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Abstract. The performance of any meta–heuristic algorithm is closely
related to the fine-tuning of its parameters. For many algorithms there
are no optimum set of parameters for all the instances of a given prob-
lem. Instead, fine-tuning phase works on the average performance over a
selected set of instances. We propose a new algorithm framework, named
A–B–Domain, that works as follows: a dominion where each point refers
to a feasible set of parameters is constructed, for a given set of parame-
ters fitness is computed by running a first algorithm, denoted as B, on
the selected instance; a second algorithm, denoted as A, is used to check
the most promising set of parameters. This A − B − Domain scheme
performs well on all the instances where B performs well on at least one
set of parameters. In this paper we develop the PSO−ACS −Domain
example and improve its efficiency by implementing results from a sta-
tistical research.

1 Introduction

Heuristic algorithms were the first non-optimal approach to compute reasonable
good solutions for NP-hard problems. Meta-Heuristic (MH) algorithms are the
most developed form of heuristics. To develop a MH algorithm there are three
phases: design, programming and fine-tuning (FT ). As a short review of the first
two phases see [4] and [13].
The last phase is considered the most time consuming of all, and it is mainly
interested on finding the optimum values for the set of parameters the MH algo-
rithm uses. There are two main approximations for FT : statistical experimental
design procedures (see [5]) and heuristic FT procedures (see CALIBRA [1], F-
Race [3] and PSO-ACO [15] as examples). For many MH algorithms there are
no optimal set of parameters; instead for different set of instances there can be
different optimum sets of parameters. FT procedures are based on the average
performance over a selected set of instances and consequently if the set is mod-
ified FH phase must be repeated.
We propose a new framework able to work properly on a wider set of instances
by finding the appropriate set of parameters for a given instance and a given
heuristic. Let denote this scheme as A–B–Domain, where A and B are heuristic



algorithms and Domain is the set of all feasible sets of parameters on algorithm
B. Given an instance inst, for each point p ∈ Domain a fitness can be computed
by running algorithm B using the set of parameters defined by p. Algorithm A
is in charge of reviewing the most promising set of parameters related to inst.
As an initial approximation to this framework we develop an ACS–PSO–Domain
structure working on the Travelling Salesman Problem (TSP ). We have selected
this combination because of the initial work proposed at [15] and because PSO is
able to perform a blindsearch on any given Dominion. To improve the algorithm
and reduce its computational cost a statistical research is performed and some
new policies are implemented. Finally results obtained by PSO-ACS-Domain
are compared with the results obtained by the classical ACS algorithm using
several set of parameters from the literature.
Section 2 describes (shortly) ACS and PSO algorithms. Section 3 examines
the A-B-Domain framework, and develops the PSO-ACS-Domain example. In
Section 4 a statistical research on ACS − TSP is performed and some recom-
mended policies are defined. Computational research results are given in Section
5 and, finally, in Section 6 conclusions are set.

2 PSO and ACS Algorithms

ACS and PSO algorithms are examined in the necessary grade to develop an
A-B-Domain example in following sections of the paper.

2.1 AntColonySystem(ACS)

In Ant Colony Optimization (ACO) algorithms ants are considered agents which
construct tours by moving from node to node on the graph problem; in the
TSP ants are constructing feasible tours. At the beginning of each iteration
ants are initially set randomly to a node. Sequentially, for each ant a movement
is computed: for each non-inserted node e, a pe value is computed; this value
considers the heuristic knowledge (powered to β) and the pheromone knowledge
(powered to ϕ) gained until the actual iteration related to the arc that joins the
actual node and the eligible one. Initially considering the neighbor set of the
actual node, a random number in [0,1] is computed; if this value is less than
a fixed q0 ∈ [0,1] the node with best pe value is selected otherwise a random
roulette method is applied. If it is not possible to select a node from the neighbor
the selection is extended to all the non-visited nodes considering the same q0.
An iteration finishes when all ants have constructed a tour. For a given arc
j = (e1, e2), pheromone trail (τ) is updated at each iteration (global update) as
follows:

τj = (1− α)τj + α∆τj , (1)

where ∆τj defines how much the arc appears in the best found solutions. We
are using an Ant Colony System (ACS) algorithm that extends the first ACO
algorithm by considering a local pheromone update at each node selection. The
updating equation is similar to previous one but considering δ instead of α



and ∆τ is equal to the initial value assigned to the pheromone trail. At each
ant iteration ACS applies global update only to the arcs inserted in the best
solution found. The maximum number of iterations is denoted as AntRep.
The first ACO algorithm was proposed in [6], [8] and [9] and was denominated
Ant–System. A full review of ACO algorithms and applications can be found
in [10]. ACS definition can be found at [7] and [12]. On ACS there has been a
previous fine-tuning research, see [7], [10] and [19].
Note that a feasible set of parameters for running ACS is a combination of
feasible q0, ϕ, β, δ, α, ρ and number of ants (na). ρ defines the neighbor as
follows: for a given node its neighbor set is defined by its ρ |V | nearest nodes,
where ρ ∈ [0, 1].

