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ABSTRACT. This paper is concerned with the behaviour, as p goes
to 1, of eigenvalues of the p—Laplace operator associated to radial
eigenfunctions. The Dirichlet, Neumann and Robin conditions are
analyzed in an annulus. In each case we prove that there exist the
limits of both eigenvalues and eigenfunctions and the limits define
in a proper way an eigenpair of the 1-Laplacian.
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1. INTRODUCTION

Our aim in this work is to analyze the behavior, as p goes to 1, of
the solutions to the family of classical eigenvalue problems,

{— div (|VulP~2Vu) = MulP?u, in €,

By(u) =0 on 052, (1.1)

where B, stands for either of the following boundary operators,

Bow) =, By(u) = [Vul 2%, By(w) = [V 2% 1 gu. (1.2
ov v
Subject to these conditions becomes the Dirichlet, Neumann or
Robin eigenvalue problem, respectively, for —A, in €. In these expres-
sions, v designates the outer unit normal at 0) while in the latter one
[ is a nonnegative function defined on 0f2.

Our interest here is focussed on radial solutions and so €2 is sup-
posed to be a radially symmetric bounded domain. The case where
2 is a ball has been treated in detail by the authors in both [20]
and [28]. Thus we are now assuming that  is the annulus A =
{reRY:0<a<|z| <b}. In particular, when dealing with Robin
conditions [ is taken a positive constant on each of the components of
the boundary 0.

We are going to prove that eigenpairs (A, u,) to (L.1) converge as
p — 1 to some (A, u) which is a solution of the limit problem

— div (&) — L in Q,
Du) = (1.3)
Bi(u) =0 on OS2

with €2 = A. Of course, we are giving a proper meaning to both the
equation and the corresponding boundary conditions B; for each of the
classical cases (Section [6). Divergence expression in defines
the so—called 1-Laplacian operator A; (see [7], [8], [13]).

Eigenvalue problems (1.1]) to —A, is a relevant subject in nonlinear
analysis since the early eighties where most part of the literature con-
cerns the case p > 1. Naturally, it also encompasses radially symmetric
problems as an special case. However, the behavior of asp — 1
and the study of the corresponding limit problems is a more recent and
quite less treated issue.

This job may be regarded as a continuation of [26], [28] concerned
with the ball. It should be remarked that in this case all eigenpairs
to are deduced, after scaling, from the global solution to a single
specific initial value problem defined in [0,00). In fact, its solution
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is a sort of generalized Bessel type function (see Remark . On the
contrary and as a main difference, this is not longer possible for annuli.
Each one of the eigenvalues corresponding to the boundary conditions
(1.2) requires a separate analysis since their possible values perturb the
equation.

The present paper has some overlap with [18] which studies the limit
behavior as p — 1 of radial eigenvalues to only under Dirichlet
conditions. One of its main results ([I8, Theorem 2.9]) proves that
the n—th eigenvalue of converges as p — 1 to the n—th Cheeger
constant of €, which may be regarded as the n—th eigenvalue of .
Nevertheless our approach is quite different since we are also interested
in identifying the eigenfunctions of problem ([1.3). In addition, the
present analysis involves the remaining conditions in (1.2)).

It is worth mentioning that the definition of the spectrum of —A; is
by no means straightforward. Finding out eigenpairs does not reduces
to solving . In fact, being a solution to (|1.3)) is a necessary but not
sufficient condition for (A, u) to be an eigenpair. Actually, the notion
of spectrum of —A; relies upon an appropriate extension of the critical
point theory for nonsmooth functionals. Such functionals depend on
the boundary conditions. For instance, in the case of the Dirichlet
problem theory is associated to the total variation,

7w = [ 1pul+ [ Jul,

defined in the space BV (2) of functions bounded variation. To get a
deeper insight on the eigenvalues to —A; under the three boundary
conditions, we are next reviewing some well-known features on the
eigenvalues to and their limits as p — 1. Most of them hold true
in a general bounded smooth domain Q C R".

1) For every p > 1 there exists an increasing sequence {\,,}, of vari-
ational eigenvalues to each one of the problems (|1.1)), (1.2). They are
defined by the Ljusternik—Schnirelman theory as ([1], [31], [3], [16], [15],
23], [5], [200),

Anp = inf sup J,(u), neN, (1.4)

CECn ueC

- / T,

for Dirichlet or Neumann conditions in , while

W= [ var+ / Blul,

where,
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in case of the Robin condition where 5 € L>(012). As for the class C,,
C,=1{C C M, : C compact in W"P(Q), C = —C, v(C) >n}, (1.5)

being M, = {u € W"(Q) : [, |ul’ dv = 1} and supposing we are
dealing with Neumann or Robin conditions. In the Dirichlet case, space
WhP(Q) must be replaced by W,?(Q). As a matter of notation, v(C)
designates the Krasnosel’skii genus of C' ([29]).

In addition, eigenvalues A, , are positive, with the sole exception of
the Neumann problem where A;, = 0. Furthermore, lim,_,o Ap, =
+o00 (see [3], [16]).

2) Limits,
Ap 1= 1191—r>r% Anps (1.6)

exists for every n € N. Concerning the Dirichlet problem and the
principal eigenvalue this was first shown in [19] and [14] (see preliminary
results in [I7], [21]), while higher eigenvalues were addressed in [12]
(for the 1-dimensional case), [25], [24] and [26]. Moreover, variational

expressions as (1.4 for the limits \,, were proposed in [25], [24] in the
Dirichlet case and in [28] for either Neumann or Robin conditions.

3) A sequence of variational Dirichlet eigenvalues A\, > 0, \,, — oo as
n — 0o, to was introduced and studied in [12]. Such eigenvalues
A\, are proved to agree with the limits ), in the one dimensional case.
This reference also exhibits examples of solutions (A, u) to that do
not define variational eigenpairs (\,,u,). Accordingly, problem
does not characterizes by itself the Dirichlet spectrum of —A; mean-
while the family of limits \,, = lim,,,; A, , may be regarded as the true
Dirichlet eigenvalues of this operator.

4) It is further shown in [24] that the Dirichlet eigenvalues ), intro-
duced in [I2] coincide, in a general Lipschitz domain Q C RY, with the
limits A, referred to in (1.6)). In other words, A\, = A, for every n.

5) As for the behavior of eigenfunctions as p — 1, a pioneering result
in [12] states that Dirichlet eigenfunctions to pointwise converge
to eigenfunctions of —A; in dimension N = 1. Such a result was
somehow extended in [26] to N—dimensional domains 2. Namely, that
normalized eigenpairs (A, Un,) € R x W, P (€) weakly—+ converges in
R x BV (£2), and modulus a subsequence, to a solution (A, i,) of (L.3).
In the framework of —A;, u, may be regarded as an eigenfunction
associated to the eigenvalue \,.

6) The limit profile of eigenfunctions to either the Neumann or Robin
problem as p — 1 in the ball was studied in [2§].
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Our main concern in the present work is to analyze the behavior of
the radial eigenpairs (\,, u,) to as p goes to 1 on annuli. We are
proposing the proper definition of eigenvalue to problem , which
involves the 1-Laplacian together with the three boundary conditions.
It should be remarked in this regard that extra energy relation ,
involved in the definition, is instrumental to discard spurious solutions.
Moreover, we are showing that the limit (A, u) of the eigenpairs (A, u,)
as p — 1 constitutes the unique solutions to . Accordingly, such
values A may be considered as the radial spectrum of —A;.

This paper is organized as follows. Section [2| introduces the func-
tional setting and settles the problem that radial eigenpairs to ,
(1.2) satisfy in an annulus. The existence of these eigenpairs is proved
in Section[3] An analysis of the limit as p — 1 of the radial eigenvalues
is contained in Section [l Section [f] addresses a detailed study of the
limit of the eigenfunctions as p — 1. Theorem [15| there summarizes
our main findings. As a further achievement, Corollary [14] shows the
explicit expression of the main Robin eigenvalue \; to the 1-Laplacian
in an annulus A = {z € RV : a < |z| < b}. Section [§] introduces the
classical eigenvalue problems for the 1-Laplacian (Definition .
Main result of the section, Theorem [20] states among other features

that the radial eigenpairs to (1.3]) in A are just the limit as p — 1 of
the corresponding ones to (|1.1)).

2. PRELIMINARIES

2.1. Sobolev spaces. The natural framework to deal with is
WhP(Q), the Sobolev space of functions u € LP(€2) whose gradient, in
weak sense, satisfies Vu € (LP(Q))N. Subspace WyP(Q) € W(Q)
denotes all those functions vanishing on 9€2. When  is the annulus
A=1{0<a < |z| <b}, W'(A) and W,"(A) denote the subspaces of
WhP(A) and W,P(A), respectively, consisting of their radially sym-
metric elements (radial functions to short). Namely, functions u such
that u(z) = u(Tx) a. e. in A, for every orthogonal transformation of
T :RY — RY. For u € L'(A) this is equivalent to the existence of
v € L'(a,b) such that u(z) = v(r) a. e. in A with » = |z|. In this
way, the associated function v to any u € W'?(A) belongs to the one
dimensional space,

WP (a,b, 7Nt dt) = {v € LP(a,b,r" " dt) : v € LP(a,b, v dt)},
(2.7)
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where the derivative v’ is computed in weak sense of D'(a, b). Moreover,
T

Vu(z) = =v'(r), (2.8)

r

and so v' = £ - Vu. Accordingly, for a function u € whe (A),

b
ol = N { [ Gl + 1) e}

where wy = |{|z| < 1}|. We remark that space is equivalent to
WhP(a,b) since r is bounded away from zero, so the latter will replace
the former one in future references.

