
Statistical Inverse Analysis for a Network Microsimulator

G. Molina M.J. Bayarri J.O. Berger
Duke University University of Valencia Duke University

Abstract

CORSIM is a large microsimulator for vehicular traffic, and is being studied
with respect to its ability to successfully model and predict behavior of traffic in
a 36 block section of Chicago. Inputs to the simulator include information about
street configuration, driver behavior, traffic light timing, turning probabilities at each
corner and distributions of traffic ingress into the system.

Data is available concerning the turning proportions in the actual neighborhood,
as well as counts as to vehicular input into the system and internal system counts,
during a day in May, 2000. Some of the data is accurate (video recordings), but
some is quite inaccurate (observer counts of vehicles). Previous utilization of the
full data set was to ‘tune’ the parameters of CORSIM – in an ad hoc fashion – until
CORSIM output was reasonably close to the actual data. This common approach, of
simply tuning a complex computer model to real data, can result in poor parameter
choices and will completely ignore the often considerable uncertainty remaining in
the parameters.

To overcome these problems, we adopt a Bayesian approach, together with a
measurement error model for the inaccurate data, to derive the posterior distribution
of turning probabilities and of the parameters of the CORSIM input distribution.
This posterior distribution can then be used to initialize runs of CORSIM, yielding
outputs that reflect that actual uncertainty in the analysis.

Computation must be via Markov Chain Monte Carlo methodology, but this
is not feasible because of the expense in running CORSIM. Hence we develop a
fast approximation to CORSIM that can be used directly to carry out the MCMC
analysis. The resulting MCMC has some novel features that should be useful in
dealing with general discrete network structures.

Key words and phrases. CORSIM; Microsimulator; Tuning; Networks; MCMC;
Fast Model Approximation.

1. Introduction

A central problem in the use of complex computer models is the calibration or inverse problem

- that of determining model parameters or inputs based on field data (i.e., data from the real

process being modeled). This is often done by an informal process of ‘tuning,’ whereby the

parameters or inputs are adjusted until the model output seems to ‘fit’ the data.

There are several problems with such tuning. First, it is common to over-tune some param-

eters while under-tuning others; indeed, there is often an identifiability problem that allows the

1

model to be tuned in many ways. Second, tuning ignores the often considerable uncertainty

that exists in the tuned parameters or inputs, resulting in a potentially severe overestimation

of the accuracy of model output. Third, tuning can mask the model biases that actually exist,

and lead to models that are much less accurate outside the range of the observed field data.

An attractive solution to this problem is to employ Bayesian analysis to determine the

posterior distribution of model parameters or inputs, given the observed field data. The resulting

distribution will reflect the actual uncertainty in the parameters or inputs, and will be more

resistant to over-tuning.

The chief obstacle to the Bayesian approach is computational. It is typically necessary to

obtain the posterior distribution by Markov chain Monte Carlo (MCMC) methods, and this

can require thousands of model runs – not feasible for many complex computer models. This

difficulty can sometimes be addressed by the creation of a fast simulator that mimics the relevant

features of the model in regards to the relationship between data and inputs, and which can be

analyzed directly. We give an example in this paper, involving a traffic microsimulator discussed

in Subsection 1.1. The resulting MCMC has a number of novel features that should be useful

in the analysis of a variety of discrete networks.

1.1. Traffic Simulation

The microsimulator CORSIM (US Federal Highway administration, 1997) is a computer model

of street and highway traffic. It represents individual vehicles (hence the name microsimulator),

which enter the road network at random times, move according to local interaction rules de-

scribing governing phenomena, such as vehicle following and lane changing, and turn (or not) at

intersections according to prescribed probabilities. There is inherent randomness in CORSIM:

vehicles arrive at random and move randomly, albeit with rather simplified governing distribu-

tions. In the example we study, vehicles are assumed to enter the system at a given location

with exponential inter-arrival times.

CORSIM is currently in wide use as the platform for a variety of traffic management and

research purposes. One of these (Sacks et al., 2000) is measuring the performance of traffic

signal timing plans (in cooperation with the Chicago Department of Transportation). The

traffic network studied is depicted in Figure 1, and consists of a 29-intersection neighborhood in

Chicago. Of specific interest will be use of CORSIM to model and analyze traffic in this network

during the “rush hour” period (on a normal day).

Of interest in this paper are two of the most significant (unknown) inputs to CORSIM: (i)

demand and (ii) turning probabilities. Demand consists of parameters λ that determine the

numbers of vehicles that enter the system from external streets, while the turning probabilities,

P , refer to the probabilities that a vehicle turns right, turns left, or goes through a given

2

Figure 1: The Chicago traffic network being modeled by CORSIM. Intersections for which
vehicles enter or leave the network are indicated by letters, while internal intersections are
labelled by numbers. The dashed inner area is that for which video vehicle counts are available.
At the other intersections, only observer counts are available.

intersection. Demand and turning probabilities are street and intersection specific, so that λ, is

actually a vector of 16 numbers (relating to vehicular inputs to the network at intersections A

through I, K,M,O,Q,R,T and U), while P is an 84-dimensional vector of turning probabilities at

the various internal intersections. These must be determined from observational data, consisting

of counts, C (many subject to considerable error), made on the real-world traffic network. The

available data is further discussed in Section 2.1.

