
A Scatter Search Algorithm for Project Scheduling under
Partially Renewable Resources

R. Alvarez-Valdes † , E. Crespo ‡ , J.M. Tamarit † , F. Villa §

† University of Valencia, Department of Statistics and Operations Research, Burjassot,
Valencia, Spain

‡ University of Valencia. Department of Mathematics for Economics and Business,
Valencia, Spain

§Florida Universitaria, Valencia, Spain
1

Abstract

In this paper we develop a heuristic algorithm, based on Scatter Search, for
project scheduling problems under partially renewable resources. This new type
of resource can be viewed as a generalization of renewable and non-renewable re-
sources, and is very helpful in modelling conditions that do no fit into classical
models, but which appear in real timetabling and labor scheduling problems. The
Scatter Search algorithm is tested on existing test instances and obtains the best
results known so far.

Keywords: Project management and scheduling; Partially renewable resources;
Heuristics; Scatter Search

1 Introduction

Project scheduling consists of determining the starting and finishing times of the
set of activities in a project. These activities are linked by precedence relations and
their processing requires one or more resources. If the availability of these resources
can be considered unlimited, the problem is satisfactorily solved by PERT-CPM[8, 17]
techniques, in use from the early 1950’s. However, most real problems involve severely
constrained resources. In this case, we talk of Resource-Constrained Project Scheduling
Problems (RCPSP). The now classic RCPSP basically includes two types of resources:
renewable resources, in which the availability of each resource is renewed at each period
of the planning horizon, and non-renewable resources, whose availability are given at
the beginning of the project and which are consumed throughout the processing of
the activities requiring them (see the book by Demeulemeester and Herroelen[5] for
a state-of-the-art description of RCPSP models and algorithms). Nevertheless, these
basic types of resources cannot accommodate many real situations and some other
types of resources have been proposed, as in the case of allocatable resources[11, 16]
and cumulative resources[12, 13].

1Email addresses: ramon.alvarez@uv.es, enric.crespo@uv.es, jose.tamarit@uv.es, fvilla@florida-uni.es

1

In this paper we consider partially renewable resources, another new type of resource
introduced by Böttcher et al.[2] in 1999. The availability of a partially renewable re-
source is associated to a subset of periods in the planning horizon and the activities
requiring the resource only consume it if they are processed within these periods. This
type of resource can be a powerful tool for solving project scheduling problems. On the
one hand, from a theoretical point of view, they include renewable and non-renewable
resources as particular cases. In fact, a renewable resource can be considered as a set of
partially renewable resources, each one with an associated subset of periods consisting
of exactly one period. Non-renewable resources are partially renewable resources where
the associated subset is the whole planning horizon. On the other hand, partially renew-
able resources make it possible to model complicated labor regulations and timetabling
constraints, therefore allowing us to approach many labor scheduling and timetabling
problems as special cases of project scheduling problems.

Böttcher et al.[2] proposed an integer formulation and developed exact and heuristic
algorithms. Schirmer[15] studied this new type of resources thoroughly in his book on
project scheduling problems. He presented many examples of special conditions which
can be suitably modelled using partially renewable resources. He also proposed several
families of approximate algorithms for solving the RCPSP/π. Alvarez-Valdes et al.[1]
developed GRASP and Path Relinking algorithms.

In this paper we describe some preprocessing techniques and develop a new heuris-
tic algorithm for project scheduling under partially renewable resources. Preprocessing
reduces the dimension of the problems in terms of resources and possible finishing times
for the activities in the project, therefore improving the efficiency of the algorithms. A
heuristic algorithm, based on Scatter Search, is then developed and tested on existing
test instances. In Section 2 the elements of the problem are defined and an integer
formulation provided. Section 3 contains the preprocessing routines. In Section 4 we
develop the Scatter Search algorithm. Section 5 is devoted to the computational expe-
rience and Section 6 to conclusions and future lines of research.

2 Formulation of the problem

The RCPSP/π can be defined as follows: Let J be the set of n = |J | activities,
numbered from 1 to n, where dummy activities 1 and n represent the beginning and end
of the project. Let Pj be the set of activities which are immediate predecessors of activity
j and P ′

j the set of all predecessors of j. Each activity j has a duration of dj and cannot
be interrupted. Let R be the set of partially renewable resources. Each resource r ∈ R
has a total availability Kr and an associated set of periods Πr. An activity j requiring
resource r will consume kjr units of it at each period t ∈ Πr in which it is processed.
Finally, let T be the last period of the planning horizon in which all the activities must
be processed. For each activity j we obtain the earliest and latest finishing times, EFTj ,
LFTj , by critical path analysis. We denote Ej = {EFTj ,, LFTj}, the set of possible
finishing times, and Qjt = {t, ..., t + dj − 1}.

The RCPSP/π consists of sequencing the activities so that the precedence and re-

2

source constraints are satisfied and the makespan is minimized.
If we define the variables:

xjt =

{

1 if activity j finishes at time t

0 otherwise.

the problem can be formulated as follows:

Min
∑

t∈En

txnt (1)

s.t.
∑

t∈Ej

xjt = 1 j ∈ J (2)

∑

t∈Ei

txit ≤
∑

t∈Ej

(t − dj)xjt j ∈ J, i ∈ Pj (3)

∑

j∈J

kjr

∑

t∈Πr

∑

q∈Qjt

⋂

Ej

xjq ≤ Kr r ∈ R (4)

xjt ∈ {0, 1} j ∈ J, t ∈ Ej (5)

The objective function (1) minimizes the finishing time of the last activity and
hence the makespan of the project. Constraints (2) ensure that each activity finishes
once. Constraints (3) are the precedence constraints and constraints (4) the resource
constraints. Note that unlike the problem with renewable resources in which there is a
constraint for each resource and each period, in this problem there is only one global
constraint for each resource r ∈ R. Another special characteristic of this problem is
that all the activities must finish inside a closed interval Ej , because sets Πr are defined
inside the planning horizon (0, T). Therefore, the existence of feasible solutions is not
guaranteed. In fact, Schirmer[15] has shown that the feasibility variant of the RCPSP/π
is NP-complete in the strong sense.

