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Abstract – We develop a metaheuristic procedure for multiobjective clustering problems.  Our goal is to 

find good approximations of the efficient frontier for this class of problems and provide a means for 

improving decision making in multiple areas of application and in particular those related to marketing.  

The procedure is based on the tabu and scatter search methodologies.  Clustering problems have been the 

subject of numerous studies; however, most of the work has focused on single-objective problems.  

Clustering using multiple criteria and/or multiple data sources has received limited attention in the OR 

and marketing literature.  Our procedure is general and tackles several problems classes within this area 

of combinatorial data analysis.  We conduct extensive experimentation with both artificial and real data 

(in a marketing-segmentation problem) to show the effectiveness of the proposed procedure. 

Keywords: multiobjective optimization, scatter and tabu search, combinatorial data analysis, partitioning, 

market segementation. 
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1 Introduction 

We study optimization problems associated with cluster analysis, within the general area of 

combinatorial data analysis.  In particular, we are interested in partitioning problems for cluster analysis 

that requires the simultaneous optimization of more than one objective function.  Clustering problems 

have a wide range of application areas and are particularly important in marketing studies.  The following 

example illustrates the need for modeling clustering problems in a multiobjective optimization 

framework. 

Consider a situation in which a firm would like to identify consumer segments that have different 

levels of proneness to deals.  The firm conjecture is that there may be customers prone to deals in general 

and some other customers prone to specific type of deals.  Suppose that the firm collects survey data (e.g., 

Likert-scale measurements) regarding the proneness of customers to deals, such as coupons, buy-one-get-

one-free, free gifts and rebates.  The firm has data on demographics, such as age, household income, 

education and gender.  Also, additional data are available on customers’ behaviors pertaining deal 

responsiveness, such as coupon redemption frequency and quantity of sale items purchased.  With these 

data, the firm could apply standard (single-criterion) clustering techniques to find clusters that are 

homogenous with respect to the customers’ demographics.  Homogeneity is given by the selection of the 

objective function to be optimized when solving the associated clustering problem.  As we discuss later, 

there are a number of criteria that could be used to obtain homogenous clusters.  The firm, instead, may 

choose to cluster customers in order to maximize the explained variation in the actual customers’ 

responses to deals.  It is possible, however, that neither of these clustering schemes turn out to be useful 

to the firm that might be looking for clusters that are both homogenous according to some criterion and at 

the same time explain the variation related to one or more dependent variables.  We come back to this 

situation in our computational experiments, where we use data collected by Lichtenstein, Burton and 

Netemeyer (1997), who studied customers’ proneness to eight different types of sales promotions. 
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We assume the existence of an n×n symmetric matrix A = {aij} such that aij ≥ 0 for i ≠ j and 

where the values of the elements in the main diagonal are irrelevant.  The values in A reflect the level of 

dissimilarity between each pair of objects in a data set, such that the larger aij is the more dissimilar object 

i is from object j (and vice versa).  Cluster analysis methods may be hierarchical or nonhierarchical.  Our 

work focuses on nonhierarchical (or partitioning) methods. 

Partitioning methods consist of separating objects into K distinct clusters Ck of size nk.  A feasible 

partition of clusters satisfies the following conditions: 

 

Ck ≠ ∅ for 1 ≤ k ≤ K 

Ch ∩ Ck = ∅ for 1 ≤ h < k ≤ K 

C1 ∪ C2 ∪ … ∪ CK = Collection of all objects 

 

We consider two main classes of multiobjective partitioning problems: 1) partitioning of objects 

using one partitioning criterion but multiple dissimilarity matrices and 2) partitioning of objects using one 

dissimilarity matrix but more than one partitioning criteria.  (Our computational experiments also include 

partitioning problems using both multiple criteria and multiple dissimilarity matrices.)  As mentioned by 

Brusco and Cradit (2005), “The spectrum of possible indices for obtaining a partition based on proximity 

data is limited only by the analyst’s imagination; however, most indices correspond to either the sum of 

dissimilarity elements within clusters, or the maximum dissimilarity element (diameter) within clusters.”  

