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Abstract. This paper is concerned with the behaviour, as p goes
to 1, of eigenvalues of the p–Laplace operator associated to radial
eigenfunctions. The Dirichlet, Neumann and Robin conditions are
analyzed in an annulus. In each case we prove that there exist the
limits of both eigenvalues and eigenfunctions and the limits define
in a proper way an eigenpair of the 1–Laplacian.
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1. Introduction

Our aim in this work is to analyze the behavior, as p goes to 1, of
the solutions to the family of classical eigenvalue problems,{

−div (|∇u|p−2∇u) = λ|u|p−2u, in Ω,

Bp(u) = 0 on ∂Ω,
(1.1)

where Bp stands for either of the following boundary operators,

Bp(u) = u, Bp(u) = |∇u|p−2∂u

∂ν
, Bp(u) = |∇u|p−2∂u

∂ν
+ βu. (1.2)

Subject to these conditions (1.1) becomes the Dirichlet, Neumann or
Robin eigenvalue problem, respectively, for −∆p in Ω. In these expres-
sions, ν designates the outer unit normal at ∂Ω while in the latter one
β is a nonnegative function defined on ∂Ω.

Our interest here is focussed on radial solutions and so Ω is sup-
posed to be a radially symmetric bounded domain. The case where
Ω is a ball has been treated in detail by the authors in both [26]
and [28]. Thus we are now assuming that Ω is the annulus A =
{x ∈ RN : 0 < a < |x| < b}. In particular, when dealing with Robin
conditions β is taken a positive constant on each of the components of
the boundary ∂Ω.

We are going to prove that eigenpairs (λp, up) to (1.1) converge as
p→ 1 to some (λ, u) which is a solution of the limit problem−div

(
Du

|Du|

)
= λ

u

|u|
in Ω,

B1(u) = 0 on ∂Ω.

(1.3)

with Ω = A. Of course, we are giving a proper meaning to both the
equation and the corresponding boundary conditions B1 for each of the
classical cases (1.2) (Section 6). Divergence expression in (1.3) defines
the so–called 1–Laplacian operator ∆1 (see [7], [8], [13]).

Eigenvalue problems (1.1) to −∆p is a relevant subject in nonlinear
analysis since the early eighties where most part of the literature con-
cerns the case p > 1. Naturally, it also encompasses radially symmetric
problems as an special case. However, the behavior of (1.1) as p → 1
and the study of the corresponding limit problems is a more recent and
quite less treated issue.

This job may be regarded as a continuation of [26], [28] concerned
with the ball. It should be remarked that in this case all eigenpairs
to (1.1) are deduced, after scaling, from the global solution to a single
specific initial value problem defined in [0,∞). In fact, its solution
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is a sort of generalized Bessel type function (see Remark 3). On the
contrary and as a main difference, this is not longer possible for annuli.
Each one of the eigenvalues corresponding to the boundary conditions
(1.2) requires a separate analysis since their possible values perturb the
equation.

The present paper has some overlap with [18] which studies the limit
behavior as p → 1 of radial eigenvalues to (1.1) only under Dirichlet
conditions. One of its main results ([18, Theorem 2.9]) proves that
the n–th eigenvalue of (1.1) converges as p → 1 to the n–th Cheeger
constant of Ω, which may be regarded as the n–th eigenvalue of (1.3).
Nevertheless our approach is quite different since we are also interested
in identifying the eigenfunctions of problem (1.3). In addition, the
present analysis involves the remaining conditions in (1.2).

It is worth mentioning that the definition of the spectrum of −∆1 is
by no means straightforward. Finding out eigenpairs does not reduces
to solving (1.3). In fact, being a solution to (1.3) is a necessary but not
sufficient condition for (λ, u) to be an eigenpair. Actually, the notion
of spectrum of −∆1 relies upon an appropriate extension of the critical
point theory for nonsmooth functionals. Such functionals depend on
the boundary conditions. For instance, in the case of the Dirichlet
problem theory is associated to the total variation,

T (u) =

∫
Ω

|Du|+
∫
∂Ω

|u|,

defined in the space BV (Ω) of functions bounded variation. To get a
deeper insight on the eigenvalues to −∆1 under the three boundary
conditions, we are next reviewing some well–known features on the
eigenvalues to (1.1) and their limits as p→ 1. Most of them hold true
in a general bounded smooth domain Ω ⊂ RN .

1) For every p > 1 there exists an increasing sequence {λn,p}n of vari-
ational eigenvalues to each one of the problems (1.1), (1.2). They are
defined by the Ljusternik–Schnirelman theory as ([1], [31], [3], [16], [15],
[23], [5], [20]),

λn,p = inf
C∈Cn

sup
u∈C

Jp(u), n ∈ N, (1.4)

where,

Jp(u) =

∫
Ω

|∇u|p,

for Dirichlet or Neumann conditions in (1.2), while

Jp(u) =

∫
Ω

|∇u|p +
∫
∂Ω

β|u|p,
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in case of the Robin condition where β ∈ L∞(∂Ω). As for the class Cn,

Cn = {C ⊂ Mp : C compact in W 1,p(Ω), C = −C, γ(C) ≥ n}, (1.5)

being Mp = {u ∈ W 1,p(Ω) :
∫
Ω
|u|p dx = 1} and supposing we are

dealing with Neumann or Robin conditions. In the Dirichlet case, space
W 1,p(Ω) must be replaced by W 1,p

0 (Ω). As a matter of notation, γ(C)
designates the Krasnosel’skii genus of C ([29]).

In addition, eigenvalues λn,p are positive, with the sole exception of
the Neumann problem where λ1,p = 0. Furthermore, limn→∞ λn,p =
+∞ (see [3], [16]).

2) Limits,

λ̄n := lim
p→1

λn,p, (1.6)

exists for every n ∈ N. Concerning the Dirichlet problem and the
principal eigenvalue this was first shown in [19] and [14] (see preliminary
results in [17], [21]), while higher eigenvalues were addressed in [12]
(for the 1–dimensional case), [25], [24] and [26]. Moreover, variational
expressions as (1.4) for the limits λ̄n were proposed in [25], [24] in the
Dirichlet case and in [28] for either Neumann or Robin conditions.

3) A sequence of variational Dirichlet eigenvalues λn > 0, λn → ∞ as
n → ∞, to (1.3) was introduced and studied in [12]. Such eigenvalues
λn are proved to agree with the limits λ̄n in the one–dimensional case.
This reference also exhibits examples of solutions (λ, u) to (1.3) that do
not define variational eigenpairs (λn, un). Accordingly, problem (1.3)
does not characterizes by itself the Dirichlet spectrum of −∆1 mean-
while the family of limits λn = limp→1 λn,p may be regarded as the true
Dirichlet eigenvalues of this operator.

4) It is further shown in [24] that the Dirichlet eigenvalues λn intro-
duced in [12] coincide, in a general Lipschitz domain Ω ⊂ RN , with the
limits λ̄n referred to in (1.6). In other words, λ̄n = λn for every n.

5) As for the behavior of eigenfunctions as p → 1, a pioneering result
in [12] states that Dirichlet eigenfunctions to (1.1) pointwise converge
to eigenfunctions of −∆1 in dimension N = 1. Such a result was
somehow extended in [26] to N–dimensional domains Ω. Namely, that
normalized eigenpairs (λn,p, un,p) ∈ R×W 1,p

0 (Ω) weakly–∗ converges in
R×BV (Ω), and modulus a subsequence, to a solution (λ̄n, ūn) of (1.3).
In the framework of −∆1, ūn may be regarded as an eigenfunction
associated to the eigenvalue λ̄n.

6) The limit profile of eigenfunctions to either the Neumann or Robin
problem as p→ 1 in the ball was studied in [28].
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Our main concern in the present work is to analyze the behavior of
the radial eigenpairs (λp, up) to (1.1) as p goes to 1 on annuli. We are
proposing the proper definition of eigenvalue to problem (1.3), which
involves the 1–Laplacian together with the three boundary conditions.
It should be remarked in this regard that extra energy relation (6.80),
involved in the definition, is instrumental to discard spurious solutions.
Moreover, we are showing that the limit (λ, u) of the eigenpairs (λp, up)
as p → 1 constitutes the unique solutions to (1.3). Accordingly, such
values λ may be considered as the radial spectrum of −∆1.

This paper is organized as follows. Section 2 introduces the func-
tional setting and settles the problem that radial eigenpairs to (1.1),
(1.2) satisfy in an annulus. The existence of these eigenpairs is proved
in Section 3. An analysis of the limit as p→ 1 of the radial eigenvalues
is contained in Section 4. Section 5 addresses a detailed study of the
limit of the eigenfunctions as p → 1. Theorem 15 there summarizes
our main findings. As a further achievement, Corollary 14 shows the
explicit expression of the main Robin eigenvalue λ1 to the 1–Laplacian
in an annulus A = {x ∈ RN : a < |x| < b}. Section 6 introduces the
classical eigenvalue problems (1.3) for the 1–Laplacian (Definition 17).
Main result of the section, Theorem 20, states among other features
that the radial eigenpairs to (1.3) in A are just the limit as p → 1 of
the corresponding ones to (1.1).

2. Preliminaries

2.1. Sobolev spaces. The natural framework to deal with (1.1) is
W 1,p(Ω), the Sobolev space of functions u ∈ Lp(Ω) whose gradient, in
weak sense, satisfies ∇u ∈ (Lp(Ω))N . Subspace W 1,p

0 (Ω) ⊂ W 1,p(Ω)
denotes all those functions vanishing on ∂Ω. When Ω is the annulus

A = {0 < a < |x| < b}, W̃ 1,p(A) and W̃ 1,p
0 (A) denote the subspaces of

W 1,p(A) and W 1,p
0 (A), respectively, consisting of their radially sym-

metric elements (radial functions to short). Namely, functions u such
that u(x) = u(Tx) a. e. in A, for every orthogonal transformation of
T : RN → RN . For u ∈ L1(A) this is equivalent to the existence of
v ∈ L1(a, b) such that u(x) = v(r) a. e. in A with r = |x|. In this

way, the associated function v to any u ∈ W̃ 1,p(A) belongs to the one
dimensional space,

W 1,p(a, b, rN−1 dt) = {v ∈ Lp(a, b, rN−1 dt) : v′ ∈ Lp(a, b, rN−1 dt)},
(2.7)
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where the derivative v′ is computed in weak sense of D′(a, b). Moreover,

∇u(x) = x

r
v′(r), (2.8)

and so v′ = x
r
· ∇u. Accordingly, for a function u ∈ W̃ 1,p(A),

∥u∥p
W̃ 1,p(A)

= NωN

{∫ b

a

(|v|p + |v′|p) tN−1 dt

}
,

where ωN = |{|x| < 1}|. We remark that space (2.7) is equivalent to
W 1,p(a, b) since r is bounded away from zero, so the latter will replace
the former one in future references.

Anticipating the case where v′ is a measure, relations between v, v′

and u,∇u are more conveniently expressed in distributional language
as,

⟨u, ψ(| · |)⟩D′(A) =
〈
NωNr

N−1v, ψ
〉
D′(a,b)

,〈(x
r
· ∇u

)
, ψ(| · |)

〉
D′(A)

=
〈
NωNr

N−1v′, ψ
〉
D′(a,b)

,

(2.9)

where ψ ∈ C∞
0 (a, b) and ⟨·, ·⟩D′ stands for the corresponding duality

pairings. In the second expression one recognizes the radial derivative

ur =
x

r
· ∇u,

of u which can be checked to define a radial function in Lp(A). In fact,
according the second equality in (2.9) it may identified with v′. Thus,

elements in W̃ 1,p(A) consist in absolutely continuous functions v in the

interval [a, b] ([10]). In particular, functions u ∈ W̃ 1,p
0 (A) vanish at

|x| = a, b in the standard way, rather than in traces sense.

