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Abstract.

In this paper, we study a class of nonlinear elliptic Dirichlet problems whose simplest
model example is




−∆pu = g(u)|∇u|p + f, in Ω;

u = 0, on ∂Ω.
(1)

Here Ω is a bounded open set in IRN (N ≥ 2), ∆p denotes the so-called
p-Laplace operator (p > 1) and g is a continuous real function. Given f ∈
Lm(Ω) (m > 1), we study under which growth conditions on g problem (1) admits
a solution. If m ≥ N/p, we prove that there exists a solution under assumption
(3) (see below), and that it is bounded when m > N

p
; while if 1 < m < N/p

and g satisfies the condition (4) below, we prove the existence of an unbounded
generalized solution. Note that no smallness condition is asked on f . Our methods
rely on a priori estimates and compactness arguments and are applied to a large
class of equations involving operators of Leray–Lions type. We also make several
examples and remarks which give evidence of the optimality of our results.

Résumé.

Dans cet article, nous traitons le problème de Dirichlet pour une classe d’équations
elliptiques non linéaires, dont l’exemple modèle est (1) ci-dessus, où Ω est un
ensemble ouvert bornée dans IRN (N ≥ 2), ∆p dénote l’opérateur p-Laplacien
(p > 1) et g est une fonction continue à valeurs réelles.
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Étant donnée f ∈ Lm(Ω) (m > 1), nous étudions les conditions de croissance
sur g qui assurent l’existence de solutions. Si m ≥ N/p, nous démontrons qu’il
existe une solution sous l’hypothèse (3) (voir ci-dessous), solution que est bornée
quand m > N

p
; tandis que si 1 < m < N/p et g satisfait la condition (4) (voir

ci-dessous), nous prouvons l’existence de solutions généralisées non bornées. Nous
soulignons qu’aucune condition de petitesse n’est imposée sur f . Les méthodes
reposent sur estimations a priori et arguments de compacité, et sont appliqués sur
une large classe d’equations qui incluent les opérateurs de type Leray–Lions. Nous
presentons aussi plusieurs exemples et remarques qui montrent l’optimalité des nos
résultats.

1 Introduction.

This article is devoted to study the Dirichlet problem for some nonlinear elliptic
equations whose simplest model is (1). This kind of problems has been widely
studied. The classical references are [18] and [22]; since then, many authors have
proved results for second order elliptic problems with lower order terms depending
on the gradient: these works include, for instance, [4], [5], [6], [8], [13], [14], [15],
[16], [20], [25], [27], or [29]. After the classical example by Kazdan and Kramer
(see [17]), which shows that (1) can not always have solutions, two different kind
of questions have been considered. On the one hand, in some papers it is proved
existence of solutions when the source f is small in a suitable norm. On the other
hand, conditions on the function g have been considered in order to get a solution
for all f in a given Lebesgue space. This is the way chosen in [8], [27] and [25]
under the hypothesis

g ∈ L1(IR). (2)

In [8] it is considered the problem (1) for p = 2 and datum f ∈ Lm(Ω), with
m ≥ 2N/(N +2), and it is proved first an L∞-estimate, when m > N/2, and then
the existence of a generalized solution (so–called entropy solution, see Definition
2.3 below) when 2N/(N + 2) ≤ m < N/2. Assuming also this condition (2),
the problem (1) has been studied in [27] for datum f ∈ L1(Ω) and in [25] for
measure datum. In this last paper an example is given which shows the optimality
of (2) in order to have solutions for any measure on the right hand side. A natural
question is whether (2) is still necessary for different classes of data f . In this
work we prove that this is not the case and that the results in [8] can be extended
relaxing assumption (2) in dependence on the regularity of the data. We look then
for optimal conditions on the growth of g at infinity to ensure that, given f with a
certain summability, problem (1) admits a solution. It turns out that, as f varies
in the class of Lebesgue’s spaces Lm(Ω), a different growth assumption at infinity
(depending on m and p) is required for (1) to have a solution. For the model problem
(1), our results read as follows.

Theorem 1.1 Let us set G(s) =
∫ s

0
|g(t)|dt, and Φ(s) =

∫ s

0
e|G(t)|dt. Then we have:

(i) Let f ∈ Lm(Ω), with m > N
p
; if

lim
s→±∞

e|G(s)|

(1 + |Φ(s)|)p−1
= 0 , (3)



then (1) has a solution, which belongs to W 1,p
0 (Ω) ∩ L∞(Ω).

(ii) Let f ∈ L
N
p (Ω); if (3) holds true, then (1) has a solution, which belongs to

W 1,p
0 (Ω) ∩ Lq(Ω) for all q ∈ [1, +∞[.

(iii) Let f ∈ Lm(Ω), with 1 < m < N
p
; if there exist θ, 0 < θ < p∗

pm′ and positive
constants M1, M2 such that

M1 ≤ e|G(s)|

(1 + |Φ(s)|)θ(p−1)
≤ M2 for all s ∈ IR, (4)

then (1) has a solution, which belongs to W 1,p
0 (Ω) ∩ L

Nm(p−1)
N−pm (Ω) when m ≥ (p∗)′,

and to W
1,m∗(p−1)
0 (Ω) when 1 < m < (p∗)′.

As an example, (i) implies that, given any f ∈ Lm(Ω) with m > N
p
, (1) has a

(bounded) solution if g(s) tends to zero at infinity. This assumption should then be
compared with the counterexample to existence given in [17], where g behaves like
a constant; in that situation existence fails unless f has a suitable small norm (see
also [13]). Thus (3) seems to be optimal to find solutions to (1) for any f ∈ Lm(Ω),
m > N

p
. Moreover, we show with an example that when a sequence of admissible

functions g (i.e. satisfying (3)) approximates the constant of Kazdan–Kramer’s
counterexample, then the corresponding solutions blow–up everywhere in Ω, giving
reason for such failure of existence.

As far as (4) is concerned, as a main example it is satisfied if g(s) ≤ λ
s
, with

λ < λm := N(m−1)
N−pm

. Again, this value λm (as well as the limiting θ = p∗
pm′ in (4))

seems to be optimal in order to have solutions to (1) for any f ∈ Lm(Ω). We give
examples showing that if g(s) ≥ λm

s
no a priori estimates depending on ‖f‖Lm(Ω)

can be expected and complete blow–up phenomena may occur; in particular, there
exist functions in Lm(Ω) such that no solution is expected to exist.

It is not surprising that our assumptions (3) and (4) involve the primitive func-
tion G(s) =

∫ s

0
g(t)dt and its exponential exp(G(t)), which usually play a crucial

role in this kind of problems, making a link with a semilinear structure underlying
problem (1). Indeed, our main estimates are obtained by considering test functions
of exponential type which, through a sort of cancellation lemma (see Lemma 2.1
below), transform the equation in a problem of semilinear type. Our results are
then also related to possibly singular sublinear problems, which were studied in [7].
We also point out that the parabolic problem associated to (1), with p = 2, is
studied in [11].

The plan of the paper is the following. Next section is devoted to a precise
description of our assumptions (which are set in a general framework including
possibly non uniformly coercive problems) and of our results. In Section 3 we prove
the L∞-estimate and deduce the existence of bounded solutions, while Section 4 deals
with the existence of unbounded solutions (and their regularity); in this context we
use the more general framework of entropy solutions, which can be applied to the
full range of f ∈ Lm(Ω), m > 1. Last but not least, in Section 5 we give several
examples concerning the optimality of our results in the range of these assumptions,
showing that no a priori estimates can be expected if these are violated and proving
some results of nonexistence of solutions or of complete blow–up for approximating
problems.



2 Assumptions, Statement of Results and Com-

ments.

Let Ω be a bounded open set in IRN , with N ≥ 2, and let p > 1. Throughout
this article, c will denote a positive constant which only depends on the parameters
of our problem, its value may vary from line to line. We will also denote by |E| the

Lebesgue measure of E ⊂ Ω. Moreover, for 1 < q < +∞, we denote q′ =
q

q − 1
,

and if 1 ≤ q < N , q∗ =
Nq

N − q
.

We are going to investigate the existence of a solution of the following nonlinear
elliptic problem:




−div a(x, u,∇u) + b(x, u,∇u) = f, in Ω;

u = 0, on ∂Ω,
(5)

where a : Ω× IR× IRN → IRN and b : Ω × IR × IRN → IR are two Carathéodory
functions satisfying:

(A1) for every k > 0 there is a positive constant Ck such that

|a(x, s, ξ)| ≤ Ck(1 + |ξ|p−1)

holds for all (s, ξ) ∈ [−k, k]× IRN and almost all x ∈ Ω.
(A2) there exists a continuous positive function α : IR → IR satisfying

a(x, s, ξ) · ξ ≥ α(s)|ξ|p

for all (s, ξ) ∈ IR× IRN and almost all x ∈ Ω. Moreover, this function α satisfies

α
1

p−1 /∈ L1(−∞, 0) ∪ L1(0, +∞). (6)

(A3) if ξ, η ∈ IRN , with ξ 6= η, then

[a(x, s, ξ)− a(x, s, η)] · (ξ − η) > 0

holds for all s ∈ IR and almost all x ∈ Ω.
(B) there exist b0 ∈ Lm(Ω), for some m > 1, and a continuous non negative

function g : IR → IR satisfying

|b(x, s, ξ)| ≤ b0(x) + g(s)|ξ|p

for all (s, ξ) ∈ IR× IRN and almost all x ∈ Ω.

Let us remark that condition (B) implies that the growth rate of function b
with respect to ξ may have any order q ≤ p and so we are not restricted to the
limit case q = p, which nevertheless remains our main interest.

Finally, we assume that, for the same m > 1 as above,
(F) f ∈ Lm(Ω).
(The parameter m occurring in (B) and (F) will be precised in the results below.)



Remark 2.1 Note that assumption (A2) includes the case of a non uniformly coer-
cive operator, as considered for instance in [3] or [1]. Actually, we remark that no
great loss of generality would result by assuming that the function a(x, s, ξ) is uni-
formly coercive, that is α = 1 in (A2). Indeed, problem (5) is (at least formally)
equivalent to




−div ã(x, v,∇v) + b̃(x, v,∇v) = f, in Ω;

v = 0, on ∂Ω,
(7)

where v = A(u) =
∫ u

0
α(s)

1
p−1 ds and

ã(x, s, ξ) = a
(
x,A−1(s),

ξ

α(A−1(s))

)
, b̃(x, s, ξ) = b

(
x,A−1(s),

ξ

α(A−1(s))

)
.

The function ã(x, s, ξ) would then satisfy (A2) with α = 1 (and b̃ would satisfy (B)
with a different function g̃). The results obtained on the coercive problem for v
imply the results for the possibly non uniformly coercive equation on u provided the
equivalence between (5) and (7) is rigorously proved (in the desired formulation).
This is not difficult to do but still needs a few technicalities when dealing with the
entropy formulation (see later), so that it seemed to us easier to work directly from
the beginning with the generalized assumption (A2). Note however that for bounded
solutions u, v, the equivalence between the two problems is immediate.