1.2. Inferential Focus

The basic problem we consider is the statistical inverse problem of using the field data, C, to

determine the inputs, λ and P , to the simulator; this is key before the simulator can be used to

investigate possible changes to the traffic network. In the past, this has been done by tuning,

as discussed in the introduction. However, there are very considerable uncertainties in the data,

and these must be accounted for in the analysis.

In principle, the Bayesian approach allows accomplishment of this goal. One views the

(random) simulator output as a probability distribution, given λ and P , and relates this to the

3

actual observations C through a measurement error model. Specifying a prior distribution for λ

and P then allows use of Bayes theorem to obtain their posterior distribution, given the data C,

to be denoted by π(λ,P | C). This distribution automatically incorporates all the uncertainty

in the simulator inputs λ and P . The challenge of determining π(λ,P | C) is discussed in the

next section.

Uncertainty in simulator predictions can then be assessed by treating π(λ,P | C) as the

“random input distribution” for the simulator, and making repeated runs of the simulator,

initialized by draws from this distribution. This is not significantly more expensive than running

the basic simulator in our situation; it is, in any case a stochastic simulator so its predictions

can only be ascertained through repeated runs, and starting each run with λ and P chosen from

π(λ,P | C) is virtually as cheap as starting each run with λ and P fixed.

As an illustration of the importance of incorporating this uncertainty in the initialization

of CORSIM, Figure 2 presents the distribution of a key output feature of CORSIM, the total

queueing time of vehicles in the network. ‘Tuned CORSIM’ refers to this output distribution

when the tuned version of CORSIM was used. ‘Bayes CORSIM’ refers to use of the Bayesian

posterior input distribution to CORSIM. Clearly the distribution when the uncertainty in inputs

is acknowledged is markedly more diffuse, and could lead to very different policy decisions. This

thus provides dramatic evidence of the dangers of simply tuning a model and then directly

utilizing the tuned model.

1.3. The Fast Simulator

A single run of CORSIM, on a typical PC platform and in the setting discussed in Section 1.1,

typically takes 2 to 3 minutes. While much faster than many complex computer models, this

is still too slow to use the simulator directly to obtain π(λ,P | C). The reason is that the

only available method for direct determination of the posterior is the Markov chain Monte Carlo

(MCMC) approach (see, for instance, Chen et al., 2000, Robert and Casella, 1999). In our

problem, however, there are upwards of 200 unknown and highly dependent parameters under

analysis, and 2-3 minute simulator run-times will not allow an MCMC analysis in a situation of

such complexity.

We proceed, therefore, by creating a simpler stochastic network that mimics the traffic

simulator, with respect to the key features λ and P under study. This simpler network omits

many other features of CORSIM, such as vehicle waiting times, but is arguably accurate in terms

of its representation of the effect of λ and P . One can then determine the posterior distribution,

π∗(λ,P | C), of λ and P in the simpler network, and use this as the approximate posterior for

CORSIM.

4

180 200 220 240 260 280 300

0.
00

0.
02

0.
04

0.
06

0.
08

System queueing time

de
ns

ity

Internal Stochastic variability only

Internal variability + Uncertainty in inputs

Figure 2: The density of total queueing time for ‘tuned’ CORSIM and Bayes CORSIM.

1.4. Related Literature

There is a substantial body of literature on analysis of network microsimulators that utilize

Origin-Destination (OD) vehicular data. Verdi (1996) presents a maximum likelihood analysis

for such a network, and Tebaldi and West (1997) provide a Bayesian implementation. An

extensive survey of papers on OD estimation can be found in Abrahamsson (1998). Dynamic

minute-to-minute analysis of traffic flows can be found in Tebaldi, West and Karr (2002).

CORSIM is not an OD microsimulator. Cars do not choose among possible routes to arrive

at a given destination. Instead, they move randomly in the network according to turning prob-

abilities that are intersection-specific until they leave the network at any of the possible (not

prespecified) destinations. It is important to note that, at each intersection, cars in CORSIM

decide their turning movements ignoring the history of previous movements/routes. While this

type of microsimulator is not useful for certain purposes (e.g., determining how long real vehicles

take to pass through the system), it is fine for many other purposes (e.g., estimating congestion,

effect of traffic lights, etc.), and can be ‘tuned’ with considerably less data than is required for

5

the OD microsimulators.

The analysis here differs from previous formal analyses in (i) the focus on determining the

needed inputs (λ,P) for CORSIM, (ii) the size and computational complexity of the network

considered, which require significant innovations in the MCMC analysis; and (iii) the (crucial)

incorporation of measurement error into the analysis of the data.

2. Data and Measurement Error

2.1. The Observed Vehicle Counts

We identify each intersection in the Chicago Network (Figure 1) with numbers. Intersections at

which vehicles enter or leave the network are indicated by letters. The right part of the network

will be repeatedly used for demonstration. It is shown in Figure 3 and it consists of intersections

1 through 8. All movements in and out of intersections 6,7,8 are recorded in video. Intersections

I through N will also be needed to identify inputs to (demands) and outputs from the system.

