
Scatter Search for the 3D Point Matching 
Problem in Image Registration 
 
 
 
 
 
OSCAR CORDÓN 
Departamento de Ciencias de la Computación e Inteligencia Artificial. Universidad de 
Granada. Daniel Saucedo Aranda s/n, 18071 Granada, Spain. ocordon@decsai.ugr.es 
 
SERGIO DAMAS, JOSE SANTAMARÍA 
Departamento de Lenguajes y Sistemas Informáticos. Universidad de Granada. Daniel 
Saucedo Aranda s/n, 18071 Granada, Spain. sdamas@ugr.es, jsantam@ugr.es 
 
RAFAEL MARTÍ 
Departamento de Estadística e Investigación Operativa. Universidad de Valencia. Dr. 
Moliner 50, 46100 Burjassot (Valencia), Spain. rafael.marti@uv.es  
 

 

 

Abstract 

Scatter search is a population-based method that has recently been shown to yield promising outcomes for 
solving combinatorial and nonlinear optimization problems.  Based on formulations originally proposed 
in the 1960s for combining decision rules and problem constraints, such as the surrogate constraint 
method, scatter search uses strategies for combining solution vectors that have proved effective in a 
variety of problem settings. 
 
In this paper, we present a scatter search implementation designed to find high quality solutions for the 
3D image registration problem, which has a significant number of applications in practice.  This problem 
arises in computer vision applications when finding a correspondence or transformation between two 
computer images taken under different conditions.  Our implementation goes beyond a simple exercise on 
applying scatter search, by incorporating innovative mechanisms to combine and improve solutions and 
to create a balance between intensification and diversification in the reference set.  Besides, heuristic 
information taken from a preprocessing of the images is incorporated into the algorithm in order to 
improve its performance.  Our computational experimentation in a real-world medical registration 
application establishes the effectiveness of the scatter search procedure in relation to different approaches 
usually applied to solve the problem. 
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1. Introduction 
The purpose of this paper is to develop a heuristic method for solving an important combinatorial 
optimization problem.  Specifically we tackle the 3D Image Registration (IR) problem in the context of 
computer vision systems (Brown 1992).  Practical applications of IR are numerous.  They include 3D 
model construction (Eisert et al. 2000), autoradiograph alignment in Neuroscience (Rangarajan et al. 
1997) or statistical physics (Yuille and Kosowsky 1994).  The main contribution of our work is the 
development of a procedure based on the Scatter Search methodology (Glover 1977, 1998) that is used 
for searching the solution space of the optimization problem that appears in the IR process.  Moreover, 
the proposed implementation incorporates innovative mechanisms to exploit the knowledge on the 
problem and to create a trade-off between intensification and diversification for an efficient search. 
 
IR can be simply stated as finding a mapping between two images: I1 named scene, and I2 named model.  
The objective is to find the mathematical transformation f that applied to I1 obtains I2.  Generally 
speaking, an image is stored in a huge amount of pixels, therefore most IR methods usually apply a 
preprocessing to extract the most relevant geometric primitives (point, lines, etc) that, in a certain way, 
define the objects contained in the image.  Therefore, in these feature-based methods, the problem is 
reduced to find the transformation between two sets of geometric primitives.  In this paper, we restrict our 
attention to the case of two sets of primitives P1 and P2, consisting uniquely of points (P1 ⊆ I1, P2 ⊆ I2).  
Hence, this IR problem can be defined in two different search spaces (both with the same final goal of 
achieving the best alignment between the scene and model images): the space of parameters that define f, 
or the space of permutations of P1 (to match P2).  While the former approach to solve the problem is 
based on directly searching for the best parameters defining the transformation f (see for example, 
Yamany et al. 1999), the latter receives the name of point matching and is probably the most classical 
method in feature-based registration. 
 
Point matching can be described in mathematical terms as follows.  Given two set of points P1={x1, x2,..., 
xn} and P2={y1, y2,..., ym}, the problem is to find a transformation f such that yi=f(xσ(i)) for i=1,…, r, where 
r=min(n,m) and σ is a permutation of size l (with l being the maximum between n and m).  The IR 
problem is then naturally divided into two phases. In the first one, a permutation σ of l elements defines 
the matching between the points in P1 and P2.  In the second phase, from this matching of points and 
using a numerical optimization method (usually least squares estimation), the parameters defining the 
transformation fσ are computed.  The objective is to find the transformation minimizing the distances 
between the model points and the corresponding transformed scene points.  Therefore, in optimization 
terms, the value associated with permutation σ is given by the expression: 
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The point matching problem can be simply stated as minimizing g(σ) for any permutation σ of l elements 
and its corresponding transformation fσ.  In this paper we face the IR problem within this point matching 
approach, as it is the case of previous methods like the well known Iterative Closest Point algorithm (Besl 
1992, Feldmar and Ayache 1996, Liu 2004), the technique usually applied in the computer vision field.  
We propose a scatter search implementation to find high quality solutions to this combinatorial 
optimization problem. 
 
Our solution method presents contributions in both optimization and IR fields.  Evolutionary methods 
have been widely applied to solve IR problems and typically use genetic operators for combination 
(Yamany et al. 1999, He and Narayana 2002, Chow et al. 2004).  In this paper, we test the effectiveness 
of other combination mechanisms that do not rely on randomization in the context of point matching.  
Moreover, we design problem dependent search mechanisms based on image specific information, which 
have been proved to return good quality solutions (Cordón and Damas 2005).  This information is a priori 
extracted from the shapes of the objects existing in the images and results in the association of 
characteristic values.  This information is used in a two-fold way: on the one hand, the differences 
between the characteristic values of the matched points in the current solution are incorporated to the 
solution evaluation to better guide the search from a global perspective.  On the other hand, they are taken 
into account in the neighborhood operator of the local search mechanism to properly intensify the search, 
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as well as in the diversification generation method to create an initial set of high quality solutions with a 
large degree of diversity among them.  This way, we implement candidate list strategies in which 
permutations assigning feature points with similar characteristic values are ranked first since they seem 
more promising than those with relatively different values.  The consideration of this additional 
information in the point matching process allows the scatter search algorithm to obtain high quality 
solutions faster than other previous approaches. 
 
In the remaining of the paper, we first briefly describe the scatter search methodology and then, in Section 
3, present our implementation to solve the point matching problem.  The paper ends with the 
computational experiments and associated conclusions. 
 
 
2. Scatter Search 
Scatter search (SS) was first introduced in Glover (1977) as a heuristic for integer programming. SS 
orients its explorations systematically relative to a set of reference points that typically consist of good 
solutions obtained by prior problem solving efforts.  The scatter search template (Glover 1998) has 
served as the main reference for most of the SS implementations to date.  The SS methodology is very 
flexible, since each of its elements can be implemented in a variety of ways and degrees of sophistication.  
In this section we give a basic design to implement SS based on the well-known “five-method template” 
(Laguna and Martí, 2003).  The advanced features of SS are related to the way these five methods are 
implemented.  That is, the sophistication comes from the implementation of the SS methods instead of the 
decision to include or exclude some elements (as in the case of tabu search or other metaheuristics). 
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Figure 1: Schematic representation of a basic SS design 
 
The fact that the mechanisms within SS are not restricted to a single uniform design allows the 
exploration of strategic possibilities that may prove effective in a particular implementation.  These 
observations and principles lead to the following “five-method template” for implementing SS: 
 
1. A Diversification Generation Method to generate a collection of diverse trial solutions, using an 

arbitrary trial solution (or seed solution) as an input. 
2. An Improvement Method to transform a trial solution into one or more enhanced trial solutions.  