It is well known that (A1)–(A3) and (B) are not enough in general to ensure the
existence of a solution, so that some supplementary condition on the lower order
term b is needed. Before stating our additional assumptions, some notation is in
order. We denote

G(s) =

∫ s

0

g(σ)

α(σ)
dσ (8)

A(s) =

∫ s

0

α1/(p−1)(σ) dσ (9)

Φ(s) =

∫ s

0

α(σ)1/(p−1)e|G(σ)|/(p−1) dσ. (10)

Note that, with this notation, (6) is transformed into

lim
s→+∞

A(s) = +∞ and lim
s→−∞

A(s) = −∞. (11)

We deal first with the problem of finding bounded weak solutions of (5) and assume

(C1) lim
s→±∞

e|G(s)|

(1 + |Φ(s)|)p−1
= 0.

Let us briefly analyze this hypothesis.

Remark 2.2 Let us observe that, on account of (C1),

lim
s→±∞

A(s) = ±∞⇐⇒ lim
s→±∞

Φ(s) = ±∞.



Indeed, on the one hand, clearly |A(s)| ≤ |Φ(s)|, so that (11) implies lims→±∞ Φ(s) =
±∞. On the other hand, it follows from (C1) that

Φ′(s)
1 + |Φ(s)| =

α1/(p−1)(s)e|G(s)|/(p−1)

1 + |Φ(s)| ≤ cα1/(p−1)(s)

for some positive constant c. Consequently,

log (1 + |Φ(s)|) ≤ c|A(s)| =⇒ |Φ(s)| ≤ ec|A(s)|.

Hence, lims→±∞ Φ(s) = ±∞ implies lims→±∞ A(s) = ±∞ and both conditions
are equivalent.

Remark 2.3 If α = 1, a simple way to obtain many functions g satisfying (C1)
is to take g = g1 + g2, where g1 ∈ L1(IR) and lims→±∞ g2(s) = 0: writing
Gi =

∫ s

0
gi(σ) dσ, i = 1, 2, we have that G1 is bounded and so e|G1| is bounded

from above and from below (by a positive constant); hence,

0 ≤
(

e|G(s)|

(1 + |Φ(s)|)p−1

) 1
p−1

=
e
|G(s)|
p−1

1 +
∣∣∣
∫ s

0
e
|G(σ)|
p−1 dσ

∣∣∣
≤ ce

|G2(s)|
p−1

1 + c
∣∣∣
∫ s

0
e
|G2(σ)|

p−1 dσ
∣∣∣

and now the right hand side tends to 0 by l’Hôpital’s rule.

Nevertheless, our condition is strictly more general as the following example
shows.

Example 2.1 Let p = 2 and α(s) = 1 for all s ∈ IR. Consider

g(s) =





π cos(πs/2), if |s| ∈ [0, 1];
(−1)n

2
nπ sin(n2πs), if |s| ∈ [n, n + 1

n2 ];
0, if |s| ∈ [n + 1

n2 , n + 1].

Notice that
∫ n+1

n
g(σ) dσ = 1

n
for all n ∈ IN . Thus, for s big enough, we have

G(s) ≈ sign(s) log |s| and e|G(s)| ≈ |s|, so that
∣∣∣
∫ s

0
e|G(σ)| dσ

∣∣∣ ≈ |s|2/2. Hence,

e|G(s)|

1 +
∣∣ ∫ s

0
e|G(σ)| dσ

∣∣ ≈
2

|s| → 0 as s → ±∞.

On the other hand, if g = g1 + g2, where g1 ∈ L1(IR) and lims→±∞ g2(s) = 0,
then g2 is bounded and we may find a constant C > 0 such that g = (g−C)++g∧C

with (g−C)+ a summable function. However, it follows that

∫ s

0

(
g(σ)−C

)+
dσ ≈

sign(s) log |s| for every C > 0 and so g cannot be decomposed as above.

Let us point out that, in this example,

lim
s→±∞

e|G(s)|
(
1 +

∣∣ ∫ s

0
e|G(σ)| dσ

∣∣)1/2
=
√

2. (12)



We define weak solutions of problem (5) in the sense of finite energy solutions.

Definition 2.1 We will say that a function u is a weak solution of problem (5) if
a(x, u,∇u) ∈ Lp′(Ω), b(x, u,∇u) ∈ L1(Ω) and

∫

Ω

a(x, u,∇u) · ∇ϕ +

∫

Ω

b(x, u,∇u)ϕ =

∫

Ω

fϕ

holds for all ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Concerning bounded solutions of (5), the main result we will prove in this paper
is the following one.

Theorem 2.1 Assume (A1), (A2), (A3), (B), (C1) and (F), with m > max{N
p
, 1}.

Then there exists a function u ∈ W 1,p
0 (Ω) ∩ L∞(Ω), which is a weak solution of

(5).

Consider now the case in which the datum f is less regular, that is, assume
1 < m ≤ N

p
(consequently 1 < p < N). In this situation solutions are expected to be

unbounded, and even if u ∈ W 1,p
0 (Ω) we may have that a(x, u,∇u) does not belong

to L1(Ω)N , since the growth assumption (A1) does not imply that a(x, u,∇u) ∈
L1(Ω)N for all u ∈ W 1,p

0 (Ω). In particular, under this general growth condition we
cannot work in the framework of distributional solutions as soon as u is unbounded.
Moreover, if f ∈ Lm(Ω) with m close to 1, then solutions are also not expected
to belong to the energy space W 1,p

0 (Ω) and, for small p, not even to W 1,1
loc (Ω).

Consequently, in this situation the notion of ∇u has to be precised, since ∇u may
no longer be in L1(Ω). To overcome the above mentioned problems it will be
helpful (as it is done in [8]) to use the generalized framework of so–called “entropy
solutions”, introduced in [2], which allows us a unified presentation for the whole
range 1 < m ≤ N

p
, including the case of both finite and infinite energy solutions. To

do so we need some preliminaries. For k > 0 we define the truncature at level ±k
as Tk(r) = max

{− k, min{k, r}}.

Definition 2.2 Following [2], we introduce T 1,p
0 (Ω) as the set of all measurable

functions u : Ω → IR almost everywhere finite and such that Tk(u) ∈ W 1,p
0 (Ω) for

all k > 0.

For a measurable function u belonging to T 1,p
0 (Ω), a gradient can be defi-

ned: it is a measurable function, also denoted by ∇u, which satisfies ∇Tk(u) =
(∇u)χ{|u|<k} for all k > 0 (see [2]). Let us next define entropy solutions.

Definition 2.3 Let f ∈ L1(Ω). We will say that u ∈ T 1,p
0 (Ω) is an entropy

solution of (5) if b(x, u,∇u) ∈ L1(Ω) and the identity

∫

Ω

a(x, u,∇u) · ∇Tk(u− v) +

∫

Ω

b(x, u,∇u)Tk(u− v) =

∫

Ω

fTk(u− v) (13)

holds for every v ∈ W 1,p
0 (Ω) ∩ L∞(Ω) and k > 0.



We point out that every term in (13) is well defined, see [2], where the reader
can find an introduction to this concept. We also remark that in dealing with our
problem the equivalent notion of renormalized solution (see [19], [21] and [12]) also
works.

Let then f ∈ Lm(Ω) with 1 < m ≤ N
p
. First of all we remark that also in

the limit case mp = N assumption (C1) is still sufficient to have a solution, though
unbounded.

Theorem 2.2 Assume (A1), (A2), (A3), (B), (C1) and (F), with m = N
p
. Then

there exists an entropy solution u of (5), which is such that Φ(u) ∈ W 1,p
0 (Ω)∩Lq(Ω)

for all q ∈ [1, +∞[.

Remark 2.4 We point out that the inequalities |A(u)| ≤ |Φ(u)| and

|∇A(u)|p ≤ e
p |G(u)|

p−1 |∇A(u)|p = |∇Φ(u)|p

imply that A(u) ∈ W 1,p
0 (Ω) ∩ Lq(Ω) for all q ∈ [1, +∞[.

Remark 2.5 We will not enter into possible detailed estimates for this case; ne-
vertheless, we will briefly compare our situation with a borderline one. Let us turn
our attention to (1), when the function g is constant, say γ. This problem was
studied by V. Ferone and F. Murat (see [13] and [14]). They proved, under smallness
assumptions on ‖f‖N/p, that there exists a solution u for each of these data and,
moreover, the common regularity shared for all these solutions is

(
e

γ |u|
p−1 − 1

)
sign(u) ∈ W 1,p

0 (Ω).

(Actually, solutions have more regularity, but depending on how small ‖f‖N/p is.)
Since in this case our function Φ would be defined by

Φ(s) =
p− 1

γ

(
e

γ |s|
p−1 − 1

)
sign(s),

it follows that the regularity stated in the above theorem is the same as that proved
in [14].

Next consider that f ∈ Lm(Ω) and 1 < m < N
p
. An additional hypothesis,

stronger than (C1), will now be needed for having an existence result; we assume
here that

(C2) there exist θ, with 0 < θ < p∗
pm′ , and a constant M > 0 such that

e|G(s)| ≤ M(1 + |Φ(s)|)θ(p−1) for all s ∈ IR.

Observe that since θ < 1 this condition implies (C1). Moreover as m → 1, then
θ → 0 and (C2) reduces to ask g ∈ L1(IR), the assumption already used in [27]
and [25]; since, when m = 1, the previous results can not be improved (see also
Proposition 5.1), this is the reason to limiting ourselves to consider m > 1. As
it is shown in Theorem 2.3 below, condition (C2) implies existence of an entropy
solution. Nevertheless, to obtain the regularity stated in Theorem 1.1, we need a



stronger hypothesis. Indeed, the desired regularity is a consequence of the following
assumption.

(C3) there exist constants 0 < θ < p∗
pm′ and 0 < M1 ≤ M2 satisfying

M1(1 + |Φ(s)|)θ(p−1) ≤ e|G(s)| ≤ M2(1 + |Φ(s)|)θ(p−1) for all s ∈ IR.

Note that, because of (12), Example 2.1 satisfies (C3) with θ = 1/2.

Theorem 2.3 Assume (A1), (A2), (A3), (B), (C2) and (F), with 1 < m < N
p
.

Then there exists an entropy solution u of (5). Furthermore, this entropy solution
satisfies

∫

Ω

|Φ(u)| rp∗
p dx +

∫

Ω

|∇Φ(u)| Nr
N−p+r ≤ c , where r =

(p− 1) (1− θ)m′

m′ − N
N−p

. (14)

In particular, when Nr
N−p+r

≥ 1, we have Φ(u) ∈ W
1, Nr

N−p+r

0 (Ω).