The above formulation is called the normalized formulation by Böttcher et al. [2] and
Schimer[15]. Alternative formulations are considered in their papers, but they finally
adopt the normalized formulation due to its simplicity.

3 Preprocessing

Preprocessing has two objectives. First, helping to decide whether a given instance
is unfeasible or if it has feasible solutions. If the latter is the case, a second objective
is to reduce the number of possible finishing times of the activities and the number of
resources. If these two objectives are satisfactorily achieved, the solution procedures
will not waste time trying to solve unfeasible problems and will concentrate their efforts
on the relevant elements of the problem.

The preprocessing we have developed includes several procedures:

3

Identifying trivial problems

If the solution in which the finishing time of each activity i is set to EFTi is
resource-feasible, then it is optimal.

Reducing the planning horizon

For each instance, we are given a planning horizon (0, T). This value T plays an
important role in the problem formulation. The latest finishing times of the activities,
LFTj , are calculated starting from T in a backward recursion. Therefore, the lower
the value T , the fewer variables the problem will have. In order to reduce T , we try to
build a feasible solution for the given instance using the GRASP algorithm, which will be
briefly described later. The GRASP iterative process stops as soon as a feasible solution
is obtained, or after 200 iterations. The new value T is updated to the makespan of the
feasible solution obtained. If no feasible solution is found, T is unchanged.

If the makespan of the solution is equal to the length of the critical path in the
precedence graph, this initial solution is optimal.

Eliminating idle resources

Each resource r ∈ R is consumed only if the activities requiring it are processed in
periods t ∈ Πr. Each activity can only be processed in a finite interval. It is therefore
possible that no activity requiring the resource r can be processed in any period of Πr.
In this case, the resource is idle and can be eliminated. More precisely, if we denote the
possible processing times of activity j by PPTj = {EFTj − dj + 1, .., EFTj , .., LFTj}
and ∀j ∈ J such that krj > 0 : Πr

⋂

PPTj = ∅, the resource r ∈ R is idle and can be
eliminated.

Eliminating non-scarce resources

Schirmer[15] distinguishes between scarce and non-scarce resources. He considers a
resource r ∈ R as scarce if

∑

j∈J kjrdj > Kr, that is, if an upper bound on the maxi-
mum resource consumption exceeds resource availability. In this case, the upper bound
is computed by supposing that all the activities requiring the resource are processed
completely inside Πr.

We have refined this idea by taking into account the precedence constraints.
Specifically, we calculate an upper bound on the maximal consumption of resource r by
solving the following linear problem:

4

Max
∑

j∈J

kjr

∑

t∈Πr

∑

q∈Qjt

⋂

Ej

xjq (6)

s.t.
∑

t∈Ej

xjt = 1 j ∈ J (7)

T
∑

m=t

xim +

t+dj−1
∑

s=1

xjs ≤ 1 j ∈ J, i ∈ Pj , t ≤ T (8)

xjt ≥ 0 j ∈ J , t ∈ Ej (9)

The objective function (6) maximizes the resource consumption over the whole
project. Constraints (7) ensure that each activity finishes once. Constraints (8) are
the precedence constraints. We use this expression, introduced by Christofides et al.[4],
because it is more efficient than the usual precedence constraint. In fact, this linear
problem has the integrality condition and its optimal solution is always integer [3]. If
the solution value is not greater than the resource availability, this resource will not
cause any conflict and can be skipped in the solution process.

A filter for variables based on resources

For each activity j and each possible finishing time t ∈ Ej , we compute a lower
bound LBrjt on the consumption of each resource r if activity j finishes at time t. We
first consider the resource consumption of activity j when finishing at that time t and
then we add the minimum consumption of each other activity in the project. For each
activity i not linked with j by precedence constraints the minimum is calculated over
all the periods in Ei. For an activity k which is a predecessor or successor of j, the
set Ek is reduced taking into account that j is finishing at time t. If for some resource
r, LBrjt > Kr, time t is not feasible for activity j to finish in and the corresponding
variable xjt is set to 0.

When this filter is applied to an activity j some of its possible finishing times
can be eliminated. From then on, the set of possible finishing times is no longer Ej . We
denote by PFTj the set of finishing times passing the filter.

This filter is applied iteratively. After a first run on every activity and every fin-
ishing time, if some of the variables are eliminated the process starts again, but this time
computing LBrjt on the reduced sets. As the minimum are calculated over restricted
subsets, it is possible that new finishing times will fail the test and be eliminated. The
process is repeated until no finishing time is eliminated in a complete run.

Consistency test for finishing times

When the above filter eliminates a finishing time of an activity j, it is possible
that some of the finishing times of its predecessors and successors are no longer feasible.
For an activity j let us denote by τj = max{t | t ∈ PFTj}. Then, for each i ∈ Pj the

5

finishing times t ∈ PFTi such that t > τj − dj can be eliminated. Analogously, let us
denote by γj = min{t | t ∈ PFTj}. Then, for each i successor of j the finishing times
t ∈ PFTi such that t < γj + di can also be eliminated.

This test is also applied iteratively until no more finishing times are eliminated.
If, after applying these two procedures for reducing variables, an activity j has PFTj =
∅, the problem is unfeasible. If the makespan of the initial solution built by GRASP
equals the minimum finishing time of the last activity n, then this solution is optimal.

