N − 1) > 0, it follows that

lim
k→∞

∫
Ak,p

u(q−1)N
p dx = 0

uniformly on p and then (4.8) holds. Consequently, we can choose k1 > 0 such that∫
Ak,p

u(q−1)N
p dx ≤

(
pS1

2

)N
∀ k ≥ k1, p ∈ (1, p0) . (4.9)

Thus, by using (4.9) in (4.7) we get(
1

2
− S−1

1 λ

pkγ
|Ω| 1N

)
‖Gk(up)‖ N

N−1
≤ S−1

1 (p− 1)

p
|Ω| ∀ k ≥ k1, p ∈ (1, p0) . (4.10)

Now, if we take a larger k2 > k1 such that

1

2
− S−1

1 λ

pkγ
|Ω| 1N > 0 ∀ k ≥ k2 (4.11)

then, by (4.10) and (4.11), we have that

0 ≤
(

1

2
− S−1

1 λ

pkγ
|Ω| 1N

)
‖Gk(up)‖ N

N−1
≤ S−1

1 (p− 1)

p
|Ω| ∀ k ≥ k2 ,∀ p ∈ (1, p0) . (4.12)

Therefore, letting p→ 1+ in (4.12), by Fatou’s Lemma, (4.2) and the definition of Gk, we obtain

u0 ≤ k a.e. in Ω.

We conclude that u0 ∈ L∞(Ω). �

4.3 Existence of the vector field

In this subsection we obtain the vector field appearing in the definition of solution and we check
that the equation holds in the sense of distributions.
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Lemma 4.2 Let u0 be as in (4.1). Then, there exists z ∈ DM∞loc(Ω) with ‖z‖∞ ≤ 1 such that

−div z ≥ λ

uγ0
+ uq−1

0 in D′(Ω). (4.13)

Proof. Let us fix 1 ≤ s <∞ and consider 1 < p < s′. By Hölder’s inequality and (3.26), we have∫
Ω

||∇up|p−2∇up|s dx =

∫
Ω

|∇up|s(p−1) dx (4.14)

≤
(∫

Ω

|∇up|p dx
) s
p′

|Ω|1−
s
p′ (4.15)

≤M
s
p′ |Ω|1−

s
p′ , (4.16)

for all p ∈ (1, p0). Then we may follow the proof of [27, Theorem 3.5] and show that there exists
z ∈ L∞(Ω,RN ) such that ‖z‖∞ ≤ 1 . It also holds, up to a subsequence,

|∇up|p−2∇up ⇀ z in Ls(Ω,RN ) , ∀ s ∈ [1,+∞) , (4.17)

as p→ 1+.

Using ϕ ∈ C∞c (Ω) with ϕ ≥ 0 as a test function in (3.1), we get∫
Ω

|∇up|p−2∇up · ∇ϕdx = λ

∫
Ω

1

uγp
ϕdx+

∫
Ω

uq−1
p ϕdx . (4.18)

Calculating the limit inferior, as p→ 1+, in both sides of the last expression, by (4.1), (4.17) and Fatou’s
Lemma, we obtain∫

Ω

z · ∇ϕdx ≥ λ
∫

Ω

1

uγ0
ϕdx+

∫
Ω

uq−1
0 ϕdx ≥ 0 ∀ϕ ∈ C∞c (Ω) , ϕ ≥ 0 . (4.19)

Thus, by the Riesz representation theorem, the functional ϕ 7→
∫

Ω

z·∇ϕdx defines a nonnegative Radon

measure in Ω. On the other hand, this functional coincides with −div z in the sense of distributions.
Therefore, inequality (4.19) is just (4.13) in the sense of distributions. As a consequence −div z is a
Radon measure.

Moreover, by (3.26), (4.17) and Young’s inequality, we have that

0 ≤ −
∫

Ω

ϕdiv z =

∫
Ω

z · ∇ϕdx = lim
p→1

∫
Ω

|∇up|p−2∇up · ∇ϕdx ≤M +

∫
Ω

(|∇ϕ|+ 1)p0 ,

for all ϕ ∈ C∞c (Ω) with ϕ ≥ 0. Observe that, at this point, one can only deduce that the total variation
of −div z is locally finite and so z ∈ DM∞loc(Ω). �

The next step is to verify that the equation holds in the sense of distributions. On this issue we will
adapt and simplify the arguments in [18].

Lemma 4.3 Let u0 be as in (4.1) and let z be as in Lemma 4.2. Then, the following identity holds

−u∗0div z = λu1−γ
0 + uq0 in D′(Ω) , (4.20)

Proof. Since u0 > 0, it follows from (4.13) that

−u∗0div z ≥ λu1−γ
0 + uq0 in D′(Ω) . (4.21)
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Let us prove the opposite inequality. Let ϕ ∈ C∞c (Ω) with ϕ ≥ 0. Taking upϕ as test function in
(3.1) we get ∫

Ω

ϕ|∇up|p dx+

∫
Ω

up|∇up|p−2∇up · ∇ϕdx = λ

∫
Ω

u1−γ
p ϕdx+

∫
Ω

uqpϕdx .