2.2. BV –functions. When dealing with problems involving the 1–
Laplacian ∆1 as (1.3), the proper space to work with is BV (Ω), con-
stituted by all functions of bounded variation in Ω ([2]). It is made up
of those u ∈ L1(Ω) such that its distributional gradient Du is a vec-
torial Radon measure with |Du|(Ω) < ∞, |Du| standing for the ‘total
variation measure’ associated to Du.

In an annulus Ω = A, B̃V (A) comprises the radial functions of
BV (A). Previous notion of radial symmetry is upgraded to Radon
measures µ ∈ D′(A) as follows,

⟨µ, φ ◦ T ⟩D′(A) = ⟨µ, φ⟩D′(A) ,
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for all test function φ ∈ C∞
0 (A) and every orthogonal transformation T ,

being φ ◦ T (·) = φ(T ·). Since x
r
∈ C∞(A,RN), the scalar distribution

ur :=
x

r
· Du is well defined. It can be checked that µ = ur is radial

provided u is. Then, previous relations (2.9) are extended to functions

u ∈ B̃V (A). In this case, v ∈ L1(a, b), its distributional derivative
v′ defines a finite Radon measure in (a, b) and so v ∈ BV (a, b). In
addition, total variations |Du| and |v′| are connected through,

⟨|Du|, ψ(| · |)⟩D′(A) =
〈
NωNr

N−1 |v′|, ψ
〉
D′(a,b)

, ψ ∈ D′(a, b).

(2.10)
It should be remarked that every function v ∈ BV (a, b) agrees a. e. in
(a, b) with the function,

v̄(r) = c+ v′(a, r) = c+

∫
(a,r)

v′,

c being a constant ([2]). Moreover, v̄ turns out to be left–continuous
and of bounded variation in [a, b] in the classical sense. In future com-
putations it will be understood that v has been replaced by v̄. In
particular, this fact is entailing the existence of side limits v(r±) at
every r ∈ [a, b].

The concept of solution to problems subject to the ∆1 operator
as (1.3) requires the notion of pairing (z,Du) between a field z ∈
L∞(Ω,RN) and the gradient of a function u ∈ BV (Ω), Ω ⊂ RN being
a Lipschitz domain. It is a distribution defined, according to [9], as,

⟨(z,Du), φ⟩ = −
∫
Ω

u(∇φz + φdiv z), φ ∈ C∞
0 (Ω),

where the restriction div z ∈ L∞(Ω) is assumed. In fact, (z,Du) is a
Radon Measure such that,

|(z,Du)|(U) ≤ ∥z∥∞|Du|(U),

for every Borel set U ⊂ Ω ([9]). Once the pairing is defined, the action
of the operator ∆1 in (1.3) is properly defined as ([8], [13]),

div

(
Du

|Du|

)
= div z,

where the field z is required fulfilling ∥z∥∞ ≤ 1 and the coupling con-
dition with u,

(z,Du) = |Du|, in D′(Ω). (2.11)
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Of course we are more interested here in the radial case where u ∈
B̃V (A) and fields z exhibit the form,

z =
x

r
w(r),

with w ∈ L∞(a, b). Now condition div z ∈ L∞(A) is equivalent to
w ∈ W 1,∞(a, b) and the corresponding pairing satisfies,

⟨(z,Du), ψ(|x|)⟩D′(A) =
〈
NωNr

N−1wv′, ψ(r)
〉
D′(a,b)

.

We remark that the distribution (w, v′) satisfies (w, v′) = wv′. In fact,
the latter is well defined since w ∈ W 1,∞(a, b) and so identity (2.11)
can be expressed as,

wv′ = |v′| in D′(a, b). (2.12)

For a couple (v, w) ∈ BV (a, b)×W 1,∞(a, b) the integration by parts
formula, ∫ b

a

wv′ +

∫ b

a

w′v = w(b)v(b−)− w(a)v(a+), (2.13)

holds true, where function v is assumed to be of bounded variation in
classical sense and w is absolutely continuos. First integral stands for
the measure wv′((a, b)) of the interval (a, b). Notice that identity (2.13)
is nothing else than a particular case of the more general Green formula
in [9, Th. 1.9], however it can be shown by a direct approximation
argument under the previous hypotheses.

2.3. Radial eigenfunctions. We begin with a definition of solution
to (1.1).

Definition 1. A function u ∈ W 1,p(Ω)\{0} is a weak eigenfunction to
the Robin problem (1.1) with the choice Bp(u) = |∇u|p−2∇u ν+β|u|p−2u
in (1.2)) if the equality,∫

Ω

|∇u|p−2∇u∇ψ +

∫
∂Ω

β|u|p−2uψ = λ

∫
Ω

|u|p−2uψ, (2.14)

holds for all test function ψ ∈ W 1,p(Ω) and in this case, λ becomes a
Robin eigenvalue. Definition of an eigenpair (λ, u) for the Neumann
problem ((1.1), Bp(u) = ∂u

∂ν
) reduces to set β = 0 in (2.14) while a

corresponding eigenpair (λ, u) ∈ R×W 1,p
0 (Ω) for the Dirichlet problem

((1.1), Bp(u) = u) is obtained by setting β = 0 and testing (2.14) with

functions ψ ∈ W 1,p
0 (Ω).
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Our main interest here is focussed on radial eigenvalues λ to (1.1)
when Ω is an annulus A. These are just those ones associated to radial
eigenfunctions u(x) = v(r), r = |x|, v ∈ W 1,p(a, b). Since ∆pu is a
radial distribution whenever u is radial, then checking equation (2.14)
reduces, in this symmetric scenario, to test with radial functions ψ(r),
ψ ∈ C1[a, b], what means,∫ b

a

φp(v
′)ψ′ rN−1 dr + (βrN−1φp(v)ψ)r=b + (βrN−1φp(v)ψ)r=a

= λ

∫ b

a

φp(v)ψ r
N−1 dr, (2.15)

where ′ =
d

dr
and the notation φp(t) = |t|p−2t is going to be employed

henceforth to shorten. In this equation, we set β = 0 in the Neumann
problem while both v and ψ must vanish at r = a, b in the Dirichlet
case.

In addition, (2.15) implies that both v, φp(v
′) are C1 in [a, b], up to

a possible modification in a null set, and equation,

− (rN−1φp(v
′))′ = λrN−1φp(v), (2.16)

is satisfied in a ≤ r ≤ b. Integration by parts in (2.15) together with
(2.16) lead to the relation,(

rN−1[φp(v
′) + βφp(v)]ψ

)
r=b

+
(
rN−1[−φp(v

′) + βφp(v)]ψ
)
r=a

= 0,
(2.17)

for all ψ ∈ C1[a, b]. Thus, both brackets must vanish when dealing
with either the Neumann or Robin problem.

Summarizing these previous features, the radial version of (1.1) in
the annulusA = {a < r < b} consists in finding nontrivial pairs (λ, v) ∈
R× C1[a, b] solving,{

−(rN−1φp(v
′))′ = λrN−1φp(v), r ∈ (a, b),

Bp(v)r=a = 0, Bp(v)r=b = 0,
(2.18)

where Bp(v) = v in the Dirichlet problem, Bp(v) = v′ in the Neumann
one, while,

Bp(v)r=a = {−φp(v
′) + β1φp(v)}|r=a , (2.19a)

Bp(v)r=b = {φp(v
′) + β2φp(v)}|r=b

, (2.19b)

in the Robin case, βi being positive for i = 1, 2.
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Remark 1. When 1 < p ≤ 2 radial eigenfunctions v ∈ C2[a, b]. This
is not the case as p > 2 since they cease to be C2 near their critical
points.

3. Existence of radial eigenvalues

We already know that existence of radial eigenvalues to (1.1) is an
issue of ordinary differential equations (odes), as reflected through the
equivalent formulation (2.18). A complete discussion of this problem is
contained in the next statement. In the vein of Sturm–Liouville theory,
it also provides us a complete picture of the radial eigenfunctions.

Theorem 2. Problem (2.18) possesses an infinite sequence of eigen-
values,

0 ≤ λ1 < · · · < λn < · · · , λn → ∞,

where λ1 = 0 in the Neumann case, λ1 > 0 in the remaining ones.
Moreover, the following properties hold true.

i) Every eigenvalue λn is simple which means that any eigenfunction v
associated to λn is a scalar multiple of a fixed one vn.

ii) To every λn there exists n−1 points θi ∈ (a, b) such that an arbitrary
eigenfunction v to λn exactly vanishes at these points. Moreover, points
associated to the following eigenvalue λn+1 separate the points θi in the
interval (a, b).

iii) Any eigenfunction v associated to λn possesses n critical points a ≤
σi ≤ b, 1 ≤ i ≤ n. Moreover,

θi−1 < σi < θi, (3.20)

for 1 ≤ i ≤ n in either the Dirichlet or the Robin problem where θ0 = a,
θn = b. In the Neumann one, σ1 = a, σn = b for n ≥ 2 while (3.20)
holds for i /∈ {1, n} and n ≥ 3.

Remark 2. Observe that assertion iii) holds in the case n = 1 leading
to the existence of a unique critical point σ1 of the first eigenfunctions
in both the Dirichlet and Robin problems. As for the Neumann case
notice that the first eigenfunction is constant and so v′ = 0 in [a, b]. In
this case, second eigenfunction does not admit inner critical points.

Proof of Theorem 2. The proof is addressed in an ‘odes’ framework.
Assertions i), ii) are consequence of [30, Th. 5, Cor. 5], which are just
shown in the more adverse scenario of the ball. In fact, notice that r
keeps away the singular value r = 0 in the case of the annulus. On the
other hand, once an eigenfunction v to λn vanishes at θ then all other
ones corresponding to this eigenvalue also vanishes at this point. Thus,
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both families of zeros {θi} and critical points {σi} in ii) and iii) only
depend on λn.

We next show the assertions regarding the critical points set of any
eigenfunction v to λn. We first observe that − sign (v)(rN−1 φp(v

′))′ is
positive in all of the intervals Ii := (θi−1, θi), 1 ≤ i ≤ n, where θ0 = a,
θn = b (all cases are covered with this convention). Hence, v′ just
exhibits a unique zero σi in the ‘inner’ intervals Ii, 2 ≤ i ≤ n− 1.

The previous assertion also holds for the Dirichlet problem in the
initial (a, θ1) and final (θn−1, b) intervals, respectively. As for the Robin
one, notice that neither v nor v′ vanish at r = a. Since v keeps sign
in (a, θ1), it follows that v

′ has opposite signs at the points r = a and
r = θ1. Thus v

′ has an intermediate zero that must be unique in (a, θ1).
A similar conclusion is achieved in the final interval (θn−1, b).

Regarding the Neumann problem observe that v′ can not vanish
in neither of the intervals (a, θ1] and [θn−1, b) and the proof of iii) is
completed. □

Remark 3. When Ω is the ball B(0, b), problem (2.18) is reduced to
study the initial value problem,{

−(tN−1φp(u
′))′ = tN−1φp(u), t > 0,

u(0) = 1 , u′(0) = 0,
(3.21)

′ =
d

dt
, after scaling λ in the form t = λ

1
p r. In this layout, the zeros of u

determine the eigenvalues of (1.1). Observe that u(t) is a kind of Bessel-
type function. See a further account in both [26], [28]. Unfortunately,
this approach is not so well–behaved for dealing neither with annuli
nor with variable coefficients problems.