In what follows, this subnet will be denoted simply by RN (Restricted Network)

In the following notation, the subindices refer to a number or a letter identifying an inter-

section. A dot will indicate summation over the corresponding index.

The data, C, is a vector of counts of vehicles. Let Cijk denote the (observed) count of

vehicles at intersection j (any of the 29 intersections), arriving from intersection i and going

to intersection k. Thus, for instance C348 is the count of vehicles arriving at intersection 4

from intersection 3, and turning right towards intersection 8. It is also convenient to define

Cij• =
∑

k Cijk; this represents the total observed number of vehicles entering intersection j

from intersection i. The counts fall into three classes of data:

Demand counts:

These are counts, made over a one-hour period, by observers placed on the streets entering

the traffic neighborhood in Figure 1, and correspond to certain of the Cij• above. In particular,

if i denotes an outside node (identified with a letter in our net), then the Cij• are the observed

demand counts entering the system from external node i. Thus, for instance, CM4• are the cars

entering the system from M and into node 4. (Notice that, in this network, there is only one

input to the system from any of the external nodes; thus the 4 in CM4• is actually superfluous,

but will be retained for notational consistency.) Some of these observer counts are suspected of

being quite inaccurate, with errors potentially as high as 50%. We represent all these counts by

CD, and let

ID = {set of indices corresponding to external input (demand) nodes}; (2.1)

6

Figure 3: The restricted network (RN) used for illustration. It consists of the rightmost part of
the network in Figure 1.

hence, CD = {Cij•, for i ∈ ID}. For example, if one only considered RN, ID would consist of

I,K,M and 5 (which will be considered an external node for the purposes of illustration in the

RN), and CD = {CI1•, CK2•, CM4•, C51•}.

Video counts:

At the intersections in Figure 1 that lie within the central dashed rectangle, video cameras

were placed that recorded all vehicles passing through the intersection over the one-hour period.

The recordings were later analyzed to exactly determine the numbers of vehicles that go left,

right and through at each of these intersections. We denote these intersections by I V , so that

IV = {set of indices in the video area}, (2.2)

and we denote the corresponding counts by CV . These counts can be treated as exact.

Turning counts:

These are counts, made by observers over shorter time intervals (typically between 10 and

20 minutes), of the numbers of vehicles that go left, right and through at each intersection not

7

in the inside (video) area. We represent all these counts by CT , and let

IT = {set of indices of intersections with manual turning counts}. (2.3)

Also, for every intersection j (either in IT or IV), define the ancestors of node j, Aj , as

Aj = {indices i such that cars can go from i to j }, (2.4)

and, for each i in Aj , define the descendants of the link i j, Dij , as

Dij = {indices k such that the route ijk is possible}. (2.5)

Then CT = {Cijk, for j ∈ IT , i ∈ Aj, k ∈ Dij}. For example, in RN, IT = {1, 2, 3, 4} and, for

instance, A2 = {1,K}, DK2 = {6, 3}; CT = (CI1J , CI12, C51J , C512, C126, C123, CK26, CK23,

C23L, C234, C73L, C734, C348, C34N , CM48, CM4N).

2.2. Latent Counts and Measurement Error

Key basic elements of the stochastic network are numbers Nijk that correspond to the true

numbers of vehicles passing through the traffic network for the entire observational time period;

these are defined using the same notational convention as that for the Cijk. Note, however,

that the turning counts were defined over shorter time intervals than the other counts, and the

corresponding true numbers of vehicles for these shorter periods will be denoted by Ñijk. Also

define Ñ
T

as the collection of Ñijk for j ∈ IT .

Measurement error for demand counts:

We model the Cij•, from the streets entering the traffic neighborhood (i ∈ ID), as arising

from a Poisson distribution with mean bij Nij•, where bij > 0 and bij − 1 is the unknown mean

proportional bias of the observer count. Thus

Cij•| bij , Nij• ∼ Po(Cij• | bij Nij•), for i ∈ ID.

Recalling that CD is the vector of these incoming Cij•, letting ND and b denote the corre-

sponding vectors of Nij• and bij, and assuming that the counts Cij• are independent, we have

thus specified the density for the demand counts

f1(C
D | ND, b) =

∏

i∈ID

Po(Cij• | bij Nij•). (2.6)

A key feature of this measurement error model is that the variance is proportional to the

8

true latent vehicle count, a reasonable assumption. Also, there is only one parameter bij at each

location (recall that the j index is superfluous for demands), helpful since information about

the biases is quite limited (and indirect). A variety of other error models were considered (e.g.,

discrete normal with a variety of heteroscedastic variance structures), but the simple Poisson

model seemed most effective in explaining the data.

Assumption for video counts and turning counts:

We will assume that the counts obtained from the video cameras and the manually collected

turning counts are exact, i.e., have no measurement error. Thus we assume that CV = NV and

CT = Ñ
T
. This is essentially correct for the video counts, but is considerably more questionable

for the turning counts. Indeed, for the turning counts, this assumption is primarily made for

pragmatic reasons, including the following:

• It is not unreasonable to assume that the biases at a given intersection for the various

turning movements are the same, so that the observed turning proportions would be es-

sentially correct. Any systematic bias would then only affect the posterior variances, a

considerably less influential error.