Neither the input nor the output solutions are required to be feasible, though the output solutions will 
more usually be expected to be so.  If no improvement of the input trial solution results, the 
“enhanced” solution is considered to be the same as the input solution. 
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3. A Reference Set Update Method to build and maintain a reference set consisting of the b “best” 
solutions found (where the value of b is typically small, e.g., no more than 20), organized to provide 
efficient accessing by other parts of the method.  Solutions gain membership to the reference set 
according to their quality or their diversity. 

4. A Subset Generation Method to operate on the reference set, to produce several subsets of its 
solutions as a basis for creating combined solutions. 

5. A Solution Combination Method to transform a given subset of solutions produced by the Subset 
Generation Method into one or more combined solution vectors. 

 
Figure 1 shows the interaction among these five methods and highlights the central role of the reference 
set.  This basic design starts with the creation of an initial set of solutions P, and then extracts from it the 
reference set (RefSet) of solutions.  The darker circles represent improved solutions resulting from the 
application of the Improvement Method. 
 
The Diversification Generation Method is used to build a large set P of diverse solutions.  The size of P 
(PSize) is typically at least 10 times the size of RefSet.  The initial reference set is built according to the 
Reference Set Update Method, which can take the b better solutions (as regards their quality in the 
problem solving) from P to compose the RefSet.  However, diversity can be considered instead of or 
additionally to quality for the updating.  For example, the Reference Set Update Method could consist of 
selecting b distinct and maximally diverse solutions from P.  Regardless of the rules used to select the 
reference solutions, the solutions in RefSet are ordered according to quality, where the best solution is the 
first one in the list.  The search is then initiated by applying the Subset Generation Method, which, in its 
simplest form, involves generating all pairs of reference solutions. The pairs of solutions in RefSet are 
selected one at a time and the Solution Combination Method is applied to generate one or more trial 
solutions.  These trial solutions are subjected to the Improvement Method.  The Reference Set Update 
Method is applied once again to build the new RefSet with the best solutions, according to the objective 
function value, from the current RefSet and the set of trial solutions.  The basic procedure terminates after 
all the generated subsets are subjected to the Combination Method and none of the improved trial 
solutions are admitted to RefSet under the rules of the Reference Set Update Method.   

 
The reference set, RefSet, is a collection of both high quality solutions and diverse solutions that are used 
to generate new solutions by way of applying the Combination Method.  We can use a simple mechanism 
to construct an initial reference set and then update it during the search.  The size of the reference set is 
denoted by b = b1 + b2 = |RefSet|.  The construction of the initial reference set starts with the selection of 
the best b1 solutions from P.  These solutions are added to RefSet and deleted from P.  For each solution 
in P-RefSet, the minimum of the distances to the solutions in RefSet is computed.  Then, the solution with 
the maximum of these minimum distances is selected.  This solution is added to RefSet and deleted from 
P, and the minimum distances are updated.  The process is repeated b2 times, where b2 = b – b1.  The 
resulting reference set has b1 high quality solutions and b2 diverse solutions. 
 
Of the five methods in the SS methodology, only four are strictly required.  The Improvement Method is 
usually needed if high quality outcomes are desired, but a SS procedure can be implemented without it.  
On the other hand, hybrid SS designs could incorporate a short term tabu search or other complex 
metaheuristic as the improvement method (usually demanding more running time). 
 
 
3. The Point Matching Search Method 
As described in the previous section, the SS methodology basically consists of five elements (and their 
associated strategies).  Three of them, the Diversification Generation, the Improvement and the 
Combination Methods, are problem dependent, and should be designed specifically for the problem at 
hand (although it is possible to design “generic” procedures, it is more effective to base the design on 
specific characteristics of the problem setting).  The other two, the Reference Set Update and the Subset 
Generation Methods are context independent, and usually have a standard implementation. 
 
In this work, we have implemented an advanced design of the reference set that complements the RefSet 
creation mechanism introduced in the previous Section by means of an updating process that proactively 
injects diversification into the search. This strategy is called 2-tier design (Laguna and Martí, 2003) and is 
based on partitioning the RefSet in two tiers. The first tier RefSet1 (Quality RefSet) consists of b1 high 
quality solutions },...,{ 11 bSS , while the second tier RefSet2 (Diversity RefSet) consists of b2=b-b1 diverse 
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solutions },...,{ 21 1 bb SS + . The solutions in RefSet1 are ordered according to their objective function value 
and a new solution S replaces the worst solution 1bS if the quality of the former is better than that of the 
latter. RefSet2 is ordered according to their diversity value, so, a new solution S replaces the worst 
solution 2bS if )()( 2bSdSd > , where the diversity value d is computed with the distance PMD defined 
in Section 3.2. 
 
Following the guidelines given in Laguna and Martí (2003), we implement the Combination and the 
Subset Generation Methods with all the pairs (2-element subsets) in the RefSet with a static updating.  As 
our reference set is composed of a quality and a diversity part, solution subsets of three different kinds are 
generated.  On the one hand, subsets with the b1*(b1-1) possible pairs of solutions in the quality RefSet are 
created in order to intensify the search by combining high quality solutions. On the other hand, each of 
the b2*(b2-1) pairs of solutions in the diversity part are also considered to generate combined solutions for 
diversification purposes. Finally, a third group of b1*b2 subsets is created by pairing each solution of the 
quality part with every one in the diversity part, thus getting combined solutions with an intermediate 
search behavior. Every new trial solution generated in the combination and improvement steps is inserted 
in a pool of solutions, Pool, and increasingly ordered according to their objective function. Those worst 
solutions in RefSet1 will be replaced with the corresponding better solutions in Pool. Subsequently, the 
remaining solutions in Pool (all of them with a lower quality than those in RefSet1) will be considered to 
update RefSet2. 
 
The next four subsections are respectively devoted to describe the coding scheme and the use of image 
curvature information in our search method, and the three specific SS elements mentioned above: the 
Diversification Generation Method, the Improvement Method and the Solution Combination Method. 
 
3.1 Image Curvature Information and Coding Scheme 
Our proposal is based on solving the IR problem by searching in the feature-based matching space.  So, a 
coding scheme specifying the matching between model and scene image primitives (points, in our case) 
has to be defined.  First, a pre-processing step (a 3D crest lines edge detector (Monga et al. 1991)) is 
applied to extract the most relevant feature points for each image, P1={x1, x2,..., xn} for the scene and 
P2={y1, y2,..., ym} for the model. 
 
We first compute the iso-surface of the 3D image (i.e. the surface that separates regions of the space when 
considering a given intensity value known as iso-value).  The goal is to obtain the boundary of the object 
under study (brain, liver, skull, etc.), from an image that typically stores different shapes.   This surface 
defines, for any point x in the image, a set of curvatures C(x) reflecting the variation in each direction 
from x with respect to the tangent plane in this point.  Hence, iso-surfaces allow us to reduce the huge 
amount of data we are dealing with.  If we focus our attention on the zero-crossings of the curvature 
function C(x), such points (known as crest-lines points) correspond to ridges and valleys of the iso-
surface and represent its most important features. Thanks to this preprocessing, instead of facing the point 
matching problem from a million-size permutation, we take advantage of curvature information to extract 
the most relevant points in the image and face a hundred-size permutation problem. 
 