4 Scatter Search algorithm

A Scatter Search algorithm is an approximate procedure in which an initial pop-
ulation of feasible solutions is built and then the elements of specific subsets of that
population are systematically combined to produce new feasible solutions which will
hopefully improve the best known solution (see the book by Laguna and Marti[10] for
a comprehensive description of the algorihm). The basic algorithmic scheme is then
composed of 5 steps:

1. Generation and improvement of solutions

2. Construction of the Reference Set

3. Subset selection

4. Combination procedure

5. Update of the Reference Set

This basic algorithm stops when the Reference Set cannot be updated and then no
new solutions are available for the combination procedure. However, the scheme can
be enhanced by adding a new step in which the Reference Set is regenerated and new
combinations are possible. The next subsections describe each step of the algorithm in
detail.

4.1 Generation and improvement of solutions

The initial population is generated by using a simplified version of the GRASP algo-
rithm developed by Alvarez-Valdes et al.[1]. Here we provide a brief description, while
the complete details can be found in [1]. GRASP is an iterative process combining a
constructive phase and an improvement phase. The construction phase builds a solu-
tion step by step, adding elements to a partial solution. The element to add is selected
according to a greedy function which is dynamically adapted as the solution is built.
However, the selection is not deterministic, but subjected to a randomization process.
Hence, when we repeat the process we can obtain different solutions. When a feasible
solution has been built, its neighborhood is explored in a local search phase until a local

6

optimum is found. Therefore, the two phases of GRASP correspond to the generation
and improvement of feasible solutions required at the first step of Scatter Search.

The constructive phase

We have adapted the Serial Scheduling Scheme (SSS) proposed by Schirmer[15],
which in turn is an adaptation of the Serial Scheduling Scheme commonly used for
the classical RCPSP. We denote by FTj the finishing time assigned to activity j. At
each stage of the iterative procedure an activity is scheduled by choosing from among
the current set of decisions, pairs (j, t) of an activity j and a possible finishing time
t ∈ PFTj . The selection is based on a randomized priority rule.

Step 0. Initialization

s = 1 (stage counter)

FT1 = 0 (sequencing dummy activity 1)

S1 = {1} (partial schedule at stage 1)

EL1= set of eligible activities, activities for which 1 is the only predecessor

Step 1. Constructing the set of decisions

Ds = {(j, t) | j ∈ ELs , t ∈ PFTj}

Step 2. Choosing the decision

Select a decision (j∗, t∗) in Ds, according to a randomized priority rule

Step 3. Feasibility test

If (j∗, t∗) is resource-feasible, go to Step 4

Else

Ds = Ds \ {(j
∗, t∗)}

If Ds = ∅, call the Repairing Mechanism

If a feasible decision (j∗, t∗) is found for scheduling j∗ ∈ ELs, go to Step 4

Otherwise, STOP. The algorithm does not find feasible solution

Else, go to Step 2

Step 4. Update

s = s + 1

FTj∗ = t∗

Ss = Ss−1 ∪ {j∗}

ELs = (ELs−1 \ {j
∗}) ∪ {j ∈ J |Pj ⊆ Ss}

∀l ∈ J | j ∈ Pl : PFTl = PFTl \ {τ | t∗ + dl > τ}

7

If s = n, STOP. The schedule is completed.

Else, go to Step 2.

At Step 1, the construction of Ds could have included the feasibility test of Step
3, as in Schirmer’s[15] original scheme. However, we have preferred not to check the
resource availability of every decision but only check the decision already chosen. In
problems with a large number of possible finishing times for the activities, this strategy
is more efficient.

In order to select the priority rule we have tested the 32 priority rules used by
Schirmer[15]. The first 8 are based on the network structure, including classical rules
such as EFT, LFT, SPT or MINSLK. The other 24 rules are based on resource utiliza-
tion. 12 of them use all the resources and the other 12 only the scarce resources. A
preliminary computational experience led us to choose rule LFT as the most adequate
in terms of speed and solution quality. These preliminary results also showed that even
with the best performing rules the deterministic constructive algorithm, in which at
each step the decision with highest priority value is selected, failed to obtain a feasi-
ble solution for many of the instances of 10 activities generated by Böttcher et al.[2].
Therefore, the objective of the randomization procedure included in the algorithm was
not only to produce diverse solutions, but to ensure that for most of the problems the
algorithm would obtain a feasible solution.

We introduce a randomization procedure for selecting the decision at Step 2. Let sjt

be the score of decision (j, t) on the priority rule and smax = max{sjt|(j, t) ∈ Ds}, and
let δ be a parameter to be determined (0 < δ < 1). We build a restricted candidate list
S = {(j, t) | sjt ≥ δsmax} and perform a biased selection on S. The decisions involving
the same activity j are given a weight which is inversely proportional to the order of
their finishing times. For instance, if in S we have decisions (2, 4), (2, 5), (2, 7), (2, 8)
involving activity 2 and ordered by increasing finishing times, then decision (2, 4) will
have a weight of 1, decision (2, 5) weight 1/2, decision (2, 7) weight 1/3 and decision
(2, 8) weight 1/4. The same procedure is applied to the decisions corresponding to the
other activities. Therefore, the decisions in S corresponding to the lowest finishing times
of the activities involved will be equally likely and the randomized selection process will
favor them.