Let v ∈ W 1,p(a, b) be a solution of the equation in (2.18). If w(r) =
φp(v

′(r)) then it follows from the discussion in Section 2.3 that v defines
a classical solution (v, w) ∈ C1[a, b]×C1[a, b] to the first order system,

v′ = φp′(w),

w′ = −N − 1

r
w − λφp(v),

a < r < b, (3.22)

which satisfies the boundary conditions:

Bp(v, w)r=a,b = 0,

where Bp(v, w) = v in the Dirichlet case, Bp(v, w) = w in the Neumann
one while Bp(v, w)r=a = {−w′ + β1φp(v)}r=a and Bp(v, w)r=b = {w′ +
β2φp(v)}r=b in the Robin problem.
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The key point in writing the equation in (2.18) as (3.22) is just
introducing the Lyapunov function,

E(v, w) =
1

p′
|w|p′ + λ

p
|v|p, (3.23)

which is relevant for dynamical purposes. In fact, a direct computation
leads to,

d

dr
E(v, w) = −N − 1

r
|w|p′ , (3.24)

and so E decreases on trajectories. A first consequence is that solutions
(v, w) to (3.22), initially only defined in [a, b], can be extended to the
whole interval [a,∞) and constitute global solutions. Moreover ([26,
Lem. 10–iv)]),

lim
r→∞

(v(r), w(r)) = (0, 0). (3.25)

Further applications of E are going to be presented later.

On the other hand, an eigenfunction vn regarded as a solution (vn, wn)
to (3.22) gives raise to an orbit Γ which turns clockwise infinitely many
times around (0, 0). In fact, it meets the v–axis at {(vn(σi), 0)}i and
crosses the w–axis at the points {(0, wn(θi))}i, θ0 = a, θn = b. Fur-
thermore, (3.25) implies that the orbit amplitude progressively decays
to zero beyond r = b as r → ∞.

Another consequence of (3.24) is the next result.

Lemma 3. Let (λn, vn) be an eigenpair to (2.18) and wn = φp(v
′
n).

Then,

i)

|wn(θ1)| > · · · > |wn(θn−1)|,
where in the Dirichlet case the sequence further involves |wn(a)| and
|wn(b)| as the first and last terms, respectively.

ii) For every n, the inequalities,

|vn(σ1)| > |vn(σ2)| > · · · > |vn(σn)|,
hold true, where σ1 = a, σn = b in the Neumann case corresponding to
n ≥ 2.

iii) Between consecutive inner zeros θi−1, θi ∈ (a, b) of a n–th eigenfunc-
tion vn, relations

(p− 1)|wn(θi)|p
′
< λ|vn(σi)|p < (p− 1)|wn(θi−1)|p

′
,

are satisfied. They also include θ0 = a and θn = b in the Dirichlet case.

Our next objective is to relate the radial eigenvalues to (2.18), ob-
tained in Theorem 2 by means of odes methods, with the variational
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eigenvalues derived from critical points theory in (1.4). In fact, a pos-
sibly distinct family of radial eigenvalues to (2.18) could be obtained
from the variational expressions,

λ̃n,p = inf
C∈C̃n

sup
u∈C

∫
A
|∇u|p dx+

∫
∂A
β|u|p, n ∈ N, (3.26)

where C̃n = {C ∈ Cn : C ⊂ W̃ 1,p(A)}. In other words, C̃n is the restric-

tion of the class Cn to the space of radial functions W̃ 1,p(A). Of course,

the latter space is replaced by W̃ 1,p
0 (A) in the Dirichlet problem.

As it is going to be observed in Section 4 the variational approach
(3.26) is crucial to study the existence of the limits of the eigenvalues
λn,p as p → 1. Thus, a result as the next one is required. Subindex p

is drop both in λn and λ̃n to brief.

Theorem 4. The family of ‘ode’ eigenvalues {λn} to (2.18) and the

corresponding one {λ̃n} deduced from Ljusternik–Schnirelman theory
agree,

λn = λ̃n, for every n ∈ N.

Proof. We are adapting the corresponding proof in the case of the ball
and Dirichlet conditions (see [26, Th. 12]). Firstly and according to

the discussion in Section 2.3, eigenvalues in the variational family {λ̃n}
gives rise to radial eigenvalues in the family {λn}. In addition, there

can not exist repetitions in the λ̃n’s. In fact, if it were,

λ̃n = · · · = λ̃n+k−1, k ≥ 2,

for some n, then there would exists a compact K ⊂ Mp ∩ W̃ 1,p(A) of

eigenfunctions to λ̃n with genus γ(K) ≥ k ([29, Lem. 5.6]). So, if a
repetition occurs then K becomes infinite. This is not posible since the
simplicity of λ̃n stated in Theorem 2–i) implies that K = {ũn,−ũn}.
Thus, repetitions in the sequence {λ̃n} are not allowed.

We next observe that λ̃1 = λ1 since λ̃1 always defines a principal
eigenfunction, therefore without inner zeros in (a, b). Hence,

λn ≤ λ̃n, for all n ∈ N.

On the other hand, [6, Prop. 1] states, in the general framework
of a bounded smooth domain Ω ⊂ RN , that for an arbitrary Dirichlet
eigenvalue λ to (1.1), regardless its nature (variational or not), the
following estimate is satisfied,

λLSN ≤ λ. (3.27)
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Here λLSN denote the N–th term in the sequence given by (1.4), while
N = N(λ) is the maximal number of nodal regions that an eigen-
function u to λ can exhibit. The nodal regions of u are the family of
components in the set {x ∈ Ω : u(x) ̸= 0}. Such a number is shown to
be bounded above by a maximum value N(λ) < ∞ only depending
on λ (see [4, Prop. 2] for Dirichlet conditions, [20, Th. 5.11] for the
remaining two). Moreover, estimate (3.27) has been upgraded in [20,
Prop. 5.17] to include both Neumann and Robin conditions.

Now observe that Theorem 2–ii) implies that the n–th radial eigen-
value λn satisfies,

N(λn) = n.

Thus, (3.27) implies,

λ̃n = λLSN(λn) ≤ λn,

and we are done. □

4. Behavior of the radial eigenvalues as p→ 1

Our first result states the existence of the limits of the radial eigenval-
ues as p→ 1. As a matter of notation, whenever necessary a subindex
p is added to the relevant objects (numbers, functions) in order to
indicate their dependence on p. For instance (λn,p, vn,p) will be used
instead the former (λn, vn) to stress the influence of p on this eigenpair
to (2.18). On the other hand, it will be assumed in the sequel that the
domain Ω in (1.1) is the annulus A = {0 < a < |x| < b}.

Theorem 5. Limits,

λ̄n = lim
p→1

λn,p, (4.28)

exist for every n ∈ N.

Proof. It is shown in [26, Cor. 3] that for Dirichlet conditions the
Ljusternik–Schnirelman eigenvalues λn,p to (1.1) admits a limit,

λ̄n := lim
p→1

λn,p, (4.29)

in a general Lipschitz bounded domain Ω. The argument makes use
in a crucial way of the Rayleigh quotients (1.4) to show the inequality,
([22] for the case n = 1 and [26, Th. 2] for an arbitrary n),

pλn,p
1
p ≤ sλn,s

1
s , for 1 < p < s,

from which (4.29) follows. The same reasoning proves the latter in-
equality for the Neumann eigenvalues in Ω and thus the existence of
the limits (4.29) is also stated in this case. Finally, to achieve (4.29)
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subject to Robin conditions requires a more elaborate reasoning and it
is answered in positive in [28, Th. 20].

In the case of the annulus A previous arguments remain valid when
applied to the radial variational eigenvalues λ̃n,p defined in (3.26). Thus
we deduce the existence of the limits,

λ̄n = lim
p→1

λ̃n,p.

Then (4.28) follows from Theorem 4. □

Next statement is a further consequence of Theorem 4. It is the
specialization to radial solutions of theorems [26, Th. 6] and [28, Th.
18], the first one concerning the Dirichlet problem, the latter dealing
with either Neumann or Robin boundary conditions. We recall the
notation φp(t) = |t|p−2t to be next used.

Theorem 6. For a fixed n let (λm, vm) = (λn,pm , vn,pm(r)), a < r < b,
be a family of radial eigenpairs to (2.18) corresponding to a sequence
of exponents pm → 1 and thus satisfying,

λm → λ̄ = λ̄n, as m→ ∞.

Assume also that eigenfunctions are normalized so that,

∥vm∥∞ = 1, for each m ∈ N. (4.30)

Then, up to subsequences, the following properties hold.

i) {vm} converges strongly in L1(a, b) to a function v ∈ BV (a, b).

ii) {φpm(vm)} converges weakly in Ls(a, b) to a function γ ∈ L∞(a, b),
for every 1 < s <∞. Furthermore, ∥γ∥∞ ≤ 1 and,

γv = |v|, a. e. in (a, b). (4.31)

iii) Family wm = φpm(v
′
m) converges uniformly in [a, b] to a Lipschitz

function w ∈ W 1,∞(a, b) with ∥w∥∞ ≤ 1.

iv) Function w solves in the sense of distributions the equation,

− w′ − N − 1

r
w = λγ. (4.32)

v) Identity |v′| = (w, v′) holds in (a, b) as measures.

vi) Boundary conditions,

w(a)v(a+) = min{1, β1}|v(a+)|, (4.33a)

w(b)v(b−) = −min{1, β2}|v(b−)| (4.33b)

are satisfied, with values βi = 1 in the Dirichlet case, βi = 0, in the
Neumann problem and βi > 0, i = 1, 2, in the Robin one.
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vii) Identity,

λ
d|v|
dr

= −N − 1

r

∣∣∣∣dvdr
∣∣∣∣ , (4.34)

holds in (a, b) in a distributional sense.

Remark 4. Relations (4.33) assert that Robin eigenfunctions vn can
only ‘see’ the genuine Robin conditions as p→ 1 if 0 < βi ≤ 1. Other-
wise, both Dirichlet and Robin eigenfunctions exhibits the same limit
behavior at r = a, b. Notice in addition that the existence of the side
limits is ensured after a possible modification of v in a null set (see
Section 2.2).

Proof. Starting assumption in both [26, Th. 6] and [28, Th. 18] is the
control,

0 < k1 ≤
∫
Ω

|u|p ≤ k2, (4.35)

on the Lp norm of the eigenfunctions u to (1.1). Thus we are checking
that provided a family of radial eigenpairs (λm, ṽm) satisfies,∫

Ω

|ṽm|pm = 1, (4.36)

with λm → λ̄, then ∥ṽm∥∞ = O(1) as m → ∞. Thus, vm =
ṽm

∥ṽm∥∞
both fulfills (4.30) and (4.35). In fact, by setting v = ṽm, p = pm,

|v(r)| ≤ |v(a)|+
∫ b

a

|v′| ≤ |v(a)|+ (b− a)1−
1
p

(∫ b

a

|v′|p
) 1

p

≤ |v(a)|+ (b− a)1−
1
pa−

N−1
p

(∫ b

a

|v′|prN−1

) 1
p

≤ |v(a)|+ (b− a)1−
1
pa−

N−1
p λ

1
p .