The point matching between both images is represented as a permutation σ = (σ1, σ2, ..., σl) of size 
l=max(n,m), which associates the r points (r=min(n,m)) of the smaller size point set to the first r points of 
the permutation, selected from the larger one.  Without loss of generality and to simplify the notation, we 
consider that P1 is larger or equal than P2 (n ≥ m).  We have implemented the permutation in such a way 
that the first r elements (r=m in our case) of σ are the P1 points associated to each of the m points in P2. 
Figure 2 illustrates these implementation details: 
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Figure 2: Implementation details of the point matching permutation σ 

 
We are able to infer the parameters of the implicit registration transformation f existing between the two 
3D images, fσ, from the point matching σ by means of simple numerical methods such as the Closed-form 
solution based on unit quaternion (Horn 1987) solving a least-squares problem.  In this contribution, we 
consider f to be a similarity transformation, thus being composed of a rotation R=(λ,<φx,φy,φz>), a 
translation t=(tx,ty,tz), and a uniform scaling s. Such a transformation can be used to register aerial and 
satellite images, bony structures in medical images, and brain multimodal images (Goshtasby 2005). 
 
Once we know the expression of fσ, we can estimate the registration error existing between the scene 
image points xi and the model image points yi, measured by the g() function as proposed by Arun et al. 
(1987): 
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Note that g(σ) only computes the geometric information of both scene and model feature points.  Some 
authors (Yamany et al. 1999, Luck et al. 2000, Robertson and Fisher 2002) have proposed several 
metaheuristic approaches for the IR problem which is only aimed at minimizing the previous g(σ) error 
function.  
 
However, by only considering this objective function evaluation, search algorithms suffer from several 
problems such as their inability to handle with initial large misalignments between the two images and 
with those situations where the images have rotational or translational symmetries, both due to the fact of 
only dealing with the object geometry (Gagnon et al. 1994, Weik 1997).  The latter aspects usually cause 
the given IR algorithm to more likely get trapped in local optima. A good explanation of such undesirable 
behaviour is found in Luck et al. (2000), where the authors use a simulated annealing method to address 
these problems. 
 
This way, to overcome these problems in our SS-based IR procedure, we make use of problem dependent 
(context) information in our search method.  To do so, we take again into account the curvature 
information C(x) extracted by the 3D crest lines edge detector.  For each point x, we consider the two 
values of the first and second principal curvatures, k1(x) and k2(x) in C(x), associated with the two 
principal orthogonal directions (which locally characterize the iso-surface).  An interesting quality of this 
feature is that curvature values represent an invariant source of information respect to the similarity 
transformation fσ we are dealing with, i.e., for each point x, it holds that k1(x)=k1(fσ(x)) and 
k2(x)=k2(fσ(x)). The curvature attributes remain unchanged although a different fσ is applied. 
 
Therefore, given a scene point xi and a model point yj (each of them described by means of two curvature 
values), the closer every pair of curvature values, the higher the probability of a good matching between 
xi and yj. Therefore, we introduce the matrix D=(dij)n×m to store all the Euclidean distances between the 
curvature values of each scene and model point.  In mathematical terms: 
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We will use these distances between curvature values in both the Diversification Generation Method and 
the Improvement Method of our SS procedure.  In the former, they will be considered for an alternative 
solution evaluation, while in the latter they restrict the size of the neighbourhood of a given solution for 
an efficient search.  In both cases, this curvature information prevents the problems mentioned above as 
will be shown in Section 4. 
 
 
3.2 Diversification Generation and Reference Set Construction 
As seen, the image heuristic information described in the previous section can be used to establish a 
preference for good assignments between the scene image points and the model image ones.  Hence, a 
point xi from the scene image is more likely to be assigned to those model points yj presenting the same or 
similar curvature values k1 and k2, i.e., having the lower distances dij. 
 
We can make use of this information in order to generate the initial set P of diverse solutions for our SS 
procedure, thus obtaining solutions with both good quality and high diversity. Specifically, instead of 
fixing a selection order for the scene points xi and then assigning the closest model point yj (as regards the 
curvature values) not yet considered to each of them (which would result in a deterministic, greedy 
heuristic), we introduce randomness in both processes allowing each decision to be randomly taken 
among the best candidates.  This way, our diversification generation method behaves similarly to a 
GRASP construction phase (Resende and Ribeiro 2001).  The most important element in this kind of 
construction is that the selection in each step must be guided by a greedy function that adapts according to 
the pseudo-random selections made in the previous steps. 
 
Our method starts by creating two candidate lists of unassigned points (CL1 and CL2), which at the 
beginning consist of all the points in the scene and the model (i.e., initially CL1 = P1 and CL2 = P2).  For 
each element xi in CL1, we compute its potential distance di to CL2 as the minimum value of the distances 
from xi to all the elements in CL2.  Then, we construct the restricted candidate list RCL1 with a percentage 
α of the elements in CL1 with the lowest di-values, and we randomly select one element (say xk) from 
RCL1 for matching assignment.  In order to find an appropriate point in the model to match with xk, we 
construct the restricted candidate list RCL2 with a percentage α of the elements in CL2 whose curvature 
values are closer to those of xk, i.e., those elements presenting the lowest distance values to xk.  Finally, 
we randomly select a point (say yk) in RCL2 and match it with xk.  We update CL1 and CL2 (CL1=CL1 – 
{xk}, CL2=CL2 – {yk}) and perform a new iteration.  The algorithm finishes when r=min(n,m) points have 
been matched, i.e., when either CL1 or CL2 (that corresponding to the image with less points associated) 
becomes empty, and the remaining l-r points of the permutation are taken from the points remaining in 
the non-empty candidate list in a random order. 
 
We repeat the application of this pseudo-random construction algorithm until we obtain |P| different 
solutions.  We then apply the Improvement Method below to the generated solutions.  Since two different 
solutions can produce the same improved solution, we apply, if necessary, the construction step a number 
of extra times until |P| different improved solutions are obtained.  Let P be the set of these improved 
solutions. 
 
As mentioned above, the reference set, RefSet, is a collection of b solutions (reference points) that are 
used to generate new solutions.  The construction of the initial reference set starts with the selection of the 
best b1<b improved solutions from P.  These solutions are added to RefSet and deleted from P.  The 
remaining b2=b-b1 RefSet solutions are selected from P taking into account the diversity.  To do so, there 
is a need to define a distance metric between the solution vectors, i.e., between permutations. In this 
contribution, we consider the distance between two permutations σ = (σ1, σ2, ..., σl) and ρ = (ρ1, ρ2, ..., ρl) 
records the number of times σi differs from ρi for i = 1, …, r.  Besides, in order to favour the inclusion of 
quality solutions, as measured by the objective function, we bias the distance measure and divide this 
quantity by the sum of the evaluations of both solutions modified according to the curvature values.  We 
call this metric Point Matching Distance (PMD) in order to differentiate it from the point curvature 
distance d and its definition in mathematical terms follows: 
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In this expression, we are using an alternative solution evaluation F(σ) which incorporates the distance 
between curvature values to overcome the limitations of the objective function evaluation shown in the 
previous section.  Specifically, the value of F(σ) is given by the expression: 
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where the error function merror(σ) measures the goodness of the matching σ by using the extra curvature 
information attributes associated to each feature point, and the weights gw and 

errornw  define the relative 
importance of each term.  With such a function, we will have a more suitable similarity measure to make 
a better trek in the solution space, addressing the previous IR methods drawbacks.  Furthermore, this 
definition of the merror(σ) function is a specific case based on just two curvature values. Depending on the 
nature of the images considered, different attributes extracted in the IR pre-processing step can be 
considered for an easy redefinition of the merror(σ) function as a reusability mechanism for other IR 
environments. 
 