Moreover, assuming (C3) instead of (C2), we also have:

(i) If (p∗)′ ≤ m < N/p, then A(u) ∈ W 1,p
0 (Ω) ∩ L

Nm(p−1)
N−pm (Ω).

(ii) If 1 < m < (p∗)′, then A(u) ∈ W
1,m∗(p−1)
0 (Ω).

Remark 2.6 The main example of functions g satisfying (C2) is given if g satisfies

|g(s)| ≤ λ
|s| for |s| large, with λ < N(m−1)

N−pm
. This value actually plays the role of a

borderline: in Corollary 5.3 we show that if λ = N(m−1)
N−pm

, there are no general a priori

estimates depending on ‖f‖Lm(Ω) and existence may fail for some f in this class.

Remark 2.7 Observe that if a(x, u,∇u) ∈ L1
loc(Ω), the entropy solution obtained

above is a solution in the sense of distributions and if a(x, u,∇u) ∈ Lp′(Ω), it is a
weak solution as defined in (2.1). We also stress that, if α = 1, the previous theorem
states that under assumption (C3) we recover the regularity directly on u.

The main tool for proving Theorems 2.1 and 2.3 are a priori estimates toge-
ther with compactness arguments applied to sequences of bounded approximating
solutions. Eventually, we will often use the following cancellation lemma (see [8]),
which underlines the variational structure of the problem once the equation in (5)
is multiplied by exp(G(u)).

Lemma 2.1 Assume (A1)–(A3) and (B). Let u ∈ W 1,p
0 (Ω) be a weak solution of

problem (5).
(1) If v ∈ W 1,p

0 (Ω) ∩ L∞(Ω) and esign(v)G(u)v can be taken as test function in
the weak formulation of (5), we have:

∫

Ω

esign(v)G(u)a(x, u,∇u) · ∇v ≤
∫

Ω

esign(v)G(u)v(f + b0).

(2) If Ψ is a locally Lipschitz continuous and increasing function such that
Ψ(0) = 0 and Ψ(u)e|G(u)| can be taken as test function in the weak formulation of
(5), then ∫

Ω

e|G(u)|Ψ′(u)α(u)|∇u|p ≤
∫

Ω

e|G(u)|Ψ(u)(f + b0).



Remark 2.8 Actually, all main estimates will be deduced from (1) of Lemma 2.1,
so that they essentially will hold as soon as the equation can be multiplied by
exp(|G(u)|). Although we will apply Lemma 2.1 to sequences of bounded approxi-
mating solutions, it remains also true for entropy solutions. In particular, if

g(u)|∇u|pe|G(u)| + (b0 + |f |) e|G(u)| ∈ L1(Ω) ,

then any entropy solution satisfies the estimates of Theorem 3.1 and Corollary 4.1
and the regularity stated in Theorems 2.1 and 2.3. A sketch of the proof of this fact
will be given in Remark 4.2.

3 An L∞ estimate and proof of Theorem 2.1

In this section, we will prove the existence of a bounded solution to problem (5).
We begin by proving a Stampacchia’s type result (see [28] and [23]). It follows from
it and the cancellation lemma (2.1) that an priori L∞ estimate holds.

L∞-estimates for second order elliptic equations have been widely studied: the
1960’s works by G. Stampachia [28] and Ladyzenskaja-Ural’ceva [22] are the classical
references; others include, for instance, [3], [4], [6], [8], [15], [16], [26] or [29]. In every
case, once the L∞-estimate is proved, a solution is obtained. This also works in our
situation: as a straightforward consequence, Theorem 2.1 is proved.

Proposition 3.1 Let a > 0 and let ϕ : [a, +∞[→ [0, +∞[ be a non increasing
function satisfying

ϕ(h) ≤ ω(k)ρ

(h− k)ρ
ϕ(k)1+ν ∀h > k ≥ a, (15)

where limk→∞ ω(k)/k = 0 and ρ, ν > 0. Then there exists k∗ > a such that
ϕ(k∗) = 0.

Proof: First of all, denote C0 = 1
2
[ϕ(a)]−ν/ρ2−(1+ν)/ν . Since limk→∞ ω(k)/k = 0,

there exists k0 > a such that

ω(k) < C0k ∀k ≥ k0. (16)

Let d > 0 satisfy
dρ = Λ[ϕ(k0)]

ν2(1+ν)µ,

where we denote µ = ρ/ν and Λ is a positive number to be chosen later; consider
also the increasing sequence

kr = k0 + d− d

2r
, r ∈ IN.

Next, we claim that

ϕ(kr) ≤ ϕ(k0) 2−rµ, ∀r ∈ IN. (17)

We argue by induction. This inequality holds trivially for r = 0; if it is satisfied for
some r ≥ 0, applying (15) with h = kr+1 and k = kr we have

ϕ(kr+1) ≤ ω(kr)
ρ 2(1+r)ρ

dρ
ϕ(kr)

1+ν ≤ ω(kr)
ρ 2rρ−µ

Λ[ϕ(k0)]ν

(
ϕ(k0)

2rµ

)1+ν

=
ω(kr)

ρ

Λ

ϕ(k0)

2(1+r)µ
.



So, our claim (17) holds for r + 1 provided Λ > 0 is such that ω(kr) ≤ Λ1/ρ.
Recalling that by (16), ω(kr) < C0kr ≤ C0(k0 + d), we look for Λ > 0 satisfying
C0(k0 + d) ≤ Λ1/ρ (note that d depends on Λ ). Since

Λ1/ρ

k0 + d
=

Λ1/ρ

k0 + Λ1/ρ[ϕ(k0)]ν/ρ2(1+ν)/ν
≥ Λ1/ρ

k0 + Λ1/ρ[ϕ(a)]ν/ρ2(1+ν)/ν
,

we deduce that, taking Λ big enough,

Λ1/ρ

k0 + d
≥ 1

2[ϕ(a)]ν/ρ2(1+ν)/ν
= C0.

Thus, we have seen that there exists Λ > 0 such that C0(k0 + d) ≤ Λ1/ρ, and so
claim (17) is proved.

Since ϕ is non increasing, (17) implies as r goes to infinity:

ϕ(k0 + d) ≤ lim
r→∞

ϕ(kr) ≤ lim
r→∞

ϕ(k0) 2−rµ = 0.

Therefore, we may take k∗ = k0 + d and Proposition 3.1 is proved.

From now on in this paper, we use the following notation: for every k > 0 and
s ∈ IR, Gk(s) = s − Tk(s) = (|s| − k)+ sign(s). Recall also the function Φ defined
in (10).

Theorem 3.1 Let m > max{N
p
, 1}. If u is a weak solution of (5) such that

e|G(u)|Φ(u) may be taken as test function, then ‖Φ(u)‖∞ ≤ c, where c > 0 is a
constant that only depends on the parameters p, m, ‖f + b0‖m, N , and |Ω|; so
that, ‖u‖∞ ≤ max{−Φ−1(−c), Φ−1(c)}.
Proof: Take Ψ(u) = Gk

(
Φ(u)

)
in Lemma 2.1 to get

∫

Ω

|∇Gk

(
Φ(u)

)|p =

∫

Ω

e|G(u)|Ψ′(u)α(u)|∇u|p ≤
∫

Ω

e|G(u)|Gk

(
Φ(u)

)
(f + b0), (18)

and then, by Hölder’s inequality,

∫
Ω
|∇Gk

(
Φ(u)

)|p ≤ ‖f + b0‖m

(∫
Ω

e|G(u)|m′ |Gk

(
Φ(u)

)|m′)1/m′
. (19)

Let us set

η(k) = sup
{|Φ(s)|>k}

e|G(s)|

(1 + |Φ(s)|)(p−1)
.

Since lim
s→±∞

Φ(s) = ±∞ (see Remark 2.2) and due to (C1) we have that η(k) tends

to zero as k goes to infinity. Moreover

e|G(u)|m′ ≤ e|G(u)|m′

(1 + |Φ(u)|)m′(p−1)
(1 + k + |Gk(Φ(u))|)m′(p−1)

so that
(∫

Ω

e|G(u)|m′ |Gk

(
Φ(u)

)|m′
)1/m′

≤ cη(k)

(∫

Ω

km′(p−1) |Gk(Φ(u))|m′
+ |Gk(Φ(u))|pm′

) 1
m′

≤ cη(k)kp−1

(∫

Ω

|Gk(Φ(u))|m′
) 1

m′
+ cη(k)

(∫

Ω

|Gk(Φ(u))|pm′
) 1

m′
.



Let for the moment p < N , then p∗ = Np
N−p

> m′ p since m > N
p
. We deduce

(∫

Ω

e|G(u)|m′ |Gk

(
Φ(u)

)|m′
)1/m′

≤ cη(k)kp−1

(∫

Ω

|Gk(Φ(u))|m′
) 1

m′

+ cη(k)

(∫

Ω

|Gk(Φ(u))|p∗
) p

p∗

|Ω| 1
m′−

p
p∗ .

(20)

Thus putting together (20) and (19) and using Sobolev’s embedding we obtain

(∫

Ω

|Gk

(
Φ(u)

)|p∗
) p

p∗

≤ c‖f + b0‖m η(k)kp−1

(∫

Ω

|Gk(Φ(u))|m′
) 1

m′
+

+c‖f + b0‖m η(k)

(∫

Ω

|Gk(Φ(u))|p∗
) p

p∗

.

Since η(k) tends to zero as k goes to infinity, there exists k0 such that for any k > k0

we have the inequality:

(∫

Ω

|Gk(Φ(u))|p∗
) p

p∗

≤ cη(k)kp−1

(∫

Ω

|Gk(Φ(u))|m′
) 1

m′
,

which, denoting Ak = {|Φ(u)| ≥ k}, yields

(∫

Ω

|Gk(Φ(u))|p∗
) p

p∗

≤ cη(k)kp−1|Ak|
1

m′−
1

p∗
(∫

Ω

|Gk(Φ(u))|p∗
) 1

p∗

.

Thus (∫

Ω

|Gk(Φ(u))|p∗
) p−1

p∗

≤ cη(k)kp−1|Ak|
1

m′−
1

p∗ .

From here, denoting ϕ(k) = |Ak| and taking into account Stampacchia’s procedure
(see [28]), we obtain

ϕ(h) ≤ (η(k)
1

p−1 k)p∗

(h− k)p∗ ϕ(k)( p∗
m′−1) 1

p−1 ,

for h > k > k0. Hence, since ( p∗
m′ − 1) 1

p−1
> 1 and η(k) tends to zero, Lemma 3.1

implies there is k∗ such that
∣∣{|Φ(u)| ≥ k∗}

∣∣ = 0, that is, Φ(u) is bounded as

desired. If we have p ≥ N , one has to use that W 1,p
0 (Ω) is embedded into Lr(Ω)

for any r < ∞; then the same calculation applies provided p∗ is replaced by any
number r such that r > p m′.