Hence, family ṽm satisfies the estimate,

∥ṽm∥∞ ≤ sup |ṽm(a)|+ (b− a)

(
λm

(b− a)a(N−1)

) 1
pm

,

and a uniform bound is attained provided that the first term in the
right hand side is finite. This is obvious in the Dirichlet case. As for
Robin conditions one has,∫ b

a

|ṽ′m|pmrN−1 dr + β1a
N−1|ṽm(a)|pm + β2b

N−1|ṽm(b)|pm = λm,
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what shows the finiteness of sup |ṽm(a)|. Finally, under Neumann con-
ditions Barrow’s rule implies

|ṽm(a)| ≤
∫ b

a

η|ṽ′m| dr +
∫ b

a

|η′ṽm| dr,

where η ∈ C1[a, b] is any fixed nonnegative function satisfying η(a) = 1,
η(b) = 0. Both integrals are uniformly bounded because of (4.36) and
the equality, ∫ b

a

|ṽ′m|pmrN−1 dr = λm.

Therefore, ∥ṽm∥∞ = O(1) as m→ ∞.

As a consequence of (4.35), all features of the statement, except for
iii), are essentially developed in [26, Th. 6], [26, Prop. 16] and [28, Th.
18].

Regarding iii), results [26, Th. 6] and [28, Th. 18] supply w ∈
L∞(a, b) such that

wm = φpm(v
′
m)⇀ w,

weakly in Lq(a, b) for all 1 < q < ∞. We are now upgrading both
the quality of the latter convergence and the regularity of w. First
observe that by integrating the radial equation in (2.18) with initial
data wm(σ1,m) = 0, r = σ1,m standing for the first zero of v′m in (a, b),
we deduce,

wm(r) = −λm
∫ r

σ1,m

(s
r

)N−1

φpm(vm(s)) ds,

what implies that {wm} is uniformly bounded in [a, b]. In addition,
both the normalization (4.35) and the equation,

(rN−1wm)
′ = −λmrN−1φpm(vm),

imply that the family {rN−1wm} and hence {wm} are equicontinuous
in [a, b] and, after continuation, in any interval [a, b1] with b1 ≥ b.
Thus, modulus a subsequence, wm → w in C[a, b]. After a possibly
redefinition of w in a null set we arrive at,

w(r) =

(
t0
r

)N−1

w(t0)− λ̄

∫ r

t0

(s
r

)N−1

γ(s) ds,

for some t0 ∈ [a, b] and conclude that w ∈ W 1,∞(a, b). □

Remark 5. As to be explained in Section 6, assertions iv), v), (4.31),
(4.34) together with (4.33) constitute the requirements for (λ̄, v) ∈
R×BV (Ω) to define a radial eigenpair to (1.3). In particular, relations
(4.33) encode the boundary conditions (see Definitions 16 and 17).
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To ascertain the limit profile of eigenfunctions vn,p to (2.18) as p→ 1
is essentially equivalent to master the corresponding behavior of their
zeros θi,p and critical points σi,p. It should be remarked that the own
existence of the limits of θi,p and σi,p as p→ 1 is by no means evident.
This fact strongly contrasts with the case when Ω is a ball where such
an existence is a direct consequence of the one for the eigenvalues λn,p
as p→ 1 ([26, Th. 13]).

Nevertheless, to start on a firm ground, next result ensuring the
existence of positive gaps between the limit values of these quantities
is quite convenient for our purposes.

A first step in this direction is the next statement.

Lemma 7. Let {θi,p}, {σi,p} be the family of zeros and critical points
associated to n–th eigenvalue λn,p. Then, the estimates

lim
p→1

(θi,p − σi,p) > 0, lim
p→1

(σi,p − θi−1,p) > 0, (4.37)

are satisfied for all possible choices of {σi,p, θi,p}, {θi−1,p, σi,p}, including
the extreme cases θ0,p = a and θn,p = b. These facts hold for the
three boundary conditions (1.2), with the sole possible exceptions of the
couples {a, σ1,p} and {σn,p, b} in the Robin problem.

Latter missing estimates in the previous lemma are separately achieved
in the following one.

Lemma 8. For the Robin problem and the n–th eigenvalue λn,p, esti-
mates

lim
p→1

(σ1,p − a) > 0, lim
p→1

(b− σn,p) > 0, (4.38)

are also satisfied.

In the course of the following proofs we must resort to the function
cosp t. It is implicitly defined through the integral,

(p− 1)
1
p

∫ 1

cosp t

ds

(1− |s|p)
1
p

= t, t ∈ Ip := {0 ≤ t ≤ πp}, (4.39)

where,

πp = 2(p− 1)
1
p

∫ 1

0

ds

(1− |s|p)
1
p

. (4.40)

We remark that limp→1 πp = 2 ([26]) while function cosp t decreases

from 1 to −1 in Ip and vanishes at t =
πp
2

(see an ‘ad hoc’ account in

[28, Sec. 3]).
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Proof of Lemma 7. Define to brief c = σi,p, d = θi,p and λp = λn,p.
Then µ = λp is the principal eigenvalue to the weighted problem,{

−(tN−1φp(u
′))′ = µtN−1φp(u), c < t < d,

u′(c) = 0, u(d) = 0,
(4.41)

which is expressed as,

µ1 = inf

∫ d

c
tN−1|u′|pdt∫ d

c
tN−1|u|pdt

.

Here, the infimum involves all those functions u ∈ W 1,p(c, d) satisfying
u(d) = 0. Then,

µ1 ≤
(
d

c

)N−1(
πp

2(d− c)

)p

, (4.42)

where πp is defined by (4.40). To achieve this result notice that the p
power factor in the inequality corresponds to the principal eigenvalue
to (4.41) when factors tN−1 are replaced by unity. In fact, an associated
eigenfunction is defined by,

u = cosp

(
πp(t− c)

2(d− c)

)
.

A symmetric reasoning leads to the complementary estimate to (4.42)
and so we arrive at,( c

d

)N−1
(

πp
2(d− c)

)p

≤ λp ≤
(
d

c

)N−1(
πp

2(d− c)

)p

,

from which we deduce,

lim
p→1

(d− c) = lim
p→1

(θni,p − σn
i,p) > 0.

The second estimate in (4.37) is obtained by arguing in the same way
but interchanging the boundary conditions in (4.41). □

Proof of Lemma 8. As in the previous lemma, by setting λp = λn,p and
c = σ1,p then µ = λp becomes the principal eigenvalue to the problem,

−(tN−1φp(u
′))′ = µtN−1φp(u), a < t < c,

φp(u
′(a)) = β1φp(u(a)),

u′(c) = 0,

(4.43)

whose variational expression is,

µ1 = inf

∫ c

a
|u′|ptN−1 dt+ aN−1β1|u(a)|p∫ c

a
|u|ptN−1 dt

,
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and the infimum is extended to all functions u ∈ W 1,p(a, c). This
implies that, (a

c

)N−1

λp,l ≤ µ ≤
( c
a

)N−1

λp,l, (4.44)

where l = σi,p − a and λ = λp,l is the principal eigenvalue to:
−(φp(u

′))′ = λφp(u), 0 < t < l,

u′(0) = 0,

φp(u
′(l)) = −β1φp(u(l)).

(4.45)

Notice that interval endpoints have been interchanged in (4.45) to nor-
malize. Our goal is to show that the behavior l → 0 as p → 1 can
not occur. In fact, assume on the contrary that l → 0. Since µ1 → λ̄n
as p → 1 with λ̄n = limp→1 λn,p, we firstly get from (4.44) a uniform
estimate,

0 < k1 ≤ λp,l ≤ k2, (4.46)

both as l → 0 and p→ 1.

By assuming the normalizing condition u(0) = 1 it follows from the
equation in (4.45) that,

(p− 1)|u′|p + λ|u|p = λ, 0 ≤ t ≤ l. (4.47)

From the second boundary condition we get,

u(l) =
1[

1 + (p− 1)λ−1
p,l β

p′

1

] 1
p

.

Then, by integrating the equation (4.47) in 0 ≤ t ≤ l we arrive at the
equality,

(p− 1)
1
p

∫ 1

u(l)

ds

(1− sp)
1
p

= λ
1
p

p,ll, (4.48)

where the normalization u(0) = 1 has been employed. By resorting to
the computations in [28, Th. 8] it is shown that,

lim
p→1, l→0

(p− 1)
1
p

∫ 1

u(l)

ds

(1− sp)
1
p

= min {1, β1}. (4.49)

To this purpose remark that the dependence on l is linked to λp,l
through the expression for u(l). Estimates (4.46) are enough to keep
λ−1
p,l bounded away from zero as p → 1. This is the only requirement

for the limit above to be valid.

Since (4.49) is not compatible with (4.48) provided l → 0 it means
that l must keep bounded away from zero as p → 1. The proof of
(4.38) has been completed. □
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5. Eigenfunctions profile as p→ 1

In the next results we are assuming that limit eigenvalue λ̄ in The-
orem 6 is given by,

λ̄ = λ̄n,

where n is a fixed index. When dealing with either Dirichlet or Robin
conditions, it is going to be assumed that the normalizing condition
(4.30) is attained in the following way,

∥vm∥∞ = vm(σ1,pm) = 1, for every m ∈ N, (5.50)

where a < σ1,pm < b stands for the first critical point of the eigenfunc-
tion vm = vn,pm in the interval (a, b) (Theorem 2). We stress that then
v′m(a) > 0. For the Neumann problem, (5.50) should be replaced with,

∥vm∥∞ = vm(a) = 1, for every m ∈ N. (5.51)

In fact, notice that, according to Lemma 3, the maximum value of
|vm(r)| is attained at r = a provided v′m(a) = 0.

Our immediate objective is describing the limit profile of the normal-
ized eigenfunction vm = vn,pm as pm → 1 in the initial interval (a, θ1,m),
where θ1,m = θ1,pm . Full analysis in the interval (a, b) is delayed until
the final part of the section (Theorem 15). To this aim, the following
technical result will be useful.

Lemma 9. Let w ∈ W 1,∞(a, b) be the function introduced in Theorem
6. Then v becomes constant in every component of the set {t : |w(t)| < 1}.

Proof. See item 1) in the proof of [26, Th. 7.7] (also [27, Th. 10]). □

We are proceeding separately in each of the boundary conditions.

Theorem 10 (Dirichlet Problem). Let (λm, vm) = (λn,pm , vn,pm) be a
sequence of radial Dirichlet eigenpairs asymptotics to (λ̄, v) = (λ̄n, v)
as pm → 1, v ∈ BV (a, b) being the function introduced in Theorem 6.
Then the following properties are satisfied.

i) There exists a < σ1 < θ1 such that,

lim
m→∞

θ1,pm = θ1, and lim
m→∞

σ1,pm = σ1. (5.52)

ii) Numbers σ1 and θ1 satisfy the relations,

NaN−1

σN
1 − aN

=
N(θ1

N−1 + aN−1)

θN1 − aN
= λ̄. (5.53)

iii) Limit vm → 1 holds in the topology of C1(a, θ1).

Moreover, all of the previous limits do not depend on the sequence
pm → 1.
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Proof. In order to brief, we are using θ1,m and σ1,m instead θ1,pm and
σ1,pm , respectively.

Firstly, observe that, due to (3.24), the estimate

(pm − 1)|wm(a)|p
′
m ≥ λm|vm(σ1,m)|pm = λm,

holds for every m. So, passing to the limit we obtain,

w(a) = 1,

since v′m(a) > 0 while ∥w∥∞ ≤ 1. We also have,

wm(r) =
aN−1

rN−1
wm(a)− λm

∫ r

a

(s
r

)N−1

φpm(vm(s)) ds, (5.54)

and by letting pm → 1,

w(r) =
aN−1

rN−1
− λ̄

∫ r

a

(s
r

)N−1

γ(s) ds, (5.55)

where γ ∈ L∞(a, b) is the weak limit of functions φpm(vm) as m → ∞
(Theorem 6–ii)). This is equivalent to integrating (4.32) with datum
w(a) = 1.