Finally, the minimum PMD from each improved solution in P-RefSet to the current solutions in RefSet is 
computed.  Then, the solution with the maximum of these minimum distances is selected.  This solution 
is added to RefSet and deleted from P, and the minimum distances are updated.  This process is repeated 
b2 times.  As a result of the previous procedure, the obtained reference set has b1 high-quality solutions 
and b2 diverse solutions. 
 
3.3 Improvement Method 
Swaps are used as the primary mechanism to move from one solution to another in our Improvement 
Method.  We define move(σi, σj), i∈{1, …, k=min(n,m)}, j∈{1, …, l=max(n,m)}, j≠i, to consist of 
exchanging σi and σj in the current solution σ.  This operation results in the ordering σ’= (σ1, …, σi-1, σj, 
σi+1, …, σj-1, σi, σj+1, …, σl) when i<j (and symmetrically when j<i). 
 
An important difference with other combinatorial optimization problems is that here we cannot efficiently 
compute the move value associated with a trial move.  In other words, to evaluate the quality of a move, 
we need to evaluate the final solution σ’ when the move is applied, and compare its value with that of the 
initial solution σ (move value=g(σ)-g(σ’)).  Note that a modification in the solution (permutation σ) 
means a change in the matching and it implies a new estimated transformation f. Unfortunately, the 
simple modification performed by the swapping of the matching of two points can result in a completely 
different registration transformation fσ’.  Therefore, all the terms in the expression g(σ) can change and 
there is no way to calculate g(σ’) without computing the new transformation fσ’ and the corresponding 
transformed scene points. 
 
A solution σ represents the matching (xσ(i), yi), for i=1,…,k.  Then, it is expected that, in a good matching, 
points xσ(i) and yi have similar curvature characteristics.  In mathematical terms, dσ(i) i should be relatively 
low for i=1,…,k.  Since the move evaluation is a relatively time consuming operation, we reduce the 
neighborhood of a solution to include only promising moves.  Specifically, the neighborhood of a 
solution σ, N(σ), is restricted to those moves move(σi, σj), in which this difference of curvatures 
decreases for xσ(i) or xσ(j): 
 

N(σ)={move(σi, σj) / dσ(j) i ≤ dσ(i) i  or  dσ(i) j ≤ dσ(j) j , 1≤i≤k, 1≤j≤l, j≠i} 
 
Given a solution σ and its associated transformation fσ, each element σi in the solution contributes to the 
solution evaluation g(σ) in δi, where: 
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This measure shows that points should not be treated equally by a procedure that selects an index for a 
local search (i.e., for search intensification).  We consider that δ is a measure of influence and can be used 
to guide an efficient search of N(σ).  Specifically, we order the elements in a solution according to their δ-
value and select the element σi* with the largest value for a swapping.  Then, we scan N(σ) (in the order 
given by the curvature distance dσ(i*)j) in search for the first element σj whose swapping move(σi*, σj) 
results in an strictly positive move value (i.e., a move such that g(σ’)≤g(σ)).  We apply this first 
improving strategy, since previous studies (see for example Laguna et al. 1999) indicate that an effective 
search strategy results from searching for the first move in the neighborhood, as opposed to searching for 
the best move overall.  If we do not find any improvement move associated to element σi*, we resort to 
the next one in the ordered list and proceed in the same way.  The local search method terminates either 
when N(σ) does not contain any improvement move or when a maximum iteration number is reached. 
 
Computing the δ-value, ordering the elements and selecting the most influential one is a computationally 
expensive calculation.  In order to speed up the operation of our neighborhood operator, these δ-values 
are however not updated after the execution of a move at each local search iteration, but on the contrary, 
we keep the order as it stands and select the next element in the list for the next iteration (and proceed in 
the same way for a certain number of subsequent iterations).  The notion of not updating key values (e.g., 
move values) after every iteration is based on the elite candidate list suggested by Glover and Laguna 
(1997).  The design considers that it is not absolutely necessary to update the value of the moves in a 
candidate list after an iteration is completed (i.e., the selected move is executed) because most of these 
move values either remain the same or their relative merit remains almost unchanged.  The application of 
this strategy is particularly useful when the updating of the move values is computationally expensive, as 
in our context.  After k local search iterations, we update the δ-values and compute the new order.  The 
parameter k reflects the trade-off point between information accuracy and computational effort in the 
implementation, and will be set after experimentation. 
 
Finally, a selective application of the local optimizer is also considered in order to speed up the run time 
of the whole SS procedure. As mentioned in Section 2, a SS algorithm can be implemented without this 
component, although its use allows it to obtain high quality outcomes. Hence, in order to obtain an 
appropriate balance between the solution quality upgrade resulting from the Improvement Method use 
and the time consumed by it, we decided not to run the local search over each solution generated by the 
Combination Method but only on some of them. Previous works have demonstrated that a selective 
application of the local optimizer, with a random choice based on a given, low probability, has resulted in 
good performance in different memetic algorithms and, specifically, in some SS implementations (Hart 
1994, Lozano et al. 2004, Herrera et al. 2005). In our case, this decision is deterministically taken, as the 
combined solution is optimized only when its evaluation F is better than that of at least one of the two 
original solutions used to generate it by the Solution Combination Method. 
 
3.4 Solution Combination Method 
We have considered two types of combination methods, both of which generate a single combined 
solution from a subset composed of a pair of original solutions. The first one, named Partially Mapped 
Crossover (PMX), is based on random elements and is widely used in the context of genetic algorithms.  
The second one, named Voting Method (VM), is based on deterministic elements and is widely used in 
the context of adaptive memory programming algorithms.  We will compare both types of combinations 
in our computational experiments section. 
 
Partially Mapped Crossover 

This is an implementation of the classical recombination operator for order-based representations named 
partially mapped crossover (PMX) (Goldberg and Lingle 1985).  It is designed to preserve the absolute 
position of some elements in the first solution.  The method randomly chooses two crossover points in 
one reference solution and copies the partial permutation between them into the new trial solution.  Both 
crossover points also define a mapping between the elements in both reference solutions. The remaining 
elements are copied in the positions they appear in the second reference solutions. If one position is 
already occupied by an element copied form the first parent, the element provided by the mapping is 
copied.  This process is iterated until the conflict is solved.  In order to limit the randomness of the 
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method and to assure the contribution of both reference solutions to the new trial solution, we randomly 
generate the first crossover point cp1 in {1,0.5*l} (assuming that 0.5*l<r) and set the second crossover 
point cp2 to cp2= cp1+0.25*l. 
 
As stated by Cotta and Troya (1998), this is a respectful operator since it transmits to the combined 
solution a relevant number of characteristics from the original ones.  In genetic terms, we say that PMX 
transmits a block forma (an equivalence class induced by the relations identified as relevant).  These 
authors compare eight genetic operators in the context of flowshop problems (based on a permutation 
representation) and conclude that the PMX is the best one for them. 
 