The randomization strategy significantly improved the ability of the constructive
algorithm to find feasible solutions for tightly constrained instances. However, a limited
computational experience showed that the constructive algorithm could still not obtain
feasible solutions for all the instances of 10 activities generated by Böttcher et al.[2].
Therefore, we decided to include a repairing mechanism for unfeasible partial schedules.
If at Step 3 all decisions in Dn fail the feasibility test and Dn becomes empty, instead
of stopping the process and starting a new iteration, we try to re-assign some of the
activities already sequenced to other finishing times in order to free some resources that
could be used for one of the unscheduled activities to be processed. If this procedure
succeeds, the constructive process continues. Otherwise, it stops.

8

The improvement phase

Given a feasible solution obtained in the constructive phase, the improvement phase
basically consists of two steps. First, identifying the activities whose finishing times
must be reduced in order to have a new solution with the shortest makespan. These
activities are labelled as critical. Second, moving critical activities to lower finishing
times in such a way that the resulting sequence is feasible according to precedence and
resource constraints. We have designed two types of moves: a simple move, involving
only the critical activity, and a double move in which, apart from the critical activity,
other activities are also moved.

1. Building M , the set of critical activities

Step 0. Initialization

M = {n} (the last activity of the project, n, is always critical)

sn = 1 (activity n has not yet been studied for enlarging M).

Step 1. Adding activities to M

While(∃j ∈ M | sj = 1) {

Take the largest j ∈ M with sj = 1. Set sj = 0

∀i ∈ Pj : If FTi + dj = FTj (there is no slack between i and j)

M = M ∪ {i}

si = 1 }

At Step 1, the condition for including an activity in M simply says that if j
has to be moved to the left, reducing its finishing time, a predecessor i which is
processed immediately before j must also be moved to the left in order to leave
room for moving j. This condition can be refined if we take into account that
the preprocessing filters may have eliminated some possible finishing times of the
activities. If t′j = max{t ∈ PFTj | t

′

j < FTj}, the condition of Step 1 can be
written as: If FTi + dj > t′j , then i is critical.

2. Simple move

We try to move every activity j ∈ M to the left, in topological order, to a new
finishing time, satisfying the precedence and resource constraints. If an activity
cannot be moved, the procedure stops. If there are several possible new finishing
times for an activity, that with minimum global resource consumption is chosen.

3. Double move

The activities in M are considered in topological order for moving to the
left. For each activity j ∈ M , all possible finishing times earlier than its current
finishing time, which satisfy the precedence constraints, are studied. If a new
finishing time t is resource-feasible, j is moved to finish at t and no other activity
needs to be moved. If this is not the case, the other activities in J are considered

9

for moving. An activity i is moved to a new provisional finishing time if this move
offsets the resource violation provoked by moving j or, at least, reduces the deficit.
Therefore, throughout the search in J , a provisional list of changes LC is built
until the solution is repaired or J is exhausted. If the solution is repaired with
the list of changes in LC, those moves are made and a new j ∈ M is considered.
Otherwise, the procedure stops without improving the solution.

The double move can be enhanced in the following way. If we arrive at the end
of J without completely covering the deficit created by moving j, but this deficit is
partially reduced, we can go back and search J again from the beginning, trying to
further reduce or eliminate the remaining deficit. The procedure is more complex
but sometimes offers feasible moves for critical activities.

The three procedures of the improvement phase are run iteratively:

S= current solution

improve = false

do{

Build set M of critical activities

improve=SimpleMove(S, M)

if improve = false

improve=DoubleMove(S, M)

} while (improve = true)

4.2 Generation of the Reference Set

From the initial population, a set of b solutions is selected to form the Reference Set,
S, the set of solutions which will be combined to obtain new solutions. Following the
usual strategy, b1 of them are selected according to a quality criterion: the b1 solutions
with shortest makespans, with ties randomly broken. The remaining b2 = b−b1 solutions
are selected according to a diversity criterion: the solutions are selected one at a time,
each one of them the most diverse from the solutions currently in the Reference Set.
That is, select solution s∗ for which the Mins∈S{dist(s, s∗)} is maximum. The distance
between two solutions s1 and s2 is defined as

dist(s1, s2) =
∑n

i=1
|si

1 − si
2|

where si
j is the finishing time of the i − th activity in solution sj .

4.3 Subset selection

Several combination procedures were developed and tested. Most of them combine
2 solutions, but one of them combines 3 solutions. The first time the combination
procedure is called, all pairs (or trios) of solutions are considered and combined. In

10

the subsequent calls to the combination procedure, when the Reference Set has been
updated and is composed of new and old solutions, only combinations containing at
least one new solution are studied.

4.4 Combining solutions

Eight different combination procedures have been developed. Each solution sj is
represented by the vector of the finishing times of the n activities of the project: sj =
(s1

j , s
2
j , ..., s

n
j). When combining 2 solutions s1 and s2 (or 3 solutions s1, s2 and s3), the

solutions will be ordered by nondecreasing makespan. Therefore, s1 will be a solution
with makespan lower than or equal to the makespan of s2 (and the makespan of s2 will
be lower than or equal to the makespan of s3).

Combination 1

The finishing times of each activity in the new solution, sc, will be a weighted average
of the corresponding finishing times in the two original solutions:

si
c = ⌊

k1s
i
1 + k2s

i
2

k1 + k2

⌋ where k1 = (1/sn
1)2 and k2 = (1/sn

2)2

Combination 2

A crosspoint m ∈ {1, 2, .., n} is taken randomly. The new solution, sc, takes the first
m finishing times from s1. The remaining finishing times m + 1, m + 2, .., n are selected
at random from s1 or s2.