Therefore, following Brusco and Stahl (2005), we will focus on partitioning criteria that consist of 

minimizing a combination of the following four functions: 
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Minimizing the partition diameter entails the calculation of the diameter for each cluster.  The 

cluster diameter is the maximum dissimilarity between two objects that belong to the same cluster.  This 

criterion is quite different from the other three, which are based on adding the dissimilarity values within 

each cluster.  This is why a typical bi-criterion problem consists of finding a partition of objects that 

minimizes the partition diameter and one of the other functions based on an aggregate within-cluster 

dissimilarity measure. 

1.1 Partitioning of Objects Using Multiple Criteria 

Minimizing the diameter of a partition is conceptually different from minimizing a function based 

on aggregating the within-cluster dissimilarity values.  Hence, it is not reasonable to expect that a 

partition that is optimal with respect to f1 will be also optimal with respect to f2, f3 or f4.  In fact, even 

though criteria f2, f3 and f4 are based on aggregating dissimilarity values, there is no guarantee of finding a 

single partition that optimizes all of them simultaneously.  Consider, for example, using the dissimilarity 

matrix in Table 1 to solve a partitioning problem for K = 2. 
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 1 2 3 4 

1 0 4 5 3 

2 4 0 6 5 

3 5 6 0 7 

4 3 5 7 0 

Table 1 Dissimilarity matrix 

 

Table 2 shows the optimal solutions associated with each objective function under consideration. 

 

Partition f1 f2 f3 f4 

{1, 3} {2, 4} 5* 10 5 10 

{1, 4} {2, 3} 6 9* 4.5 9 

{3} {1, 2, 4} 12 12 4* 4* 

* Optimal objective function value 

Table 2 Optimal partitions for Table 1 data 

 

The first partition in Table 2 is optimal with respect to f1, but is suboptimal with respect to all 

other criteria.  Likewise, the second partition is optimal with respect to f2 but suboptimal with respect to 

the other functions.  The third partition is somewhat special in that it is optimal for two out of the four 

objective functions. 

The challenge of this multiobjective optimization problem is finding efficient partitions for any 

combination of the criteria described above.  As mentioned above, a typical problem in this context 

consists of formulating bipartite models to minimize f1 and either f2, f3 or f4 (Brusco and Cradit, 2005).  

These problems are not the only ones that have been addressed in the literature.  For instance, Hansen and 

Delattre (1978) introduced f1 to the cluster analysis literature and also suggested using the concept of split 

to find partitions of objects (Delattre and Hansen, 1980).  The split of a cluster Ck is defined as the 
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minimum dissimilarity between an object in Ck and any other object not in Ck.  The split may be used to 

either maximize its minimum value (Delattre and Hansen, 1980) or maximize the sum (Hansen, Jaumard 

and Frank, 1989). 

1.2 Partitioning of Objects Using Multiple Dissimilarity Matrices 

This problem arises when clustering of objects is done by considering more than one data set and 

it is not possible to aggregate these multiple sets into one.  The market segmentation problem described 

by Krieger and Green (1996) is a typical case of partitioning using multiple dissimilarity matrices.  The 

problem consists of finding homogenous clusters in order to plan targeted marketing efforts.  If the 

clustering is based on a single data source, then traditional cluster analysis techniques can be applied.  

However, there are situations where the market segmentation is more effective if several data sources are 

used.  For instance, Brusco and Stahl (2005) describe the case of a telecommunications company that 

would like to find clusters of business customers based on their demographics and also based on current 

satisfaction and their willingness to switch providers.  While the two sources of data could be aggregated 

to perform a traditional cluster analysis, the telecommunications company is more interested in 

identifying homogenous clusters based on demographics while explaining the variation in current 

satisfaction levels and willingness to switch.  The appropriate approach is therefore to formulate the 

problem as a multiobjective partitioning of objectives using multiple dissimilarity matrices (i.e., firm 

demographics and customer satisfaction/willingness to switch).  Note that this situation is similar to the 

one we describe in the introduction of this paper to motivate the need for multiobjective clustering in 

marketing. 