2.2 ParticleSwarmOptimization(PSO)

As described by Eberhert and Kennedy [11], [16], [17], PSO is an adaptative
algorithm based on a social environment where a set of particles, called popu-
lation, are visiting possible “positions” of a given dominion. Each position has
a fitness value (and it can be computed). At each iteration particles will move
returning stochastically toward population best fitness position and its previous
best fitness position. Particles of the population are sharing information of the
best areas to search.
Let denote P as the set of parameters and let define PO as the population of
particles. At each iteration xfp and vfp denotes respectively the actual value
and the actual velocity of parameter p ∈ P of the particle f ∈ PO. We denote
xf and vf respectively as the actual position and the actual velocity of particle
f . The movement of the particles are defined by the next equations:

vfp = wvfp + r1c1(xfp − blfp) + r2c2(xfp − bgp), (2)

xfp = xfp + χvfp, (3)

where c1, c2 are integer non-negative values, named cognitive and social respec-
tively, r1, r2 are sample random values in [0,1], w and χ are non-negative real
values, named respectively inertia weight and constriction factor, bgp is the
value of parameter p pertaining to the best set of parameters found by the pop-
ulation (social knowledge) and blfp is the value of parameter p pertaining to the
best parameters set found by particle f (self-knowledge). In (2) the first factor
refers to the previous velocity, second and third factors are related respectively
to the distance to the best set of parameters found by the particle and to the
distance to the best set of parameters found by the population.

3 A–B–Domain Framework

3.1 A–B–Domain Framework Design

To develop this new framework we work on an problem Prob. To solve any
instance inst of Prob an algorithm B is used. Algorithm B is defined by its



internal structure and a number np of parameters. Be Param the set of param-
eters, Param = {p1, p2, . . . , pnp} where each pi ∈ [pi(min), pi(max)] ⊂ < (or ℵ).
Then Domain can be defined as:

Domain =
∏

1≤i≤ns

[pi(min), pi(max)] ⊂ <np

Sets can be defined open or closed depending on the nature of the parameter. Let
denote fitness(p) for p ∈ Domain as the value returned by running algorithm B
on inst using the set of parameters defined by p. Algorithm A is used to compute
the minimum fitness(p) for p ∈ Domain. Each time a fitness value is computed
for a set of parameters p ∈ Domain an algorithm B is performed, consequently
it is computationally unavoidable to perform the check on all the points of the
Domain. That is the main reason an heuristic algorithm A is used to compute
the fitness on the most promising set of parameters. The new framework design
previously explained is graphically developed in Figure 1: the generic framework
is displayed in (a )and the example PSO–ACS–Domain is shown in (b).

Fig. 1. General framework and example framework

3.2 PSO–ACS–Domain Example

The proposed framework is applied on the TSP problem and ACS algorithm
is used as algorithm B. The Domain is defined in Table 1 where the respective
ranges are defined. as:
Those are, respectively, the feasible ranges of the parameters. For a given TSP
instance inst and p ∈ Domain, fitness(p) is the length of the tour returned
by the ACS algorithm on inst using the set of parameters defined by p. Where



Table 1. Domain of ACS parameters

Parameter q0 × ϕ × β × δ × α × ρ × na

Domain [0,1] × [0,9[ × [0,9[ × [0,1] × [0,1] × [0,1] × [1,41[

integer values are necessary, as for ϕ, β and na, values are rounded down to
the nearest integer value. Because ACS is an stochastic searching method, we
cannot develop an exact evaluation for each point in the Domain, instead we
can approximate the performance by several repeats of the algorithm. ACS is
repeated ACS–trial number of times, and two fitness functions has been tested:
the minimum value, denoted as Eval1, and the average value, denoted as Eval2.
The pseudo-code of the algorithm works as shown in Figure 2.
This example works mainly in the PSO structure where each evaluation is found
by running ACS a prefixed number of trials. The inertia weight is set initially
to value 1 and gradually decreased from 1 to 0.1; at each PSO iteration w =
ε × w where ε ∈]0, 1]. Parameters have been fine-tuned as it is explained in
computational results.