Anticipating the case where v’ is a measure, relations between v, v’
and u, Vu are more conveniently expressed in distributional language
as,

<u7¢(| : |)>D’(.A) = <NWNTN_1U7w>D’(a,b) ’

N—1
<<_ : VU) 7¢(| ) |)> = <NWNT vlv ¢>D’(a,b) )
(2.9)
where ¢ € C§°(a,b) and (:,-)p, stands for the corresponding duality
pairings. In the second expression one recognizes the radial derivative

x
U, = — - Vu,
r

of u which can be checked to define a radial function in L?(.A). In fact,
according the second equality in (2.9)) it may identified with v’. Thus,
elements in W'?(A) consist in absolutely continuous functions v in the

interval [a,b] ([10]). In particular, functions u € W, *(A) vanish at
|z| = a,b in the standard way, rather than in traces sense.

2.2. BV—functions. When dealing with problems involving the 1-
Laplacian A; as , the proper space to work with is BV (2), con-
stituted by all functions of bounded variation in © ([2]). It is made up
of those u € L*() such that its distributional gradient Du is a vec-
torial Radon measure with |Du|(2) < oo, |Du| standing for the ‘total
variation measure’ associated to Du.

In an annulus Q = A, BV(A) comprises the radial functions of
BV(A). Previous notion of radial symmetry is upgraded to Radon
measures f € D'(A) as follows,

(1,0 T>D/(A) = (u, 90)@/(,4) )
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for all test function ¢ € C§°(.A) and every orthogonal transformation 7',
being ¢ o T'(-) = ¢(T-). Since Te C>=(A,RY), the scalar distribution
r

Uy 1= L. Du is well defined. Tt can be checked that W = u, is radial

providgd u is. Then, previous relations are extended to functions
u € BV(A). In this case, v € L'(a,b), its distributional derivative
v" defines a finite Radon measure in (a,b) and so v € BV(a,b). In
addition, total variations |Du| and |v'| are connected through,

<’Du‘>w(‘ ’ D>’D’(A) = <NwNTN71 ‘v/"¢>D/(a,b) ) w € Dl(“a b)
(2.10)
It should be remarked that every function v € BV (a, b) agrees a. e. in
(a,b) with the function,

o(r) =c+'(a,r) :c—l—/ v,
(a,r)
¢ being a constant ([2]). Moreover, v turns out to be left—continuous
and of bounded variation in [a, b] in the classical sense. In future com-
putations it will be understood that v has been replaced by v. In
particular, this fact is entailing the existence of side limits v(r+) at
every r € [a,b)].

The concept of solution to problems subject to the A; operator
as requires the notion of pairing (z, Du) between a field z €
L>®(2,RY) and the gradient of a function u € BV (Q), Q C RY being
a Lipschitz domain. It is a distribution defined, according to [9], as,

((z, Du), @) = —/Qu(V@z + pdiv z), v € C5°(),

where the restriction divz € L®() is assumed. In fact, (z, Du) is a
Radon Measure such that,

(2, Dw)[(U) < [|2]]oo] Dul (),

for every Borel set U C € ([9]). Once the pairing is defined, the action
of the operator Ay in (1.3 is properly defined as ([§], [13]),

D
div (ﬁ) = divz,

where the field z is required fulfilling ||z||oc < 1 and the coupling con-
dition with wu,

(z, Du) = |Dul, in D'(2). (2.11)
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__Of course we are more interested here in the radial case where u €
BV (A) and fields z exhibit the form,

x
z = ?w(r),

with w € L*>(a,b). Now condition divz € L*(A) is equivalent to
w € WhH*(a,b) and the corresponding pairing satisfies,

(2, D), (1)) pray = (Nonr™ v, 90(r)) oy

We remark that the distribution (w,v’) satisfies (w,v’") = wv'. In fact,
the latter is well defined since w € Wh*(a,b) and so identity (2.11))
can be expressed as,

wv' = V| in D'(a,b). (2.12)

For a couple (v,w) € BV (a,b) x W'*(a,b) the integration by parts
formula,

b b
/ wu' + / w'v = w(b)v(b—) —w(a)v(at), (2.13)

holds true, where function v is assumed to be of bounded variation in
classical sense and w is absolutely continuos. First integral stands for
the measure wv'((a, b)) of the interval (a,b). Notice that identity
is nothing else than a particular case of the more general Green formula
in [9, Th. 1.9], however it can be shown by a direct approximation
argument under the previous hypotheses.

2.3. Radial eigenfunctions. We begin with a definition of solution

to .

Definition 1. A function u € WP(Q)\ {0} is a weak eigenfunction to
the Robin problem (1.1]) with the choice By(u) = |[Vu[P2Vuv+BlulP~?u
in (1.2) if the equality,

—92 -2 _ -2
/Q|Vu|” VuV1/J+/mﬁ|u|p m/z—/\/ﬂ|u!” u, (2.14)

holds for all test function p € WP(Q) and in this case, A\ becomes a
Robin eigenvalue. Definition of an eigenpair (\,u) for the Neumann
problem ([L.1), B,(u) = 2%) reduces to set § = 0 in while a
corresponding eigenpair (A, u) € R x Wy ?(Q) for the Dirichlet problem

((1.1), B,(u) = u) is obtained by setting f = 0 and testing (2.14) with
functions 1 € W, P(Q).
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Our main interest here is focussed on radial eigenvalues A to
when €2 is an annulus A. These are just those ones associated to radial
eigenfunctions u(z) = v(r), r = |z|, v € WP(a,b). Since Ayu is a
radial distribution whenever u is radial, then checking equation
reduces, in this symmetric scenario, to test with radial functions ¥ (r),
Y € C*a, b], what means,

b
/ o010 T dr + (BrY o, ()6 + (B 0p ()1

b
:)\/ wp(V)Y Nt dr, (2.15)

where ' = di and the notation ¢,(t) = |t[P~?t is going to be employed
henceforth ti) shorten. In this equation, we set § = 0 in the Neumann
problem while both v and 1 must vanish at » = a,b in the Dirichlet
case.

In addition, implies that both v, p,(v') are C! in [a, ], up to
a possible modification in a null set, and equation,

— (" (v)) = A gy (v), (2.16)
is satisfied in @ < r < b. Integration by parts in (2.15)) together with

(2.16)) lead to the relation,

)+ B8]+ () B000) =0
2.17
for all v € C'[a,b]. Thus, both brackets must vanish when dealing
with either the Neumann or Robin problem.
Summarizing these previous features, the radial version of in
the annulus A = {a < r < b} consists in finding nontrivial pairs (A, v) €
R x C'[a, b] solving,

{ —(rN o, () = AV, (v), r € (a,b),

By(V)rea =0, By(v),—p =0, (2.18)

where B,(v) = v in the Dirichlet problem, B,(v) = v’ in the Neumann
one, while,

By(v)r=a = {_9012(“/) + 619010(“)}\7:(1» (2.19a)
By(v)r=p = {SOP(U/) + 5290p(v)}|T:b7 (2.19Db)

in the Robin case, (; being positive for i = 1, 2.
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Remark 1. When 1 < p < 2 radial eigenfunctions v € C?[a,b]. This
is not the case as p > 2 since they cease to be C? near their critical
points.

3. EXISTENCE OF RADIAL EIGENVALUES

We already know that existence of radial eigenvalues to is an
issue of ordinary differential equations (odes), as reflected through the
equivalent formulation . A complete discussion of this problem is
contained in the next statement. In the vein of Sturm-Liouville theory,
it also provides us a complete picture of the radial eigenfunctions.

Theorem 2. Problem (2.18)) possesses an infinite sequence of eigen-
values,

D<A < e <A< oe e Ap — 00,

where Ay = 0 in the Neumann case, Ay > 0 in the remaining ones.
Moreover, the following properties hold true.

i) Every eigenvalue N, is simple which means that any eigenfunction v
associated to X\, is a scalar multiple of a fixed one v,.

ii) To every A, there ezists n—1 points 0; € (a,b) such that an arbitrary
ergenfunction v to A\, exactly vanishes at these points. Moreover, points
associated to the following eigenvalue \,11 separate the points 6; in the
interval (a,b).

iii) Any eigenfunction v associated to N\, possesses n critical points a <
0, <b, 1 <1<n. Moreover,

61',1 <o0; < Hl-, (320)

for1 <i < nin either the Dirichlet or the Robin problem where 6y = a,
0, = b. In the Neumann one, o1 = a, 0, = b for n > 2 while (3.20))
holds fori ¢ {1,n} and n > 3.

Remark 2. Observe that assertion iii) holds in the case n = 1 leading
to the existence of a unique critical point o of the first eigenfunctions
in both the Dirichlet and Robin problems. As for the Neumann case
notice that the first eigenfunction is constant and so v = 0 in [a, b]. In
this case, second eigenfunction does not admit inner critical points.

Proof of Theorem[2 The proof is addressed in an ‘odes’ framework.
Assertions 1), ii) are consequence of [30, Th. 5, Cor. 5], which are just
shown in the more adverse scenario of the ball. In fact, notice that r
keeps away the singular value » = 0 in the case of the annulus. On the
other hand, once an eigenfunction v to A, vanishes at 6 then all other
ones corresponding to this eigenvalue also vanishes at this point. Thus,
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both families of zeros {f;} and critical points {0;} in ii) and iii) only
depend on A,.

We next show the assertions regarding the critical points set of any
eigenfunction v to \,. We first observe that — sign (v)(r’¥V=1 p,(v))" is
positive in all of the intervals I; := (0;_1,0;), 1 < i < n, where 0y = a,
0, = b (all cases are covered with this convention). Hence, v" just
exhibits a unique zero o; in the ‘inner’ intervals [;, 2 <1 <n — 1.

The previous assertion also holds for the Dirichlet problem in the
initial (a,6;) and final (0,1, b) intervals, respectively. As for the Robin
one, notice that neither v nor v’ vanish at » = a. Since v keeps sign
in (a,6;), it follows that v" has opposite signs at the points r = a and
r = ;. Thus v/ has an intermediate zero that must be unique in (a, 6, ).
A similar conclusion is achieved in the final interval (6,,_1,b).