In general terms, the problem is one in which performance drivers are known (first source of 

data) along with their performance measures (second source of data) and it is desired to identify K 

clusters that are homogenous with respect to the performance drivers and that at the same time they help 

to explain the variation on the performance measures.  A typical objective function in this situation is to 

minimize the total adjusted within-cluster dissimilarity for the L sources of data: 
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where l
ija = dissimilarity of objects i and j according to data source l.  Dissimilarity typically consists of 

the Euclidean distance between two firms as calculated with the tuple of corresponding measures.  In this 

context, it is also usual to maximize the proportion of explained variation, which is calculated by 

reference to the total sum of squares (TSS): 
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The multiobjective optimization problem becomes: 

 

maximize 
l

l
l

TSS
f

g 3
3 =  for l = 1, …, L 

 

Note that lg3  is bounded between zero and one.  The extreme values occur at the trivial solutions that 

consist of putting each object in a different cluster (K = n and lg3  = 0) and putting all objects in the same 

cluster (K = 1 and lg3  = 1).  We tackle this particular problem in the experiments presented in section 4.3. 
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2 Pareto Approach 

Multiobjective partitioning problems have been approached in two general ways: 1) using 

preemptive (or priority) weights to assign priorities to the objective functions, or 2) using weights to 

aggregate the objective functions into a single one.  Suppose that it is desired to find partitions that 

minimize both f1 and f2.  Under the preemptive-weight approach, the optimization problem may be 

formulated as follows: 

 

 Min P1f1 + P2f2 

 

In this formulation, P1 and P2 are preemptive weights that determine the priority of the objective 

functions.  Objective functions of higher priority are optimized first follow by those with lower priority.  

In other words, the preemptive weights create a hierarchy of objective functions.  Under this approach, 

lower priority objective functions are not allowed to alter the level of attainment of the objective functions 

at a higher priority.  In our example, we would first find *
1f , the optimal value for the objective function 

with the higher priority.  Then, a search for a partition that minimizes f2 is conducted in such a way that 

*
11 ff ≤ .  In order to generate more than one solution, the diameter restriction may be relaxed (from its 

optimal value), resulting in the multiobjective approach known as the ε-constraint method.  The main 

disadvantage of this approach is that in order to find an approximation of the Pareto frontier, a potentially 

large number of problems of the following form must be solved: 

 

 Min fv 

 s.t. 

  ε≤if  i = 1, …, p, i ≠ v 
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The task becomes computationally impractical as the number of objective functions (p) increases.  This is 

the approach followed by Brusco and Cradit (2005) and that we use for comparison purposes in section 

4.1. 

In the second approach, the multiobjective optimization problem is transformed to a single-

objective function problem of the form: 

 

 Min ∑
=

p

i
ii fw

1

 

 

In this model, wi represents the weight assigned to the objective function fi.  Approximating the Pareto 

frontier with this approach entails the solution of this problem with different sets of weight values.  

Brusco and Stahl (2005) state the following in reference to this approach (page 85): 

 

“The principal limitation of multiobjective programming is the selection of an 

appropriate weighting scheme.  The severity of this problem increases markedly when 

three or more criteria are considered.” 

 

This is the approach used by Brusco, Cradit and Stahl (2002) in their simulated annealing procedure.  

However, as we discuss in section 4.3, the approach has some severe limitations when dealing with 

combinatorial multiobjective optimization problems. 

Our focus is to tackle the partitioning problems described above with the goal of finding an 

approximation Ê of the efficient frontier (or Pareto front) E.  We do this by simultaneously considering all 

the objective functions in a given problem.  We do not aggregate the objective functions nor do we 

prioritize them.  The approach is based on searching in the direction of both the individual objective 

functions and ideal points constructed employing concepts from compromise programming.  The search 

itself is conducted within the framework of metaheuristic optimization, as described in the next section. 
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3 Metaheuristic Search 

Our metaheuristic search procedure is based on two well-known methodologies: tabu search 

(Glover and Laguna, 1997) and scatter search (Laguna and Martí, 2003).  Our first application of this 

technology in the area of multiobjective optimization was related to nonlinear objective functions.  In 

particular, we developed a procedure called SSPMO for nonlinear multiobjective optimization in 

continuous variables (Molina, et al. 2006).  Our current development extends SSPMO to tackle the 

multiobjective clustering problems described above.  We first provide a summarized description of 

SSPMO and then we discuss the search mechanisms that were specifically designed for the current 

context. 