• Because of the short time period (at most twenty minutes) over which the turning counts

were obtained, the data will naturally lead to comparatively vague posterior distributions

on the turning probabilities, so it is not so compelling to introduce additional measurement

error.

• There is not enough data to effectively estimate numerous turning probability biases, and

the stability of the resulting MCMC would be in question if this were attempted.

3. Analysis Using CORSIM

We first discuss the analysis that had previously been performed with the data using CORSIM,

based on ad hoc tuning. Then we discuss a potential full Bayesian analysis, to clarify the diffi-

culty that is involved and set the stage for the need for the network approximation implemented

in Section 4.

3.1. Adhoc Analysis

The traditional way of ‘fitting’ complex computer models involves some type of tuning of the

parameters of the models, based on the data. For CORSIM and the data described above,

this was done in two stages. The first stage consisted of a trial and error process of adjusting

the manual counts until they seemed to be roughly compatible with the counts from the video

9

data. These ‘adjusted counts’ were then used to fit the parameters λ and P , partly by moment

methods and partly by trial-and-error using CORSIM runs. As an example, the triangles in

Figure 4 indicate the resulting estimates for two of the λij .

As mentioned in the introduction, ad hoc tuning has several deficiencies. Primary among

them are that it can lead to inferior estimates, and that it does not readily allow assessment

of the uncertainty that exists in the parameter estimates, typically leading to considerable

overconfidence in use of the model. One potential method for overcoming these deficiencies is

to implement a Bayesian approach.

3.2. A Full Bayesian Analysis

A Bayesian analysis requires the likelihood, a prior distribution for unknown parameters, and

computational ability to deal with the posterior distribution. The first two are, in principle,

available here.

The CORSIM likelihood:

CORSIM is a stochastic microsimulator so that, even with fixed initial parameter values

(λ,P), it will produce random outputs. Of interest here are the latent (true) vehicle counts at

each link. We will denote by fC(NV ,ND,NT , Ñ
T
| λ,P) the density, given λ and P , of these

latent counts arising as random outputs from CORSIM. Note that this density is not available

in closed form, and can only be estimated by repeatedly running the microsimulator and using

some density estimation methodology.

Recall that the data consists of the video, demand and turning counts, C V , CD, and CT ,

respectively. The measurement error density for the demand counts, given N D, was defined in

(2.6). We also made the assumptions that CV = NV and CT = Ñ
T
, so that we can write the

CORSIM likelihood of the data as

fC(CV ,ND,NT ,CT | λ,P) f1(C
D | ND, b). (3.7)

The prior distribution:

We must specify the prior distributions for λ, P , and b. We (independently) utilize the

standard objective prior distributions λ
−1/2

ij , i ∈ ID, for the Poisson means and assign the

turning probabilities, for a given Pij, the Jeffreys prior proportional to
∏

k∈Dij
P

−1/2

ijk (where,

of course,
∑

k∈Dij
Pijk = 1); the resulting joint density is then

πC(λ,P) =
(∏

i∈ID
λ
−1/2

ij

)(∏
j∈IT∪IV , i∈Aj , k∈Dij

P
−1/2

ijk

)
. (3.8)

10

We model the bij as being i.i.d. from a Gamma(α, β) distribution, with α and β having a

constant prior distribution on the region 0 < α < 2β (so that the mean bias is restricted to be

less than 100%, a rather mild restriction). This joint prior density is thus

π1(b, α, β) =
∏

i∈ID
Ga(bij |α, β)10<α<2β . (3.9)

Posterior computation:

The posterior distribution is simply proportional to the product of the likelihood and the

priors defined above. Note that this is not available analytically, nor are any full conditional

posterior distributions available. Hence the only realistic method of proceeding would be to do

an MCMC analysis based on some variant of a Metropolis-Hastings scheme. Any such scheme

requires, at each iteration, computation of fC . Since this density is itself not available analyt-

ically, it would have to be estimated (at given values of the parameters) by making repeated

(typically hundreds or thousands) of runs of CORSIM. At 2 to 3 minutes per run, this means

that several hours (or days) would be required to make one Metropolis iteration. Since we have

a very high dimensional parameter space (with highly dependent parameters), it is apparent

that this type of analysis is not going to be implementable, especially on a routine basis, for

traffic networks. This motivates the development of the fast network approximation in the next

section.

4. Development and Analysis of the Simulator Approximation

Since fC(CV ,ND,NT ,CT | λ,P) is not readily computable, we develop a computable approxi-

mation which can be viewed as creating a stochastic simulator or stochastic network (see Cowell,

et al., 1999) that approximates the key features of the density of the latent counts. The key

idea behind the approximation is to assume that cars pass through the network instantaneously,

but have the same input rates and turning probabilities as CORSIM itself. This, of course,

misses many details of CORSIM having to do with waiting times, etc., but is a plausible ap-

proximation to the actual distribution of vehicle counts. Note that we are trying to approximate

CORSIM in its steady state, so that elimination of the transit times should not strongly affect

the distribution of vehicle counts.

For this instantaneous version of CORSIM, the corresponding approximation to the joint

distribution fC(CV ,ND,NT ,CT | λ,P) can be factored as follows:

f2(N
D | λ) f3(C

T | ND,NT) f4(C
V ,NT | ND,P). (4.10)

This is justified below, and the form of each of these densities is derived.