If we take r = σ1,m in (5.54) and set σ1 = limm→∞ σ1,m then,

aN−1 = λ̄

∫ σ1

a

sN−1γ(s) ds, (5.56)

and so aN−1 ≤ λ̄
N
(σN

1 − aN), wherewith we get,

σ1 > a.

This relation is also ensured by the second estimate in (4.37) for i = 1
(see Lemma 7).

From (3.24) we also deduce,

−(pm − 1)
1

pm v′m(r) ≤ λ
1

pm
m (1− |vm(r)|pm)

1
pm ,

for all σ1,m < r < θ1,m owing to vm(σ1,m) = 1. This fact also implies

(pm − 1)
1

pm

∫ 1

vm(r)

ds

(1− |vm(s)|pm)
1

pm

≤ λ
1

pm
m (r − σ1,m),

and, recalling that cosp t decreases in Ip, we obtain

vm(r) ≥ cospm

(
λ

1
pm
m (r − σ1,m)

)
, (5.57)

as σ1,m < r < θ1,m. In addition, it is well–known that,

cosp t→ 1, as p→ 1,



RADIAL EIGENVALUES IN AN ANNULUS 23

in the topology of C1(−1, 1) while limp→1 πp = 2 (see [26]). So, it
follows from (5.57) that,

vm → 1, as m→ ∞, (5.58)

uniformly on compacta of
(
σ1, σ1 + λ̄−1

)
.

On account of equation (2.18) we observe that (rN−1wm(r))
′ < 0 for

all a < r < σ1,m, so that

aN−1 = aN−1wm(a) > rN−1wm(r) > σN−1
1,m wm(σ1,m) = 0 .

Letting pm go to 1, we get

aN−1 ≥ rN−1w(r) ≥ 0 a < r < σ1 − ϵ ,

for all ϵ > 0 which implies 1 > w(r) ≥ 0 for all a < r < σ1. Therefore,
we deduce

− 1 < w(r) < 1, as a < r ≤ σ1 + δ, (5.59)

for some small δ > 0. According to Lemma 9, limit function v achieves
the value 1 in the whole component (a, θ̂1) of the set {|w(t)| < 1} con-
taining the interval (a, σ1 + δ).

We are now extracting some consequences from this fact. By insert-
ing γ = 1 in (5.56) we get,

aN−1 =
λ̄

N
(σN

1 − aN),

a representation of σ1 which does not depend on the sequence pm → 1
and that shows in particular that the limit,

lim
m→∞

σ1,m = σ1,

holds. By setting now γ = 1 in (5.55) it follows that,

w(r) =
aN−1

rN−1
− λ̄

N

(rN − aN)

rN−1
=

(
1 +

λ̄a

N

)(a
r

)N−1

− λ̄

N
r,

whenever a < r < θ̂1. Thus w is decreasing in this interval, satisfies
|w| < 1 and reach the value w(θ̂1) = −1. So, θ̂1 is defined through the
relation,

N(θ̂N−1
1 + aN−1)

θ̂N1 − aN
= λ̄. (5.60)

In fact, such an equation is uniquely solvable in θ̂1 (see Lemma 22 in
Section 6) and this is also a further expression which does not depend
on the particular sequence pm → 1.
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We next observe that,

v′m = φp′m(wm) = |wm|p
′
m−2wm , p′m =

pm
pm − 1

.

Since wm → w uniformly on compacta of (a, θ̂1) then v
′
m → 0 in that

precise way. In addition, this fact entails that vm → 1 in C(a, θ̂1).

Set now θ1 = limm→∞ θ1,m. Convergence (5.58) in C(a, θ̂1) necessar-
ily implies that,

θ1 ≥ θ̂1.

We are showing that,

θ1 = θ̂1. (5.61)

This would imply from (5.60) that,

N(θ1
N−1 + aN−1)

θN1 − aN
= λ̄,

and so the limit,

lim θ1,m = θ1,

does not depend on pm → 1. Hence, the proof of (5.53) would be
accomplished.

To show (5.61) suppose θ1 > θ̂1. This means that for each θ̂1 <
r < θ1, vm(r) > 0 for pm close to 1 (m large). First assume that

θ̂1 < r2 < θ1 exists such that limm→∞ vm(r2) > 0. Since vm decreases

in J := [r1, r2] with σ1 < r1 < θ̂1 < r2 then v > 0 in this interval. On
the other hand,

w′ = −N − 1

r
w − λ̄ ≤ N − 1

θ̂1
− λ̄, r ∈ [θ̂1, r2].

Now, it is clear from (5.60) that Nθ̂N−1
1 − λ̄θ̂N1 < 0 and so,

N − 1

θ̂1
< λ̄. (5.62)

Hence, w(r) < −1 in (θ̂1, r2], which is not possible. Thus, v = 0 almost

everywhere in θ̂1 ≤ r ≤ θ1. But in this case v undergoes a unit jump
at the point r = θ̂1. However, (4.34) implies that,

N − 1

θ̂1
= λ̄. (5.63)

Since this can not be true, we finally conclude (5.61). □
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Corollary 11. In the Dirichlet problem,

λ̄1 = lim
p→1

λ1,p =
N(aN−1 + bN−1)

bN − aN
, (5.64)

while v1,p → 1 as p→ 1 in the topology of C1(a, b).

Remark 6. Value λ̄1 in (5.64) is just the Cheeger constant for the an-
nulus A (see for instance [11]). In fact, it is the first eigenvalue to the
1–Laplacian subject to Dirichlet conditions in the annulus (Section 6).

Theorem 12 (Neumann Problem). Let now (λm, vm) = (λn,pm , vn,pm)
be a family of radial Neumann eigenpairs in the conditions of Theorem
6, satisfying in particular,

λm → λ̄, vm → v in L1(a, b),

as pm → 1. Then vm → 1 in C1(a, θ1), where

θ1 = lim
m→∞

θ1,m,

and is given by means of the relation,

Nθ1
N−1

θN1 − aN
= λ̄. (5.65)

Moreover, all these features do not depend on the sequence pm → 1 in
Theorem 6.

Proof. The value r = a plays here the rôle of variable critical point
r = σ1,m in the proof of Theorem 10, whose argument is going to
be closely followed. In accordance, vm → 1 uniformly on compacta
of [a, a + λ̄−1). In addition, it holds that limit function v = 1 in a

maximal interval [a, θ̃1) where w(θ̃1) = −1 (Lemma 9). By noticing
that w(a) = 0, (5.54) implies in the limit,

rN−1w(r) = − λ̄

N
(rN − aN), a < r < θ̃1,

and so,

Nθ̃N−1
1

θ̃N1 − aN
= λ̄. (5.66)

According Lemma 22 this equation has a unique solution θ̃1. Thus,
such a value does not depend on the choice of pm → 1. Setting θ1 =
limm→∞ θ1,m it follows that θ̃1 ≤ θ1 and the strict inequality θ̃1 < θ1 is
discarded as in the discussion of Theorem 10 since the inequality,

N − 1

θ̃1
< λ̄,
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is fulfilled. Indeed it is a direct consequence of (5.66). Hence θ̃1 = θ1
and the proof is concluded. □

Theorem 13 (Robin Problem). Assume (λm, vm) = (λn,pm , vn.pm) is
a family of radial eigenpairs to the Robin problem corresponding to
exponents pm → 1 and satisfying (Theorem 6),

λm → λ̄, vm → v in L1(a, b),

for a certain (λ̄, v) ∈ R×BV (a, b). Then,

i) Limits limm→∞ σ1,m = σ1 and limm→∞ θ1,m = θ1 hold true for num-
bers a < σ1 < θ1 which are defined through the relations,

λ̄ =
N min {1, β1}aN−1

σN
1 − aN

=
N(θ1

N−1 +min {1, β1}aN−1)

θN1 − aN
. (5.67)

ii) Sequence vm converges to 1 in C1(a, θ1).

Moreover, previous limits do not depend on the choice of exponents
pm → 1.

Proof. We are repeating the pattern of Theorem 10. As a first step
notice that 0 ≤ w(a) ≤ 1. Moreover, from (3.24) we deduce that,

(pm − 1)wm(a)
p′m + λmvm(a)

pm ≥ λm,

and so,

1 ≥ vm(a)
pm ≥ λm

λm + (pm − 1)β
p′m
1

.

Hence,

lim
m→∞

vm(a) = 1, and w(a) = lim
m→∞

wm(a) = β1, (5.68)

provided that 0 < β1 ≤ 1. The same argument as in Theorem 10
permits us asserting both the estimates (5.58) and (5.59). In fact, the
validity of the latter only requires w(a) ≤ 1 so the case β1 > 1 is
included. From Lemma 9 we deduce again that

v = 1 in a < r < θ̃1, (5.69)

(a, θ̃1) being the component of {|w| < 1} containing (a, σ1+λ̄−1), where

σ1 = limm→∞ σ1,m. Accordingly, a < σ1 < θ̃1 ≤ θ1 with θ1 =
limm→∞ θ1,m. Now, both (5.69) and the boundary conditions (4.33)
imply w(a) = 1 if β1 > 1, what combined with (5.68) leads to,

w(a) = min {1, β1}.
By means of the expression,

rN−1w(r) = min {1, β1}aN−1 − λ̄

N
(rN − aN),
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and noticing that w(σ1) = 0 we attain the first equality in (5.67).

Then, after setting w(θ̃1) = −1 we get the second inequality but with

θ̃1 replacing θ1. Finally, it is shown that θ1 = θ̃1 by the same reasons
as in Theorem 10 and so we are done. □

Next one is a quite interesting achievement of this work. It states for
the first time the explicit expression of the principal Robin eigenvalue
for −∆1 in the annulus (see Section 6).

Corollary 14. In the Robin problem,

λ̄1 = lim
p→1

λ1,p =
N(min {1, β1}aN−1 +min {1, β2}bN−1)

bN − aN
, (5.70)

while the first normalized eigenfunction v1,p to λ1,p satisfies v1,p → 1 as
p→ 1 in C1(a, b).

Proof. Set vm = v1,pm the first eigenfunction to λ1,pm which is normal-
ized according to (5.50). As a solution to (2.18) it can be continued for
all r ≥ b (Section 2.3) and is oscillatory in (a,∞) (see [26, Lem. 10–
ii]), so it exhibits a first zero tm > b with a limit t1 = lim tm ≥ b. The
arguments in Theorem 10 permit us asserting that vm → 1 in C1(a, t1).
With σ1 = limm→∞ σ1,pm and w = limm→∞wm, successive integrations
of (4.32) furnish the identities,

aN−1w(a) =
λ̄

N
(σN

1 − aN), −bN−1w(b) =
λ̄

N
(bN − σN

1 ).

Adding them and setting w(a) = min {1, β1} and w(b) = −min {1, β2},
which are the boundary conditions (4.33), lead to (5.70). □

The main result of the section is next introduced. It extends to the
whole interval (a, b) the analysis of the eigenfunctions to (2.18) initiated
in Theorems 10, 12 and 13.

Theorem 15. Let {(λn,p, vn,p) : p > 1} be the family of n–th radial
eigenpairs to (2.18), normalized according either to (5.50) in the Dirich-
let and Robin problems or to (5.51) in the Neumann one. Assume that,

lim
p→1

λn,p = λ̄n.