3.1 Summarized Description of SSPMO 

SSPMO consists of two phases: 

 

1. Generation of an initial set of efficient points through various tabu searches 

2. Combination of solutions and updating of Ê via a scatter search 

 

The first phase starts with p + 1 linked tabu searches, where p is the number of objective functions in the 

problem.  The objective functions are considered one at a time (in arbitrary order).  The tabu searches 

focus on finding the optimal solution to the single-objective optimization problems.  Let 1x  be the last 

point visited at the end of the first tabu search.  Then, another tabu search is launched, starting from 1x , to 

search for the optimal solution to the second single-objective optimization problem.  This process is 

repeated until all the single-objective problems have been considered.  A final tabu search is performed 

considering the first objective function one more time, starting from px .  At this point, Ê contains the p 

solutions that best approximate the optimal solutions to the single-objective problems and all other 

efficient solutions found during the tabu searches. 
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Additional tabu searches are performed guided by a global criterion, as typically done in 

compromise programming (Zeleny, 1982).  In particular, we use the ∞L  metric: 
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where ideal
if  is the best known value for objective function i, idealanti

if −  is the worst possible outcome 

associated with objective i, and ( )xfi  is the value of the ith objective function value associated with 

solution x.  For a given set of weights (wi > 0 and ∑ =
i

iw 1 ) solution x is efficient if it minimizes )(xL∞ .  

This property is the motivation behind the compromise-programming approach for the tabu searches that 

we perform beyond the first p+1.  A new set of randomly generated weights is used for every tabu search.  

The first phase stops when InitPhase tabu searches are performed without changes in Ê.  It should be 

noted that the tabu search procedure used for this first phase is also applied as the improvement method in 

the second phase. 

The scatter search phase is initiated immediately after the termination of the tabu search phase.  

The first step consists of building an initial reference set (RefSet) by drawing, without replacement, 

solutions from Ê.  Let b (b > p) be the size of RefSet.  We first select the p solutions from Ê that best 

approximate the optimal values for each of the objective functions in the problem.  Then, we sequentially 

choose b-p additional solutions from Ê, where each selection is made with the criterion of maximizing the 

minimum distance between the chosen solution and the solutions currently in the reference set.  In this 

case, distance is measured in the objective function space using a normalized ∞L  metric.  Note that all the 

solutions in the initial RefSet are efficient (with respect to those in Ê).  We maintain this property 

throughout the search because we have determined that there is no benefit in combining solutions that 

have been shown to be dominated.  An iteration of the scatter search phase starts with the application of 
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the combination method.  The method consists of combining all pairs of reference solutions (i.e., all pairs 

of solutions in RefSet) in order to generate new solutions.  Each combination of reference solutions yields 

4 trials solutions.  A tabu search is initiated from each of these trial solutions in an attempt to improve 

them.  Trial solutions generated by the combination method and those visited during the tabu searches are 

tested for efficiency (i.e., they are tested for possible inclusion in Ê).  After the application of the 

combination and improvement methods, the RefSet is rebuilt following a process that is similar to the one 

described above for the initial reference set.  In order to encourage a diversified exploration of the 

objective function space, we keep a record (TabuRefSet) of past reference solutions.  No member of 

TabuRefSet can be chosen as a reference solution.  Therefore, the rebuilding of RefSet is done with those 

solutions currently in Ê that do not belong to TabuRefSet. 

3.2 Specific SSPMO Mechanisms for Clustering 

A solution x is represented as a set of K objects, where each object is considered the “centroid” of a 

cluster.  That is { }Kxxx ,,1 K= , where xk (1 ≤ xk ≤ n) is the centroid of cluster k.  Objects that do not 

belong to x are assigned to clusters represented by the closest centroid.  The assignment is done as 

follows: 

 

 ( )
⎭⎬
⎫

⎩⎨
⎧ ′=′=

= hk xiKhxik aaiC ,,,1, min:
K

 for k = 1, …, K 

 

For problems with one matrix ijij aa =′ .  For problems with more than one dissimilarity matrix 

∑=′
l

l
ijlij aa λ , where lλ  is a weight assigned to data source l.  In this case, we have one objective for 

each data source, i.e., p = L.  Therefore, if we are performing the first p+1 search in the initial phase of the 

method, all lambda values are zero except for the one corresponding to the dissimilarity matrix under 

consideration, for which the lambda value is set to one.  Afterwards, the lambda values are the same as 
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the weights used to create compromise solutions (i.e., w=λ ).  The justification for the choice of solution 

representation is presented in section 4. 