Regarding the Neumann problem observe that v’ can not vanish
in neither of the intervals (a,6;] and [0,_1,b) and the proof of iii) is
completed. 0

Remark 3. When  is the ball B(0,b), problem ({2.18)) is reduced to
study the initial value problem,

—(tN () =tV Ty (u), t>0,
{ w(0) =1, /(0)=0, (3:21)

d
=2 after scaling A in the form ¢ = Arr. In this layout, the zeros of u

determine the eigenvalues of (L.1)). Observe that u(t) is a kind of Bessel-
type function. See a further account in both [26], [28]. Unfortunately,
this approach is not so well-behaved for dealing neither with annuli
nor with variable coefficients problems.

/

Let v € W'?(a,b) be a solution of the equation in (2.18). If w(r) =
¢, (v'(r)) then it follows from the discussion in Section [2.3|that v defines
a classical solution (v,w) € C'a,b] x C'[a, b] to the first order system,

V= gy (w),

N -1 a<r<b, (3.22)
w = — . w — Ap,(v),

which satisfies the boundary conditions:
Bp(va w)r:a,b = 07
where B,(v,w) = v in the Dirichlet case, B, (v, w) = w in the Neumann

one while B, (v, w),—q = {—w" + 1, (v) }r=q and B,(v,w),—, = {w' +
Ba2pp(v) }r=p in the Robin problem.
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The key point in writing the equation in (2.18) as (3.22) is just
introducing the Lyapunov function,

1 fA
Ew,w)=—w|’ + —|v|?, 3.23
(v, w) p,|| p|| (3.23)

which is relevant for dynamical purposes. In fact, a direct computation

leads to,

d N -1
JE(v,w):— .

and so E decreases on trajectories. A first consequence is that solutions
(v,w) to (3.22)), initially only defined in [a, b], can be extended to the
whole interval [a,00) and constitute global solutions. Moreover ([26)
Lem. 10-iv)]),

jwl”, (3.24)

rlLIEO(U(T), w(r)) = (0,0). (3.25)

Further applications of E are going to be presented later.

On the other hand, an eigenfunction v,, regarded as a solution (v,,, w,)
to gives raise to an orbit I' which turns clockwise infinitely many
times around (0,0). In fact, it meets the v-axis at {(v,(0;),0)}, and
crosses the w-axis at the points {(0,w,(6;))},, 6o = a, 6, = b. Fur-
thermore, implies that the orbit amplitude progressively decays
to zero beyond r = b as r — o0.

Another consequence of is the next result.
Lemma 3. Let (\,,v,) be an eigenpair to (2.18) and w, = p,(v),).
Then,
i)
(Wi (01)] > - > w(0n-1)],
where in the Dirichlet case the sequence further involves |wy,(a)| and
|wy, ()| as the first and last terms, respectively.
ii) For every n, the inequalities,
[vn(01)] > [vn(a2)[ > - > |vn(an)],
hold true, where o1 = a, o, = b in the Neumann case corresponding to
n > 2.
iii) Between consecutive inner zeros 0;_1,0; € (a,b) of a n—th eigenfunc-
tion v, relations
(p = Dlwa(0:)"" < Alon(00)[” < (p = Dwn (1),

are satisfied. They also include 6y = a and 0,, = b in the Dirichlet case.

Our next objective is to relate the radial eigenvalues to (2.18)), ob-
tained in Theorem [2| by means of odes methods, with the variational
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eigenvalues derived from critical points theory in ([1.4). In fact, a pos-
sibly distinct family of radial eigenvalues to (2.18) could be obtained

from the variational expressions,

Anp = inf sup/ |VulP dz +/ Blul?, n e N, (3.26)
CeCrhueC J A 0A

where C, = {C €C,: C C Whe (A)}. In other words, C, is the restric-

tion of the class C,, to the space of radial functions Whe (A). Of course,

the latter space is replaced by /VT701 ?(A) in the Dirichlet problem.

As it is going to be observed in Section 4| the variational approach
(13.26)) is crucial to study the existence of the limits of the eigenvalues
Anp as p — 1. Thus, a result as the next one is required. Subindex p
is drop both in A, and ), to brief.

Theorem 4. The family of ‘ode’ eigenvalues {\,} to and the
corresponding one {S\n} deduced from Ljusternik—Schnirelman theory
agree,

Ap = :\n, for every n € N.

Proof. We are adapting the corresponding proof in the case of the ball
and Dirichlet conditions (see [26, Th. 12]). Firstly and according to
the discussion in Section , eigenvalues in the variational family {\,}
gives rise to radial eigenvalues in the family {\,}. In addition, there
can not exist repetitions in the \,’s. In fact, if it were,

A= =M1, k>2,

for some n, then there would exists a compact K C M, N WLe(A) of
eigenfunctions to A, with genus v(K) > k ([29, Lem. 5.6]). So, if a
repetition occurs then K becomes infinite. This is not posible since the
simplicity of A, stated in Theoremi) implies that K = {a,, —u,}.
Thus, repetitions in the sequence {\,} are not allowed.

We next observe that A\ = \; since \; always defines a principal
eigenfunction, therefore without inner zeros in (a,b). Hence,

A < S\H, for all n € N.

On the other hand, [6] Prop. 1] states, in the general framework
of a bounded smooth domain Q C R¥, that for an arbitrary Dirichlet
eigenvalue \ to , regardless its nature (variational or not), the
following estimate is satisfied,

M < (3.27)
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Here \%® denote the N—th term in the sequence given by , while
N = N(A) is the maximal number of nodal regions that an eigen-
function v to A can exhibit. The nodal regions of u are the family of
components in the set {z €  : u(x) # 0}. Such a number is shown to
be bounded above by a maximum value N(\) < oo only depending
on A (see 4, Prop. 2] for Dirichlet conditions, [20, Th. 5.11] for the
remaining two). Moreover, estimate has been upgraded in [20),
Prop. 5.17] to include both Neumann and Robin conditions.

Now observe that Theorem ii) implies that the n—th radial eigen-
value \,, satisfies,

N(\,) =n.

Thus, (3.27)) implies,
5\71 - )\%S(,\n) S /\n’

and we are done. O

4. BEHAVIOR OF THE RADIAL EIGENVALUES AS p — 1

Our first result states the existence of the limits of the radial eigenval-
ues as p — 1. As a matter of notation, whenever necessary a subindex
p is added to the relevant objects (numbers, functions) in order to
indicate their dependence on p. For instance (A, v5,,) Will be used
instead the former (A, v,) to stress the influence of p on this eigenpair
to . On the other hand, it will be assumed in the sequel that the
domain  in (1.1)) is the annulus A = {0 < a < |z| < b}.

Theorem 5. Limits,
A = lim A, ,, (4.28)

p—1
exist for every n € N.

Proof. 1t is shown in [26], Cor. 3] that for Dirichlet conditions the
Ljusternik—Schnirelman eigenvalues A, ,, to (L.1)) admits a limit,

Ap 1= }71_13 Anps (4.29)
in a general Lipschitz bounded domain ). The argument makes use

in a crucial way of the Rayleigh quotients (1.4) to show the inequality,
([22] for the case n = 1 and [26, Th. 2| for an arbitrary n),

1 1
PAnp? < SAps°, for 1 <p < s,

from which (4.29) follows. The same reasoning proves the latter in-
equality for the Neumann eigenvalues in €2 and thus the existence of
the limits (4.29)) is also stated in this case. Finally, to achieve (4.29)
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subject to Robin conditions requires a more elaborate reasoning and it
is answered in positive in [28, Th. 20].

In the case of the annulus A previous arguments remain valid when
applied to the radial variational eigenvalues S\nyp defined in (3.26]). Thus
we deduce the existence of the limits,

A\, = lim /N\n,p.
p—1
Then ([4.28) follows from Theorem [ O

Next statement is a further consequence of Theorem 4 It is the
specialization to radial solutions of theorems [26, Th. 6] and [28, Th.
18], the first one concerning the Dirichlet problem, the latter dealing
with either Neumann or Robin boundary conditions. We recall the
notation ¢, (t) = [¢[°~?t to be next used.

Theorem 6. For a fized n let (A, Um) = (Apos Unpn (7)), @ <1 < b,
be a family of radial eigenpairs to (2.18|) corresponding to a sequence
of exponents p,, — 1 and thus satisfying,

A = A= A, as m —» 0o.
Assume also that eigenfunctions are normalized so that,
lvml|leo =1,  for each m € N. (4.30)
Then, up to subsequences, the following properties hold.
i) {v} converges strongly in L'(a,b) to a function v € BV (a,b).
ii) {¢p,.(vm)} converges weakly in L*(a,b) to a function v € L*(a,b),
for every 1 < s < co. Furthermore, |||~ < 1 and,
Yo = |vl, a. e. in (a,b). (4.31)
iii) Family w., = @p,, (v),) converges uniformly in [a,b] to a Lipschitz
function w € WH®(a,b) with ||w]/ < 1.
iv) Function w solves in the sense of distributions the equation,
N -1 —
—w - ——w =M. (4.32)
r
v) Identity |v'| = (w,v") holds in (a,b) as measures.
vi) Boundary conditions,
w(a)v(a+) = min{l,  Hv(a+)|, (4.33a)
w(b)v(b—) = —min{1, Ba }v(b—)] (4.33b)
are satisfied, with values 8; = 1 wn the Dirichlet case, 5; = 0, in the
Neumann problem and 3; > 0, i = 1,2, in the Robin one.
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vii) Identity,
1|dv
dr|’

Xd|v\ :_N—

dr r

(4.34)

holds in (a,b) in a distributional sense.

Remark 4. Relations assert that Robin eigenfunctions v, can
only ‘see’ the genuine Robin conditions as p — 1 if 0 < 3; < 1. Other-
wise, both Dirichlet and Robin eigenfunctions exhibits the same limit
behavior at r = a,b. Notice in addition that the existence of the side
limits is ensured after a possible modification of v in a null set (see

Section .