Then, the following properties are satisfied.

i) There exist the limits,

lim
p→1

θi,p = θi , 1 ≤ i ≤ n− 1, (5.71a)

lim
p→1

σi,p = σi , 1 ≤ i ≤ n, (5.71b)

where the latter expression assumes n ≥ 2 in the Neumann case.
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ii) Relations,

N(θi
N−1 + θi−1

N−1)

θNi − θNi−1

= λ̄n, 1 ≤ i ≤ n, (5.72)

hold true with θ0 = a, θn = b, where in the Robin problem the cases
i = 1 and i = n are replaced with,

N(θ1
N−1 +min {1, β1}aN−1)

θN1 − aN
=
N(min {1, β2}bN−1 + θn−1

N−1)

bN − θn−1
N

= λ̄n.

(5.73)
Neumann conditions for n ≥ 2 are included in (5.73) by choosing βi =
0, i = 1, 2.

iii) Inner values {σi} satisfy,

Nθi−1
N−1

σN
i − θNi−1

= λ̄n, 1 ≤ i ≤ n, (5.74)

while 2 ≤ i ≤ n− 1 in the Neumann problem as n ≥ 3.

iv) There exist numbers {αi}0≤i≤n−1,

1 = α0 = |α0| > |α1| > · · · > |αn−1| > 0,

with alternating signs, i. e. αi−1αi < 0 for all i, and such that,

vn,p(r) → αi−1 as p→ 1, (5.75)

in the topology of C1(θi−1, θi), for 1 ≤ i ≤ n.

v) Families {αi} and {θi} are related through,

|αi| =
λ̄nθi − (N − 1)

λ̄nθi + (N − 1)
|αi−1|, 1 ≤ i ≤ n− 1. (5.76)

vi) w(θi) = sign(αi) = −sign(αi−1), 1 ≤ i ≤ n− 1 where w is the
uniform limit of φp(v

′
n,p) as p→ 1 in [a, b].

Proof. We are proceeding separately according to the boundary condi-
tions.

A) Dirichlet problem. From Lemma 7 families {θ̄i}0≤i≤n and {σ̄i}1≤i≤n

defined as,

θ̄i = lim
p→1

θi,p, σ̄i = lim
p→1

σi,p,

satisfy the strict inequalities,

θ̄i−1 < σ̄i < θ̄i, 1 ≤ i ≤ n, θ̄0 = a , θ̄n = b,

where we have set θ0,p = a, θn,p = b. On the other hand, values θ̄1 = θ1,
σ̄1 = σ1 have been already addressed in Theorem 10.
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We are next proceeding by induction supposing that the assertions
have been achieved in the intervals (a, θ1),. . . ,(θi−2, θi−1) to show them
in the subsequent one (θi−1, θi).

Firstly, no generality is lost by assuming that v > 0 in (θi−2, θi−1),
that is αi−2 > 0 together with w(θi−1) = −1. Notice that,

θi−1 < σ̄i < θ̄i,

and we are showing that,

v < 0 in (θi−1, σ̄i). (5.77)

In fact, take

θi−1 < x < y < σ̄i,

so that x, y ∈ (θi−1,p, σi,p) for p close to 1. Then

0 > vp(x) > vp(y),

what implies,

0 ≥ v(x) ≥ v(y), a. e. in (θi−1, σ̄i),

where vp has been employed instead vn,p to brief. In addition,

lim
x→θi−1+

v(x) < 0,

since otherwise the limit must be zero, v jumps at θi−1 and then (4.34)
implies,

λ̄n =
N − 1

θi−1

<
N − 1

θ1
,

what is not possible. Thus we conclude (5.77).

We next use the differential equation (4.32) for w together with w =
−1 at r = θi−1, w = 0 at r = σ̄i and γ = −1 to deduce that,

Nθi−1
N−1

σ̄N
i − θNi−1

= λ̄n.

So, (5.74) holds and the limit σ̄i does not depend of the way of conver-
gence p→ 1. Accordingly we set σi = σ̄i.

As a further step we are taking into account (5.77), w(θi−1) = −1
and the differential equation (4.32) to express w in the form,

w(r) = −
(
1 +

λ̄nθi−1

N

)(
θi−1

r

)N−1

+
λ̄n
N
r,

for r ∈ (θi−1, σi). Since w is increasing in that interval and −1 < w < 0

there, a component (θi−1, θ̂i) ⊋ (θi−1, σi) of the set {|w| < 1} exists. As
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θ̂i > σi and w(θ̂i) > 0 we get the relation w(θ̂i) = 1 what in turn says
that,

N(θ̂N−1
i + θi−1

N−1)

θ̂Ni − θNi−1

= λ̄n, (5.78)

an equation with a unique solution θ̂i (Lemma 22 below). According

to Lemma 9, v becomes constant in the interval (θi−1, θ̂i) and we set,

v(r) = αi−1,

in this interval. Notice that αi−2αi−1 < 0. On the other hand, since

vn,p → αi−1 almost everywhere in (θi−1, θ̂i), then necessarily,

θ̂i ≤ θ̄i.

By employing w(θ̂i) = 1 and arguing just as in the proof of θ̂1 = θ1 in

Theorem 6 we obtain θ̂i = θ̄i. Again, this expression of θ̄i is independent
of the way in which we make p→ 1 and so limp→1 θi,p = θ̄i, we directly
use θi instead and relation (5.72) holds true.

On the other hand, v exhibits a jump at r = θi−1 and evaluating
(4.34) at this point yields,

λ̄n(|αi−1| − αi−2) = −N − 1

θi−1

(αi−2 + |αi−1|),

equivalently,

|αi−1| =

(
λ̄n −

N − 1

θi−1

)
(
λ̄n +

N − 1

θi−1

) αi−2,

which proves (5.76).

As for the convergence assertion (5.75) we first recall that,

wp = φp(v
′
p) = |v′p|p−2v′p → w, as p→ 1,

uniformly on compacta of (a, b) while −1 < w < 1 in (θi−1, θi). This
implies that,

v′p → 0,

as p → 1 and also in the topology of C(θi−1, θi) from which the con-
vergence (5.75) is uniform on compacta of (θi−1, θi).

Thus, the proof of Theorem 15 in the Dirichlet case is complete.

B) Robin problem. The reasoning keeps the steps of the case A) but
starting at the initial interval (a, θ1) under the conditions of Theorem
13, and then proceeding by induction until the interval (θn−2, θn−1).
Latter equality in (5.73) follows by integrating (4.29) in θn−1 ≤ r ≤
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b with values γ = sign (αn−1) = sign (w(θn−1)) and employing the
boundary condition w(b) = −min {1, β2} sign (αn−1) at r = b.

C) Neumann problem. In this case it suffices with launching the argu-
ment in A) at the first interval (a, θ1) (Theorem 12) and proceeding by
induction until the final one (θn−1, b). □

6. The limit problem

The concepts of weak eigenvalue λ to (1.3) with an associated eigen-
function u ∈ BV (Ω), and subject to either Dirichlet, Neumann or
Robin conditions are currently available in the literature. See for in-
stance [26], [28] and references therein. Of course, they rely upon the
1–Laplacian theory launched in [7], [8] and [13].

When the spatial domain Ω is an annulus A = {a < |x| < b} and
the search for eigenvalues is restricted to radial eigenfunctions, such
notions lead to Definition 17 below which is suggested by the following
considerations.

We begin with the equation in (1.3). Just like radial solutions to
(1.1) are furnished by equations (3.22), corresponding ones to (1.3) are
provided by their formal limit as p→ 1,

w = sign (v′),

w′ = −N − 1

r
w − λ sign (v),

a < r < b. (6.79)

Solving (6.79) must be understood as follows.

Definition 16. A couple (v, w) ∈ BV (a, b)×W 1,∞(a, b) is a solution
to (6.79) if ∥w∥∞ ≤ 1 and there exists γ ∈ L∞(a, b), with ∥γ∥∞ ≤ 1,
such that,

a) γv = |v| in (a, b).
b) |v′| = (w, v′) as measures in (a, b).
c) w is a weak solution to the equation,

−w′ − N − 1

r
w = λγ, in (a, b).

Remark 7. The pairing (w, v′) is equivalent to wv′ (Section 2.2).

Existence of solutions to (6.79) can be obtained by taking the limit as
p→ 1 of solutions to (3.22) with fixed initial data. In fact, it is enough
with imitating the argument in [26, Prop. 16] (see Remark 9 below).
Since limits of solutions to (3.22) satisfy (4.34) and eigenfunctions to
(1.3) are expected to be the limit as p → 1 of corresponding ones
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to (1.1), it is natural to constraint radial solutions to (1.3) with the
additional requirement,

λ
d|v|
dr

= −N − 1

r

∣∣∣∣dvdr
∣∣∣∣ . (6.80)

As for the different boundary conditions we are assuming that both w
is Lipschitz continuous in [a, b] and that v defines a function of bounded
variation in the classical sense ([2] and Section 2.2). Of course, this
could involve a modification in a null set.

Classical eigenvalue problems for the 1–Laplacian are now intro-
duced.

Definition 17. It is said that (λ, u) ∈ R × BV (A) defines a radial
eigenpair to (1.3) under Dirichlet conditions if there exists (v, w) ∈
BV (a, b) ×W 1,∞(a, b), v ̸= 0, such that u(x) = v(r) a. e. in A with
r = |x|, (v, w) both solves (6.79) and fulfills (6.80) and satisfies the
following Dirichlet conditions,

w(a) = sign v(a+), w(b) = − sign v(b−).

A Neumann eigepair (λ, u) is defined by changing the latter to Neu-
mann conditions,

w(a) = w(b) = 0.

Corresponding Robin eigenpairs are defined by employing instead Robin
conditions,

w(a) = min{1, β1} sign v(a+), w(b) = −min{1, β2} sign v(b−),

where βi > 0, i = 1, 2.

Remark 8. All these boundary conditions could be formulated in a
single unified form by taking Robin conditions with coefficients βi ≥ 0,
i = 1, 2, where both βi ≥ 1 correspond to Dirichlet and β1 = β2 = 0
to Neumann. Of course, a mixed combination of them can also be
considered.

As a first feature, negative eigenvalues to (1.3) can be discarded.

Proposition 18. Eigenvalues to either of the three boundary value
problems (1.3) are positive with the sole exception of λ = 0 which is
the first Neumann eigenvalue.

Proof. Let (v, w) be a solution to (6.79). It follows from c),

−(rN−1w(r))′ = λrN−1γ(r) r ∈ (a, b) .
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Multiplying by v and integrating over (a, b), we get

−
∫ b

a

(rN−1w(r))′v(r) dr = λ

∫ b

a

rN−1|v(r)| dr,

where condition a) has been used. Integrating by parts (Section 2.2)
and taking into account condition b) lead to,

−
∫ b

a

(rN−1w(r))′v(r) dr

=

∫ b

a

rN−1|v′(r)|+ bN−1|w(b)||v(b)|+ aN−1|w(a)||v(a)|.

Hence,∫ b

a

rN−1|v′(r)| dr + bN−1|w(b)||v(b−)|+ aN−1|w(a)||v(a+)|

= λ

∫ b

a

rN−1|v(r)| dr .

Since the left hand side is nonnegative, λ < 0 is excluded. If λ = 0, v
must be zero excepting the Neumann problem where constants can be
regarded as the only associated eigenfunctions. □

Next result allow us normalizing eigefuntions v with the condition

v(a+) = 1. (6.81)

Lemma 19. Let (v, w) be a non trivial solution to (6.79) satisfying
condition (6.80). Then v(a+) ̸= 0. In particular, this holds true for
the radial eigenfunctions u(x) = v(|x|), v ∈ BV (a, b), to (1.3).