11

Density f2(N
D | λ) for demand:

Vehicles enter the CORSIM network randomly from ‘outside,’ with exponential inter-arrival

rates λij . Since Nij•, for i ∈ ID, is the number of vehicles arising from the exponential inter-

arrival rate λij over a one-hour period, it is Poisson with mean λij:

Nij•|λij ∼ Po(Nij• | λij) for i ∈ ID.

In the ‘instantaneous’ version of CORSIM that we are employing, the entering vehicles are

independent of anything else in the system (and of each other), and hence we have that

f2(N
D | λ) =

∏

i∈ID

Po(Nij• | λij), (4.11)

where recall that ND refers to the vector of incoming Nij•, for i ∈ ID, and λ is the vector of

the λij for i ∈ ID.

Density of f3(C
T | ND,NT) for turning counts:

Recall that Ñijk is the number of vehicles that travel from i to j to k over the ‘short’

period of time. Denote by Ñ ij the vector with components Ñijk for k ∈ Dij . The distribution

of Ñ ij given all the relevant Nijk’s (and the rest of parameters) depends only on the N ’s,

specifically, on the total number of vehicles arriving to j from i in the short period of time

(Ñij• =
∑

k∈Dij
Ñijk), the total number arriving in the 1-hour total period (Nij• =

∑
k∈Dij

Nijk),

and the number among these going to the different directions (to be similarly denoted by N ij).

Under stationarity, the distribution of Ñ ij is a multivariate hypergeometric distribution with

parameters Nij•,N ij and Ñij•. This can be approximated by a multinomial distribution with

parameters Ñij• and probabilities N ij/Nij•. Finally, since the numbers Nijk are large in our

study, we can approximate Nijk/Nij• ≈ Pijk, the true proportion of vehicles going to k from the

link ij. Therefore:

Ñ ij | ND,NT ≈ Mul (Ñ ij | P ij, Ñij•).

Equating Ñijk = Cijk for j ∈ IT (see the end of Subsection 2.2.), and noticing that Ñij• = Cij•

is the observed sum of the vehicles going to the different directions from j, and hence is known,

we can conclude that

f3(C
T | ND,NT) ≈

∏

j∈IT , i∈Aj

Mul(C ij | P ij, Cij•). (4.12)

Density of f4(N
V ,NT | ND,P) for the link vehicle totals:

CORSIM specifies that vehicles turn at intersections independently, which we thus also

12

assume in the instantaneous model. A single vehicle approaching intersection j ∈ I T ∪ IV (i.e.,

those intersections other than the input nodes) will thus turn (or go straight) according to the

Mul (Pij , 1) distribution. Since the vehicles are independent, these multinomial densities for

each vehicle at each intersection can simply be multiplied to obtain the joint density of a single

realization of all vehicles passing through the system, given the initialization, N D, of vehicles

entering the system.

To determine the density of N T , given ND and P , one simply counts up the number

of ways vehicles can pass through the system to yield a given N T . At intersection j, with

Nij• =
∑

k∈Dij
Nijk being the number of vehicles entering from i, the number of ways that the

vehicles can result in turning (or straight) numbers Nijk is simply the corresponding multinomial

coefficient. Taking the product of these multinomial coefficients over all intersections, completes

the density specification. Interestingly, this density is thus proportional to the density of the

product of individual multinomial distributions at each intersection, i.e., letting N ij denote the

vector with components Nijk with k ∈ Dij , it is the product of the densities

Nij | Pij ∼ Mul (Nij | Pij , Nij•) for j ∈ IT ∪ IV , i ∈ Aj .

It is important to realize that there are numerous constraints among the Nijk and Nij• in the

network approximation. For instance, the total number of vehicles entering an intersection is

equal to the number leaving the intersection. Thus the actual density of the vehicle numbers is

the product of the above multinomials, but with the constraints inserted. Furthermore (and of

crucial effect), the video counts lead to known values of some of the N•jk (for j ∈ IV) and some

of the Nij• (for i ∈ IV), and these known values induce other constraints. Letting N denote the

region implied by all these constraints, and 1N denote the indicator function on this region, the

final density of the link and turning numbers is

f4(N
V ,NT | ND,P) ∝

∏

j∈IT∪IV , i∈Aj

Mul (Nij | Pij, Nij•) 1N . (4.13)

The handling of these constraints and the systematic identification of the region N is deferred

to Subsection 5.1.

The posterior distribution:

By Bayes theorem, the posterior distribution π∗(NV , NT , ND,λ,P, b, α, β | C), of all

unknowns given the data C, is simply proportional to the product of the likelihood and the

prior, i.e.

f1(C
D | ND, b)f2(N

D | λ)f3(C
T | ND,NT)f4(N

V ,NT | ND,P)πC(λ,P)π1(b, α, β),

13

where the distributions are given in (2.6), (4.11), (4.12), (4.13), (3.8), and (3.9), respectively.

Although π(λ ,P, b, α, β) was improper, it can be shown that this posterior distribution is

proper.