Proof. Starting assumption in both [26] Th. 6] and [28, Th. 18] is the
control,

0< k’l < / ‘U|p < k’g, (435)
Q

on the LP norm of the eigenfunctions u to (1.1]). Thus we are checking
that provided a family of radial eigenpairs (A, 0,,) satisfies,

/ O =1, (4.36)
Q

with A\, — A, then ||T,]/e = O(1) as m — oco. Thus, v, = Um

“Um”oo

both fulfills (4.30) and (4.35]). In fact, by setting v = 0y, p = P,

[o(r)] < |v(a) +/abyq/y < [o(a)] + (b—a)' 3 (/bw/'p)i
< (@) + (b—a)* " ra 7 (/ o [PrV 1>

< Ju(a)| + (b—a) " Fa" 7 A

Hence, family v,, satisfies the estimate,
1

Ao P
7 < 7 _ . rm
il < sl + 0= (=)

and a uniform bound is attained provided that the first term in the
right hand side is finite. This is obvious in the Dirichlet case. As for
Robin conditions one has,

b
/ [0 P dr + Bra™ T T (@) P B T O (D) P = A



RADIAL EIGENVALUES IN AN ANNULUS 17

what shows the finiteness of sup |0,,(a)|. Finally, under Neumann con-
ditions Barrow’s rule implies

b b
3(a)] < / nlét, | dr + / /] dr,

where 7 € C[a, ] is any fixed nonnegative function satisfying n(a) = 1,
n(b) = 0. Both integrals are uniformly bounded because of (4.36]) and
the equality,

b
/ o PNl dr = A,
a

Therefore, ||U, |l = O(1) as m — oo.

As a consequence of , all features of the statement, except for
iii), are essentially developed in [26, Th. 6], |26, Prop. 16] and [28, Th.
18]

Regarding iii), results [26, Th. 6] and [28, Th. 18] supply w €
L*>(a,b) such that

Wi = Pp,, (V) = W,
weakly in L7(a,b) for all 1 < ¢ < oo. We are now upgrading both
the quality of the latter convergence and the regularity of w. First
observe that by integrating the radial equation in with initial
data wp,(01,m) = 0, 7 = 01, standing for the first zero of v}, in (a, b),
we deduce,

Wi (1) = = A\ /UT (;)N_l Cpm (U (8)) ds,

1,m

what implies that {w,,} is uniformly bounded in [a,b]. In addition,

both the normalization (4.35]) and the equation,

(TN_lwm), = _)‘mrN_l‘zopm (Um)>

imply that the family {r"'w,,} and hence {w,,} are equicontinuous
in [a,b] and, after continuation, in any interval [a, ;] with by > b.
Thus, modulus a subsequence, w,, — w in C[a,b]. After a possibly
redefinition of w in a null set we arrive at,

w(r) = (’%)N—lwuo) [ e

for some ty € [a,b] and conclude that w € W*°(a, b). O

Remark 5. As to be explained in Section [6] assertions iv), v), (#.31),

(4.34) together with (4.33) constitute the requirements for (A, v) €
R x BV (Q2) to define a radial eigenpair to ([1.3]). In particular, relations

([4:33) encode the boundary conditions (see Definitions [16] and [L7)).
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To ascertain the limit profile of eigenfunctions v, , to asp — 1
is essentially equivalent to master the corresponding behavior of their
zeros 0;,, and critical points o0;,. It should be remarked that the own
existence of the limits of 0, , and 0;, as p — 1 is by no means evident.
This fact strongly contrasts with the case when 2 is a ball where such
an existence is a direct consequence of the one for the eigenvalues A, ,
as p — 1 ([26, Th. 13]).

Nevertheless, to start on a firm ground, next result ensuring the
existence of positive gaps between the limit values of these quantities
is quite convenient for our purposes.

A first step in this direction is the next statement.

Lemma 7. Let {6;,}, {0:,} be the family of zeros and critical points
assoctated to n—th eigenvalue A, ,. Then, the estimates
h_m(el}p - Uiyp) >0, h_m<0_i7p - 91'—17,’0) >0, (437)
p—1 p—1
are satisfied for all possible choices of {0; p, 6 p}, {0iz1,p, 0ip}, including
the extreme cases ty, = a and 0,, = b. These facts hold for the

three boundary conditions (1.2)), with the sole possible exceptions of the
couples {a,01,} and {0, ,,b} in the Robin problem.

Latter missing estimates in the previous lemma are separately achieved
in the following one.

Lemma 8. For the Robin problem and the n—th eigenvalue A, ,, esti-
mates

lim(oy, —a) >0, lim(b—o,,) >0, (4.38)

p—1 p—1

are also satisfied.

In the course of the following proofs we must resort to the function
cos, t. It is implicitly defined through the integral,

hSA

! ds
/ —— =t tel,={0<t<m}, (4.39)

-1 -
<p ) osp t (1—|S|p>5

where,

hSAl

T =2(p—1)

! ds
_ (4.40)
J (- |sP)>

We remark that lim, ,; m, = 2 ([26]) while function cos,t decreases

T
from 1 to —1 in I, and vanishes at ¢ = Ep (see an ‘ad hoc’ account in

28, Sec. 3]).
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Proof of Lemma[7 Define to brief ¢ = 0,,, d = 6;, and A\, = A, p.
Then p = A, is the principal eigenvalue to the weighted problem,

{—(tN—lsapw))' =t lp,(u),  e<t<d, (41)
w'(c) =0, u(d) =0,

which is expressed as,

JEN Pt

SNt ufedt

Here, the infimum involves all those functions u € W1P(c, d) satisfying

u(d) = 0. Then, o
() ) om

where 7, is defined by . To achieve this result notice that the p
power factor in the inequality corresponds to the principal eigenvalue
to when factors t¥ ! are replaced by unity. In fact, an associated
eigenfunction is defined by,

mp(t —¢)
u=cos, | ——— | .
(=)
A symmetric reasoning leads to the complementary estimate to (4.42))
and so we arrive at,

O ) == () )

from which we deduce,

lim(d — ¢) = lim (6}, — o7,) > 0.
p—1 p—1

(1 = inf

The second estimate in (4.37)) is obtained by arguing in the same way
but interchanging the boundary conditions in (4.41]). U

Proof of Lemma[8 As in the previous lemma, by setting A\, = A, , and
¢ = 01, then p = A\, becomes the principal eigenvalue to the problem,

— (" p()) = ptN gy (u), a<t<c
wpp(u'(a)) = Brpp(ula)), (4.43)
u'(c) =0,

whose variational expression is,
Jo WP dt + o By u(a) P
L5 JulptN-1 dt ’

pq = inf
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and the infimum is extended to all functions v € W'P(a,c). This
implies that,

a\ N-1 e\ N—1
(—) At < 11 < (—) A, (4.44)
c a
where [ = 0;, —a and A = )\, is the principal eigenvalue to:
—(pp(u))" = App(u), 0<t<lI,
uw'(0) =0, (4.45)

pp(u'(1)) = —Brpp(u(l)).
Notice that interval endpoints have been interchanged in (4.45)) to nor-
malize. Our goal is to show that the behavior I — 0 as p — 1 can
not occur. In fact, assume on the contrary that [ — 0. Since p1 — A,
as p — 1 with A\, = lim, ,; A, ,, we firstly get from (4.44) a uniform
estimate,
0< k< )\p,l < kg, (446)
both as I — 0 and p — 1.
By assuming the normalizing condition u(0) = 1 it follows from the
equation in (4.45) that,
(p— D[P + MulP = A, 0<t<lL. (4.47)

From the second boundary condition we get,

u(l) = ! -
1+ e-A8 ]

Then, by integrating the equation (4.47)) in 0 < ¢ <[ we arrive at the

equality,
1
d 1
/ — N (4.48)
u(l) (]_ — Sp); '
where the normalization u(0) = 1 has been employed. By resorting to
the computations in [28, Th. 8] it is shown that,

1
/ Ll = min {1, 3 }. (4.49)
u(l) (]_ — Sp);

To this purpose remark that the dependence on [ is linked to A,
through the expression for u(l). Estimates are enough to keep
/\;,ll bounded away from zero as p — 1. This is the only requirement
for the limit above to be valid.

Since is not compatible with provided [ — 0 it means
that [ must keep bounded away from zero as p — 1. The proof of

(4.38) has been completed. O

3=

(p—1)

B =

lim (p—1)

p—1,1—0
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5. EIGENFUNCTIONS PROFILE AS p — 1

In the next results we are assuming that limit eigenvalue \ in The-
orem [6] is given by, -
A= )\na
where n is a fixed index. When dealing with either Dirichlet or Robin
conditions, it is going to be assumed that the normalizing condition

(4.30) is attained in the following way,
|vmlloo = Um(01p,,) =1, for every m € N, (5.50)

where a < 01,,, < b stands for the first critical point of the eigenfunc-
tion vy, = ¥y, in the interval (a,b) (Theorem [2). We stress that then
vy (a) > 0. For the Neumann problem, (5.50)) should be replaced with,

|vmlloo = vm(a) =1, for every m € N. (5.51)

In fact, notice that, according to Lemma [3, the maximum value of
|um(7)] is attained at r = a provided v/, (a) = 0.

Our immediate objective is describing the limit profile of the normal-

ized eigenfunction v, = v, as p, — 1 in the initial interval (a, 0y ,,),

where 6, ,, = 60 ,,,. Full analysis in the interval (a,b) is delayed until

the final part of the section (Theorem . To this aim, the following
technical result will be useful.

Lemma 9. Let w € Wh(a,b) be the function introduced in Theorem
[l Then v becomes constant in every component of the set {t : |w(t)| < 1}.

Proof. See item 1) in the proof of [26, Th. 7.7] (also [27, Th. 10]). O
We are proceeding separately in each of the boundary conditions.