Voting Method 

The method scans (from left to right) both reference permutations, and uses the rule that each reference 
permutation votes for its first element that is still not included in the combined permutation (referred to as 
the “incipient element”).  The voting determines the next element to enter the first still unassigned position 
of the combined permutation.  This is a min-max rule in the sense that if any element of the reference 
permutation is chosen other than the incipient element, then it would increase the deviation between the 
reference and the combined permutations.  Similarly, if the incipient element were placed later in the 
combined permutation than its next available position, this deviation would also increase.  So the rule 
attempts to minimize the maximum deviation of the combined solution from the reference solution under 
consideration, subject to the fact that the other reference solution is also competing to contribute.  A bias 
factor that gives more weight to the vote of the reference permutation with higher quality is also 
implemented for tie breaking.  This rule is used when more than one element receives the same votes.  
Then, the element with highest weighted vote is selected, where the weight of a vote is directly 
proportional to the objective function value of the corresponding reference solution.  Additional details 
about this combination method can be found in Campos et al. (2001). 
 
4. Computational Experiments 
In this section we present a number of experiments in order to study the performance of our proposal.  As 
we will explain below, these tests have been carried out under the same conditions since we wanted to 
extend our conclusions to other possible situations.  
 
The results obtained by our SS algorithm for the 3D feature-based IR problem will be compared against 
IR techniques belonging to the two existing approaches mentioned in the Introduction, those searching in 
the point matching space, and those directly searching in the registration transformation parameter space.  
From the former group, we will consider the recent improvement of the classical ICP algorithm by Liu 
(2004) (I-ICP); and the hybrid proposal by J. Luck et al. (2000), combining the ICP algorithm with a 
simulated annealing technique in an iterative framework (ICP+SA), with the aim of overcoming the ICP 
problem of likely falling in local optima1. Besides, the results obtained by the simple greedy algorithm 
(Greedy) described in Section 3.2 are also reported as a lower quality threshold for our SS procedure.  On 
the other hand, an evolutionary approach, the fast real-coded dynamic genetic algorithm (Dyn-GA) 
introduced by Chow et al. (2004), will be used from the latter group.  Every algorithm maintains their 
original form and just the fitness function of the genetic algorithm has been adapted in order to deal with 
the uniform scaling factor, not considered in its original proposal (it only considered a rigid 
transformation f, i.e., only rotations and translations were involved in the IR problem). 
 
4.1 Experimental Setup 
 
This subsection describes the experiments developed to estimate several registration transformations in 
four different 3D images.  For the sake of clarity, it has been divided into three different parts. First, the 
3D images used to design the four different IR scenarios considered are presented.  Then, the sixteen IR 
problem instances to be solved are introduced by describing the pair of images to be registered in each 
scenario and the four registration transformations applied on each of them. Finally, we deal with the 
parameter settings for the different IR algorithms considered. 
 

                                                           
1 We should notice that, although the two variants of ICP considered in our experimentation solve the IR problem 
working in the point matching space (as our SS-based proposal does), they are based on assigning each transformed 
scene point with the closest model image point. This way, different scene points can be matched with the same model 
point, thus making the point matching not be a permutation. 
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a) b) c) 

a) b) c) 

3D Images Considered 
 
Our results correspond to a number of registration problems with four different 3D images.  These images 
have been obtained from the BrainWeb database at McGill University (Collins et al. 1998, Kwan et al. 
1999). The purpose of this simulator is to provide researchers with ground truth data for image analysis 
techniques and algorithms.  BrainWeb has been widely used by the IR research community (Rogelj et al. 
2002, Held et al. 2004, Wachowiak et al. 2004).   
 
To consider a more realistic scenario, every image we will study corresponds to a magnetic resonance 
(MRI).  Moreover, we have added different levels of noise to three of the four images used. The reason is 
to model noisy conditions related to the images acquired by some devices.  Likewise, we cannot avoid 
one of the most important goals of IR: supporting critical decisions concerning the evolution of a patient’s 
lesion.  To do so, two of our images will include a multiple sclerosis lesion.  The influence of these two 
factors (the noise intensity and the presence or absence of lesion) will allow us to design a set of 
experiments with different complexity levels. 

 
A preprocessing step has been carried out to all these 3D images in order to obtain problem dependent 
information to guide the IR process as well as to reduce the huge amount of data stored in the initial 
instances of the images (see Section 3.1).  Therefore, from every original image, we extract the isosurface 
and select crest-lines points with relevant curvature information.  
 
The first image (“I1”, see Figure 3) corresponds to an MRI of a healthy person obtained with an ideal 
scanner, i.e., no lesion is present and it is a noise free scenario.  After the isosurface extraction to identify 
the brain and the crest line points study to choose those features with relevant curvature information, 583 
points have been selected. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Image I1. a) Original MRI with three views (transverse, sagital, and coronal). Different organs (skull, brain, 
eyes, etc.) can be clearly identified. b) Isosurface corresponding to the brain from the MRI. c) Crest line points with 

relevant curvature information 
 
 
Image “I2” (Figure 4) corresponds to a low level of noise scenario (1% of Gaussian noise) of a healthy 
person.  After the isosurface extraction, 393 crest line points have been chosen. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Image I2. a) MRI with a 1% of Gaussian noise. b) Isosurface corresponding to the brain from the MRI.  
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c) Crest line points with relevant curvature information 
 
The third image (“I3”, see Figure 5) includes a sclerosis multiple lesion and the same level of noise of I2.  
After the isosurface extraction to identify the brain and the crest line points study to choose those features 
with relevant curvature information, 348 points have been selected. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Image I3. a) MRI with a 1% of Gaussian noise. Sclerosis multiple lesion is located using a circle. 

b) Isosurface corresponding to the brain from the MRI. c) Crest line points with relevant curvature information 
 
Image “I4” (Figure 6) corresponds to a sclerosis multiple patient but the MRI has been adquired using a 
poor device (5% of Gaussian noise is introduced).  Blurring can be easily observed in the extracted 
isosurface.  Finally, 284 points with relevant curvature have been identified.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Image I4. a) Original MRI with a 5% of Gaussian noise. Sclerosis multiple lesion is located using a circle.  

b) Isosurface corresponding to the brain from the MRI. Blurring is easily identified. c) Crest line points with relevant 
curvature information 

 
 
 
IR problems considered 
 
Our results correspond to a number of IR problem instances for the different 3D images presented above 
which have suffered the same four global similarity transformations (noted as T1, T2, T3 and T4 in Table 
1) to be estimated by the different 3D IR algorithms applied.  These are ground truth transformations and 
they will allow us to quantify the accuracy of the IR solution returned by every algorithm.  Hence, we will 
know in advance the optimal (i.e., the exact) registration transformation relating every scene and model 
input, thus being able to compute the objective function value associated to the problem optimal solution 
(see Section 4.2). 
 
As mentioned in Section 3.1, similarity transformations involve rotation, translation and uniform scaling.  
They can be represented by eight parameters: one for the rotation magnitude (λ), three for the rotation 
axis (axisx, axisy, axisz), three for the translation vector (tx, ty, tz), and one more for the uniform scaling 
factor (s).  In order to achieve a good solution, every algorithm must estimate these eight parameters 
accurately.  Values in Table 1 have been selected within the appropriate ranges in such a way that 
important transformations have to be estimated. Both rotation and translation vectors represent a strong 
change in the object location. In fact, the lowest rotation angle is 115º. Meanwhile, translation values are 

a) b) c) 

a b c 
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also high. Likewise the scaling factor ranges from 0.8 (in the second transformation) to 1.2 (in the fourth 
one). This way, complex IR problem instances are likely to be generated. 
 