Thus, using Young’s inequality we have that∫
Ω

ϕ|∇up| dx+

∫
Ω

up|∇up|p−2∇up · ∇ϕdx

≤ 1

p

∫
Ω

ϕ|∇up|p dx+

∫
Ω

up|∇up|p−2∇up · ∇ϕdx+
p− 1

p

∫
Ω

ϕdx (4.22)

≤ λ
∫

Ω

u1−γ
p ϕdx+

∫
Ω

uqpϕdx+
p− 1

p

∫
Ω

ϕdx .

Now, we are going to pass to the limit above, as p→ 1+. On the left-hand side, by (4.1) and (4.17), we
have

lim inf
p→1+

(∫
Ω

ϕ|∇up| dx+

∫
Ω

up|∇up|p−2∇up · ∇ϕdx
)
≥
∫

Ω

ϕ|Du0|+
∫

Ω

u0z · ∇ϕdx . (4.23)

On the right-hand side, by (4.1) and the Dominated Convergence Theorem, it follows that

lim
p→1+

(
λ

∫
Ω

u1−γ
p ϕdx+

∫
Ω

uqpϕdx

)
= λ

∫
Ω

u1−γ
0 ϕdx+

∫
Ω

uq0ϕdx . (4.24)

Thus, by (4.23) and (4.24), (4.22) becomes∫
Ω

ϕ|Du0|+
∫

Ω

u0z · ∇ϕdx ≤ λ
∫

Ω

u1−γ
0 ϕdx+

∫
Ω

uq0ϕdx . (4.25)

But this implies, by (2.3), Corollary 2.1 and (4.25), that

−
∫

Ω

u∗0ϕdiv z =

∫
Ω

ϕ(z, Du0) +

∫
Ω

u0z · ∇ϕdx (4.26)

≤
∫

Ω

ϕ|Du0|+
∫

Ω

uz · ∇ϕdx (4.27)

≤ λ
∫

Ω

u1−γ
0 ϕdx+

∫
Ω

uq0ϕdx , (4.28)

or equivalently,
−u∗0div z ≤ λu1−γ

0 + uq0 in D′(Ω) . (4.29)

Consequently, by (4.21) and (4.29), we infer (4.20). �

Finally, taking into account that u0 > 0 a.e. (and so u∗0 > 0 HN−1–a.e.), the division by u0 is
allowed and we may arrive at the expected identity.

Corollary 4.2 Let u0 be as in (4.1) and let z be as in Lemma 4.2. Then, the following identity holds

−div z = λu−γ0 + uq−1
0 in D′(Ω) . (4.30)

As a consequence, div z ∈ L1(Ω), so that z ∈ X(Ω)1.
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4.4 End of the proof of Theorem 1.1

In order to finish the proof of this theorem, let us show that u0 satisfies the conditions (a)–(e) of
the Definition 2.1.

Conditions (a) and (b) were already proved in Corollary 4.1.

Condition (c) is just Corollary 4.2.

Conditions (d) and (e) can be proved as in [4]: take upϕ (with ϕ ∈ C∞c (Ω) a nonnegative function)
and up as test functions in (3.1), respectively; then in both (d) and (e) let p go to 1 and apply
Anzellotti’s theory.

Therefore, u0 satisfies the conditions (a)–(e) of the Definition 2.1 and thus it is a solution of (1.1).

As mentioned, it can be proved in the same way that v0 also satisfies these conditions and so v0 is
also a solution of (1.1).

Now, it remains to prove that u0 6= v0. Indeed, by (3.25) and the fact that up, vp ∈ Np, we have

λ

(
1

p
− 1

1− γ

)∫
Ω

u1−γ
p dx+

(
1

p
− 1

q

)∫
Ω

uqp dx

<
α

2
< 0 <

β

2

< λ

(
1

p
− 1

1− γ

)∫
Ω

v1−γ
p dx+

(
1

p
− 1

q

)∫
Ω

vqp dx ,

for all p ∈ (1, p0). Thus, calculating the limit as p→ 1+ in the last expression, by (4.1), it holds that

λ

(
1− 1

1− γ

)∫
Ω

u1−γ
0 dx+

(
1− 1

q

)∫
Ω

uq0 dx < λ

(
1− 1

1− γ

)∫
Ω

v1−γ
0 dx+

(
1− 1

q

)∫
Ω

vq0 dx .

Then u0 6= v0 and Theorem 1.1 is completely proved. �
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