Theorem 10 (Dirichlet Problem). Let (A, Um) = (Anpns Unpn) be @
sequence of radial Dirichlet eigenpairs asymptotics to (A, v) = (A, v)
as pm — 1, v € BV(a,b) being the function introduced in Theorem .
Then the following properties are satisfied.
i) There ezists a < o1 < 6y such that,

7%1_1)1(130 bh p,, = bh, and nll_{noo T1py = 071 (5.52)

ii) Numbers o1 and 0y satisfy the relations,

N N—-1 N 9 N—-1 N—-1 _
Vo N6 vaTT) (5.53)
i) Limit v, — 1 holds in the topology of C'(a,6,).
Moreover, all of the previous limits do not depend on the sequence
Pm — 1.
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Proof. In order to brief, we are using 6, ,, and o4, instead 6, ,,, and
O1.p Tespectively.
Firstly, observe that, due to (3.24)), the estimate
(pm - 1)’wm(a)|p4n > )\m|vm<01,m)‘pm = >\m7
holds for every m. So, passing to the limit we obtain
w(a) =1,
since v/, (a) > 0 while ||w|» < 1. We also have
CLN_l T g\ N-1
Wi (r) = T (@) = A / (C) enloml)ds, (559
(5.55)

and by letting p,, — 1,
N-1 _ T N—1
A (G) s

w(r) = —§=1 .

where v € L*®(a,b) is the weak limit of functions ¢, (v,) as m — oo
(Theorem [6}i)). This is equivalent to integrating (4.32) with datum
w(a) = 1.
If we take r = 01, in (5.54) and set oy = lim,, , o1, then,
(5.56)

A 5\/ N1y (s) ds,

(ol — a®), wherewith we get,

2I>*'

and so oV 1 <
o1 > Q.

This relation is also ensured by the second estimate in - fori=1

(see Lemma [7).
From (3.24) we also deduce,

(P — D)7l (1) < AR (1 [om(r)P)

for all o1,, < r < 61, owing to vm(al m) = 1. This fact also implies

_1pm/ <N (r = o1m),
v (1) 1—|Um )

and, recalling that cos,t decreases in [, we obtain
1
) , (5.57)

U (r) > cosp,, (
as o1, <1 < 0i,, In addition, it is well-known that
cos,t — 1, as p — 1,

Pm )

)\ﬁ? (T’ — Ul,m)
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in the topology of C'(—1,1) while lim, ,; 7, = 2 (see [26]). So, it

follows from (5.57)) that,

U — 1, as m — oo, (5.58)

uniformly on compacta of (o1,01 + A71).
On account of equation (2.18)) we observe that (r¥~!w,,(r))" < 0 for
all @ < r < oy, so that

CLN_l — aN—l 1

W (@) > " w, (1) > o1 wm (01,m) = 0.

Letting p,,, go to 1, we get
aN_ler_lw(r)ZO a<r<o;—e,
for all € > 0 which implies 1 > w(r) > 0 for all a < r < gy. Therefore,
we deduce
—1<w(r) <1, asa<r <o+, (5.59)

for some small § > 0. According to Lemma [9] limit function v achieves
the value 1 in the whole component (a, 6,) of the set {|w(t)| < 1} con-
taining the interval (a, oy + 9).

We are now extracting some consequences from this fact. By insert-

ing v =1 in (5.56]) we get,

_ A
= S -,

a representation of o; which does not depend on the sequence p,, — 1
and that shows in particular that the limit,

lim oy, = o1,
m—oo

holds. By setting now v = 1 in ([5.55)) it follows that,

aVt N (N —a) Aa\ fa\N-1 )
w(r) = pN-1 N pN-1 T (1 + W) <;> Nk

whenever a < r < 6;. Thus w is decreasing in this interval, satisfies
|lw| < 1 and reach the value w(f#;) = —1. So, 6, is defined through the
relation,
N@Y " + a1
ON — aN
In fact, such an equation is uniquely solvable in 0, (see Lemma [22] in

Section @ and this is also a further expression which does not depend
on the particular sequence p,, — 1.

Y (5.60)
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We next observe that,

Pm

U;n = Pp, (wm) = |wm|plm_2wma plm =

Since w,, — w uniformly on compacta of (a,f;) then v/, — 0 in that
precise way. In addition, this fact entails that v,, — 1 in C(a, 6,).
Set now 0; = lim . 6 ,,. Convergence in C(a, 61) necessar-
ily implies that,
0, > 0;.

We are showing that,

0, = 0,. (5.61)
This would imply from that,
NN +aN
ON —aN

=\,

and so the limit,
lim 917m = 91,

does not depend on p,, — 1. Hence, the proof of (5.53) would be
accomplished.

To show (5.61)) suppose #; > #;. This means that for each 6; <
r < 01, vp(r) > 0 for p, close to 1 (m large). First assume that
01 < ry < 0y exists such that lim . v, (r2) > 0. Since v, decreases
in J :=[ry,ry] with oy <17y < 61 < ry then v > 0 in this interval. On
the other hand,

N -1 - N-1 =<

'=— A< —— - € [0y, 7).
w W <=3 , r € [01,79)
Now, it is clear from (5.60) that NOY~' — X0N < 0 and so,
N-—-1 =
LY (5.62)
01

Hence, w(r) < —1 in (6, 7], which is not possible. Thus, v = 0 almost
everywhere in 6; < r < #,. But in this case v undergoes a unit jump
at the point r = ¢;. However, (4.34]) implies that,

N -1
0,

Since this can not be true, we finally conclude (5.61)). U

=\ (5.63)
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Corollary 11. In the Dirichlet problem,

N(&N_l —|—bN_1)
bN _ (ZN ?

A= }1713% AMyp = (5.64)

while vy, — 1 as p — 1 in the topology of C*(a,b).
Remark 6. Value \; in ([5.64) is just the Cheeger constant for the an-

nulus A (see for instance [I1]). In fact, it is the first eigenvalue to the
1-Laplacian subject to Dirichlet conditions in the annulus (Section @

Theorem 12 (Neumann Problem). Let now (A, Um) = (A pms Vnpm)
be a family of radial Neumann eigenpairs in the conditions of Theorem
@ satisfying in particular,

A — A, U — U in L'(a, D),
as pym — 1. Then v, — 1 in C(a,6y), where

01 = lim 0y,
m—00

and is given by means of the relation,

NQlN_l
ON —aN

=\ (5.65)

Moreover, all these features do not depend on the sequence p,, — 1 in
Theorem [6l.

Proof. The value r = a plays here the role of variable critical point
7 = 01, in the proof of Theorem [10, whose argument is going to
be closely followed. In accordance, v,, — 1 uniformly on compacta
of [a,a + A7'). In addition, it holds that limit function v = 1 in a
maximal interval [a 01) where w(f;) = —1 (Lemma @) By noticing
that w(a) = 0, 1mphes in the limit,

a<r<0,

and so, 3
NoY!

'>/ |

— = 5.66
ON —alN (5.66)
According Lemma [22 E this equation has a unique solution #;. Thus,
such a value does not depend on the choice of p,, — 1. Setting ¢; =
lim,, . 0., it follows that 01 < #; and the strict inequality 91 < 0 is
discarded as in the discussion of Theorem [I0] since the inequality,

N-1 -
=~ <),
th
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is fulfilled. Indeed it is a direct consequence of (5.66). Hence 6; = 6,
and the proof is concluded. O

Theorem 13 (Robin Problem). Assume (A, Um) = (Anpps Unpy) 1S
a family of radial eigenpairs to the Robin problem corresponding to
exponents p, — 1 and satisfying (Theorem @,
A = A, Uy —> U in L'(a,b),
for a certain (\,v) € R x BV (a,b). Then,
1) Limits limy, o0 01 = 01 and limy, o0 01, = 01 hold true for num-
bers a < o1 < 01 which are defined through the relations,
Nmin{1, 3;}a¥*  N(6;"' +min{1, 3 }a" 1)

\ = -
oV —alN ON — alN

(5.67)

ii) Sequence v, converges to 1 in C'(a, ;).
Moreover, previous limits do not depend on the choice of exponents
Pm — L.

Proof. We are repeating the pattern of Theorem [I0] As a first step
notice that 0 < w(a) < 1. Moreover, from (3.24) we deduce that,

(P — D (@)™ + Ao (@)™ > Ay,

and so,
1> vp(a)Pm > Am o
)\m + (pm - 1)/Blm
Hence,
lim v,,(a) =1, and  w(a) = lim wpy(a) = i, (5.68)

provided that 0 < fB; < 1. The same argument as in Theorem

permits us asserting both the estimates ((5.58) and (5.59)). In fact, the
validity of the latter only requires w(a) < 1 so the case f; > 1 is
included. From Lemma [9] we deduce again that

v=1 ina<r<bo, (5.69)

(a,0;) being the component of {|w| < 1} containing (a, o1+A71), where
op = lim, .01, Accordingly, a < o7 < 61 < 6, with 6, =
lim, .. 61, Now, both (5.69) and the boundary conditions (4.33)

imply w(a) = 1if #; > 1, what combined with (5.68) leads to,
w(a) = min {1, 5, }.

By means of the expression,

A
rVw(r) = min {1, 8 }a™ ! — N(?‘N —a®),
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and noticing that w(o;) = 0 we attain the first equality in (5.67]).
Then, after setting w(él) = —1 we get the second inequality but with
51 replacing 6;. Finally, it is shown that 6, = 51 by the same reasons
as in Theorem [I(] and so we are done. O

Next one is a quite interesting achievement of this work. It states for
the first time the explicit expression of the principal Robin eigenvalue
for —A; in the annulus (see Section @

Corollary 14. In the Robin problem,

N(min {1, 8 }a" ! + min {1, o}V 1)
LN _ N ’

A= lim Ay = (5.70)
while the first normalized eigenfunction vy, to A1, satisfies v1, — 1 as
p—1in C'(a,b).