Combination 3

A crosspoint m ∈ {1, 2, .., n} is taken randomly. The new solution, sc, takes the first
m finishing times from s1. The remaining finishing times m + 1, m + 2, .., n are selected
from s1 or s2 with probabilities, p1 and p2, inversely proportional to the square of their
makespan:

p1 =
(1/sn

1)2

(1/sn
1)2 + (1/sn

2)2
and p2 =

(1/sn
2)2

(1/sn
1)2 + (1/sn

2)2

Combination 4

The combination procedure 2 with m = 1. Only the first finishing time is guaranteed
to be taken from s1.

Combination 5

The combination procedure 3 with m = 1. Only the first finishing time is guaranteed
to be taken from s1.

Combination 6

Two crosspoints m1, m2 ∈ {1, 2, .., n} are taken randomly. The new solution, sc,
takes the first m1 finishing times from s1. The finishing times m1 + 1, m1 + 2, .., m2 are
taken from s2 and the finishing times m2 + 1, m2 + 2, .., n are taken from s1.

11

Combination 7

The finishing times of s1 and s2 are taken alternatively to be included in sc. Starting
from the last activity n, sn

c = sn
1 , then sn−1

c = sn−1
2 and so on until completing the

combined solution.

Combination 8

Three solutions s1, s2 and s3 are combined by using a voting procedure. When
deciding the value of si

c, the three solutions vote for their own finishing time si
1, si

2, si
3.

The value with a majority of votes is taken as si
c. If the three values are different, there

is a tie. In that case, if the makespan of s1 is strictly lower than the others, the vote
of quality of s1 imposes its finishing time. Otherwise, if two or three solutions have the
same minimum makespan, the finishing time is chosen at random from among those of
the tied solutions.

si
c =

si
1 if si

1 = si
2

si
2 if si

1 6= si
2 = si

3

si
1 if si

1 6= si
2 6= si

3 and sn
1 < sn

2

random{si
1, s

i
2} if si

1 6= si
2 6= si

3 and sn
1 = sn

2 < sn
3

random{si
1, s

i
2, s

i
3} if si

1 6= si
2 6= si

3 and sn
1 = sn

2 = sn
3

Most of the solutions obtained by the combination procedures do not satisfy all the
resource and precedence constraints. The non-feasible solutions go through a repairing
process that tries to produce feasible solutions as close as possible to the non-feasible
combined solution. This process is composed of two phases. First, the finishing times si

c

are considered in topological order to check if the partial solution (s1
c , s

2
c , .., s

i
c) satisfies

precedence and resource constraints. If that is the case, the next time si+1
c is studied.

Otherwise, si
c is discarded as the finishing time of activity i and a new time is searched for

from among those possible finishing times of i. The search goes from times close to si
c to

times far away from it. As soon as a time ti is found which could be included in a feasible
partial solution (s1

c , s
2
c , .., t

i), the search stops and the next time si+1
c is considered. If

no feasible time is found for activity i, the process goes to the second phase which
consists of a repairing procedure similar to that of the constructive algorithm. This
procedure tries to change the finishing times of previous activities, 2, 3, .., i− 1, in order
to give activity i more chances of finding a finishing time satisfying precedence and
resource constraints. If this repairing mechanism succeeds, the process goes back to the
first phase and the next time si+1

c is considered. Otherwise, the combined solution is
discarded.

4.5 Updating the Reference Set

The combined solutions which were initially feasible and the feasible solutions ob-
tained by the repairing process described above go through the improvement phase in
Section 4.1. The improved solutions are then considered for inclusion in the Reference

12

Set. The Reference Set S is updated according to the quality criterion: the best b so-
lutions from among those currently in S and from those coming from the improvement
phase will form the updated set S.

If the set S is not updated because none of the new solutions qualify, then the
algorithm stops, unless the regeneration of S is included in the algorithmic scheme.

4.6 Regenerating the Reference Set

The regeneration of Reference Set S has two objectives. On the one hand, intro-
ducing diversity into the set, because the way in which S is updated may cause diverse
solutions with high makespans to be quickly substituted by new solutions with lower
makespans but more similar to solutions already in S. On the other hand, obtaining
high quality solutions, even better than those currently in S.

The new solutions are obtained by again applying the GRASP algorithm described
in Section 4.1, with a modification. We take advantage of the information obtained up
to that point about the optimal solution in order to focus the search on high quality
solutions. More precisely, if the best known solution has a makespan sn

best, we set the
planning horizon T = sn

best and run the preprocessing procedures again, reducing the
possible finishing times of the activities. When we run the GRASP algorithm, obtaining
solutions is harder, because only solutions with makespan lower than or equal to sn

best

are allowed, but if the algorithm succeeds we will get high quality solutions.
For the regenerated set S we then consider three sources of solutions: the solutions

obtained by the GRASP algorithm, the solutions currently in S and the solutions in
the initial population. From these solutions, the new set S is formed as described in
Section 4.2. Typically, the b1 quality solutions will come from the solutions obtained
by the GRASP, completed if necessary by the best solutions already in S, while the b2

diverse solutions will come from the initial population.

5 Computational results

5.1 Test instances

Böttcher et al.[2] generated a first set of test instances. Taking as their starting point
PROGEN 2 [9], an instance generator for the classical RCPSP with renewable resources,
they modified and enlarged the set of parameters and generated a set of 2160 instances
with 10 non-dummy activities, 10 replications for each one of the 216 combinations
of parameter values. As most of the problems were unfeasible, they restricted the
parameter values to the 25 most promising combinations and generated 250 instances
of sizes 15, 20, 25, 30 and 60 of non-dummy activities, always keeping the number of
resources to 30.