Proof of Theorem 2.1: Let us consider the following sequence of approximating
problems:




−div[a(x, un,∇un)] + Tn[b(x, un,∇un)] = f, in Ω;

un = 0, on ∂Ω;
(21)

Applying standard results (see [18]), one can easily see that problem (21) has a
bounded solution un (indeed the results of [18] are directly applied to the sequence



of functions vn = A(un), see also Remark 2.1). We can apply Theorem 3.1 to (21)
and deduce that un is uniformly bounded in L∞(Ω). Once we have the uniform
bound on un, we are in the position to use the classical arguments in [4] (note that
a(x, s, ξ) may lack of coerciveness only if |s| is unbounded). Then un is bounded in
L∞(Ω) and relatively compact in W 1,p

0 (Ω), and then (using (B)) Tn(b(x, un,∇un)) is
also compact in L1(Ω). We conclude that there exists u ∈ W 1,p

0 (Ω)∩L∞(Ω) which
is a weak solution of problem (5).

Remark 3.1 Concerning the optimality of our test functions, one can wonder what
happens if, instead of hypothesis (C1), the borderline condition e|G(s)| ≤ c(1 +
|Φ(s)|)p−1 holds. In this case, our proof still applies but requires f to have a suitable
small norm. For instance, in the model case

−α∆u = β|∇u|2 + f

applying our procedure one has (see (18))

∫

Ω

|∇Gk (Φ(u))|2 ≤
∫

Ω

feβ|u|/αGk (Φ(u)) ≤ β

α2

∫

Ω

|fΦ(u)Gk (Φ(u))| .

Thus, we may obtain an L∞-estimate if ‖f‖m is small enough (e.g. as in [14]).
On the other hand, we may also consider a equation such as

u− α∆u = β|∇u|2 + f

with f ∈ L∞(Ω). In this case, (18) becomes

∫

Ω

|∇Gk (Φ(u))|2 ≤ β

α2

∫

Ω

(f −M)Φ(u)Gk (Φ(u)) ,

where M = (α/β) log (1 + (β/α2)k). Taking k so big to get M > ‖f‖∞, we
deduce

Φ(u)Gk (Φ(u)) = 0 on {|Φ(u)| > k}
and so an L∞-estimate is proved. It is worth noting that the function Ψ(u) =
eβ|s|/αΦ(s) satisfies

αΨ′(s)− β|Ψ(s)| ≥ α2 for all s ∈ IR,

which is the same basic property used in [4] to deal with the above equation.

4 Unbounded solutions

We study here the possibility to have unbounded solutions of (5) if the datum f is
less regular. Under assumption (C1), we can still handle the case m = N

p
.

Theorem 4.1 Assume that (A1), (A2), (B), (C1) and (F) hold true, with m = N
p
.

If u is a weak solution of (5) such that e|G(u)|Φ(u) may be taken as test function,
then there exists a constant c > 0, that only depends on the parameters p, N ,
‖f +b0‖N

p
, and |Ω|, such that ‖Φ(u)‖W 1,p

0 (Ω) +‖Φ(u)‖Lq(Ω) ≤ c for all q ∈ [1, +∞[.



Proof. Given q ≥ p∗ let us consider γ = qN−p
N

− (p− 1) ≥ 1 and the function
Ψ(s) = (1 + |Φ(s)|)γ−1Φ(s), which satisfies Ψ′(s) ≥ (1 + |Φ(s)|)γ−1Φ′(s). Using
Lemma 2.1 with Ψ(u) we get

∫

Ω

(1 + |Φ(u)|)γ−1|∇Φ(u)|p ≤
∫

Ω

e|G(u)|Ψ′(u)α(u)|∇u|p ≤

≤
∫

Ω

e|G(u)|(1 + |Φ(u)|)γ |f + b0|,
and then, by Sobolev and Hölder’s inequalities,

‖(1 + |Φ(u)|) γ−1
p

+1 − 1‖p

Lp∗ ≤ c
∫
Ω

∣∣∇(1 + |Φ(u)|) γ−1
p

+1
∣∣p =

= c
∫
Ω
(1 + |Φ(u)|)γ−1|∇Φ(u)|p ≤ c

∫
Ω

e|G(u)|(1 + |Φ(u)|)γ |f + b0| ≤

≤ cη(k)‖f + b0‖N
p
‖(1 + |Φ(u)|) γ−1

p
+1‖p

Lp∗ + M(k)
∫

Ω
|f + b0|,

(22)

where

η(k) = sup
{|Φ(s)|>k}

e|G(s)|

(1 + |Φ(s)|)(p−1)
and M(k) = sup

{|Φ(s)|≤k}
e|G(s)||Φ(s)|.

Since (C1) implies that lim
k→+∞

η(k) = 0, we can choose in (22) a level k so that we get

‖(1 + |Φ(u)|) γ−1
p

+1‖p

Lp∗ ≤ c, and then also
∫
Ω

∣∣∇(1 + |Φ(u)|) γ−1
p

+1
∣∣p ≤ c. It follows

from γ−1
p

+1 = q
p∗ , that ‖Φ(u)‖Lq ≤ c. Finally if we set q = p∗, i.e. γ = 1, then

we also deduce that ‖Φ(u)‖W 1,p
0
≤ c.

Remark 4.1 As it was remarked to us by L. Boccardo, the above proof for having
an estimate on Φ(u) in W 1,p

0 (Ω) still works under possibly weaker assumptions on f ,
provided (C1) always holds true. A significant example is given by f(x) = λ |x|−p,

which only belongs to the Marcinkiewicz space M
N
p (Ω). Indeed, with the same

notations as before one has (take b0 = 0 for simplicity)
∫

Ω

|∇Φ(u)|p ≤
∫

Ω

e|G(u)||Φ(u)f | ≤ λ η(k)

∫

Ω

(1 + |Φ(u)|)p

|x|p + M(k)

∫

Ω

|f |

and one concludes using Hardy–Sobolev’s inequality and the fact that η(k) is arbi-
trarily small for large k. Once the estimate is obtained, the compactness arguments
developed below allow to prove the existence of a solution even for this weaker case.

Let now consider m < N
p
. We begin by proving the basic a priori estimates in

this case.

Theorem 4.2 Assume that (A1), (A2), (B), (C2) and (F) hold true, with 1 < m <
N
p
. If u is a bounded weak solution of (5), then there exists a constant c which

only depends on N , p, θ, m and ‖f + b0‖Lm(Ω) such that
∫

Ω

|∇Φ(u)|p
(1 + |Φ(u)|)p−r

≤ c and

∫

Ω

|Φ(u)| rp∗
p +

∫

Ω

|∇Φ(u)| Nr
N−p+r ≤ c ,

(23)



where r =
(p− 1) (1− θ)m′

m′ − N
N−p

. In particular, if Nr/(N − p + r) ≥ 1, we have an

estimate on Φ(u) in W
1, Nr

N−p+r

0 (Ω).

Proof: We take Ψ(s) = (1 + |Φ(s)|)r−p Φ(s), with r > p − 1, in Lemma 2.1.
Since Ψ′(s) ≥ min{r + 1− p, 1} (1 + |Φ(s)|)r−p Φ′(s), we get

∫

Ω

(1 + |Φ(u)|)r−p |∇Φ(u)|p ≤ c

∫

Ω

e|G(u)|(1 + |Φ(u)|)r−p+1 |f + b0|

and then, using (C2),

∫

Ω

(1 + |Φ(u)|)r−p |∇Φ(u)|p ≤ cM

∫

Ω

(1 + |Φ(u)|)r−(p−1) (1−θ) |f + b0|.

Using Hölder’s inequality on the right hand side and Sobolev’s inequality on the left
one, we obtain

(∫

Ω

|(1 + |Φ(u)|) r
p − 1|p∗

) p
p∗

≤ c

∫

Ω

(1 + |Φ(u)|)r−p |∇Φ(u)|p

≤ c ‖f + b0‖Lm(Ω)

(∫

Ω

(1 + |Φ(u)|)(r−(p−1) (1−θ))m′
) 1

m′

(24)

If we choose r = (p−1) (1−θ)m′

m′− N
N−p

we have

(r − (p− 1) (1− θ))m′ =
rp∗

p
=

Nm(p− 1) (1− θ)

N − pm
.

Note that r > p − 1 if and only if θ < p∗
pm′ , as given by (C2). Having in mind

that p
p∗ > 1

m′ (since m < N
p

), (24) implies two estimates in (23). To see the third

one, note that it also follows from (24) that

∫

Ω

(1 + |Φ(u)|)Nm(p−1) (1−θ)
N−pm ≤ c.

Now denote q = Nr/(N − p + r) and take into account p−r
p−q

q = Nm(p−1) (1−θ)
N−pm

, and
so it follows from Hölder’s inequality that

∫
Ω
|∇Φ(u)|q =

∫
Ω
(1 + |Φ(u)|)(p−r)q/p |∇Φ(u)|q

(1+|Φ(u)|)(p−r)q/p

≤ (∫
Ω
(1 + |Φ(u)|)(p−r)q/(p−q)

)(p−q)/p
(∫

Ω
|∇Φ(u)|p

(1+|Φ(u)|)p−r

)q/p

.

Therefore, we also have
∫
Ω
|∇Φ(u)|q ≤ c and (23) is completed. Clearly, in case

Nr
N−p+r

≥ 1, we obtained an estimate for Φ(u) in W
1,Nr/(N−p+r)
0 (Ω).

Assuming now that the stronger hypothesis (C3) holds instead of (C2), we are
able to prove the following estimates, which generalize those proved in [8].



Corollary 4.1 Assume (A1), (A2), (B), (C3) and (F), with 1 < m < N
p
, and let

u be a bounded weak solution of (5). There exists a constant c, only depending on
‖f + b0‖Lm(Ω) (and N , p, θ, m) such that:

if m ≥ Np
Np−N+p

, then ‖A(u)‖
L

Nm(p−1)
N−pm (Ω)

+ ‖A(u)‖W 1,p
0 (Ω) ≤ c , (25)

and
if 1 < m < Np

Np−N+p
, then ‖A(u)‖

W
1,

Nm(p−1)
N−m

0 (Ω)

≤ c .

Proof: By (C3), we have for any s ∈ IR,

Φ′(s)

(1 + |Φ(s)|)θ
=

e|G(s)|/(p−1)α1/(p−1)(s)

(1 + |Φ(s)|)θ
≥ M1 α1/(p−1)(s)

which implies that M1|A(s)| ≤ c (1 + |Φ(s)|)(1−θ). Since we have an estimate of

Φ(u) in L
Nm(p−1) (1−θ)

N−pm (Ω) we deduce an estimate on A(u) in L
Nm(p−1)

N−pm (Ω). Moreover
we have, again thanks to (C3),

M
p/(p−1)
1

∫

Ω

(1 + |Φ(u)|)r−p(1−θ) |∇A(u)|p ≤
∫

Ω

(1 + |Φ(u)|)r−p |∇Φ(u)|p .