Proof. Set v,, = v1,,, the first eigenfunction to A, which is normal-
ized according to (5.50)). As a solution to it can be continued for
all r > b (Sectionand is oscillatory in (a,00) (see [26, Lem. 10—
ii]), so it exhibits a first zero t,, > b with a limit ¢; = lim¢,, > b. The
arguments in Theorem [10| permit us asserting that v,, — 1 in C(a, ;).
With o = limy, o 015, and w = limy,_, Wy, successive integrations

of (4.32) furnish the identities,

_ A _ A
" tw(a) = N(U{V —a), —bNlw(b) = N(bN — o).
Adding them and setting w(a) = min {1, #; } and w(b) = —min {1, 55},
which are the boundary conditions (4.33)), lead to ([5.70)). O

The main result of the section is next introduced. It extends to the
whole interval (a, b) the analysis of the eigenfunctions to ([2.18]) initiated

in Theorems [I0] [12] and

Theorem 15. Let {(A\p,Vnp) i p > 1} be the family of n—th radial
eigenpairs to (2.18)), normalized according either to (5.50)) in the Dirich-
let and Robin problems or to (5.51)) in the Neumann one. Assume that,

lim A\, ., = \,.
ps1 P "

Then, the following properties are satisfied.
i) There exist the limits,

lirr% 0ip=10;, 1<i<n-—1, (5.71a)
g
lirr% Tip =05, 1<i<n, (5.71Db)
p—

where the latter expression assumes n > 2 in the Neumann case.
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ii) Relations,

NN+ 6,07

OF — 0%,

= A, 1<i<n, (5.72)

hold true with 68y = a, 0,, = b, where in the Robin problem the cases
1 =1 and i = n are replaced with,

N(@lN_l +min {1, B }a¥ 1) N(min {1, B }bV 1 + 9n_1N_1) -
N ~ = ~ ~ =\,
1 —a bN — 0,4
(5.73)

Neumann conditions for n > 2 are included in (5.73|) by choosing 5; =

0,i=1,2.

iii) Inner values {o;} satisfy,
Nei—lN_l

;=0

= \n, 1<i<n, (5.74)

g

while 2 <1 < n —1 in the Neumann problem as n > 3.
iv) There exist numbers {}ocic,_1;

1=ap=|ag| > |ai| > > |an_1]| >0,
with alternating signs, i. e. a;_1a; < 0 for all i, and such that,
Unp(T) = iy asp — 1, (5.75)
in the topology of C1(6;_1,6;), for 1 <i < n.
v) Families {a,;} and {0;} are related through,
WW_pr%N_l)
N0+ (N = 1)

_Sign(ai—1)7

vi) w(f;) = sign(ay) 1
) asp — 1 in |a,

uniform limit of ¢, (v,

< ¢ < n-—1 where w is the
n,p :

0]

Proof. We are proceeding separately according to the boundary condi-
tions.

A) Dirichlet problem. From Lemmafamilies {éi}ogign and {0},
defined as,

0; = lim 0; p, o; = lim 05,
p—1 p—1

satisfy the strict inequalities,
Q_i—1<a-i<€_ia 1 <1< n, é():a,, én:b,

where we have set 6y, = a, 0,,,, = b. On the other hand, values 6, = 64,
o1 = o1 have been already addressed in Theorem [10]
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We are next proceeding by induction supposing that the assertions
have been achieved in the intervals (a, 01),...,(6;—2,0;—1) to show them
in the subsequent one (0;_1,6;).

Firstly, no generality is lost by assuming that v > 0 in (6;_9,6;_1),
that is a;_o > 0 together with w(6;_1) = —1. Notice that,

;1 < ;<0
and we are showing that,
v<0 in (6;,_1,0;). (5.77)

In fact, take

0, 1 <x<y<ay,
so that =,y € (0;_1,,0;,) for p close to 1. Then

0> vy(x) > v,(y),
what implies,

0>v(x) >v(y), a. e. in (6;,-1,0;),

where v, has been employed instead vy, to brief. In addition,

lim wv(z) <0,

z—0; 1+

since otherwise the limit must be zero, v jumps at 6;,_; and then (4.34)
implies,

S N—1 - N—1
" 0 61
what is not possible. Thus we conclude ((5.77)).

We next use the differential equation (4.32)) for w together with w =
—latr=460,_1,w=0atr=a; and v = —1 to deduce that,

Neiilel

N N
o, — 0.,

So, holds and the limit &; does not depend of the way of conver-
gence p — 1. Accordingly we set o; = 4.

As a further step we are taking into account (5.77), w(f;—1) = —1
and the differential equation to express w in the form,

o j\neifl 91‘71 Nt j\n
w(r)——(1+ N )(T) —I-WT,

for r € (0;_1,0;). Since w is increasing in that interval and —1 < w < 0

A~

there, a component (6;_1,0;) 2 (6;_1,0;) of the set {|w| < 1} exists. As

=

= A
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0; > o; and w(f;) > 0 we get the relation w(6;) = 1 what in turn says
that,
N(Qi\f—l +9i—1N_1)

NN N
92’ - 9i—1

= A\, (5.78)

an equation with a unique solution 0; (Lemma [22| below). According

~

to Lemma |§|, v becomes constant in the interval (0;_1,6;) and we set,
v(r) = o1,
in this interval. Notice that a;_sa;_1 < 0. On the other hand, since

A

Unp — i1 almost everywhere in (6;_1, 6;), then necessarily,
0, < 0.
By employing w(él) — 1 and arguing just as in the proof of ; = 6; in

Theorem |6 we obtain §; = ;. Again, this expression of 6, is independent
of the way in which we make p — 1 and so lim,_,; 0; , = 0;, we directly

use 0; instead and relation (5.72)) holds true.

On the other hand, v exhibits a jump at r = 6;_; and evaluating

(4.34)) at this point yields,

_ N -1
/\n(|ai—1| - 042‘—2) = -

01

(qia + o),

equivalently,

which proves (5.76)).

As for the convergence assertion ([5.75)) we first recall that,
wy, = gop(v;)) = |vz')|p_2v; — w, asp — 1,
uniformly on compacta of (a,b) while —1 < w < 1 in (6;,_1,6;). This
implies that,
v, — 0,

as p — 1 and also in the topology of C'(6;_1,0;) from which the con-
vergence ([5.75)) is uniform on compacta of (6;_1,0;).

Thus, the proof of Theorem [15|in the Dirichlet case is complete.
B) Robin problem. The reasoning keeps the steps of the case A) but

starting at the initial interval (a, ;) under the conditions of Theorem
, and then proceeding by induction until the interval (6, 2,6, 1).

Latter equality in (5.73) follows by integrating (4.29) in 6,1 < r <
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b with values 7 = sign (a,_1) = sign(w(#,_1)) and employing the
boundary condition w(b) = —min {1, B2} sign (cv,,—1) at r = b.
C) Neumann problem. In this case it suffices with launching the argu-

ment in A) at the first interval (a, ;) (Theorem [12)) and proceeding by
induction until the final one (6,,_1,b). O

6. THE LIMIT PROBLEM

The concepts of weak eigenvalue A to ([1.3]) with an associated eigen-
function v € BV/(Q), and subject to either Dirichlet, Neumann or
Robin conditions are currently available in the literature. See for in-
stance [20], [28] and references therein. Of course, they rely upon the
1-Laplacian theory launched in [7], [8] and [13].

When the spatial domain €2 is an annulus A = {a < |z| < b} and
the search for eigenvalues is restricted to radial eigenfunctions, such
notions lead to Definition 17 below which is suggested by the following
considerations.

We begin with the equation in ((1.3]). Just like radial solutions to
(1.1) are furnished by equations corresponding ones to (|1.3]) are
provided by their formal limit as p — 1,

w = sign (v'),

N —1 a<r<b. (6.79)
w' = W Asign (v),

Solving ((6.79)) must be understood as follows.

Definition 16. A couple (v,w) € BV (a,b) x W1*(a,b) is a solution
to (6.79) if ||[w|leo < 1 and there exists v € L*(a,b), with ||7||e < 1,
such that,

a) yv = |v| in (a,b).

b) |v'| = (w,v") as measures in (a,b).

¢) w is a weak solution to the equation,

N -1
r

Remark 7. The pairing (w, ') is equivalent to wv’ (Section [2.2)).

/
—w —

w =\, in (a,b).

Existence of solutions to can be obtained by taking the limit as
p — 1 of solutions to with fixed initial data. In fact, it is enough
with imitating the argument in [26, Prop. 16] (see Remark [9] below).
Since limits of solutions to @ satisfy and eigenfunctions to
(1.3) are expected to be the limit as p — 1 of corresponding ones
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to (1.1]), it is natural to constraint radial solutions to ([1.3)) with the

additional requirement,
) d|v| N—1|dv

dr

. (6.80)

dr r

As for the different boundary conditions we are assuming that both w
is Lipschitz continuous in [a, b] and that v defines a function of bounded
variation in the classical sense ([2] and Section 2.2). Of course, this
could involve a modification in a null set.

Classical eigenvalue problems for the 1-Laplacian are now intro-

duced.

Definition 17. It is said that (A\,u) € R x BV (A) defines a radial
etgenpair to under Dirichlet conditions if there exists (v,w) €
BV (a,b) x Wh*(a,b), v # 0, such that u(x) = v(r) a. e. in A with
r = |z|, (v,w) both solves and fulfills and satisfies the

following Dirichlet conditions,
w(a) = signv(a+), w(b) = — signv(b—).

A Neumann eigepair (A, u) is defined by changing the latter to Neu-
mann conditions,

w(a) =w(b) = 0.

Corresponding Robin eigenpairs are defined by employing instead Robin
conditions,

w(a) = min{1, 3} signv(a+), w(b) = —min{1, B} sign v(b—),
where B; > 0,1=1,2.

Remark 8. All these boundary conditions could be formulated in a
single unified form by taking Robin conditions with coefficients 3; > 0,
1 = 1,2, where both §; > 1 correspond to Dirichlet and 5, = 5 = 0
to Neumann. Of course, a mixed combination of them can also be
considered.

As a first feature, negative eigenvalues to (|1.3]) can be discarded.

Proposition 18. Figenvalues to either of the three boundary value
problems (1.3)) are positive with the sole exception of A = 0 which is
the first Neumann eigenvalue.

Proof. Let (v,w) be a solution to (6.79)). It follows from c),
— (N lw(r)) = Ny (r) r € (a,b).
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Multiplying by v and integrating over (a,b), we get

- / (L) o(r) dr = A / "N dr,

where condition a) has been used. Integrating by parts (Section
and taking into account condition b) lead to,

_ / (PN () Yol dr

b
= [+ @)l + 0¥ (@)ofa))

Hence,

b
/ PN () dr + 08w () [Jo(b=)| + o Hw(a)[[o(at)]

b
= )\/ N o(r)| dr .