 
 

Table 1: Global similarity transformations considered 

 
 
Moreover, in order to deal with a set of problem instances with different complexity levels (see Table 2), 
we will consider the following scenarios (from lower to higher difficulty): I1 vs. Ti(I2), I1 vs. Ti(I3), I1 vs. 
Ti(I4), and I2 vs. Ti(I4). Therefore, every algorithm will face sixteen different IR problem instances, 
resulting from the combination of the four scenarios and the four different transformations Ti. 
 

Table 2: From top to bottom: increasing complexity ranking of the IR problem scenarios considered 

 
 
 
 
 
 
 
 
Parameter Settings 
 
Before performing the final experimentation, we have just made a preliminary study on the more suitable 
parameter values for the different IR algorithms to be considered in the subsequent experimentation. Both 
the preliminary test and the later experimentation have been made on a platform with an Intel Pentium IV 
2.6 MHz processor and the SuSe GNU/linux 9.2 operative system. All the algorithms have been 
implemented with the C++ programming language and compiled with GNU/gcc. 
 
For the I-ICP algorithm, it has been fixed a maximum of 40 iterations to ensure its success under some 
needed favourable initial conditions. For example, an initial registration transformation close to the 
ground truth one is needed by the algorithm to achieve good results. Unfortunately, such information 
from which an optimal starting point could be inferred is not usually available, thereby we have chosen an 
arbitrary rotation, a translation given from the subtraction of both scene and model centroids, and a 
uniform scaling factor estimated as done in (Horn 1987). Furthermore, the parameter associated to I-ICP 
has been established to the same value the author used in (Liu 2004). 
 
For the ICP+SA algorithm, a maximum of 40 iterations for the wrapped I-ICP algorithm has also been 
fixed. The annealing process has 20 iterations and 50 trial movements around each annealing iteration, 
with an initial temperature value estimated with T0 = [µ/-ln(φ)]·C(S0), where C(S0) is the cost of the given 
solution generated by the previous run of I-ICP, and both the µ and the φ factors take value 0.3. Each 
ICP+SA two-step iteration involves subsequently applying the I-ICP algorithm, optimizing the previous 
generated solution with the annealing process (if it achieves a best solution reducing the g() error 
function), and again starting a new iteration. We have only considered one iteration for the ICP+SA 
procedure. 
 
In the Dynamic Genetic algorithm (Dyn-GA), it has been established the size of the initial population to 
100 individuals and maintained the remaining of the specific parameters with their original values (Chow 
et al. 2004). 
 
Our SS proposal deals with an initial set P comprised by 80 diverse solutions, and a RefSet composed of 
b = b1+b2 = 10 solutions, with b1=7 in the Quality subset and b2=3 in the Diversity subset. The local 

 λ axisx axisy axisz tx ty tz s 
T1 115.0 -0.863868 0.259161 0.431934 -26.0 15.50 -4.60 1.0 
T2 168.0 0.676716 -0.290021 0.676716 6.0 5.50 -4.60 0.8 
T3 235.0 -0.303046 -0.808122 0.505076 16.0 -5.50 -4.60 1.0 
T4 276.9 -0.872872 0.436436 -0.218218 -12.0 5.50 -24.60 1.2 

 Scene image Model image 
IR problem Lesion Noise Lesion Noise 
I1 vs. Ti (I2) No No No 1% 
I1 vs. Ti (I3) No No Yes 1% 
I1 vs. Ti (I4) No No Yes 5% 
I2 vs. Ti (I4) Yes 1% Yes 5% 
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search algorithm putting into effect the Improvement Method is run a maximum of 80 iterations at each 
execution, updating the δ matching vector each k=10 local search iterations (see Section 3.3). This way, δ 
will be updated seven times each local search run thereby. 
 
For both the Dyn-GA and the SS algorithms, we have established a maximum CPU time of 20 seconds at 
each run. Furthermore, for each one of the two latter algorithms as well as for the ICP+SA one, we have 
performed a total of 15 runs (with different random seeds) for each of the sixteen problem instances in 
order to avoid the usual random bias of probabilistic algorithms. 
 
4.2 Experiments and Analysis of Results 
 
This section is devoted to report the results obtained in the experimentation developed. For the sake of 
clarity, we have divided it into two different parts. In the first subsection, a preliminary experimental 
study is made to analyze the performance of the different variants of our SS proposal, where the two 
combination operators implemented and several weight2 vectors in the objective function (see Section 
3.2) are tested. The results of the simple greedy heuristic are considered as a lower quality threshold for 
this first experimentation. Then, the best SS variant is compared against the remaining state-of-the-art IR 
techniques, I-ICP, ICP+SA, and Dyn-GA, in order to measure the actual performance of our proposal in 
the problem solving. 
 
 
SS-PMX versus SS-Voting 
 
Table 3 shows a detailed comparison between the two considered combination methods, based on the use 
of the PMX and Voting operators, to make a subsequent selection of the best one for being included in 
our final proposal of SS-based IR method. The structure of such table is organized in four subtables, 
every one referencing to each of the four IR scenarios presented in Table 2, where every subtable is 
divided into four parts devoted to the four transformations considered (see Table 1).  
 
For each IR problem instance (specified by a given IR scenario and by one of the four transformations), 
the comparison between both combination methods is done by considering five different values of the 
coefficients in the F evaluation function.  Each of these variants is denoted by WCx-y, where x and y 
correspond to the gw and

errornw weighting coefficients in the objective function (see Section 3.2). The 
weight vectors considered range from a search process only guided by the use of the problem dependent 
(image-specific information) measuring the point matching quality by means of the curvature information 
and not taking into account the registration error g() ( ),(

errorng ww =(0,1)), to another only guided by the 
registration error ( ),(

errorng ww =(1,0)), as usual in the area. Three intermediate situations are also tested 
( ),(

errorng ww ={(0.2,0.8), (0.5,0.5), (0.8,0.2)}), where a different trade-off is established between both 
optimization criteria. 
 
The results shown in each table cell concern to the g() error function, the final evaluation measure of the 
overlapping obtained between both images, for the registration estimation obtained by every one of the 
two combination methods over the fifteen runs performed. The minimum, maximum, mean and standard 
deviation values, noted by m, M, µ, and σ, respectively, are reported. Moreover, the error value obtained 
by the baseline greedy algorithm is also shown for each of the sixteen instances. 
 
A special mention must be firstly done about the relationship between the different complexity levels of 
the four scenarios and the registration estimations performed by each IR algorithm in Table 3. We see 
how for those IR scenarios where one of the two involved images corresponds to a lesion situation (the 
last three subtables), the g() values are considerably increased. 

                                                           
2  The weights in the objective function have been previously normalized as gg ww =  and 
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, with ( )0σerrorm  and ( )0σg  being respectively the matching and registration errors of the 

initial solution, 0σ , in order to get a uniform measure of both the matching error (curvature-derived error) and the 
registration error (g()). 
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Analyzing the results shown in Table 3, we can see how the SS-based IR method considering the PMX 
combination operator achieves the best results over both the other SS-based IR method variant, which 
considers the use of the Voting combination operator, and the greedy algorithm. The SS-PMX algorithm 
obtains both the best minimum and mean results in each of the sixteen IR instances. On the other hand, 
the worst performance is obtained by the greedy heuristic, as expected. 
 