Since r − p(1 − θ) = (1 − θ) p∗−m′

m′− N
N−p

≥ 0 when Np
Np−N+p

≤ m < N
p
, we deduce

that A(u) is estimated in W 1,p
0 (Ω) in this case. If, instead, we consider 1 < m <

Np
Np−N+p

, then, by Hölder’s inequality,

∫
Ω
|∇A(u)|m∗(p−1) =

=
∫
Ω
(1 + |Φ(u)|)(r−p(1−θ))

m∗(p−1)
p |∇A(u)|m∗(p−1) · (1 + |Φ(u)|)(p(1−θ)−r)

m∗(p−1)
p ≤

≤ c
(∫

Ω
(1 + |Φ(u)|)r−p(1−θ) |∇A(u)|p)

m∗(p−1)
p

(∫
Ω
(1 + |Φ(u)|) (p(1−θ)−r)m∗(p−1)

p−m∗(p−1)

)1−m∗(p−1)
p

.

It follows from

(p(1−θ)−r)m∗(p−1)
p−m∗(p−1)

= (p− 1)(1− θ)
(

pm∗
p−m∗(p−1)

− r
(p−1) (1−θ)

m∗(p−1)
p−m∗(p−1)

)
= Nm(p−1) (1−θ)

N−pm
,

that the estimates on Φ(u) yield the estimate for A(u) in W
1,m∗(p−1)
0 (Ω).

Remark 4.2 The estimates found in Theorem 4.2 and Corollary 4.1 apply not only
to bounded weak solutions of (5), but actually to any entropy solution such that

g(u)|∇u|p e|G(u)| + (|f |+ b0) e|G(u)| ∈ L1(Ω) . (26)

This can be proved by means of a bootstrap regularity argument, which we only
sketch here. To begin with fix 1 < m < N/p. We remark that the entropy
formulation implies, for any k, h > 0:
∫

Ω

a(x, u,∇u) ·∇Tk(e
|G(Th(u))| ψ(Φ(u))) ≤

∫

Ω

(b(x, u,∇u)+ f)Tk(e
|G(Th(u))| ψ(Φ(u))) ,



where ψ is any nondecreasing function such that ψ(0) = 0 and ψ′ has compact
support. By Fatou’s lemma and thanks to (26) it is possible to take the limit on h
and k obtaining:

∫

Ω

a(x, u,∇u) · ∇(e|G(u)| ψ(Φ(u))) ≤
∫

Ω

(|b(x, u,∇u)|+ |f |)e|G(u)| ψ(Φ(u))) ,

and then, applying (A2) and (B),
∫

Ω

(α(u)e|G(u)|)p′|∇u|pψ′(Φ(u)) ≤
∫

Ω

(|f |+ b0)e
|G(u)| ψ(Φ(u)) .

Setting v = Φ(u), the previous inequality can be rewritten as
∫

Ω

|∇v|pψ′(v) ≤
∫

Ω

(|f |+ b0)e
|G(u)| ψ(v) (27)

for any nondecreasing ψ such that ψ(0) = 0 and ψ′ has compact support. From
(27) one can deduce the desired estimates using assumption (C2) and bootstrap
arguments. Indeed, as a first step, choosing ψ(s) = Tk(s) and since (|f |+b0)e

|G(u)| ∈
L1(Ω), one has that v ∈ Lq(Ω) for any q < N(p−1)

N−p
(see [2]). Then, using m < N

p

and e|G(u)| ≤ c |v|θ(p−1) with θ < N
(N−p)m′ , one deduces that there exists δ > 0 such

that e|G(u)| |v|δ ∈ Lm′
(Ω). Taking ψ(s) = |Tk(s)|δ−1Tk(s) in (27), it follows from

(|f |+ b0)e
|G(u)| |v|δ ∈ L1(Ω) that

(∫

Ω

|Tk(v)| δ+p−1
p

p∗
)p/p∗

≤ c

∫

Ω

∣∣∇|Tk(v)| δ+p−1
p

∣∣p ≤ c

∫

Ω

(|f |+ b0)e
|G(u)| |Tk(v)|δ

and so Fatou’s lemma implies v ∈ L
δ+p−1

p
p∗(Ω). In particular, v ∈ L

N(p−1)
N−p (Ω) and

so a first step of the bootstrap process has been attained. Subsequently, one can
take ψ(s) = |Tk(s)|γ−1Tk(s) and perform a power type iteration process, since (27)
implies: (∫

Ω

|Tk(v)|( γ−1
p

+1)p∗
) p

p∗

≤ c

∫

Ω

|∇Tk(v)|p |Tk(v)|γ−1

≤
(∫

Ω

(
(|f |+ b0)e

|G(u)|)rk

) 1
rk

(∫

Ω

|Tk(v)|γ r′k

) 1
r′
k

.

(28)

If one chooses γ such that (γ−1
p

+ 1)p∗ = γ r′k = Nrk(p−1)
N−prk

, clearly one obtains an

estimate on v in L
Nrk(p−1)

N−prk (Ω) provided

1

r′k
<

p

p∗
, (|f |+ b0)e

|G(u)| ∈ Lrk(Ω) . (29)

By (C2), we have e|G(u)| ≤ c |v|θ(p−1). Then defining rk such that

r1 = 1 ,
1

m
+

θ(N − prk)

Nrk

=
1

rk+1

,

one can prove by induction, using θ < p∗
pm′ , that rk is an increasing sequence such

that (29) is always satisfied. Therefore using that rk → Nm(1−θ)
N−θpm

one deduces that



v ∈ L
Nm(p−1)(1−θ)

N−pm (Ω), which is the regularity found for Φ(u) in (23). In particular,

Φ(u)r−p+1, where r = (p−1) (1−θ)m′

m′− N
N−p

, can then be taken as test function in the weak

formulation and the full conclusions of Theorem 4.2 and Corollary 4.1 (under (C3))
hold true.

In case m > N
p

one can use a similar argument (with θ = 1) to obtain that

v ∈ Lq(Ω) for any q < ∞; then one can take Gk(Φ(u)) as test function as in (18)
and obtain the L∞ bound on u.

Once we have obtained a priori estimates, we consider the following approxima-
ting problems




−div (a(x, un,∇un)) + bn(x, un,∇un) = fn, in Ω;

un = 0, on ∂Ω,
(30)

where fn is a sequence of bounded functions converging to f in Lm(Ω) and bn(x, s, ξ) =
Tn(b(x, s, ξ)). In order to study the compactness properties of un, we will need the
following preliminary result whose proof, essentially, can be found in [2].

Lemma 4.1 Let vn denote a sequence of measurable functions such that

‖Tk(vn)‖p

W 1,p
0 (Ω)

≤ c(k + 1) for all k > 0.

Then there is a function v ∈ T 1,p
0 (Ω) and a subsequence, still denoted by vn,

satisfying
vn → v a.e. in Ω

Tk(vn) ⇀ Tk(v) weakly in W 1,p
0 (Ω), ∀k > 0.

Our main compactness result is then the following.

Theorem 4.3 Assume (A1), (A2), (A3), (B), (C2) and (F), with 1 < m < N
p
. Let

un be a sequence of solutions of (30), then there exists a function u such that, up
to subsequences,

Tk(un) → Tk(u) strongly in W 1,p
0 (Ω), ∀k > 0,

bn(x, un,∇un) → b(x, u,∇u) strongly in L1(Ω).

Moreover, the function u satisfies the estimates stated in Theorem 4.2 and, if (C3)
holds true, those in Corollary 4.1.

Proof: First observe that we can apply Theorem 4.2 to deduce that Φ(un) is

uniformly bounded in L
Nm(p−1)(1−θ)

N−pm (Ω). Another observation is that θ < p∗
pm′ implies

θm′(p− 1) <
Nm(p− 1) (1− θ)

N − pm
. (31)

Since by (C2) we have that

(e|G(un)|)m′ ≤ Mm′
(1 + |Φ(un)|)θ m′(p−1) , (32)



we deduce from (31) that e|G(un)| is bounded in Lm′
(Ω). As a consequence, we have

∫

Ω

|fn + b0| e|G(un)| ≤ ‖fn + b0‖Lm(Ω) ‖e|G(un)|‖Lm′ (Ω) ≤ c .

Choosing then Ψ(s) = Tk(A(s)) in (2) of Lemma 2.1 we get
∫

{|A(un)|<k}

α(un)
p

p−1 |∇un|p ≤ kc ,

that is
‖Tk(A(un))‖p

W 1,p
0 (Ω)

≤ ck ∀k > 0 .

We can apply then Lemma 4.1 with vn = A(un) so that vn almost everywhere
converges, up to subsequences, to a function v such that Tk(v) ∈ W 1,p

0 (Ω) ∀k > 0.
Clearly we deduce, since A′(s) > 0, that there exists a function u such that Tk(u) ∈
W 1,p

0 (Ω) for any k > 0 and

un → u a.e. in Ω

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω), ∀k > 0.

(33)

Using again that, thanks to (32) and the estimate on Φ(un), we have e|G(un)| bounded
in some Lr(Ω) with r > m′, we deduce that e|G(un)| strongly converges to e|G(u)| in
Lm′

(Ω), and then

(|fn|+ b0)e
|G(un)| → (|f |+ b0)e

|G(u)| strongly in L1(Ω). (34)

We are going to prove now the strong convergence of Tk(un) in W 1,p
0 (Ω). The

argument can be carried on in a very similar way as in [25], so we will not insist on
some details. Let us consider the function

wn = T2k(un − Th(un) + Tk(un)− Tk(u)), with h > k .

Set Mh = h+4k. Two main properties of wn will be used, namely: that ∇wn = 0
if |un| > Mh and that

wn
n→+∞→ T2k(u− Th(u))

h→+∞→ 0 , (35)

and such convergences take place weakly–∗ in L∞(Ω) and in Lq(Ω) with any
q < +∞, due to Lebesgue’s theorem.

We take wn in Lemma 2.1 to obtain
∫

Ω

esign(wn)G(un)a(x, un,∇un) · ∇wn ≤
∫

Ω

(|fn|+ b0) esign(wn)G(un) wn . (36)

Thanks to (34) and (35), we have

lim
n→+∞

∫

Ω

(|fn|+ b0) e|G(un)| |wn| =
∫

Ω

(|f |+ b0|) e|G(u)| |T2k(u− Th(u))|,

and then

lim
h→+∞

lim
n→+∞

∫

Ω

(|fn|+ b0) e|G(un)| |wn| = 0 .