More recently, Schirmer[15] has developed PROGEN 3, an extension of PROGEN 2,
and has generated some new test instances. He has generated 960 instances of sizes 10,
20 30 and 40, with 30 resources. Most of them have a feasible solution, while a few of
them are unfeasible and some of them are labelled as undecided because a time-limited

13

run of the branch and bound algorithm by Böttcher et al.[2] failed to obtain a feasible
solution. Table 1 shows the status of Schirmer’s problems as reported in [15]

Instance Non-optimally Optimally Feasibly Undecided Proven Total
Set solved solved solved infeasible
J10 39 901 940 11 9 960
J20 203 734 937 23 0 960
J30 181 757 938 22 0 960
J40 183 743 926 34 0 960

Total 606 3135 3741 90 9 3840

Table 1: Test problems generated by Schirmer

5.2 Preprocessing results

The preprocessing procedures in Section 3 have been applied to the Böttcher et al.[2]
problems of 10, 15, 20, 25 and 30, which are available on request from the authors. Dif-
ferent aspects of the results appear in Tables 2, 3 and 4. Table 2 shows the performance
of preprocessing in determining problem status.

n=10 n=15 n=20 n=25 n=30
Problems 2160 250 250 250 250
Detected as impossible 1205 16 17 12 8
Detected as possible 879 233 231 236 239
Undecided 76 1 2 2 3
Actual status Impossible Possible Undecided Impossible Undecided

Table 2: Böttcher et al. problems - Determining the status

The last line of Table 2 shows the status we have been able to determine for the prob-
lems left undecided by the preprocessing procedures. We have tried to solve these in-
stances with CPLEX, using an integer programming formulation of the problem adapted
from that appearing in Section 2. All the 76 undecided instances of size 10 are impos-
sible, the undecided instance of size 15 has solution and the 2 undecided instances of
size 25 are impossible. For the 2 instances of size 20 and the 3 instances of size 30
left undecided by the preprocessing, long time runs of CPLEX failed to obtain even a
feasible integer solution. In summary, we can say that our preprocessing procedures are
very efficient in determining the actual status of a given instance.

Table 3 shows the optimal solutions that the preprocessing obtains. In this Table the
problems left undecided have not been included, because it is highly unlikely that they
have any feasible solution. For more than 70 % of the instances the optimal solutions
are found by preprocessing techniques.

Table 4 presents the reduction in the number of resources and variables for the
problems not solved in preprocessing, for which some other algorithm has to be applied.

14

n=10 n=15 n=20 n=25 n=30
Problems 2160 250 250 250 250
Feasible problems 879 234 231 236 239
Solved to optimality by pre-processing 646 165 177 190 193
Remaining problems 233 67 54 46 46

Table 3: Böttcher et al. problems - Optimal solutions identified in the preprocessing

The fast preprocessing techniques significatively reduce the number of resources to be
taken into account and, more importantly, the number of possible values of the decision
variables.

n=10 n=15 n=20 n=25 n=30
Problems 233 67 54 46 46
Initial resources 30 30 30 30 30
Remaining resources (on average) 18 (60%) 18 (60%) 23 (77%) 25 (83%) 25 (83%)
Initial variables (on average) 90 268 565 874 1314
Remaining variables (on average) 51 (57%) 130 (49%) 348 (62%) 611 (70%) 906 (69%)

Table 4: Böttcher et al. problems - Reductions of resources and variables

Similar results have been obtained for the test problems generated by Schirmer[15].
Table 5 shows the performance of preprocessing, first determining the status of all of
the problems and then providing optimal solutions for many of them. Note that the
status of all the problems left undecided in Schirmer’s book[15] have been determined.
In fact, all of them have been proven to be feasible, except for five instances of size 10
which are impossible. For more than 75 % of the feasible problems, the preprocessing
procedures are able to provide a proven optimal solution.

n=10 n=20 n=30 n=40
Problems 951 960 960 960
Feasible problems 946 960 960 960
Solved to optimality by pre-processing 609 727 796 793
Remaining problems 337 233 164 137

Table 5: Schirmer problems - Optimal solutions identified in the preprocessing

A characteristic of PROGEN 3 is that it tends to produce large values of the planning
horizon T . On the one hand, that favors the existence of feasible solutions. On the other
hand, as the number of possible finishing times of activities depends directly on T , a
very large number of variables are initially defined. Therefore, for this set of problems
the reduction of T described in Section 3 is especially useful.

The reductions in the planning horizon T , together with the procedures for reducing
possible finishing times for the activities, produce dramatic decreases in the final number

15

of variables to be used by solution procedures. Table 6 presents the reductions in the
number of resources and variables obtained by the preprocessing strategies.

n=10 n=20 n=30 n=40
337 problems 233 problems 164 problems 137 problems

Initial resources 30 30 30 30
Remaining resources (average) 15 (50%) 15 (50%) 18 (60%) 16 (53%)
Initial variables (average) 210 965 2287 4255
Remaining variables (average) 101 (48%) 332 (34%) 720 (31%) 1062 (25%)

Table 6: Schirmer problems - Reductions of resources and variables

5.3 Computational results of Scatter Search algorithms

In order to obtain the initial population, the GRASP algorithm is run until 100
different feasible solutions are obtained or the limit of 2000 iterations is reached. From
the initial population, a reference set S of b = 10 solutions is built, with b1 = 5 quality
solutions and b2 = 5 diverse solutions.

The 8 combination procedures described in Section 4.4 have been tested on Schirmer’s
problems and the results appear in Table 7. For each procedure the number of non-
optimal solutions is provided. In this preliminary experience, no regeneration of the
reference set is included.