5. MCMC Computation

The chief difficulty in the analysis is dealing with the constraints specified by 1N . Indeed, the

most important step in the computation is to effect a reparameterization of the Nijk so that

unneeded variables are eliminated and the constraints take a simple form. Indeed, we were

unsure that an effective MCMC analysis could be implemented here, until a scheme for carrying

out this reparameterization was found. (In principle, one could simply numerically compute the

constraint at each step of the MCMC procedure via linear programming, but this would be too

time consuming because of the large number of iterations that are needed.)

5.1. Reparameterization: Handling the Restrictions

There are four types of restrictions to be imposed on the posterior distribution:

R1. Turning probability restrictions. The turning probabilities at any intersection must add up

to one. This can easily be introduced in the likelihood by expressing one of the P ’s in

terms of the other(s) at each intersection.

R2. Nonnegativity restrictions. Every count must be a nonnegative integer. This trivial restric-

tion becomes essential when sampling the N ’s in the MCMC.

R3. Physical restrictions. In the instantaneous model, the total number of cars entering a link

coming from any intersection must equal the number of cars in that link. Therefore for

any j, k, we have that N•jk =
∑

i Nijk. Similarly Nij• =
∑

k Nijk. Note that Nij• = N•ij .

R4. Video restrictions. All of the N•jk and Nij• in the video zone of the fast simulator are

observed and hence impose restrictions on the non-observed N ’s. Thus, for example, it

was recorded that the number of cars going from intersection 4 to intersection 8 is 740.

Hence, N•48 = 740 = N348 + NM48.

Although restrictions R1 and R2 are easy to handle, restrictions R3 and R4 are not. Com-

bined, they form a set of linear equations where the number of unknowns is larger than the

number of equations. For instance, in the small network (see Figure 3), the restrictions (R3 and

R4) are as follows:

14

physical restrictions

N12• = NI12 + N51• − N51J

N23• = N123 + NK2• − NK26

N34• = N234 + N73• − N73L

video restrictions

N•26 = NK26 + N12• − N123

N•48 = NM48 + N34• − N34N . (5.14)

In general, the m restrictions R3 and R4 define a set of m linear equations in the N ’s, with k

(m < k) unknown variables, and m known (one for each equation). We write this set in matrix

form as follows:

Γ N = Λ, (5.15)

where Γ is a m × k matrix of {-1,0,1} coefficients associated with the restrictions, N is a k × 1

vector of unknowns, and Λ is an m × 1 vector of known (observed) values. For instance, in the

small network (RN), the physical and video restrictions (5.14) have m = 5, k = 13, and can be

written in the form (5.15) with

Γ =




1 −1 1 0 0 0 0 0 0 0 0 −1 0

0 0 0 1 −1 1 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 −1 1 0 0 0 0

−1 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 −1 1 0 0




,

N = (N12•, NI12, N51J , NK26, N123, N23•, N34•, N234, N73L, NM48, N34N , N51•, NK2•)
′ ,

Λ = (0, 0, N73•,−N•26,−N•48)
′ .

The proposed reparameterization is then as follows: find any m×m non-singular partition Γ∗

of Γ (guaranteed to exist because of the nontriviality of the restrictions). For any such partition

there exists a matrix R (the remaining columns of Γ not in Γ∗) such that we can rewrite (5.15)

as Γ∗N∗ + RNR = Λ. Then

N∗ = (Γ∗)−1Λ − (Γ∗)−1RNR (5.16)

provides the required reparameterization. Note that neither Γ∗ nor N∗ are typically unique.

An easy way to find Γ∗ is to compute the reduced echelon form of the matrix Γ and select

the m columns that span its column space. In RN, it is formed by the columns 1,2,4,7 and 8.

15

After the reparameterization, one can proceed by Gibbs sampling (see Chen et al., 2000,

Robert and Casella, 1999). The full conditional distributions of the λij , Pij, b, and β are

Gamma, Dirichlet, Gamma and restricted Gamma, respectively, with easily specified parameters

(see the Appendix). The full conditional density of α is log-concave and so can be sampled by

straightforward rejection sampling.

The full conditionals of the various N have no simple form, but are discrete distributions over

specified ranges. While, in principle, they can thus be directly sampled, in practice this can only

be done effectively after two further innovations. First a method for determining the constraints

must be found which is considerably faster than straight linear programming. Second, it is

far from trivial to find legitimate starting values for the latent vehicle numbers in the MCMC.

Indeed, this is related to solution of a system of restricted diophantine linear equations, which

has an extensive literature in mathematics and computer sciences. The details are given in the

appendix.

5.2. Utilizing the MCMC output

The output of the MCMC analysis is a large sample of (dependent) realizations from the posterior

distribution. For use in CORSIM, one thus simply records this sample of (λ,P), and uses

the sample directly as the input values for the exercise of CORSIM. In practice, only a few

hundred values of the (λ,P) vectors will typically be utilized in a CORSIM prediction, whereas

the MCMC runs will typically result in, say, 100,000 realizations of (λ,P) (because of the

considerable dependence between iterations of the MCMC). Hence, one need typically only

save, say, every 500th realization of (λ,P) from the MCMC run; the resulting 200 realizations

will then also be much less dependent, desirable when used as the inputs for CORSIM. For an

indication of the extent of mixing in the Markov chain, refer to Figure 4, where two typical plots

of the MCMC runs are given. The mixing is clearly somewhat slow, but seems adequate for the

situation.