Since the left hand side is nonnegative, A < 0 is excluded. If A =0, v
must be zero excepting the Neumann problem where constants can be
regarded as the only associated eigenfunctions. U

Next result allow us normalizing eigefuntions v with the condition
v(a+) = 1. (6.81)

Lemma 19. Let (v,w) be a non trivial solution to (6.79) satisfying
condition (6.80). Then v(a+) # 0. In particular, this holds true for
the radial eigenfunctions u(x) = v(|x|), v € BV (a,b), to (1.3).

Proof. By assuming that v is of bounded variation in classical sense
then limit v(a+) exists. In addition, function |v| is non increasing due
to where we suppose A > 0, otherwise v should be constant.
Thus |v(a+)| must be positive. O

Remark 9. Let us illustrate the kind of solutions that equation (|6.79))
may exhibit. Consider the family (v,,w,) = (vp, ¥p(vy)), p > 1, of
solutions to (3.22)) corresponding to initial Robin type data,

vp(a) = 1, w(a) = frop(vy(a)),
with @ = 2 and §; = 0.5. Dimension and frequency parameters N
and A\ respectively, have been both set to 2. In Figure [1| a numerical
integration reveals the typical behavior of v, evolving to a step function
profile v as p — 1. Value of p is decreased from 2 to 1.1 in steps of size
h = 0.1. The closer to 1 is p, the steepest the slope of v, near certain
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FIGURE 1. Profile of solutions v, with p ranging from
p=2top=1.1

FIGURE 2. Profile of the component w, = ¢,(v;) where
p varies fromp=2top=1.1

points becomes. The corresponding response of w, is evolving to a more
smooth sawtooth wave w (Figure . Observe that the singularities
developed by the derivatives v, are balanced by means of the power
p — 1 involved in w,. As it is going to be shown in Theorem [20] the
suggested limit pair (v, w) shows the characteristic form of a solution
to when solutions are subject to condition . See Figure

below.
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A full description of the radial eigenpairs (A, u) to problem is
now stated. It is warned that values 0;, o;, «; referred to as in the
next statement are in principle different from the corresponding ones
introduced in Theorem However, it will soon become clear that the

values coincide (Remark [10]).

Theorem 20. There exists an increasing sequence of numbers,
O< << A< e, Ap — 00,

such that problem admits a radial eigenvalue A only when A = A\,
for some n € N. In addition, to each X, there corresponds a unique
radial eigenfunction u,(x) = v,(r) whose associated pair (v, wy) fulfills
the normalization v,(a+) = 1.
Furthermore, the following properties are satisfied.
ia) The first eigenvalue is,
VN min {1, B} + @' min {1, 5}
BN _ N ’

A =N

where values B;, 1 = 1,2, are assumed to be nonnegative parameters.
ib) For each n > 2 eigenvalue N, is characterized as the unique number

A > 0 such that there exist n — 1 points 6;,

a<6;<0y<---<6,.1<b,

satisfying,

N-1 , gN-1
PN i 0

oy — oy, "

1

n—1, (6.82)

together with,

Oy " +aV ' min {1, 5} NbN*1 min {1, By} + 6V}
the values of B;, i = 1,2, being given as in ia).

ii) Function w,(r) is strictly monotone in each interval (0;_1,6;), 1 =
2,...,n —1, oscillates between —1 and 1, fulfills w,(6;—1)w,(0;) = —1
and vanishes at r = o; € (0;,_1,0;) defined by,

NoT!

N N
o, —0;1,

A=N

An = i=2....n—1. (6.83)
Function w,(r) is also strictly monotone in the intervals (a,6,) and
(0n—1,0). Under either Dirichlet or Robin conditions it vanishes at
o1 € (a,0q) and o, € (0,-1,b) satisfying,

Na"tmin {1, 5} B NbY =t min {1, B}

Ap =
oV —al ’ N — N

An (6.84)
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iii) There exist n alternating values {a; }o<i<n—1,

l=ay>—-a1>ay>---> (—1)n_lQn_1 > O,

such that v, (r) = a;_q for all r € (0;-1,0;), i = 1,--- ,n, where it is
assumed that 0y = a, 0, = b. They fulfill the recursive formula,
Anbi — (N —1)
o . —1. .
o )\nei+(N_1)az 1, ap (6.85)

As a consequence, the eigenfunction v, possesses exactly n nodal re-
gions.

iv) Values w(0;) and ;1 have opposite signs fori=1,...,n— 1 while
— sign (a,—1)w(b) = min{1, 5> }.

v) The family of eigenvalues satisfies the asymptotic estimate,

2(n—1) +min{l, 5} + min{1, B}

b—a
as n — oo, where the three boundary conditions are parameterized by

Ap = +o(1), (6.86)

Remark 10. It was shown in Theorem [5| that, for every n € N, there
exists A\, = lim,, ,; A, where (), V) is the n—th normalized radial
eigenpair to (1.1)). Moreover, Theorem describes the limits of the
zeros 6, , of vy, , as p — 1. Since A, and the family {limy, 1 0; p }1<i<n—1
are linked through and , the uniqueness assertion in ib)
of Theorem [20| permits us asserting that A\, = \, for every n. More-
over, that limits lim,_,; 6;, coincide with the values ¢; introduced in
Theorem It is also a conclusion of Theorem [15| that the limit pro-
file lim,, 1 (vp p, p(vn,')) coincides with the normalized eigenfunction

(vn, wy) associated to A, as it is described in Theorem .

Corollary 21. For each n € N, the n—th normalized radial eigenpair
(Ansvp) to (L.3) coincides with the limit lim, 1 (A p, Unyp) of the n—th
radial eigenpair to , where the precise form of the convergence
Unp — Vp is specified in Theorem 15,

Before addressing the full proof of Theorem 20| we are first achieving
some partial results. The first one shows the existence and uniqueness
of the family of numbers A, referred to as in points ia)—ib) of the
statement.

Lemma 22. For each n > 2, there exists a unique positive number
A=\, and ezxactly n — 1 points 0;,

a<bp<0y<---<b,.1<b,
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satisfying (6.82)) together with,

N + VT min {1, 5} _ NbN*1 min {1, 8o} + 6V}
where the three boundary conditions in Definition[17 are implicit in the
different possible values of 5; >0, 1 =1,2.

A=N

Proof. We begin by analyzing the Dirichlet case. Define the auxiliary
function ¢ whose inverse is,

N 41
)= ——— t>1. 6.87
v =t s (6.57)
Then ¢ € C*(0,00), ¢'(s) < 0 for all s > 0 and satisfies,
lim ¢(s) = oo, lim ¢ (s) = 1. (6.88)
s—0 s§—00

_ Consider next the function ¥ (0,00) x (0,00) — R defined as,
U(s,\) = sy (%s) A careful checking shows that its derivative satis-

fies,
Vs, \) =1 (%s) + (%s) 4 <%s> > 0,

and so ¢ is increasing with respect to s. In addition

— N -
£1_I>I(l)¢($a>\) - X? sli}r?o ¢(3> )‘) = 00, (689)
and, )
P(s,\) > s, for all s > 0. (6.90)

On the other hand, the derivative with respect to \ is ﬂf\(s,)\) =
2 )\ B
(%) (0 (NS) < 0, and so 7 is decreasing in A while,

lim (s, \) = oo, lim (s, \) = s. (6.91)

A—0 A—00

Set now ¥ the k—th iterate of ¢) with respect to the first argument,

PE(s,0) = h o (s, 0) = 0 (0W(s,0),4), kEN,  (6.92)
where ) = zﬂ and “o” means composition. By computing the deriva-
tive with respect to \ it follows that ¢(*) is decreasing in A\. Moreover,

a combination of (6.89)) and (6.91)) yields,
lim ¢ (5, \) = o0, lim ®) (s, \) = s. (6.93)
A—0 A—00

Therefore, for every n € N, we can find a unique solution A\ = A\, > 0

to the equation, .
D™ (a,\) =b. (6.94)
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Setting 0y = a and
0; = (01, \) = 0D (00, \),  i=1,...,n, (6.95)

it follows that {6;}o<i<n satisfy (6.82) and the Dirichlet conditions. In
fact,
AR A,

)

A
0 = 0519 (5051
To deal with the Robin case, we consider the functions,

_ Nt + min {1, 8, } _ min {1, B}tV "1 + 1
%1(75): N __ ) %1(75): N __ )
t 1 t 1
(6.96)
where ¢ > 1. Their inverses ¢; € C'(0,00) and satisfy 9/(s) < 0
together with (6.88)), i = 1,2. Corresponding functions,

~ A
Vi(s,A\) = sy (NS) , 1=1,2,
fulfill properties (6.89)) to (6.91]) with the exception that in the case of

1, first limit in (6.89) reads,

~ N
lir% YPo(s,\) = min {1, BQ}X

Now, instead of 9™ we consider the family of iterations 127(3 ), defined
as,

~7(5)(87 /\) = 1;2 o @Z(n_l) o 1;1(37 )‘)a
where, for instance ™1 o ¢y (s,\) = " D(y(s,A),\). For com-
pleteness we fix the special cases 1/37%) = 4y, 127(-3) = 1)y 0 9.
Then, the function @ZNJ% ) also verifies the limit conditions . There
fore, the unique solution A = A\, to

Ui (a,\) = b,
together with the values 6; = 1/;1(a,)\n), 0, = ~7(é)(s,)\n), 2<i<n

provide us the desired solution in the Robin option.

Finally, observe that the Neumann case is included in the Robin one.
In fact it is enough with employing just the functions v; in where
the coefficients ; are taken zero. This finishes the proof.

0

Monotonicity of the sequence A, and its diverging character is the
next step.