Proof. By assuming that v is of bounded variation in classical sense
then limit v(a+) exists. In addition, function |v| is non increasing due
to (6.80) where we suppose λ > 0, otherwise v should be constant.
Thus |v(a+)| must be positive. □

Remark 9. Let us illustrate the kind of solutions that equation (6.79)
may exhibit. Consider the family (vp, wp) = (vp, φp(v

′
p)), p > 1, of

solutions to (3.22) corresponding to initial Robin type data,

vp(a) = 1, w(a) = β1φp(vp(a)),

with a = 2 and β1 = 0.5. Dimension and frequency parameters N
and λ respectively, have been both set to 2. In Figure 1 a numerical
integration reveals the typical behavior of vp evolving to a step function
profile v as p→ 1. Value of p is decreased from 2 to 1.1 in steps of size
h = 0.1. The closer to 1 is p, the steepest the slope of vp near certain
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Figure 1. Profile of solutions vp with p ranging from
p = 2 to p = 1.1
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Figure 2. Profile of the component wp = φp(v
′
p) where

p varies from p = 2 to p = 1.1

points becomes. The corresponding response of wp is evolving to a more
smooth sawtooth wave w (Figure 2). Observe that the singularities
developed by the derivatives v′p are balanced by means of the power
p − 1 involved in wp. As it is going to be shown in Theorem 20 the
suggested limit pair (v, w) shows the characteristic form of a solution
to (6.79) when solutions are subject to condition (6.80). See Figure 3
below.
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A full description of the radial eigenpairs (λ, u) to problem (1.3) is
now stated. It is warned that values θi, σi, αi referred to as in the
next statement are in principle different from the corresponding ones
introduced in Theorem 15. However, it will soon become clear that the
values coincide (Remark 10).

Theorem 20. There exists an increasing sequence of numbers,

0 ≤ λ1 < · · · < λn < · · · , λn → ∞,

such that problem (1.3) admits a radial eigenvalue λ only when λ = λn
for some n ∈ N. In addition, to each λn there corresponds a unique
radial eigenfunction un(x) = vn(r) whose associated pair (vn, wn) fulfills
the normalization vn(a+) = 1.

Furthermore, the following properties are satisfied.

ia) The first eigenvalue is,

λ1 = N
bN−1min {1, β2}+ aN−1min {1, β1}

bN − aN
,

where values βi, i = 1, 2, are assumed to be nonnegative parameters.

ib) For each n ≥ 2 eigenvalue λn is characterized as the unique number
λ > 0 such that there exist n− 1 points θi,

a < θ1 < θ2 < · · · < θn−1 < b,

satisfying,

λ = N
θN−1
i + θN−1

i−1

θNi − θNi−1

, i = 2, . . . , n− 1 , (6.82)

together with,

λ = N
θN−1
1 + aN−1min {1, β1}

θN1 − aN
= N

bN−1min {1, β2}+ θN−1
n−1

bN − θNn−1

,

the values of βi, i = 1, 2, being given as in ia).

ii) Function wn(r) is strictly monotone in each interval (θi−1, θi), i =
2, . . . , n− 1, oscillates between −1 and 1, fulfills wn(θi−1)wn(θi) = −1
and vanishes at r = σi ∈ (θi−1, θi) defined by,

λn =
NθN−1

i−1

σN
i − θNi−1

, i = 2, . . . , n− 1 . (6.83)

Function wn(r) is also strictly monotone in the intervals (a, θ1) and
(θn−1, b). Under either Dirichlet or Robin conditions it vanishes at
σ1 ∈ (a, θ1) and σn ∈ (θn−1, b) satisfying,

λn =
NaN−1min {1, β1}

σN
1 − aN

, λn =
NbN−1min {1, β2}

bN − σN
n

. (6.84)
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iii) There exist n alternating values {αi}0≤i≤n−1,

1 = α0 > −α1 > α2 > · · · > (−1)n−1αn−1 > 0,

such that vn(r) = αi−1 for all r ∈ (θi−1, θi), i = 1, · · · , n, where it is
assumed that θ0 = a, θn = b. They fulfill the recursive formula,

αi = −λnθi − (N − 1)

λnθi + (N − 1)
αi−1 , α0 = 1. (6.85)

As a consequence, the eigenfunction vn possesses exactly n nodal re-
gions.

iv) Values w(θi) and αi−1 have opposite signs for i = 1, . . . , n− 1 while
− sign (αn−1)w(b) = min {1, β2}.
v) The family of eigenvalues satisfies the asymptotic estimate,

λn =
2(n− 1) + min {1, β1}+min {1, β2}

b− a
+ o(1) , (6.86)

as n → ∞, where the three boundary conditions are parameterized by
βi ≥ 0, i = 1, 2.

Remark 10. It was shown in Theorem 5 that, for every n ∈ N, there
exists λ̄n = limp→1 λn,p, where (λn,p, vn,p) is the n–th normalized radial
eigenpair to (1.1). Moreover, Theorem 15 describes the limits of the
zeros θi,p of vn,p as p→ 1. Since λ̄n and the family {limp→1 θi,p}1≤i≤n−1

are linked through (5.72) and (5.73), the uniqueness assertion in ib)
of Theorem 20 permits us asserting that λ̄n = λn for every n. More-
over, that limits limp→1 θi,p coincide with the values θi introduced in
Theorem 20. It is also a conclusion of Theorem 15 that the limit pro-
file limp→1(vn,p, φp(vn,p

′)) coincides with the normalized eigenfunction
(vn, wn) associated to λn as it is described in Theorem 20.

Corollary 21. For each n ∈ N, the n–th normalized radial eigenpair
(λn, vn) to (1.3) coincides with the limit limp→1(λn,p, vn,p) of the n–th
radial eigenpair to (1.1), where the precise form of the convergence
vn,p → vn is specified in Theorem 15.

Before addressing the full proof of Theorem 20 we are first achieving
some partial results. The first one shows the existence and uniqueness
of the family of numbers λn referred to as in points ia)–ib) of the
statement.

Lemma 22. For each n ≥ 2, there exists a unique positive number
λ = λn and exactly n− 1 points θi,

a < θ1 < θ2 < · · · < θn−1 < b,
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satisfying (6.82) together with,

λ = N
θN−1
1 + aN−1min {1, β1}

θN1 − aN
= N

bN−1min {1, β2}+ θN−1
n−1

bN − θNn−1

,

where the three boundary conditions in Definition 17 are implicit in the
different possible values of βi ≥ 0, i = 1, 2.

Proof. We begin by analyzing the Dirichlet case. Define the auxiliary
function ψ whose inverse is,

ψ−1(t) =
tN−1 + 1

tN − 1
, t > 1 . (6.87)

Then ψ ∈ C1(0,∞), ψ′(s) < 0 for all s > 0 and satisfies,

lim
s→0

ψ(s) = ∞, lim
s→∞

ψ(s) = 1. (6.88)

Consider next the function ψ̃ : (0,∞) × (0,∞) → R defined as,

ψ̃(s, λ) = sψ
(

λ
N
s
)
. A careful checking shows that its derivative satis-

fies,

ψ̃′
s(s, λ) = ψ

(
λ

N
s

)
+

(
λ

N
s

)
ψ′

(
λ

N
s

)
> 0,

and so ψ̃ is increasing with respect to s. In addition

lim
s→0

ψ̃(s, λ) =
N

λ
, lim

s→∞
ψ̃(s, λ) = ∞, (6.89)

and,
ψ̃(s, λ) > s, for all s > 0. (6.90)

On the other hand, the derivative with respect to λ is ψ̃′
λ(s, λ) =(

s2

N

)
ψ′

(
λ

N
s

)
< 0, and so ψ̃ is decreasing in λ while,

lim
λ→0

ψ̃(s, λ) = ∞, lim
λ→∞

ψ̃(s, λ) = s. (6.91)

Set now ψ̃(k) the k–th iterate of ψ̃ with respect to the first argument,

ψ̃(k+1)(s, λ) = ψ̃ ◦ ψ̃(k)(s, λ) = ψ̃
(
ψ̃(k)(s, λ), λ

)
, k ∈ N, (6.92)

where ψ̃(1) = ψ̃ and “◦” means composition. By computing the deriva-
tive with respect to λ it follows that ψ̃(k) is decreasing in λ. Moreover,
a combination of (6.89) and (6.91) yields,

lim
λ→0

ψ̃(k)(s, λ) = ∞, lim
λ→∞

ψ̃(k)(s, λ) = s. (6.93)

Therefore, for every n ∈ N, we can find a unique solution λ = λn > 0
to the equation,

ψ̃(n)(a, λ) = b . (6.94)
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Setting θ0 = a and

θi = ψ̃(θi−1, λn) = ψ̃(i)(θ0, λn), i = 1, . . . , n , (6.95)

it follows that {θi}0≤i≤n satisfy (6.82) and the Dirichlet conditions. In
fact,

θi = θi−1ψ
( λ
N
θi−1

)
⇔ λ

N
=
θN−1
i + θN−1

i−1

θNi − θNi−1

.

To deal with the Robin case, we consider the functions,

ψ−1
1 (t) =

tN−1 +min {1, β1}
tN − 1

, ψ−1
2 (t) =

min {1, β2}tN−1 + 1

tN − 1
,

(6.96)
where t > 1. Their inverses ψi ∈ C1(0,∞) and satisfy ψ′

i(s) < 0
together with (6.88), i = 1, 2. Corresponding functions,

ψ̃i(s, λ) = sψi

(
λ

N
s

)
, i = 1, 2,

fulfill properties (6.89) to (6.91) with the exception that in the case of

ψ̃2, first limit in (6.89) reads,

lim
s→0

ψ̃2(s, λ) = min {1, β2}
N

λ
.

Now, instead of ψ̃(n) we consider the family of iterations ψ̃
(n)
R , defined

as,

ψ̃
(n)
R (s, λ) = ψ̃2 ◦ ψ̃(n−1) ◦ ψ̃1(s, λ),

where, for instance ψ̃(n−1) ◦ ψ̃1(s, λ) = ψ̃(n−1)(ψ̃1(s, λ), λ). For com-

pleteness we fix the special cases ψ̃
(1)
R = ψ̃1, ψ̃

(2)
R = ψ̃2 ◦ ψ̃1.

Then, the function ψ̃
(n)
R also verifies the limit conditions (6.93). There-

fore, the unique solution λ = λn to

ψ̃
(n)
R (a, λ) = b,

together with the values θ1 = ψ̃1(a, λn), θi = ψ̃
(i)
R (s, λn), 2 ≤ i ≤ n

provide us the desired solution in the Robin option.

Finally, observe that the Neumann case is included in the Robin one.
In fact it is enough with employing just the functions ψi in (6.96) where
the coefficients βi are taken zero. This finishes the proof.

□

Monotonicity of the sequence λn and its diverging character is the
next step.

Lemma 23. The sequence {λn} obtained in Lemma 22 is increasing
and tends to ∞.
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Proof. To show the increasing character of λn first consider the Dirich-
let case and observe that (6.90) implies that,

ψ̃(n+1)(s, λ) = ψ̃(ψ̃(n)(s, λ), λ) > ψ̃(n)(s, λ).

Since,

ψ̃(n)(a, λn+1) < ψ̃(n+1)(a, λn+1) = b,

and ψ̃(n)(a, λ) decreases in λ then the equality ψ̃(n)(a, λn) = b entails
λn < λn+1 as desired. For both the Robin and Neumann cases it is

enough with replacing ψ̃(n) with ψ̃
(n)
R (see the proof of Lemma 22).