Fig. 2. PSO-ACS-Domain Pseudocode

4 Statistical Research

Proposed framework needs a huge amount of computational time consequently
any information extracted to reduce the search among the Domain is considered



very valuable. As a first approach marginal effects are reviewed for each param-
eter of the ACS, a full analysis about the joint effects are in progress. For each
parameter we select a subset of “recommended values” extracted from [19], [10]
and [15]. Table 2 shows the selected values. The experiment was run on a Pen-

Table 2. Values tested for each parameter

Parameter Tested Values

q0 0, 0.2, 0.4, 0.6, 0.8, 1
ϕ, β 0, 1, 2, 3
δ, α 0.01, 0.05, 0.1, 0.15, 0.20
ρ 0.33, 0.66, 1
na 5, 10, 15, 20

tium M 1,7 Ghz with 1Gb RAM and the experiment was designed as a factorial
experiment with five trials at each combination of parameters. To discard any
possible influence of the programming and the computer we randomly decided
the order in which the parameters were going to be get into consideration. And
for each parameter the possible order of the values were set randomly. The ex-
periment was performed on three small instances: eil51, kroB100 and rat99.
For each parameter, differences among variances where significative and no
tested transformation improved homogeneity of the samples, consequently we
selected the following post-hoc tests: Tamhanes T2 and Dunnetts T3. Results
can be mainly resumed in two proposed new policies: Domain-Reduced and
No-More(perc). The main idea behind these policies is to analyze the effects of
the information extracted from selected instances on a wider range of types of
instances.

4.1 Domain-Reduced policy.

Domain-Reduced policy: Dominion is reduced by a statistical research. For the
ACS the DomainReduced is :
Domain−R = [0.5, 1]× [1, 7[×[1, 7[×[0, 0.1]× [0.05, 0.25]×]0, 0.75]× [5, 15]
For each parameter the proposed intervals following the results are defined as
follows:

– δ: as much as this value increases the performance decreases, there is a clear
difference when it goes over 0.10 so we set this parameter in the interval
[0, 0.10].

– α: as it decreases the performance decreases, the limit can be put at 0.05,
so we recommend the interval [0.05, 0.25] (upper limit is increased because
we observed the best performance at value 0.20 indicating that possibly and



increased value would lead to better performance but it is not recommended
to increase this value indefinitely).

– β and ϕ: the only ”clear” agreement in all experiments indicates that value
0 is evidently decreasing the efficiency. So we set the interval to [1, 6].

– na: performance decreases on extreme values, so we set the interval [5, 15].

– q0: values smaller than 0.5 are working clearly worse than the rest, 0.8 has
the best performance. We recommend the interval [0.5, 1].

– ρ: performance decreases as value increases, difference between 0.333 and
0.666 is not as bigger as between 0.666 and 1 so we set the interval ]0, 0.75].

4.2 No-More(perc) policy

Let introduce some notation: best denotes the best value found by the A–B–
Domain algorithm at the moment, fitness1(p) denotes the value obtained by
algorithm B on the first trial where p ∈ D. We propose the following policy:
No–More(perc): after the first trial is performed following trials are discarded
if Equation 4 accomplishes, where perc ∈ [0,1]. perc works as a percentage de-
viation from the best value obtained, if the deviation is more or equal to perc
following trials are discarded.

perc >
fitness1(p)−B

fitness1(p)
(4)

This policy works on reducing the computational cost by discarding non–promising
computational experiments. Figure 3 displays the scatter plot of the first value
(over five) against the average and the minimum values obtained for each combi-
nation of parameters considered (from instance kroB100, but graphics are similar
for the rest of instances). It is clear that those values are closely related, conse-
quently if the first iteration for any set of parameters can be classified as ”bad”
most probably the rest will be classified similarly. This fact can provide a reason
to reduce the number of trials.

5 Computational Results

Computational results are in a preliminary stage, further experiments are being
performed to fine-tune the PSO-ACS-Domain algorithm and to compare com-
putational results with other algorithms. Algorithms were coded in C++ and
ran in a Pentium M 1.7 with 1GB RAM. Experiments were designed to gain
iteratively more information about the algorithm. At tables, notation works
as follows: GAP -Min is the average of the GAP (considering GAP as 100 ∗
(minimum obtained−lower bound)/lower bound) for a given instance) , similar



Fig. 3. (a) First vs Minimum (b) First vs Average

to previous definition but considering average obtained instead of minimum obtained
is denoted as GAP -Avg and CPU–Best denotes the average time to find the
minimum value obtained. We set c1 = c2 = 2, w = 1, χ = 0.729, ε = 0.9 on all the
experiments. Initial parameters (particles) are set randomly on all experiments
but the last because we wanted to check the performance without any previous
information. Stop conditions are: 500 as the maximum number of iterations, 50
as the maximum number of iterations without improving and 2 000 seconds as
the maximum computational time. For each particle of the population its initial
velocity is set randomly.