On the other hand, for a deeper comparison between the two SS variants, we will have a look to the 
frequency of application of the Improvement Method. Having in mind that a given new trial solution will 
be considered for the local search algorithm in case it overcomes one of its two parents, we have noticed 
how for the SS based on the PMX operator, the 32% of trial solutions (mean value over the fifteen runs 
developed) were considered for the application of the Improvement Method, in front of the 16% achieved 
by the Voting one. This proves the better properties offered by the former method which builds solutions 
with better quality and increases the chance to improve those new trial solutions by using the 
Improvement Method. 
 
 
As regards the influence of the weight vector values in the behavior of the two SS algorithms, it can be 
seen that the weight combination WC0,5 – 0,5 allows us to obtain the best mean value in thirteen of the 
sixteen cases overall, while the best minimum value is obtained in twelve of the sixteen cases by using 
WC0,8 – 0,2. In view of the latter, it seems that giving the same importance to both objective function 
criteria allows us to get the most robust results, while slightly reducing the importance of the registration 
error to consider the image curvature information results in the best individual performance. 
 

Table 4: Average values corresponding to each objective function weight combination in the two SS variants 

 SS-PMX SS-Voting 
 WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 

m  725 465 334 267 665 2525 2438 2428 2393 2344 
µ  980 586 440 701 1988 2849 2676 2597 2507 2454 

 
 
In order to confirm the latter assumption, Table 4 collects the average results obtained by each weight 
combination with the two SS variants. In view of the data shown in the table, the best performance for 
SS-Voting is obtained with the WC1–0 combination (i.e., guiding the search by only considering the 
registration error and not using the image-specific heuristic information at all) both for the minimum and 
mean indices. Besides, it can be seen how the higher and the lower the values of gw  and 

errornw , 
respectively, the lower (the better) the g() value. However, the small differences existing between the 
different weight combinations together with the general bad accuracy of this variant clearly make us 
conclude that this analysis is not very significant. 
 
On the other hand, specifically focusing the attention on the PMX method (which gets the best results in 
every case, thus allowing us to perform a more interesting analysis); it is easy to observe how the 
intermediate weight combinations result in the best performance in both indices. It is evident that the 
worst results are obtained when considering a single term in the objective function: the worst mean values 
are derived when the heuristic information is not considered, i.e., when the weight combination WC1–0 is 
used; while the worst minimum values are obtained when the registration error g() is not taken into 
account (WC0–1 combination). Besides, the second worst result in each index is obtained by the other 
combination. This behavior shows how a good trade-off between the both terms of the objective function 
achieves a more suitable convergence. This way, the experimental results of the SS-PMX variant 
reinforce our initial intention to make use of additional information (the image curvature information, in 
our case) as a second term in the objective function for a better guided search process, showing how an 
appropriate trade-off between the two error criteria is needed to get accurate results. 
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Table 3: Registration errors obtained by the SS algorithm when considering the PMX and Voting combination operators and the five weight vector values. The table is split into four subtables considering every IR 
problem scenario. The best mean and minimum g() values are shown using the underlined bold font 

 T1 T2 

  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 

 Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting 
m 2849 256 2135 165 2135 123 2102 107 2102 96 2102 1823 156 1366 93 1366 57 1345 64 1345 76 1345 
M - 410 2783 220 2589 197 2355 165 2288 2164 2221 - 960 1781 423 1657 109 1495 101 1464 1402 1405 

µ - 331 2389 186 2329 144 2206 127 2184 851 2154 - 249 1528 139 1489 92 1416 81 1397 736 1377 

σ - 41 191 16 140 18 68 16 49 928 26 - 192 122 77 89 12 44 10 31 613 14 

I1 vs. Ti(I2) 
 T3 T4 

  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 
 Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting 
m 2849 259 2135 135 2135 113 2102 100 2102 105 2102 4102 363 3075 210 3075 146 3027 128 3027 162 3027 
M - 438 2783 252 2589 193 2355 552 2263 2195 2221 - 562 4007 320 3728 254 3365 929 3295 3116 3199 

µ - 313 2389 189 2328 143 2214 155 2181 861 2154 - 471 3438 259 3352 202 3174 240 3145 1417 3102 

σ 
- 55 191 29 140 20 71 108 44 942 27 - 61 275 30 201 30 95 187 71 1386 38  

 

 T1 T2 

  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 

 Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting 
m 4072 911 2562 627 2558 479 2549 358 2430 401 2377 2606 562 1639 368 1639 284 1631 252 1555 236 1521 
M - 1982 3296 1136 2992 820 2841 2629 2629 2577 2577 - 1215 2109 638 1915 408 1818 1682 1682 1649 1649 

µ - 1283 2885 773 2782 567 2648 766 2543 2095 2497 - 792 1863 484 1767 330 1690 680 1627 1433 1597 

σ - 262 162 145 143 79 87 563 57 705 54 - 168 120 75 88 35 55 573 36 422 34 

I1 vs. Ti(I3) 
 T3 T4 

  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 
 Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting 
m 4072 906 2562 584 2562 488 2549 407 2430 433 2377 5864 1313 3689 842 3689 668 3689 645 3499 623 3423 
M - 1724 3296 1095 2992 941 2841 2629 2629 2577 2577 - 3281 4747 1519 4309 944 4747 3626 3786 3712 3712 

µ - 1293 2911 762 2791 601 2650 1132 2545 2158 2495 - 1991 4197 1069 3984 787 4197 970 3661 3052 3597 

σ 
- 276 187 143 136 111 85 881 58 696 53 - 596 267 159 199 73 267 721 82 1116 79  
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 T1 T2 

  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 

 Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting 
m 4471 885 2549 451 2378 327 2378 282 2378 692 2365 2861 573 1631 315 1522 214 1522 186 1522 477 1513 
M - 1595 3230 1186 2893 970 2698 2657 2679 2591 2591 - 1102 2067 671 1851 553 1727 1714 1714 1642 1642 

µ - 1213 2934 714 2613 477 2546 767 2513 2348 2467 - 739 1886 462 1668 326 1634 739 1609 1512 1578 

σ - 176 169 224 145 175 108 739 90 446 61 - 177 106 136 96 119 72 633 58 278 37 

I1 vs. Ti(I4) 
 T3 T4 

  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 
 Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting 
m 4471 847 2549 407 2378 293 2378 283 2378 387 2365 6439 1134 3671 667 3425 450 3425 399 3425 439 3406 
M - 1695 3230 1103 2893 907 2698 2679 2679 2566 2566 - 2095 4660 1502 4166 1261 3923 3502 3857 3695 3695 

µ - 1153 2945 688 2605 438 2546 1088 2513 2214 2464 - 1689 4232 937 3751 687 3679 866 3620 3179 3550 

σ 
- 221 173 245 148 151 108 970 90 642 57 - 303 258 323 213 246 167 748 131 934 84  

 

 T1 T2 

  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 

 Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting 
m 4374 934 2544 480 2480 463 2480 328 2475 2318 2318 2799 534 1671 308 1620 266 1620 219 1584 472 1484 
M - 1387 3217 872 3217 1002 2844 2670 2741 2598 2598 - 969 2058 729 2058 542 1820 1754 1754 1662 1662 

µ - 1003 2927 628 2773 637 2677 738 2592 2504 2504 - 630 1878 461 1809 338 1725 760 1669 1453 1606 