Figure 2 already indicated the type of primary use of this MCMC output. It is interesting,

however, to look at certain other aspects of the posterior, to illustrate various points that have

been made in the article.

Figure 4 presents histograms of posterior values of the λij for two adjacent incoming streets,

along with their fitted values obtained by assuming the observed counts are accurate (indicated

by the vertical lines) and fitted values using the adhoc ‘tuned’ counts (indicated by the triangles).

Note first that the posterior distributions of the λij are considerably shifted from the values that

would have been obtained by fitting to the raw counts. The tuning attempted to correct the

clear bias that was in the data concerning the number of vehicles entering the network, but note

what happened: λF,15 was over-tuned, while λE,20 was under-tuned. As these were adjoining

16

Figure 4: Histograms indicating the posterior densities of two of the λ’s, together with the λ’s
obtained by fitting to the actual data (vertical lines) and tuned data (triangles).

streets, this corrected the most egregious bias problem, but ended up replacing one big problem

by two smaller problems. This is a common occurrence with ad hoc tuning; it is far easier

to manipulate a few parameters to try to correct the apparent major biases, than to jointly

manipulate many parameters to obtain a more refined adjustment, as is done automatically in

the Bayesian approach. (Of course, it is also important that the Bayesian approach indicates

the very considerable uncertainty that exists in these parameters.)

Figure 5 shows the posterior distribution of the biases at four of the input streets in the

network. Here 1 (the vertical lines) would correspond to no bias. While most biases were

positive, indicating (perhaps surprisingly) that the observers mostly over-counted vehicles, some

were negative. Note also that the biases could easily be as high as 50%.

Finally, the posterior distributions of two of the turning probabilities are given in Figure

6. Note that the distributions are quite disperse, partly justifying one of the approximations

discussed in Subsection 2.2.

17

Figure 5: Posterior densities of observer bias at four intersections.

Acknowledgements

Research was supported by the U.S. National Science Foundation, Grants DMS-0073952 and

DMS-0103265, and the Spanish Ministry of Science and Technology, Grant SAF2001-2931. This

research formed part of the first author’s Ph.D. thesis at Duke University.

Appendix: Details of the MCMC Analysis

Full conditional distributions:

The full conditional distributions of P, b, λ and β have closed form expressions. Specifically:

Demand parameters. The λij’s are (conditionally) independent with

λij | rest ∼ Ga(Nij +
1

2
, 1), i ∈ ID. (A.1)

18

Figure 6: Posterior densities of two typical turning probabilities.

Turning probabilities. Let Pij be the vector with components Pijk, for k ∈ Dij. In our net,

the vectors Pij have only two or three components, depending on the intersection. The

components of Pij obviously add to 1. Under independent Jeffrey’s priors, all these vectors

are (conditionally) independent. The full conditionals are of the form:

Pij | rest ∼ Dir(NijL + CijL +
1

2
, NijT + CijT +

1

2
, NijR + CijR +

1

2
), (A.2)

where T,R and L refer to Through, Left and Right turns of cars travelling from i to j

(Dij). When only two-choice intersections are involved, these Dirichlets become betas. P

is an 84-dimensional vector. Its joint full conditional distribution factors into the product

of 32 Dirichlet and 20 beta distributions. Of course the N’s in these expressions are the

values after the reparametrization discussed in Subsection 5.1.

Bias parameters. Each bias parameter has a (conditionally) independent full conditional of the

19

form:

bij | rest ∼ Ga(Cij• + α,Nij• + β), i ∈ ID.

Scale parameter. The full conditional of the scale parameter is simply a restricted Gamma. The

full conditional for the shape parameter is log-concave, and thus is also easily sampled:

β | rest ∼ Ga(dα + 1,
∑

i∈ID

bij)1β> α
2

,

α | rest ∝ (Γ(α))−dβαd(
∏

i∈ID

bij)
α10<α<2β ,

where d=dim(ID).

Latent vehicle numbers. The full conditional distributions of latent demand Nij• and turning

Nijk true counts are discrete, and hence, in principle, easily sampled by the inverse cdf

method. However, several difficulties are encountered.

After incorporating the restrictions on the N ’s in (4.13), the typical form of these full

conditionals is a ratio of products of factorial terms in various of the N ’s with an additional

multiplicative term of the form h(p)N :

Nijk | rest ∼

∏
s Gs∏
t Gt

h(p)Nijk , (A.3)

where s and t are the sets of all gamma functions Gs and Gt in the numerator and

denominator, respectively, that, after reparametrization of the posterior, contain the latent

count Nijk. For example, in the restricted net RN, the full conditional of NI12 is

NI12 | rest ∝
G1 G2

G3 G4 G5 G6

(
PI12P123(1 − P234)

(1 − PI12)

)NI12

,

where G1 = Γ(NK2• + NI12 + N51• − N51J − N•26 + 1), G2 = Γ(NI12 + N51• − N51J + 1),

G3 = Γ(NI1•−NI12+1), G4 = Γ(NI12+1), G5 = Γ(NK26+NI12+N51•−N51J −N•26+1),

and G6 = Γ(NK2• + NI12 + N51• − N51J − N•26 − N234 + 1).