Regarding the limit λn → ∞, we take n ≥ 3 and go back to (6.82)
to get,

θNi − θNi−1 =
N

λn
[θN−1

i + θN−1
i−1 ],

and deduce,

θi − θi−1 =
N

λn
g(t), t =

θi
θi−1

, (6.97)

for i = 2, . . . , n− 1, where function g is defined as,

g(t) =
tN−1 + 1

tN−1 + tN−2 + · · ·+ 1
, t ≥ 1 .

Notice now that g is increasing and so g(t) ≥ g(1) = 2
N
. Thus, it

follows that

θi − θi−1 ≥
2

λn
, i = 2, . . . , n− 1 .

Adding all these inequalities, we deduce the estimate

b− a ≥ 2

λn
(n− 2), (6.98)

from where the result follows. □

Our final partial achievement is assertion v) of Theorem 20.

Lemma 24. Let λn be the sequence of values introduced in Lemma 22.
Then, the following asymptotic estimates hold true as n→ ∞,

λn =
2n

b− a
+ o(1), (Dirichlet), (6.99)

λn =
2(n− 1)

b− a
+ o(1), (Neumann), (6.100)

and,

λn =
2(n− 1) + β1 + β2

b− a
+ o(1), (Robin). (6.101)
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Proof. For our proposals in this proof we are writing θi = θn,i to stress
the dependence of θi on n. By setting ∆θn,i = θn,i − θn,i−1 equation
(6.97) is expressed as,

∆θn,i =
N

λn
g (tn,i) , tn,i =

θn,i
θn,i−1

, 2 ≤ i ≤ n− 1.

Since λn → ∞ then ∆θn,i → 0, tn,i → 1 and g (tn,i) →
2

N
as n→ ∞.

We now write,

n−1∑
i=2

∆θn,i =
2(n− 2)

λn
+
N

λn

n−1∑
i=2

(
g (tn,i)−

2

N

)
,

and estimate the reminder as,∣∣∣∣∣Nλn
n−1∑
i=2

(
g (tn,i)−

2

N

)∣∣∣∣∣ ≤ N
(n− 2)

λn
max

∣∣∣∣g (tn,i)− 2

N

∣∣∣∣
≤ N(b− a)

2
max

∣∣∣∣g (tn,i)− 2

N

∣∣∣∣ → 0, as n→ ∞, (6.102)

where inequality (6.98) has been used. Thus,

n−1∑
i=2

∆θn,i =
2(n− 2)

λn
+ o(1), as n→ ∞. (6.103)

Put now θn,0 = a, θn,n = b. By using the same argument we find in
the Dirichlet case,

∆θn,1 +∆θn,n =
4

λn
+ o

(
1

λn

)
=

4

λn
+ o (1) , (6.104)

as n→ ∞. Such computations applied to the Robin case yield,

∆θn,1+∆θn,n =
2 + β1 + β2

λn
+o

(
1

λn

)
=

2 + β1 + β2
λn

+o (1) . (6.105)

The Dirichlet estimate (6.99) is obtained from,

b− a =
n∑

i=1

∆θn,i,

together with (6.103) and (6.104). The Robin estimate (6.101) follows
by replacing the later estimate by (6.105). Finally, Neumann estimate
(6.100) is just the Robin one with βi = 0, i = 1, 2. □

We are now in a position to address a full proof of Theorem 20.
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Proof of Theorem 20. We analyze each boundary condition separately.

A) Dirichlet and Robin problems. By regarding βi, i = 1, 2, as positive
parameters in the Robin condition we are handling both problems at
the same time.

Let (v, w) be an arbitrary nontrivial solution to system (6.79) corre-
sponding to a certain λ > 0 such that v satisfies condition (6.80). Then
v(a+) ̸= 0 (see Lemma 19) and v can be normalized so as v(a+) = 1.

Assume that (v, w) satisfies the Robin condition at r = a. Then
w(a) = min {1, β1} while the differential equation for w (Definition
17) and the sign of v both entail that w(r) < min {1, β1} ≤ 1 near
r = a. Keeping in mind Lemma 9, it follows that a is the endpoint of
a connected component (a, θ1) of the set {|w| < 1} where v(r) = α0

with α0 = 1. In particular w solves,

w′ = −N − 1

r
w − λ, w(a) = min {1, β1}, (6.106)

and so,

w(r) =
λaN +NaN−1min {1, β1}

NrN−1
− λ

N
r .

in this interval (a, θ1).

Assuming now that θ1 = b, two options are possible. The first one is
w(b) ̸= −min {1, β2}, then the boundary condition does not hold and
so λ can not be an eigenvalue. On the contrary, if w(b) = −min {1, β2},
then λ defines an eigenvalue since (v, w) with v(r) = 1 fulfills all the
required conditions to be a solution. In this case, w(b) = −min {1, β2}
implies that,

λ1 = N
bN−1min {1, β2}+ aN−1min {1, β1}

bN − aN
> 0 .

This is the expression for the first eigenvalue which coincides with the
Cheeger constant of the annulus A as min {β1, β2} ≥ 1 (Dirichlet prob-
lem).

As a further remark, from the decreasing character of w(r) in (a, θ1)
and w(θ1) = −min {1, β2} < 0, function w vanishes at a point σ1 ∈
(a, θ1) which verifies,

λ =
NaN−1min {1, β1}

σN
1 − aN

.

Suppose next that θ1 < b. Then w(θ1) = −1 and so w(θ1) and α0

have different signs. Moreover, it holds

λθN1 −NθN−1
1 = λaN +NaN−1min {1, β1}. (6.107)
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Since the right hand side is positive, it follows that θ1 >
N

λ
. As

a consequence, we are showing that v can not jump to zero at any
θ1 ≤ r < b. In fact, assume on the contrary that r ≥ θ1 exists such
that v(r−) ̸= 0 and v(r+) = 0. Condition (6.80) evaluated at r implies,

λ|v(r+)| − λ|v(r−)| = −N − 1

r
|v(r+)− v(r−)|,

so that r = N−1
λ

< θ1 which is not possible.

As a further implication of θ1 >
N

λ
, functions w′(r) and v(θ1+) have

opposite signs for r > θ1 near θ1. Since w(θ1) = −1 then necessarily
v(θ1+) < 0 and then there must exist a component (θ1, θ2) of the
set {|w| < 1} where v = α1, a negative constant. Its value can be
computed by means of (6.80) which implies

λ|α1| − λ|α0| = −N − 1

θ1
|α1 − α0| .

To continue the reasoning we consider the problem (6.106) with ini-
tial value w(θ1) = −1 and −λ replaced by λ in the equation for w. Its
solution in the interval (θ1, θ2) is,

w(r) = −λθ
N
1 +NθN−1

1

NrN−1
+
λ

N
r .

Suppose θ2 = b, then λ is an eigenvalue only when w(b) = min {1, β2}.
Since in this case w(θ1) = −1 also holds then,

λ = N
bN−1min {1, β2}+ θN−1

1

bN − θN1
= N

θN−1
1 + aN−1min {1, β1}

θN1 − aN
.

Thus λ = λ2 > λ1 (Lemmas 22 and 23). Actually, λ = λ2 is an
eigenvalue. To see this, by setting,

v(r) =

{
α0, r ∈ (a, θ1],
α1, r ∈ (θ1, b) ,

then (v, w) solves (6.79). In fact, we are checking that all the conditions
of Definition 17 hold true. Function v ∈ BV (a, b) and by hypothesis
w ∈ W 1,∞(a, b) with |w| ≤ 1. Since v′ is trivial except at r = θ1, the
identity |v′| = (w, v′) only must be checked at this point. Notice that
v′ is negative owing to be v decreasing at r = θ1. Hence, w(θ1) = −1
implies

(w, v′) θ1 = −v′ θ1 = |v′| θ1 ,
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where ‘ ’ means restriction. On the other hand, it is enough to define

γ(r) =

{
1, r ∈ (a, θ1),

−1, r ∈ (θ1, b) ,

to get γv = |v| and that equation −w′ − N−1
r
w = λγ holds. Regarding

the boundary conditions, w(a) = min {1, β1} sign (α0) = min {1, β1}
and w(b) = −min {1, β2} sign (α1) = min {1, β2}. Finally, condition
(6.80) must only be checked at θ1 and at this point it follows from the
definition of α1.

Observe that w vanishes at the point r = σ2 ∈ (θ1, θ2) given by the
identity,

λ =
NθN−1

1

σN
2 − θN1

.

Assume next that θ2 < b. Our previous argument can be recursively
applied. A sequence of components (θi, θi+1) of the set {|w| < 1} is
successively adjoined to (θ1, θ2) in the interval (a, b). Function v = αi,
αi ̸= 0, in every interval (θi, θi+1) with αiw(θi+1) < 0, w(θi)w(θi+1) =
−1 whenever θi+1 < b. On the other hand, w is a Lipschitz function
from the start with a constant L provided by the estimate,

|w′| ≤ N − 1

r
+ λ <

N − 1

a
+ λ = L .

Thus,

2 = |w(θi+1)− w(θi)| ≤ L(θi+1 − θi),

which implies θi+1 − θi ≥ 2/L. Therefore, our recursive process ends
at some θn = b after a finite number of steps and we face a dichotomy.
Either,

w(b) ̸= −min {1, β2} sign (v(b−)),

and λ is not an eigenvalue, or either w(b) = −min {1, β2} sign (v(b−)).
This latter case entails the existence of n − 1 values a < θ1 < · · · <
θn−1 < b = θn such that,

λ = N
bN−1min {1, β2}+ θN−1

n−1

bN − θNn−1

= N
θN−1
1 + aN−1min {1, β1}

θN1 − aN

= N
θN−1
i + θN−1

i−1

θNi − θNi−1

, 2 ≤ i ≤ n− 1, (6.108)

where the fact that αn−1w(θn−1) > 0 has been employed to manage the
boundary condition. According to Lemma 22, λ = λn and the couple
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Figure 3. Profiles of the solution (vp, wp) corresponding
to p = 1.01 and frequency values λ = 1 and λ = 5.

(v, w) provides us an associated Robin eigenfunction by setting,

v =
n∑

i=1

αi−1χ(θi−1,θi], 1 ≤ i ≤ n,

where χ(θi−1,θi] stands for the characteristic function of the interval
(θi−1, θi]. In fact, a careful checking in the line of the previous argu-
ments shows that (v, w) is an eigenfunction to λn and that assertions
in points ii) to iv) of the statement of Theorem 20 are satisfied. We
omite the details.

B) Neumann problem. As pointed out in Proposition 18, λ = 0 is the
first eigenvalue whose normalized eigenfunction is v = 1. The analysis
of the other positive eigenvalues λ is performed as in the previous cases
by setting values βi = 0, i = 1, 2 in the argument. Actually, this only
affects to the initial and final step of the iterative process.
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This completes the proof. □

Remark 11. It is worth noting that parameter λ somehow plays the
role of a “frequency” in equation (6.79). The higher its value is, the
greater the number of oscillations exhibited in the interval (a, b) by
both components of a solution (v, w) which satisfies condition (6.80).
Figure 3 shows a numerical simulation of the solution (vp, wp) of (3.22)
with the initial conditions and values for N and β1 chosen in Remark
9. Value of p has been taken as 1.01 while those for λ were set 1 and
5 respectively.
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Dr. Moliner 50, 46100 Burjassot, València, SPAIN.
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