Hence,

lim
h→+∞

lim
n→+∞

∫

Ω

(|fn|+ b0) esign(wn)G(un) wn = 0 . (37)

We also have
∫

Ω

esign(wn)G(un)a(x, un,∇un)∇wn ≥

≥
∫

Ω

esign(wn)G(Tk(un))a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))

−
∫

{k≤|un|≤Mh}

e|G(un)||a(x, un,∇un)| |∇Tk(u)| .

(38)

Applying now that Tk(un) is bounded in W 1,p
0 (Ω) for any k > 0, and since

|∇Tk(u)|χ{|un|>k} strongly converges to zero in Lp(Ω), we get (using also (A1))

lim
n→+∞

∫

{k≤|un|≤Mh}

e|G(un)||a(x, un,∇un)| |∇Tk(u)| = 0 . (39)

Similarly we observe that

lim
n→+∞

∫

Ω

esign(wn)G(Tk(un))a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u)) = 0 . (40)

Therefore from (36) and (37),(38),(39),(40) we obtain, letting first n then h tend
to infinity,

lim sup
h→+∞

lim sup
n→+∞

∫

Ω

esign(wn)G(Tk(un))

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))] · ∇(Tk(un)− Tk(u)) ≤ 0 ,

which yields, by (A3) and since esign(wn)G(Tk(un)) ≥ ck > 0,

lim
n→+∞

∫

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))] · ∇(Tk(un)− Tk(u)) = 0 .

It is well known (see e.g. [5]) that due to (A1)–(A3), this implies the strong conver-
gence of Tk(un) to Tk(u) in W 1,p

0 (Ω). Moreover, by a diagonal argument, it yields
(up to subsequences) that ∇un converges to ∇u in measure, and then (extracting
another subsequence, if necessary) that

∇un → ∇u a.e. in Ω (41)

We now point out that it follows from the almost everywhere convergence of un

and ∇un jointly with Fatou’s Lemma that the estimates (23) and (in case (C3) is
also satisfied) (25) hold for u.

Finally, observe that it also follows from (41) that

bn(x, un,∇un) → b(x, u,∇u) a.e. in Ω,



so that to apply Vitali’s Theorem, we only have to check the equi-integrability of
the sequence. To this end, take Ψ(s) =

∫ s

0
g(t)
α(t)

χ{|t|>k}dt in Lemma 2.1 written for
un, then we obtain

∫

{|un|>k}

e|G(un)|g(un)|∇un|p ≤
∫

Ω

(|fn|+ b0) Ψ(un)e|G(un)| ,

which yields, using that Ψ(s) ≤ |G(s)|χ{|s|>k},
∫

{|un|>k}

e|G(un)|g(un)|∇un|p dx ≤
∫

{|un|>k}

(|fn|+ b0) |G(un)|e|G(un)| dx . (42)

Now, by (31), there exists δ > 0 such that θ(1 + δ)m′(p − 1) ≤ Nm(p−1) (1−θ)
N−pm

, so

that Φ(un) is bounded in Lθ(p−1)(1+δ)m′
(Ω) thanks to the estimate (23). Since

|G(s)| ≤ 1
δ
eδ|G(s)| we have, using (C2) and Hölder’s inequality,

∫

{|un|>k}

(|fn|+ b0) |G(un)|e|G(un)| ≤ 1

δ

∫

{|un|>k}

(|fn|+ b0) e(1+δ)|G(un)|

≤ M

δ

∫

{|un|>k}

(|fn|+ b0) (1 + |Φ(un)|)θ(p−1)(1+δ)

≤ M

δ




∫

{|un|>k}

(|fn|+ b0)
m




1
m (∫

Ω

(1 + |Φ(un)|)θ(p−1)(1+δ)m′
) 1

m′

≤ c




∫

{|un|>k}

(|fn|+ b0)
m




1
m

.

Then we deduce from (42)

sup
n∈IN

∫

{|un|>k}

e|G(un)|g(un)|∇un|p dx ≤ c sup
n∈IN




∫

{|un|>k}

|fn + b0|m dx




1
m

,

which in particular implies, since (|fn|+ b0) strongly converges in Lm(Ω),

lim
k→+∞

sup
n∈IN

∫

{|un|>k}

g(un)|∇un|p = 0 . (43)

Next, being E ⊂ Ω, it yields:

∫
E

g(un)|∇un|p ≤ ∫
E∩{|un|<k} g(un)|∇un|p +

∫
E∩{|un|>k} g(un)|∇un|p

≤ ∫
E

g(un)|∇Tk(un)|p +
∫
{|un|>k} g(un)|∇un|p.



From here, by the strong convergence of Tk(un) to Tk(u) in W 1,p
0 (Ω) and (43),

we obtain that g(un)|∇un|p strongly converges in L1(Ω), so that by means of (B)
we deduce that

bn(x, un,∇un) → b(x, u,∇u) strongly in L1(Ω).

Let us see that the previous proof also applies to the limiting case m = N
p

under

the weaker assumption (C1).

Theorem 4.4 Assume (A1), (A2), (A3), (B), (C1) and (F), with m = N
p
. Let un

be a sequence of solutions of (30), then there exists a function u such that, up to
subsequences,

Tk(un) → Tk(u) strongly in W 1,p
0 (Ω), ∀k > 0,

bn(x, un,∇un) → b(x, u,∇u) strongly in L1(Ω).

Moreover, the function u is such that Φ(u) ∈ W 1,p
0 (Ω) ∩ Lq(Ω) for all q ∈ [1, +∞[.

Proof. Thanks to Theorem 4.1, we have that Φ(un) is bounded in W 1,p
0 (Ω), hence,

up to subsequences, we have that it strongly converges in Lp(Ω) and almost everyw-
here. Since Φ is bijective, this immediately implies (33). Moreover, using (C1) and
the estimate on Φ(un) in Theorem 4.1, we also have that (fn + b0)e

|G(un)| is bounded
in Lγ(Ω) for some γ > 1, which together with the almost everywhere convergence of
un implies (34). We have then both ingredients used in the previous proof to obtain
that (always up to subsequences)

Tk(un) → Tk(u) strongly in W 1,p
0 (Ω) for any k > 0.

Finally, as in Theorem 4.3 we obtain (42) which implies, for any δ > 0:
∫

{|un|>k}
e|G(un)|g(un)|∇un|p dx ≤

≤ c
δ

(
∫

{|un|>k}
(|fn|+ b0)

N
p

) p
N (∫

Ω
(1 + |Φ(un)|)(p−1)(1+δ) N

N−p

)1− p
N

.

Hence, the estimate on Φ(un) in Lq(Ω), for all q < +∞, gives

∫

{|un|>k}

e|G(un)|g(un)|∇un|p dx ≤ C




∫

{|un|>k}

(|fn|+ b0)
N
p




p
N

.

As in Theorem 4.3, we get (43) which in turns implies that bn(x, un,∇un) strongly
converges in L1(Ω).

Proof of Theorems 2.2 and 2.3: Let v ∈ W 1,p
0 (Ω)∩L∞(Ω) and take Tk(un−v)

as test function in the weak formulation of (30), then
∫

Ω
a(x, un,∇un) · ∇Tk(un − v) +

∫
Ω

bn(x, un,∇un)Tk(un − v) =

=
∫

Ω
fnTk(un − v)

(44)



holds for all n ∈ IN . We may take limits in the right hand side and in the second
term of the left hand side. To take limits in the first term, let K = k+‖v‖∞. Then

a(x, un,∇un) · ∇Tk(un − v) = a(x, TK(un),∇TK(un)) · ∇Tk(TK(un)− v).

On the other hand, Theorems 4.3, when 1 < m < N/p, and 4.4, when m = N/p, im-
ply ∇Tk(TK(un)−v) → ∇Tk(TK(u)−v) in Lp(Ω)N and a(x, TK(un),∇TK(un)) →
a(x, TK(u),∇TK(u)) in Lp′(Ω)N , so that

a(x, TK(un),∇TK(un)) · ∇Tk(TK(un)− v) → a(x, TK(u),∇TK(u)) · ∇Tk(TK(u)− v)

in L1(Ω). Therefore, taking limits in (44), we conclude that u is an entropy
solution of (5). Moreover, it clearly satisfies the desired estimates.

5 Examples and Remarks

In this last Section we give examples concerning the optimality of our assumptions.
We restrict ourselves to the case p = 2, and assume N > 2.

Example 5.1 The optimality of assumption (C1) for having bounded solutions is
somehow showed by the classical example of Kazdan and Kramer ([17], see also
[13]), as discussed in Remark 3.1 as well. In view of Theorem 2.1, one could wonder
what happens to the bounded solutions of




−∆uε = 1

(1+|uε|)ε |∇uε|2 + f, in Ω

uε = 0, on ∂Ω

(45)

as ε tends to zero. Let f be bounded and sufficiently large, for instance f > λ1 (as
in the counterexample by Kazdan and Kramer [17]), then the sequence uε blows up

everywhere in Ω. Indeed, note that uε is non negative and let vε =
∫ uε

0
e

(1+s)1−ε−1
1−ε ds,

which solves

−∆vε = ψε(uε) f , with ψε(t) = e
(1+t)1−ε−1

1−ε .

It is easy to see that (any subsequence of) vε cannot be bounded in L∞(Ω), otherwise
standard compactness arguments would imply that there exists a limit function v
which solves −∆v = f (v +1) ≥ λ1 v + f , and this is impossible since f is positive.
On the other hand, since ψε(uε) ≤ (vε + 1), a bootstrap regularity argument implies
that if ψε(uε) is bounded in L1(Ω) (or even in L1(Ω, δ(x)), δ(x) = dist (x, ∂Ω)) then
vε is bounded in L∞(Ω). The conclusion is that ψε(uε) is not bounded in L1(Ω, δ(x)),
and since we have (using the representation of vε through convolution, see e.g. [9])

vε(x) ≥ δ(x)

∫

Ω

f ψε(uε(y))δ(y)dy , δ(x) = dist (x, ∂Ω) ,

we deduce that vε(x) tends to infinity for every x ∈ Ω, hence the same holds for
uε.



The value of θ in assumption (C2) also plays a crucial role. Actually, if (C2) is
satisfied with θ ≥ 2∗

2m′ , complete blow up of approximating solutions may occur for
data f ∈ Lm(Ω). To point out this feature, we restrict to a model example with
b(x, s, ξ) = λ

1+|s| |ξ|2, which satisfies (C2) (even (C3)) with θ = λ
λ+1

. In this case,
observe that formally u is a positive solution of

{ −∆u = λ
1+|u| |∇u|2 + f in Ω,

u = 0 on ∂Ω
(46)

if and only if the function v = (1+u)1+λ−1
1+λ

is a solution of the semilinear problem

{ −∆v = f ((λ + 1)v + 1)θ in Ω
v = 0 on ∂Ω.