Combination Non-optimal solutions
procedure n=10 n=20 n=30 n=40 Total

1 3 25 39 61 128
2 3 24 42 61 130
3 2 28 43 61 134
4 4 26 43 57 130
5 2 27 44 56 129
6 3 26 42 59 130
7 6 43 66 80 195
8 3 22 41 61 127

Table 7: Comparison of combination procedures on Schirmer’s problems

Apart from the bad results of procedure 7, Table 7 shows that the other methods
obtain similar results. The reason may lie in the fact that many of the solutions re-
sulting from the combination procedures are unfeasible and must be repaired, and the
repairing procedures may produce similar results for different combined solutions. For
further testing we keep Combinations 1 and 8, which produce the best results and have
completely different structures.

Table 7 also shows that the basic Scatter Search algorithm is very efficient, obtaining
optimal solutions for most of the 3826 feasible Schirmer test instances. Therefore, an

16

additional step in which the reference set is regenerated will only be justified if it helps
to solve the hardest problems, those not solved by the basic algorithm. The regener-
ation procedure described in Section 4.6 depends on three parameters: the number of
iterations of the modified GRASP algorithm, the number of new solutions obtained,
and the number of times the regeneration process is called. We have considered the
following values for these parameters:

1. Number of iterations: 500 - 1000

2. Number of solutions: 20 - 50

3. Calls to regenerate: 3 times - Only when the solution is improved after the last
call to regenerating

We have tested 6 combinations of these parameters on those Schirmer problems not
solved by the the basic algorithm with combination methods 1 or 8. Tables 8 and 9
show the overall results on the remaining 148 problems for Combination procedures 1
and 8 respectively. For each regeneration strategy the Tables present the average and
maximum percentage distances to optimal or best known solutions, because the optimal
solution is not known for 1 instance of size 30 and for 5 instances of size 40. The last
column gives the average running time, in seconds, on a Pentium IV at 2.8 GHz.

Reg Iter. Solutions Regeneration Non-optimal Mean dist. Max. dist. Average
solutions to optimum to optimum time (secs)

0 No regeneration 128 3.19 18.06 35.1
1 500 20 While improving 100 2.17 15.22 66.6
2 1000 20 While improving 94 2.02 15.22 84.5
3 1000 50 While improving 90 1.84 15.22 96.9
4 500 20 3 times 66 1.39 13.04 129.5
5 1000 20 3 times 62 1.30 13.04 172.7
6 1000 50 3 times 60 1.23 15.22 191.3

Table 8: Comparison of regeneration procedures on hard Schirmer problems (Combination
method 1)

If we compare both Tables, line by line, we can see that the regeneration strategies
work better when combined with the Combination procedure 8 in terms of non-optimal
solutions and average distance to optimum, though requiring longer computing times
due to the combination of three solutions at each step. In Table 9 we can see that the
last alternative, Reg 6, obtains very good results, optimally solving more than 50% of
the remaining problems. However, it requires long computing times and, as the number
of calls to regenerate is fixed, it will regenerate the reference set three times, even for
instances for which the basic algorithm had found (though not proved) the optimal
solution. Therefore, for the final computational experience, we also keep the alternative
Reg 1, in which the regeneration procedure is called only while the solution is improved,

17

Reg Iter. Solutions Regenerate Non-optimal Mean dist. Max. dist. Average
solutions to optimum to optimum time (secs)

0 No regeneration 127 3.30 18.06 47.3
1 500 20 While improving 80 1.78 13.04 86.0
2 1000 20 While improving 76 1.66 13.04 111.0
3 1000 50 While improving 73 1.55 13.04 119.6
4 500 20 3 times 62 1.32 13.04 158.4
5 1000 20 3 times 58 1.14 13.04 210.6
6 1000 50 3 times 53 1.10 13.04 225.3

Table 9: Comparison of regeneration procedures on hard Schirmer problems (Combination
method 8

and also restrict the maximum running time to 300 seconds. This time limit, which is
checked only at the end of each phase, will produce a slight deterioration in the overall
results, but the average times will be greatly reduced by cutting the extremely long
running times of some instances.

Tables 10 and 11 show the complete results of the three versions of the Scatter
Search algorithm: Reg 0, Reg 1, Reg 6, and compare them with the GRASP algorithm
of Alvarez-Valdes et al.[1]. Table 10 contains the results on the 3826 feasible Schirmer
instances, while Table 11 presents the results on the 1819 feasible Böttcher et al. prob-
lems. The first part of the Tables shows the average distance to optimal solutions (or
best known solutions, because the optimum is unknown for 6 Schirmer and 15 Böttcher
et al. instances). The second part shows the number of times the best solution does
not match the optimal or best known solution, while the third part shows the average
computing times in seconds. Both Tables show that, while the GRASP algorithm is very
efficient, the Scatter Search procedure with increasingly complex regeneration strategies
can significantly improve the results with a moderate increase in the running times.

6 Conclusions

We have studied a generalization of the classical resource constrained project schedul-
ing problem. A new type of resource is considered, the partially renewable resource,
in which the availability of the resource is associated to a given set of periods and the
activities only consume it when they are processed in these periods. These resources
can be seen as a generalization of renewable and non-renewable resources, but their
main interest comes from their usefulness for modelling complex situations appearing
in timetabling and labor scheduling problems, which can be approached as project
scheduling problems.