σ - 164 156 141 180 166 93 755 85 62 62 - 101 97 128 119 77 45 671 50 381 41 

I2 vs. Ti(I4) 
 T3 T4 

  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0  WC0-1 WC0.2-0.8 WC0.5-0.5 WC0.8-0.2 WC1-0 
 Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting Greedy PMX Voting PMX Voting PMX Voting PMX Voting PMX Voting 
m 4374 755 2544 477 2480 387 2480 331 2475 391 2439 6299 1211 4081 681 3571 583 3571 504 3564 3339 3339 
M - 1423 3217 921 3217 825 2844 2673 2741 2598 2598 - 2280 4632 1816 4632 1134 4096 3806 3947 3741 3741 

µ - 1001 2927 649 2773 506 2677 1024 2595 2379 2512 - 1530 4251 973 4000 766 3871 1082 3725 3610 3610 

σ 
- 160 157 135 180 127 93 984 85 532 42 - 282 183 310 252 156 130 1080 122 94 94  
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Comparison between SS and previous methods 
 
In this section we compare our SS proposal (including the PMX combination operator and the WC0.5–0.5 
weight values) with the best state-of-the-art IR algorithms in the literature: I-ICP, ICP+SA, and Dyn-GA.  
We compare the quality of the solution obtained with these four methods when solving the sixteen 
instances under consideration.  We report the MSE (Mean Square Error) value of each method on each 
instance.  As in previous experiments, we report the minimum, maximum, average and standard deviation 
of these values on fifteen independent runs. 
 
As it is well known in the IR community, the MSE value is more adequate to compare general IR 
methods than the g-value described in the introduction, which restricts its application to permutation-
based approaches.  The expression of the MSE, in which each transformed scene point is assigned to the 
closest model image point (regardless the latter had been previously assigned to other scene point), 
follows: 
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where yi is the closest model point to the transformed scene point xi. 
 
Table 5 reports the MSE values obtained by the four IR algorithms, as well as the MSE values of the 
optimal solutions (those corresponding to the registration of the two considered images by means of the 
actual registration transformations collected in Table 1), which are shown in brackets after the sixteen 
instance names. Notice that, every value in this table is rounded. Our first conclusion in view of the 
results collected in this table is that the relationship between the different complexity levels in the IR 
instances and the results obtained by each algorithm again happens in the same manner as depicted in 
Table 3. Notice how the obtained MSE values are each time more far away from the optimal ones when 
increasing the complexity of the IR scenario. On the other hand, it can be seen how our SS-based IR 
method achieves the best mean performance in fifteen of the sixteen cases, as well as the best minimum 
MSE value in thirteen of the sixteen cases. Moreover, we should notice that the results obtained by our 
approach in those instances where it does not achieve the best mean and minimum values of performance 
can be improved by choosing a different configuration for the gw and the 

errornw weights instead of fixing 
them to one value for all the instances.  However, we preferred to keep them unchanged across different 
instances to provide a robust method (as we did by selecting the same SS variant for every case). 
 

Table 5: MSE values obtained by the three state-of-the-art IR algorithms and our SS-based IR method. The table is split into four 
subtables considering every IR problem scenario. The best mean and minimum values are shown using the underlined bold font 

 T1 [32] T2 [21] 
 I-ICP ICP+SA Dyn-GA SS I-ICP ICP+SA Dyn-GA SS 
m 344 247 101 35 131 131 44 37 
M - 344 264 40 - 131 284 50 

µ - 307 195 37 - 131 108 43 

σ - 38 51 2 - 0 52 4 

I1 vs. Ti(I2) 
 T3 [32] T4 [47] 
 I-ICP ICP+SA Dyn-GA SS I-ICP ICP+SA Dyn-GA SS 
m 894 457 87 57 632 283 139 49 
M - 711 678 67 - 611 600 59 

µ - 559 211 63 - 465 302 54 

σ - 81 137 3 - 101 121 3  
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 T1 [43] T2 [30] 
 I-ICP ICP+SA Dyn-GA SS I-ICP ICP+SA Dyn-GA SS 
m 518 305 132 90 330 237 56 50 
M - 432 741 132 - 297 534 66 

µ - 343 299 112 - 261 154 57 

σ - 32 144 12 - 18 114 4 

I1 vs. Ti(I3) 
 T3 [43] T4 [62] 
 I-ICP ICP+SA Dyn-GA SS I-ICP ICP+SA Dyn-GA SS 
m 438 279 139 43 478 336 221 112 
M - 389 839 235 - 429 841 143 

µ - 347 326 64 - 382 354 123 

σ - 33 174 46 - 24 147 8  
 

 T1 [46] T2 [30] 
 I-ICP ICP+SA Dyn-GA SS I-ICP ICP+SA Dyn-GA SS 
m 704 236 124 149 1493 314 48 51 
M - 466 1083 269 - 388 299 167 

µ - 385 255 184 - 359 163 89 

σ - 61 228 33 - 22 58 41 

I1 vs. Ti(I4) 
 T3 [46] T4 [67] 
 I-ICP ICP+SA Dyn-GA SS I-ICP ICP+SA Dyn-GA SS 
m 951 312 158 52 416 342 207 95 
M - 433 468 227 - 413 1222 375 

µ - 381 225 82 - 367 415 154 

σ - 43 87 45 - 17 258 86  
 

 T1 [29] T2 [18] 
 I-ICP ICP+SA Dyn-GA SS I-ICP ICP+SA Dyn-GA SS 
m 237 230 108 128 341 142 58 52 
M - 237 348 298 - 341 270 188 

µ - 236 178 193 - 268 106 75 

σ - 2 60 62 - 71 51 41 

I2 vs. Ti(I4) 
 T3 [29] T4 [45] 
 I-ICP ICP+SA Dyn-GA SS I-ICP ICP+SA Dyn-GA SS 
m 609 399 110 70 1588 962 164 105 
M - 439 611 278 - 1533 751 362 

µ - 407 192 104 - 1247 298 150 

σ - 10 116 67 - 209 145 78  
 

Finally, in order to clearly show the actual performance of each IR technique, Figure 7 collects the 
graphical representations of the real overlapping achieved by each IR algorithm in four of the sixteen 
instances considered, one from each IR scenario. It can be seen how our SS proposal always obtains the 
best registration (see the right-most column images). Besides, it must be noted that the performance 
improvement regarding the remaining algorithms is much more remarkable as the IR scenario complexity 
increases, and that the Dyn-GA approach is the only IR technique (apart from our proposal, of course) 
being able to properly solve the IR problem for the complex scenarios considered in the experimentation 
developed. 
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Figure 7: From top to bottom, the first column corresponds to the rendering of four of the sixteen IR instances: I1 vs T1(I2), I1 vs 
T2(I3), I1 vs T3(I4) and I2 vs T4(I4); while the next four columns correspond to the best registration estimations achieved by each IR 

algorithm (from left to right: I-ICP, ICP+SA, Dyn-GA and SS) 

 
 
5. Concluding Remarks 
We have described the development and implementation of a metaheuristic procedure for the 
optimization of IR.  Our procedure extends the application of SS in an innovative way by implementing 
advanced reference set designs as well as by strategically including context information derived from the 
images characteristics.  This information is incorporated in an improved solution evaluation, candidate list 
strategies within the local search method, and in the Diversification Generation Method. 
 
One of the main goals of our effort has been to test the proposed procedure by employing real world data 
in realistic scenarios. In order to make a valid comparison against competing procedures, we have used 
the well establish MSE metric as well as graphical output.  Our computational experiments show that SS 
has merit when compared to IR procedures previously identified to be the best. 
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