(47)

In case of unbounded data f , problems of the type (47) have been considered in
[7] where the value θ = 2∗

2m′ also appeared as the borderline for having solutions
with f ∈ Lm(Ω). We proved in Theorem 2.3 that problem (46) has a solution if

λ < λm : = N(m−1)
N−2m

(note that λm

λm+1
= 2∗

2m′ ). In virtue of Theorem 2.1, we can always
consider a sequence of bounded solutions un of

{ −∆un = λ
1+|un| |∇un|2 + Tn(f) in Ω

un = 0 on ∂Ω.
(48)

In the following example, we deal with the case that λ > N(m−1)
N−2m

in (48), which

corresponds to θ > 2∗
2m′ in assumption (C2). We prove that if f ∈ Lm(Ω) but not

to Lm+δ(Ω) for any δ > 0, then the solutions un blow up everywhere in Ω; this can
be essentially deduced from a counterexample given by L. Orsina ([24]) for problem
(47).

Example 5.2 In order to simplify, we assume that Ω is a ball and f is a positive
radial nonincreasing function. Let un be a solution of problem (48); observe that

un ≥ 0, since f ≥ 0. Setting vn = (1+un)1+λ−1
1+λ

, we have that vn satisfies

−∆vn ≥ Tn(f) (1 + un)λ ≥ Tn(f) vθ
n ,

with θ = λ
λ+1

. Now, let εn = f−1(n); since f is decreasing, it follows that Tn(f) = n
in the ball Bεn(0) and so

−∆vn ≥ n vθ
n in Bεn(0).

If ϕ1 is the first eigenfunction of the Laplacian (with Dirichlet boundary conditions)
in the unit ball, we have that there exists a constant γ such that the function

zn = γ (ε2
n n)

1
1−θ ϕ1(

x
εn

) satisfies

−∆zn ≤ n zθ
n in Bεn(0),

so that by comparison (see e.g. [10]) we get vn ≥ zn in Bεn(0), and in particular

vn ≥ γ′ (ε2
n n)

1
1−θ in B εn

2
(0) for a possibly different constant γ′. Finally, since we

have

vn(x) ≥
∫

Ω

Tn(f(y))vθ
n(y) G(x, y)dy ,



where G(x, y) is the Green function of the Laplacian, we deduce (for a positive
constant c0)

vn(x) ≥
∫

B εn
2

(0)

Tn(f(y))vθ
n(y) G(x, y)dy ≥ c0(ε

2
n n)

θ
1−θ n εN

n = c0(ε
N
n nβ)1+ 2θ

(1−θ)N ,

(49)

where β =
1+ θ

1−θ

1+ 2θ
(1−θ)N

. Now, if f is a function which belongs to Lm(Ω) but not to

Lm+δ(Ω) for any δ > 0, we have

nβ
∣∣{x : |f(x)| > n}

∣∣ → +∞ for any β > m.

Thus, using the definition of εn (recall that f is radial and decreasing), we have
εN
n nβ tends to infinity as soon as β > m. Since β > m if and only if θ > 2∗

2m′ , we
deduce that, for this range of values of θ, vn(x) goes to infinity for every x ∈ Ω,
which implies, for the solutions un of (48),

un(x) →∞ for every x ∈ Ω.

Therefore, if λ > N(m−1)
N−2m

, and if f is a positive nonincreasing radial function which

belongs to Lm(Ω) but not to Lm+δ(Ω) for any δ > 0, every sequence of solutions of
(48) blows up everywhere in Ω.

The case λ = N(m−1)
N−2m

in (46), which corresponds to asking θ = 2∗
2m′ in assumption

(C2) or in (47), is more delicate and the previous argument does not apply. Indeed,
we point out that in this borderline case existence can still be possible for some
functions in Lm(Ω) which are not in Lm+δ(Ω) for any δ > 0, for instance functions
belonging to some Orlicz space Lm log Lα(Ω). However, a general solvability result
for f in Lm(Ω) cannot hold: next examples show that there exist functions in Lm(Ω)
for which approximate solutions blow–up everywhere and no solution of (46) is

expected with λ = N(m−1)
N−2m

, showing the optimality of our results in the class of
Lebesgue spaces.

We give first a general nonexistence result, in the radial case, for sublinear equa-
tions as (47).

Lemma 5.1 Let θ = 2∗
2m′ and assume that

∃ M > 0 : f(x) ≥ M |x|−N
m (− log |x|)−1 , in a neighborhood of x = 0. (50)

Then there is no positive radial function w(|x|) ∈ C1(0, R) which solves

−∆w = f wθ in BR(0) \ {0}. (51)

Proof. Let ρ = |x| and assume that w = w(ρ) ∈ C1(0, R) is a positive solution of
(51), hence −(w′ ρN−1)′ = ρN−1 f wθ. Since w′ ρN−1 is decreasing, it admits a limit
at ρ = 0, say `. This limit cannot be positive, otherwise (for ρ close to 0)

w(ρ) ≥
∫ ρ

0

w′(ξ) dξ ≥
∫ ρ

0

`

2ξN−1
dξ = +∞.



Thus we deduce that ` ≤ 0; on the one hand, it implies that the limit is finite and
so f wθ is integrable in a neighborhood of x = 0. On the other, w′ ≤ 0 and then w
is decreasing and satisfies the key inequality (for shortness we take M = 1 in (50)):

−w′ ≥ 1

ρN−1

∫ ρ

0

ξN−1−N
m (− log ξ)−1 w(ξ)θ dξ . (52)

Without loss of generality we can assume that w ≥ 1 on (0, 1
4
). Then, using that

if γ > 0, β > −1, then
∫ ρ

0
ξβ(− log ξ)−γdξ ≥ ρβ+1

β+1+γ
(− log ρ)−γ ∀ρ ≤ 1

e
, (53)

we get

−w′ ≥ ρ1−N
m (− log ρ)−1

N
m′ + 1

∀ρ ∈ (0,
1

4
),

which yields, integrating and applying that (− log ρ)−1 is an increasing function,

w(ρ) ≥ −
∫ 1

4

ρ

w′dξ ≥ (− log ρ)−1

∫ 1
4

ρ

ξ1−N
m

( N
m′ + 1)

dξ

We deduce that

w(ρ) ≥ (− log ρ)−1ρ−( N
m
−2)

2(N
m
− 2)( N

m′ + 1)
∀ρ ∈

(
0,

1

4
2
− 1

N
m−2

)
. (54)

Set λ = N
m
− 2 (note that λ > 0 since m < N

2
): we can use again (54) into (52) and

get, with same arguments, a refined estimate on u from below. By induction, we
get in fact the following estimate:

w(ρ) ≥ ρ
−λ

n∑
k=0

θk

(− log ρ)
−

n∑
k=0

θk

(2λ)

n∑
k=0

θk (
N
m′ + 1

)θn n

Π
k=1

[(
k∑

j=0

θj

)θn−k (
N
m′ +

k∑
j=0

θj − λ
k∑

j=1

θj

)θn−k ]

if ρ <
1

4
2−

1
λ

σn σn =
n∑

k=0

1
k∑

j=0

θj

.

Since θ < 1, we have

log
(

N
m′ + 1

)θn

+
n∑

k=1

log




(
k∑

j=0

θj

)θn−k (
N
m′ +

k∑
j=0

θj − λ
k∑

j=1

θj

)θn−k

 ≤

≤
n∑

k=0

θn−k
[
log( 1

1−θ
) + log( N

m′ + 1 + (1− λ)+ θ
1−θ

] ≤ C

and so it follows that

w(ρ) ≥ C ρ
−λ

n∑
k=0

θk

(− log ρ)
−

n∑
k=0

θk



if ρ <
1

4
2−

1
λ

σn σn =
n∑

k=0

1
k∑

j=0

θj

.

Note that σn ≤ n + 1, so that we deduce

w(ρ)ρ
λ

1−θ (− log ρ)
1

1−θ ≥ Cρ
λθn+1

1−θ (− log ρ)
θn+1

1−θ , if ρ ∈ (0, 1
4
2−

n+1
λ ),

and in particular, if ρ ∈ (1
4
2−

n+2
λ , 1

4
2−

n+1
λ ), then

w(ρ)ρ
λ

1−θ (− log ρ)
1

1−θ ≥ C(
1

4
2−

n+2
λ )

λθn+1

1−θ (− log(
1

4
2−

n+1
λ ))

θn+1

1−θ . (55)

Since (0, 1
4
2−

1
λ ) =

∞⋃
n=0

(1
4
2−

n+2
λ , 1

4
2−

n+1
λ ), and the right hand side in (55) has a posi-

tive limit as n goes to infinity, we conclude that there exist ρ0 > 0 and a constant
c0 such that

w(ρ) ≥ c0 ρ−
λ

1−θ (− log ρ)−
1

1−θ = c0 ρ2−N (− log ρ)−
1

1−θ ∀ρ ∈ (0, ρ0) . (56)

Again we can use this information in (52) which now implies

−w′ ≥ cθ
0

ρN−1

∫ ρ

0

1

ξ
(− log ξ)−

1
1−θ dξ =

cθ
0(− log ρ)1− 1

1−θ

ρN−1( 1
1−θ

− 1)
.

Taking into account that (− log ρ)1− 1
1−θ is increasing, it yields

w(ρ) ≥ cθ
0(− log ρ)

1− 1
1−θ

( 1
1−θ

−1)

∫ ρ0

ρ
1

ξN−1 dξ

≥ 1
2(N−2)

cθ
0(− log ρ)

1− 1
1−θ

ρN−2( 1
1−θ

−1)
if ρ ∈ (0, ρ0 2

1
2−N ).

Iterating this estimate by using (52) we can again deduce by induction that

w(ρ) ≥ cθn+1

0 ρ2−N (− log ρ)
− 1

1−θ
+

n∑
k=0

θk

(2(N − 2))

n∑
k=0

θk n

Π
k=0

(
1

1−θ
−

k∑
j=0

θj

)θn−k

if ρ ∈ (0, 2−
n+1
N−2 ρ0). Note that we have 1

1−θ
>

k∑
j=0

θj for every k. In particular we

get, if ρ ∈ (2−
n+2
N−2 ρ0, 2

− n+1
N−2 ρ0)

w(ρ) ρN−2 ≥ cθn+1

0 (− log ρ0 + n+2
N−2

log 2)−
θn+1

1−θ

(2(N − 2))

n∑
k=0

θk n

Π
k=0

(
θk+1

1−θ

)θn−k
≥ c1 .

Thus, we obtain that w ≥ c1 ρ2−N in (0, 2−
1

N−2 ρ0), which due to (52) implies

−w′(ρ) ≥ cθ
1

ρN−1

∫ ρ

0

(− log ξ)−1

ξ
dξ ≡ +∞ .