We have developed several preprocessing techniques which help to determine the
existence of feasible solutions and to reduce the number of variables and constraints.
We have also designed and implemented heuristic algorithms based on GRASP and
Path Relinking. Preprocessing procedures and heuristic algorithms have been tested

18

Problem Instances Scatter Search Algorithm GRASP
size Regen 0 Regen 1 Regen 6 algorithm

Average deviation from optimal solution

10 946 0.02 0.00 0.00 0.01
20 960 0.09 0.03 0.02 0.07
30 960 0.15 0.09 0.05 0.11
40 960 0.24 0.14 0.10 0.23
Total 3826 0.13 0.07 0.04 0.11

Non-optimal solutions

10 946 3 0 0 2
20 960 22 10 5 19
30 960 41 29 21 34
40 960 61 41 31 53
Total 3826 127 80 57 108

Average running time

10 946 1.1 1.6 2.1 1.0
20 960 1.8 3.4 10.1 0.7
30 960 3.5 5.7 13.8 2.1
40 960 6.6 10.6 20.7 4.4
Total 3826 3.3 5.3 11.7 2.1

Table 10: Comparison of Scatter Search and GRASP algorithms on Schirmer problems

on two sets of instances previously proposed in the literature. They have been able to
determine the feasibility status of many instances which up to that point were undecided
and to solve most of the feasible instances optimally.

We are convinced that the preprocessing techniques developed here should be used
by any solution procedure, exact or heuristic, applied to this problem. Our heuristic
algorithms are also very efficient and can be considered a useful tool for obtaining high
quality solutions for the problem.

Future lines of research will be the development of an exact algorithm and the
design of new heuristic algorithms for problems in which partially renewable resources
are combined with classical renewable resources, as happens in real situations.

Acknowledgements

This work has been partially supported by the Spanish Ministry of Science and
Technology DPI2002-02553, and the Valencian Science and Technology Agency, GRU-
POS03/174.

19

Problem Instances Scatter Search Algorithm GRASP
size Regen 0 Regen 1 Regen 6 algorithm

Average deviation from optimal solution

10 879 0.01 0.01 0.00 0.01
15 234 0.14 0.11 0.11 0.09
20 231 0.33 0.29 0.29 0.33
25 236 0.33 0.33 0.21 0.37
30 239 0.10 0.03 0.06 0.16
Total 1819 0.12 0.10 0.09 0.13

Non-optimal solutions

10 879 1 1 0 2
15 234 6 4 4 3
20 231 8 7 7 8
25 236 7 7 6 9
30 239 6 4 4 6
Total 1819 28 23 21 28

Average running time

10 879 0.5 0.5 0.9 0.2
15 234 1.3 1.6 2.2 1.2
20 231 6.9 7.9 12.7 3.0
25 236 15.9 18.4 24.6 6.8
30 239 16.6 20.0 25.4 9.0
Total 1819 5.5 6.5 8.9 2.7

Table 11: Comparison of Scatter Search and GRASP algorithms on Böttcher et al. problems

References

[1] R. Alvarez-Valdes, E. Crespo, J.M. Tamarit, F. Villa, GRASP and Path Relink-
ing for Project Scheduling under Partially Renewable Resources, Technical Report
2004-10, Department of Statistics and Operations Research, University of Valencia,
Spain.

[2] J. Böttcher, A. Drexl, R. Kolish, F. Salewski, Project Scheduling Under Partially
Renewable Resource Constraints, Management Science 45 (1999) 544-559.

[3] S. Chaudhuri, R.A. Walker, J.E. Mitchell, Analyzing and exploiting the structure of
the constraints in the ILP approach to the scheduling problem, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 2 (1994) 456-471.

[4] N. Christofides, R. Alvarez-Valdes, J.M. Tamarit, Project scheduling with resource
constraints: a branch and bound approach, European Journal of Operational Re-
search 29 (1987) 262-273.

[5] E.L. Demeulemeester, W.S. Herroelen, Project Scheduling: A Research Handbook,
Kluwer Academic Publishers, Boston, 2002.

20

[6] A. Drexl, R. Nissen, J.H. Patterson, F. Salewski, ProGen/πx - An instance gener-
ator for resource-constrained project scheduling problems with partially renewable
resources and further extensions, European Journal of Operational Research 125
(2000) 59-72.

[7] P. Festa, M.G.C. Resende, GRASP: An annotated bibliography, in: M.G.C. Re-
sende, P. Hansen (Eds.), Essays and Surveys in Metaheuristics, Kluwer Academic
Press, Boston, 2001, pp. 325-367.

[8] J.E. Kelley, Critical path planning and scheduling: Mathematical basis, Operations
Research 9 (1961) 296-320.

[9] R.Kolish, A. Sprecher, A. Drexl, Characterization and generation of a general
class of resource-constrained project scheduling problems, Management Science 41
(1995) 1693-1703.

[10] M.Laguna, R.Marti, Scatter Search, Kluwer Academic Publishers, Boston, 2004.

[11] C. Mellentien, C. Schwindt, N. Trautmann, Scheduling the factory pick-up of new
cars, OR Spectrum (2004), in press.

[12] K. Neumann, C. Schwindt, N. Trautmann, Advanced production scheduling for
batch plants in process industries, OR Spectrum 24 (2002) 251-279.

[13] K. Neumann, C. Schwindt, N. Trautmann, Scheduling of continuous and discon-
tinuous material flows with intermediate storage restrictions, European Journal of
Operational Research (2004), in press.

[14] M.G.C. Resende, C.C. Ribeiro, Greedy Randomized Adaptive Search Procedures,
in: F. Glover, G. Kochenberger (Eds.), State-of-the-art Handbook in Meteheuris-
tics, Kluwer Academic Press, Boston, 2001, pp. 219-250.

[15] A. Schirmer, Project Scheduling with Scarce Resources, Verlag Dr. Kovac, Ham-
burg, 2000.

[16] C. Schwindt, N. Trautmann, Scheduling the production of rolling ingots: indus-
trial context, model and solution method, International Transactions in Operations
Research 10 (2000) 547-563.

[17] J.D. Wiest, F.K. Levy, A management guide to PERT/CPM, Prentice-Hall, En-
glewood Cliffs, New Jersey, 1976.

21