The full conditionals in (A.3) are only defined over the set of integers for which every ar-

gument of the gamma functions is nonnegative. (This was the big advantage of performing

the reparameterization to eliminate the other restriction, leaving only nonnegativity re-

strictions.) Still, the domain over which (A.3) is defined depends on the values of the other

N ’s and, hence, it is iteration-dependent. Solving the system of inequalities defined by

the positivity of the arguments with brute force linear programming would be rather time

consuming – especially for the full network, which has 90 N ’s (after reparametrization) –

20

since it has to be done for each iteration. Luckily, since the reparameterization of the N ’s

preserved the linearity of the argument in each gamma function, there is a systematic way

to obtain this range. It is given by the following algorithm:

Step 1. For the argument in the gamma function Gi, determine whether N has a positive

or negative sign and go to Step 2 or Step 3 accordingly.

Step 2. If N has a negative sign, define Si = {0, . . . , ni}, where ni is such that Gi evaluated

at N = ni (all the other N ’s held constant) is 1 (i.e., the argument of the gamma

function is 1).

Step 3. If N has positive sign, define Si = {ni, . . . ,∞}, where ni is defined as in Step 2.

Step 4. Once Steps 1 to 3 have been done for all Gi in the full conditional, define the

support of N as the intersection of all Si

S =
⋂

i

Si. (A.4)

In the restricted net RN, this algorithm produces, for the example (NI12) given before,

S1 = { (−NK2• − N51• + N51J + N•26) , ∞ }, S2 = { (−N51• − N51J) , ∞ }, S3 =

{ 0 , NI1• }, S4 = { 0 ,∞ }, S5 = { (−NK26 − N51• + N51J + N•26) , ∞ }, and

S6 = { (−NK2• − N51• + N51J + N•26 + N234) , ∞ }, and the range of NI12 in a specific

iteration would be

S =

6⋂

i=1

Si = {max(0, N•26−NK26+N51J−N51•, N234+N•26+N51J−N51•−NK2•) , NI1• }

This algorithm always produces the required range because the linearity of the restrictions

in N, after the reparametrization (5.16), guarantees a linear functional form of the argu-

ments of the gamma functions (only one intercept with the x-axis for these arguments).

It is much more efficient than brute force linear programming, because it only requires

a single evaluation per iteration of the sampler and per parameter N . Moreover, if the

support in the previous iteration was non-empty, then the support in the current iteration

will be non-empty.

Starting values for the MCMC:

For most of the parameters, choice of the starting values presents no problem. MLE’s for

the λ and P, bij = 1, and α = β = 0.8 provide good initial choices.

The difficult initialization is the choice of the N ’s, since one must have a compatible choice

of all 90 parameters, i.e., a choice which is in the intersection of all Si. This appears to require

21

finding a solution to a system of restricted diophantine linear equations, a problem that has

an extensive literature in mathematics and computer science. Our case is simpler than the

general case, however, in that the observed input counts are also unknown, so we can choose

their starting values high enough to ensure a solution. Here is the algorithm we use to obtain a

starting value.

For all N’s before reparametrization:

Step 1. If an output video count is taken between j and k (k ∈ IV), assign to Nijk and Nij• (for

i ∈ ID) the observed video count (C•jk).

Step 2. If an input video count is taken between j and k (j ∈ IV), assign to Nijk the observed

video count C•jk.

Step 3. Transmit the values of the remaining observed inputs to any non-video exit.

Step 4. Set any remaining N ’s to zero.

References

[1] Abrahamsson, Torgil. (1998), Estimation of Origin-Destination Matrices using Traffic
Counts - A Literature Survey, IIASA Interim Report IR-98-021/May.

[2] Chen, M.H., Shao, Q.M. and Ibrahim, J.G. (2000), Monte Carlo Methods in Bayesian
Computation, New York: Springer-Verlag.

[3] Cowell, R.G., Dawid, A.P., Lauritzen, S.L. and Spiegelhalter, D.J. (1999), Probabilistic
Networks and Expert Systems, New York: Springer-Verlag.

[4] Robert, C.P. and Casella, G. (1999), Monte Carlo Statistical Methods, New York: Springer-
Verlag.

[5] Tebaldi, C. and West. M. (1997), Bayesian Inference on Network Traffic using Link Count
Data (with discussion), Journal of the American Statistical Association, 93, 557-576.

[6] Tebaldi, C., West, M. and Karr, A.F. (2002), Statistical Analyses of Freeway Traffic Flows,
Journal of Forecasting, 21, pp. 39-68.

[7] Sacks, J., Rouphail, N.M., Park, B., and Thakuriah, P. (2000), “Statistically-based val-
idation of computer simulation models in traffic operations and management,” Technical
Report 112, National Institute of Statistical Sciences (US).

[8] US Federal Highway Administration (1997), “CORSIM User’s Manual”, FHWA, US. De-
partment of Transportation Office of Safety and Traffic Operation R&D, Intelligent Systems
and Technology Division, McLean, VA.

[9] Vardi, Y. (1996), Network Tomography: Estimating Source-Destination Traffic Intensities
from Link Data, Journal of the American Statistical Association, 91, 365-377.

22