Therefore, a positive solution w cannot exist.

Note that, in the previous statement, w is just taken to be a solution of the
equation in BR(0) \ {0}, and that no requirement is made a priori on its behaviour
near x = 0. Simply, the singularity of f is not allowed in the equation. By comparing
with radial solutions, the above proof implies the following nonexistence result for
distributional solutions, and, in particular, gives evidence of the optimality of the
existence results in [7].

Corollary 5.1 Let Ω be a bounded open set containing x = 0. Let θ = 2∗
2m′ and

assume that f satisfies (50). Then there is no positive function w ∈ L1(Ω) such that
fwθ ∈ L1(Ω) and

−∆w = f wθ in D′(Ω).

Proof. Since w > 0, up to rescaling we can assume that w ≥ 1 in a ball BR(0) and
satisfies −∆w ≥ f . By comparison principle for the Laplace equation we deduce
w ≥ G(f) in BR(0), where we have denoted G(f) the Green operator: G = (−∆)−1

in BR(0) with Dirichlet boundary conditions. It follows again that

−∆w ≥ fG(f)θ in BR(0),

hence w ≥ G(fG(f)θ). Thus, defining the operator T (z) = fG(z)θ, we simply
have by induction that w ≥ G(T n(f)) for any n ≥ 0 (we only use the comparison
principle for distributional solutions of Laplace operator with L1–data). Now, it
should be clear that this is precisely what we did in the proof of Lemma 5.1 for the
radial case; in particular, using (50) and the fact that both G and T are monotone
operators, we can estimate G(T n(f)) in terms of radial solutions; for instance, (54)
gives an estimate for G(f) which can be used to obtain an estimate on G(T (f)) =
G(f G(f)θ)) and so on. First we obtain (56), i.e.

w(x) ≥ ψ(x) : = c0 |x|2−N (− log |x|)− 1
1−θ χBρ0 (0) ,

then iterating again we get w ≥ G(T n(f ψθ)), so that

∫

Ω

f wθdx ≥
∫

Ω

T n+1(f ψθ) dx .

Estimating the right hand side with radial solutions we obtain as in Lemma 5.1 that
the right hand side integral goes to infinity, which gives a contradiction with the
assumption f wθ ∈ L1(Ω).

We immediately deduce the counterpart for problem (46).

Corollary 5.2 Let λ = N(m−1)
N−2m

and assume that (50) holds true. Then there is no
positive radial function u(|x|) ∈ C1(0, R) which solves

−∆u = λ
|∇u|2
1 + |u| + f in BR(0) \ {0}.

Moreover if Ω is a bounded open set containing 0, then (46) has no solution u such
that |∇u|2(1 + u)λ−1 and fuλ belong to L1(Ω).



In virtue of the previous result, we can easily deduce a complete blow–up result
for solutions of (48) if f(x) satisfies (50).

Corollary 5.3 If f satisfies (50) and λ = N(m−1)
N−2m

, then the solutions of (48) blow–
up everywhere in Ω.

Proof. Setting, as in Example 5.2, vn = (1+un)1+λ−1
1+λ

, vn solves

−∆vn ≥ Tn(f) vθ
n .

Let g(x) = |x|−N
m (− log |x|)−1 and let wn be the unique (and therefore radial) posi-

tive solution of

−∆wn = Tn(g) wθ
n , in BR(0), wn = 0 on ∂BR(0). (57)

By comparison, if f satisfies (50) (without lost of generality take M = 1 and assume
that (50) holds in BR(0)), we have vn ≥ wn. Since the sequence wn is increa-
sing, there exists a (possibly infinite valued) function w such that wn(x) pointwise
converges to w(x), so that by monotone convergence’s theorem, we have

lim
n→+∞

∫

B R
2

(0)

Tn(g)wθ
n dx =

∫

B R
2

(0)

g wθ dx . (58)

Assume by contradiction that the right hand side is finite. Since wn satisfies

−w′
n =

1

ρN−1

∫ ρ

0

Tn(g)(ξ) wn(ξ)θ ξN−1 dξ , (59)

in particular it is possible to pass to the limit in (59), so that w is a radial function
belonging to C1(0, R) which solves

−∆w = |x|−N
m (− log |x|)−1 wθ , |x| ∈ (0, R).

By Lemma 5.1, this is not possible, then we conclude that
∫

B R
2

(0)

Tn(g) wθ
n dx → +∞ .

Since again we have the integral representation

wn(x) ≥ δ(x)

∫

Ω

Tn(g) wθ
n δ(y) dy δ(x) = dist (x, ∂Ω) ,

we deduce that wn(x) converges to +∞ for every x in Ω. By comparison we also
have that vn(x) blows-up completely, and therefore the sequence of solutions un of
(48) as well.

Note that if f(x) = |x|−N
m (− log |x|)−α, then f belongs to Lm(Ω) if α > 1

m
,

and that the nonexistence result for (46) (or complete blow–up for approximating
solutions of (48)) holds for α ≤ 1. In view of Lemma 5.1, it seems that the value
α = 1 represents again a borderline, and we believe that solutions exist if α > 1.

Finally, in the same spirit we provide a generic counterexample in case m = 1,
i.e. f ∈ L1(Ω). This case was treated in [27] assuming that the function g in (1) is
integrable. Again, we show that this condition cannot be improved in order to have
solutions for any L1–datum.



Proposition 5.1 Let g : IR → IR+ be a positive continuous function, and suppose
that it is nonincreasing on IR+ and such that

∫ +∞
0

g(s)ds = +∞. Then there exists
a nonnegative radial function f ∈ L1(BR(0))∩C1(BR(0)\{0}) such that the problem

−∆u ≥ g(u)|∇u|2 + f in BR(0) \ {0}

does not have any nonnegative radial solution u ∈ C1(BR(0) \ {0}).

The proof of Proposition 5.1 will follow from a simple result on semilinear equa-
tions.

Proposition 5.2 Let h : IR → IR+ be a positive function. Assume that it is
nondecreasing, concave, and such that lim

s→+∞
h(s) = +∞. Then

(i) there exists a nonnegative radial function f ∈ L1(BR(0)) ∩ C1(BR(0) \ {0})
such that problem

−∆w ≥ h(w) f in BR(0) \ {0} (60)

does not have any nonnegative radial solution w ∈ C1(BR(0) \ {0}).
(ii) there exists a nonnegative f ∈ L1(Ω) such that the problem

−∆w = h(w) f in D′(Ω) (61)

does not have any nonnegative solution w ∈ L1(Ω) satisfying fh(w) ∈ L1(Ω).

Proof. By contradiction, let w be a nonnegative radial solution of (60). As in the
proof of Lemma 5.1, we have that w is nonincreasing and satisfies

−w′ ≥ 1

ρN−1

∫ ρ

0

ξN−1f(ξ) h(w(ξ)) dξ . (62)

Without loss of generality, let w ≥ 1 in (0, ρ0), so that

−w′ ≥ h(1)

ρN−1

∫ ρ

0

ξN−1f(ξ) dξ.

Let φ(t) define a C1, bounded and increasing function; in particular, we may take
φ ≤ 0 and lim

t→+∞
φ(t) = 0. Now set f(ξ) = ξ−Nφ′(− log ξ), and so

∫ R

0

ξN−1f(ξ) dξ =

∫ R

0

ξ−1φ′(− log ξ) dξ = −φ(− log R);

hence, f ∈ L1(BR(0)). With this f , we get

−w′ ≥ h(1)

ρN−1
(−φ(− log ρ)) ,

which gives, since φ is increasing,

w(ρ) ≥
∫ ρ0

ρ

h(1)

ξN−1
(−φ(− log ξ))dξ ≥ h(1) (−φ(− log ρ))

∫ ρ0

ρ

ξ1−Ndξ .



We deduce that there exists a constant c1 and a neighborhood (0, ρ1) such that

w(ρ) ≥ c1 (−φ(− log ρ)) ρ2−N

so that (62) yields

−w′ ≥ 1

ρN−1

∫ ρ

0

φ′(− log ξ)ξ−1 h(c1(−φ(− log ξ))ξ2−N) dξ . (63)

Now observe that, since h is positive and concave on IR+, we deduce h(s) ≥ h′(s)s
for all s ≥ 0. Moreover, it follows that log h is also concave on IR+; thus, for any
0 ≤ λ < 1, we obtain

log h(s) ≤ log h(λs) + (1− λ)s
h′(λs)

h(λs)
≤ log h(λs) +

1− λ

λ
∀s ≥ 0.

As a consequence, for every 0 ≤ λ < 1 and s ≥ 0, we have

h(λs)

h(s)
≥ exp

(λ− 1

λ

)
.

Applying these inequalities to (63) and having in mind that φ is bounded, it yields

− w′ ≥ c2

ρN−1

∫ ρ

0

φ′(− log ξ)ξ−1 exp(
1

φ(− log ξ)
) h(ξ2−N) dξ =

=
c2

ρN−1

∫ +∞

− log ρ

φ′(t)e
1

φ(t) h(e(N−2)t)dt .

Choose for instance φ such that

∫ 0

φ(t)

e
1
ξ dξ =

1

h(e(N−2)t)
.

Then we have that φ is a bounded increasing function and lim
t→+∞

φ(t) = 0 since h is

unbounded; moreover

∫ +∞
φ′(t)e

1
φ(t) h(e(N−2)t)dt =

∫ +∞ h′(s)
h(s)

ds = +∞ ,

so that we get−w′ ≥ +∞; this proves that no solution w exists with f = ξ−Nφ′(− log ξ),
and (i) is proved.

In order to prove (ii), it is enough to observe that any solution (possibly non
radial) of (61) is positive in a ball B ⊂ Ω, so it satisfies w ≥ c0G(f) for a positive
constant c0, where G(f) is the Green operator as in Corollary 5.1. In particular
there exists a ball B ⊂ Ω such that

−∆w ≥ fh(c0G(f)) in B,

with fh(c0G(f)) ≤ fh(w) ∈ L1(Ω). Thus we can use the above contruction in B: if
f is (greater than) the radial function constructed above, we have G(fh(c0G(f))) ≡
+∞, and since w ≥ G(fh(c0G(f))) we deduce that such a w cannot exist.



Proof of Proposition 5.1. As in (8) and (10), consider G(s) =
∫ s

0
g(t)dt

and Φ(s) =
∫ t

0
exp

(
G(s)

)
ds. Set now w(ρ) = Φ

(
u(ρ)

)
, where ρ = |x|. Then

w ∈ C1(0, R) and solves

−∆w ≥ fh(w) in BR(0) \ {0}, with h(t) = exp(G(Φ−1(t))).

Note that Φ is an increasing unbounded function and that, since g is not integrable,
h is also unbounded (and increasing). Moreover, the assumption g nonincreasing
implies that h is concave. We conclude applying (i) of Proposition 5.2.
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