5.1 An initial setting of parameters

At this experiment number of particles were set to 10. We compute all possible
combinations from selected values/forms of AntRep, ACS–trial and evaluating
forms. This experiment was performed in two parts.
In the first part we consider 100, 1 000, 3 000, 5 000, 10 000 values for AntRep;
1, 3, 5 and 10 values for ACS–trial and both evaluating forms. This first part
of the experiment is performed on small instances to get an initial information
about the algorithm: eil51, eil76, eil101, kroA100, kroB100, rat99.
Table 3 shows that there is no significant difference between evaluating forms.
There is a clear difference (worst values) between 100, 1 and the rest of possible
values for AntRep and ACS–trial respectively. Values 10 000 and 10 are dis-
carded because they lead to high CPU usage with no significant improvement
respectively for AntRep and ACS–trial. For the second part of the experiment
following instances were selected: berlin52, a280, bier127, fl417, ch130, ch150,
eil51, eil76, eil101, kroA100, kroB100, rat99; all use euclidian distance and are



Table 3. Results by Evaluation Methods

Evaluation GAP -Min CPU -Best

Eval1 0.0375 256.5
Eval2 0.0377 166.9

not exceeding 500 nodes. We compare the same parameters with the previous
selected values.
Again there is no clear difference among evaluation methods even if now Eval2
shows higher computational cost. Among ACS–trial there is an slightly improve-
ment between 3 and 5 with a reasonable increase in the CPU–Best. Among
AntRep there is clear difference between 1 000 and the rest of values, conse-
quently in further experiments we do not consider 1 000, see Table 4.

Table 4. Comparison of results among number of iterations of ants

AntRep GAP -Min GAP -Avg CPU -Best

1 000 2.101 2.276 717.32
3 000 1.578 1.767 1149.14

5.2 Setting the number of particles.

In previous experiments the number of particles were set to 10, now we want
to check if reducing this number the quality of the solution remains (with lower
computational cost). We test 3, 5 and 10 particles with all the allowable combi-
nations considering the last defined set of instances. Computational results are
given in Table 5. Because maximum computational time was set to 2 000 seconds
it is clear that 10 particles is performing worse and the rest of values are worth
considering, even if 5 particles performs better.

Table 5. Comparison among number of particles

] particles GAP -Min GAP -Avg CPU -Best

3 1.73 2.276 341.83
5 1.05 1.767 412.71
10 1.65 1.844 1058.39



5.3 Comparison between PSO-ACS-Domain and ACS

We compare results and CPU–Best of the proposed algorithm against the simple
ACS considering 5 000 AntRep and using the parameters proposed at [10],
[19]; we denote respectively ACS-1, ACS-2. For each of these sets we compute
computational results for all ρ ∈ {0, 0.1, . . . , 1} and the best result is considered.
At this experiment, half of the particles of the population are set initially equal to
recommended sets of parameters from the the literature and the rest are initially
set randomly. We consider eight versions of PSO-ACS-Domain as shown in
Table 5, where Reduced-Domain (RD) and No-more(perc) (NM(perc)) are
the policies proposed in Section 4. AntRep, ACS-trial and number of particles
are set respectively to 5 000, 5 and 5.
Computational results are given in table 6 (GM , GA and CA stand respectively
for GAP -Min, GAP -Avg and CPU -Best) and we can observe that only when
policy RD is considered the algorithm improves, on instances tested, GAP -Avg
and in most instances also GAP -Min is improved. Computational times are
higher as it was expected. Policy RD works well on improving fitness value and
reducing computational time; Policy NM does not present strong modifications
by itself but, V 4, that considers both policies, has the best performance among
the combinations considered.

Table 6. Versions considered

Name RD NM(0.15)

V1 No No
V2 Yes No
V3 No Yes
V4 Yes Yes

Table 7. Computational Results by Instance.



6 Conclusion

A new framework for heuristics have been proposed that theorically is able to
perform well on a wider set of instances for any selected algorithm B; and a
PSO-ACS-Domain example is developed. Computational results on preliminary
versions of the algorithm show an improvement on the average deviations with
an increase in the computational time comparing with ACS algorithm. Proposed
policies to improve the algorithm have been tested and it has been showed that
the performance is improved. Still it is necessary to perform further experiments
to fine-tune the algorithm and to compare on a wider set of instances. Future
research are: to increase the statistical research with the idea of implement more
search-policies, to develop new examples that can lead to a general framework
research, to extend the 2 000 seconds constraint and to consider local search
methods on the ACS algorithm. As a final idea we propose that A-B-Domain
framework can lead to better results if the computational time is not a primary
constraint.
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