Lemma 23. The sequence {\,} obtained in Lemma |29 is increasing
and tends to oco.
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Proof. To show the increasing character of \, first consider the Dirich-
let case and observe that implies that,

DU (5,0) = 90" (5,0),A) > (s, A).
Since,
P (a, A1) < 0 (a, Apia) = b,
and ¢ (a, \) decreases in \ then the equality ¢/ (a, \,) = b entails
An < Ani1 as desired. For both the Robin and Neumann cases it is
enough with replacing ¢ with @/}% ) (see the proof of Lemma .
Regarding the limit A\, — oo, we take n > 3 and go back to ((6.82])

to get,
N

O — 0¥, = 10N+ 0]
and deduce,

N 0;
0, —0,_1 = —q(t), =" 6.97
L= 1ol T (697

for i = 2,...,n — 1, where function g is defined as,
N1
g(t) i t>1.

TNST N2 4 10 =

Notice now that g is increasing and so g(t) > g(1) = 2. Thus, it
follows that

2
91'—02‘,12)\—”, 7,22,,71—1
Adding all these inequalities, we deduce the estimate
2
b—a> )\—(n—2), (6.98)
from where the result follows. O

Our final partial achievement is assertion v) of Theorem [20]

Lemma 24. Let A\, be the sequence of values introduced in Lemma[23.
Then, the following asymptotic estimates hold true as n — oo,

2n

An = P + o(1), (Dirichlet), (6.99)
An = % +o(1), (Neumann), (6.100)

and,
o= A= DABAB gy (Robin).  (6.101)
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Proof. For our proposals in this proof we are writing ; = 0,,; to stress
the dependence of 6; on n. By setting A0, ; = 0,, — 0,,-1 equation
(6.97)) is expressed as,

Agnzz_ tn’iv tni: : 5 2<1<n-—1.
ki Ang( 7) ) en,l_l —_— —

2
Since A, — oo then Af,; — 0, t,,; — 1 and g (t,.;) — N as n — oo.

We now write,

n—1 n—1

2(n—2) N 2
Y oA > =
2 On,i N T 2 (g (tn.i) N) :

N & 2 —2 2
)\—n 2 <g (tn,i) — N)' < N(n - ) max g (tn,z) [
N(b— 2
< umam g(tn:) — —=| =0, as n — oo, (6.102)
2 ’ N
where inequality (6.98]) has been used. Thus,
n—1
2(n — 2
Z A, = % +o(1), as n — 00. (6.103)
i=2 "

Put now 0,0 = a, 0,,, = b. By using the same argument we find in
the Dirichlet case,

4 1 4
Al AO,., = — — ) =— 1 104
b 8= k() = 4o, (6100
as n — 0o. Such computations applied to the Robin case yield,
2 1 2
Al 1+ A0, = W—l—o (A_> - ww(n. (6.105)

The Dirichlet estimate is obtained from,

b—a= En: AQW,
1=1

together with (6.103]) and (6.104). The Robin estimate (6.101)) follows
by replacing the later estimate by (6.105)). Finally, Neumann estimate

(6.100)) is just the Robin one with g, =0, =1, 2. 0

We are now in a position to address a full proof of Theorem
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Proof of Theorem [20. We analyze each boundary condition separately.

A) Dirichlet and Robin problems. By regarding (;, i = 1,2, as positive
parameters in the Robin condition we are handling both problems at
the same time.

Let (v, w) be an arbitrary nontrivial solution to system (6.79)) corre-
sponding to a certain A > 0 such that v satisfies condition ({6.80). Then
v(a+) # 0 (see Lemma and v can be normalized so as v(a+) = 1.

Assume that (v, w) satisfies the Robin condition at » = a. Then
w(a) = min{l, 3} while the differential equation for w (Definition
and the sign of v both entail that w(r) < min{l,5} < 1 near
r = a. Keeping in mind Lemma [9] it follows that a is the endpoint of
a connected component (a, ;) of the set {|w| < 1} where v(r) = ap
with ap = 1. In particular w solves,

N -1

w' = — W A, w(a) =min {1, 5}, (6.106)

and so,
Aa” + Na¥min{1,5,} A
et —r

NprN-1 N

w(r)

in this interval (a, 6,).
Assuming now that 6; = b, two options are possible. The first one is
w(b) # —min {1, B}, then the boundary condition does not hold and

so A can not be an eigenvalue. On the contrary, if w(b) = —min {1, 55},
then A\ defines an eigenvalue since (v, w) with v(r) = 1 fulfills all the
required conditions to be a solution. In this case, w(b) = —min {1, S5}

implies that,

bYImin {1, B2} + @ 'min {1, 5}
BN _ N

A =N > 0.
This is the expression for the first eigenvalue which coincides with the
Cheeger constant of the annulus A as min {3y, o} > 1 (Dirichlet prob-
lem).

As a further remark, from the decreasing character of w(r) in (a, 0;)
and w(f;) = —min {1, 52} < 0, function w vanishes at a point o, €
(a,6;) which verifies,

Na™¥~'min {1, 3, }

oV —alN

A=

Suppose next that ; < b. Then w(#;) = —1 and so w(6;) and oy
have different signs. Moreover, it holds

MY — NOYH = Xa® + Na™'min {1, 5, }. (6.107)
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N
Since the right hand side is positive, it follows that 6; > % As

a consequence, we are showing that v can not jump to zero at any
01 < r < b. In fact, assume on the contrary that » > 6; exists such
that v(r—) # 0 and v(r+) = 0. Condition (6.80]) evaluated at r implies,

No(r)] = Afp(r—)| =~ =1

o(r+) = v(r=)l,

so that r = % < 01 which is not possible.

N
As a further implication of #; > R functions w'(r) and v(6;+) have

opposite signs for r > 6; near 6,. Since w(f;) = —1 then necessarily
v(01+) < 0 and then there must exist a component (6y,6s) of the
set {|w| < 1} where v = a4, a negative constant. Its value can be
computed by means of which implies

N -1

1

Ao | = Mag| = —

lag — ag .

To continue the reasoning we consider the problem (|6.106)) with ini-
tial value w(f;) = —1 and —A replaced by A in the equation for w. Its
solution in the interval (6, 6s) is,

NN 4+ NoYE A

+ =r.

w(r) = NpN—1 N

Suppose 0 = b, then \ is an eigenvalue only when w(b) = min {1, 82}.
Since in this case w(#;) = —1 also holds then,

oM min {1, B} + 67 " N@{\Pl + a1 min {1, 3, }
bN — oY B ON — aN
Thus A = Ay > A\; (Lemmas and . Actually, A = Xy is an

eigenvalue. To see this, by setting,

. Qp, r e (a,@l],
'U(T)— { aq, r e (91,()),

A=N

then (v, w) solves (6.79). In fact, we are checking that all the conditions
of Definition |[17| hold true. Function v € BV (a,b) and by hypothesis
w € WhH(a,b) with |w| < 1. Since v’ is trivial except at r = 6y, the
identity |v'| = (w,v’) only must be checked at this point. Notice that
v’ is negative owing to be v decreasing at r = ¢;. Hence, w(6;) = —1
implies

(w, ")y = =" L0 = [V|Lby,
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where ‘" means restriction. On the other hand, it is enough to define
. 1, (CL 91)
’7(7") B { -1, (917 )7
to get yv = |v| and that equation —w’ — ¥=1w = Ay holds. Regarding
the boundary conditions, w(a) = min{1, ﬂl}s1gn (o) = min{1, 5}
and w(b) = —min{l,ﬁz}sign (y) = min{1, 5y}. Finally, condition
(6.80) must only be checked at 6; and at this point it follows from the
definition of «;.
Observe that w vanishes at the point r = o9 € (01, 65) given by the

identity,
gy

N N

Assume next that 6, < b. Our previous argument can be recursively
applied. A sequence of components (6;,0;41) of the set {|w| < 1} is
successively adjoined to (6, 62) in the interval (a,b). Function v = ay,
a; # 0, in every interval (6;,0;11) with a;w(0;41) < 0, w(6;)w(b;11) =
—1 whenever 6;,; < b. On the other hand, w is a Lipschitz function
from the start with a constant L provided by the estimate,

N -1 N —
+ A<

A:

1
lw'| < +A=1L.

a
Thus,
2 =|w(li1) —w(0)| < L(Oiy1 — 0:),

which implies 0;,1 — 6; > 2/L. Therefore, our recursive process ends
at some 6,, = b after a finite number of steps and we face a dichotomy.
Either,

w(b) # —min {1, 55} sign (v(b—)),

and \ is not an eigenvalue, or either w(b) = —min {1, 82} sign (v(b—)).
This latter case entails the existence of n — 1 values a < 6; < --- <
0,1 < b =0, such that,

)= Nbelmin{l,ﬁz} + Q,le__ B 9N e~ 1mm{l b1}
9N 1 9N—1
—N# 2<i<n-—1, (6.108)
9 _ 6]\11 Y - - ) .

where the fact that a,,_3w(6,_1) > 0 has been employed to manage the
boundary condition. According to Lemma [22] A = A, and the couple
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FIGURE 3. Profiles of the solution (v,, w,) corresponding
to p = 1.01 and frequency values A = 1 and A = 5.

(v, w) provides us an associated Robin eigenfunction by setting,

n
v= ZaFlX(@—L@i]: 1 <1< n,
i=1

where X(g,_, 0, stands for the characteristic function of the interval
(0;_1,6;]. In fact, a careful checking in the line of the previous argu-
ments shows that (v, w) is an eigenfunction to A, and that assertions
in points i) to ) of the statement of Theorem [20| are satisfied. We
omite the details.

B) Neumann problem. As pointed out in Proposition A =0 is the
first eigenvalue whose normalized eigenfunction is v = 1. The analysis
of the other positive eigenvalues A is performed as in the previous cases
by setting values §; = 0, ¢ = 1,2 in the argument. Actually, this only
affects to the initial and final step of the iterative process.
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This completes the proof. O

Remark 11. It is worth noting that parameter A somehow plays the
role of a “frequency” in equation (6.79). The higher its value is, the
greater the number of oscillations exhibited in the interval (a,b) by
both components of a solution (v, w) which satisfies condition (6.80)).
Figure [3|shows a numerical simulation of the solution (v,,w,) of (3.22)
with the initial conditions and values for N and $; chosen in Remark
O Value of p has been taken as 1.01 while those for A were set 1 and
5 respectively.
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