For the tabu searches, we construct the neighborhood of a solution x by generating NSize distinct 

(r, q) pairs, where q ∉ x, 1 ≤ q ≤ n and 1 ≤ r ≤ K.  A neighbor of x is such that xr is replaced by q.  The 

search moves to the best neighbor, where best is determined either by a single objective (during the p+1 

initial searches) or by the ∞L  metric.  If the current solution x is not dominated by any of its NSize 

neighbors, the solution is considered for membership in Ê.  Also, after the search moves to the best 

neighbor, x is added to the tabu list.  Solutions remain in the tabu list for TabuTenure iterations.  This is 

the simplest form of short-term memory tabu search that does not invoke aspiration level criteria. 

The combination of two reference solutions is done as follows.  Let 1x and 2x  be the two 

reference solutions being combined.  Then, the resulting trial solution tx  is such that 
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where r is a random number between 0 and 1.  If t
h

t
k xx =  for k ≠ h, the trial solution tx  is repaired by 

randomly selecting q ∉ tx  (1 ≤ q ≤ n) and making qxt
k = . 

4 Computational Experiments 

For our computational comparison we generated problem instances with the procedure suggested 

by Brusco and Cradit (2005) and Hansen and Delattre (1978).  These authors created dissimilarity 

matrices of sizes n = 30, 60 and 90 by first generating points within a unit circle, then computing the 

Euclidean distance between pairs of points, and finally multiplying the distances by 100 and eliminating 

the fractional part.  We have extended this set by adding two larger matrices with n = 120 and 150, 

respectively.  The five matrices result in 35 instances when considering 7 different K values, ranging from 
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2 to 8.  An additional set of 5 matrices with n = 30, 60, 90, 120 and 150 was created to provide data for 

experiments with multiple dissimilarity matrices.  In this case, we use the pair of matrices of each size to 

provide two sources of data for each problem.  As before, 7 K-values are considered, yielding 35 problem 

instances.  All our experiments are performed on a Pentium machine with a single 2.4 GHz processor and 

512 MB of RAM.  Our C codes were compiled on Visual C++ 2005 Express Edition. 

Brusco and Stahl (2005) provide exact procedures, based on the branch-and-bound methodology, 

for solving clustering problems with the single objectives f1, f2 and f3.  Their FORTRAN codes can be 

downloaded from http://garnet.acns.fsu.edu/~mbrusco/.  No computer code is provided for the f4 criterion.  

We use the dissimilarity matrix of size 30 to apply Brusco and Stahl’s code to the 7 problem instances 

that correspond to K = 2 to 8.  This was done to assess the capability of a state-of-the-art exact method for 

the class of problems that we are tackling.  We limited the execution of the branch-and-bound code to 2 

hours.  The results are shown in Table 3.  The first column shows the K value.  The next three columns 

show the optimal solutions associated with each instance and each objective function.  The last three 

columns show the time in CPU seconds. 

The optimal solutions reported in Table 3 are the “extremes” of the efficient frontier for the 

multiobjective problem.  These optimal values may be used to assess the quality of heuristic solutions 

when considering one objective function at a time.  However, the branch and bound codes by Brusco and 

Stahl do not provide a way of finding efficient solution within these extreme points for problems with one 

data source and more than one objective function. 

The results in Table 3 show that the branch and bound is an effective method for solving 

clustering problems with the f1 criterion.  Even for the largest problem instances with n = 120, the 

procedure finds and confirms the optimal solution in less than 15 CPU seconds.  However, the procedure 

encounters difficulties with problem instances based on f2 and f3.  The pattern observed in Table 3 extends 

to larger problem instances.  For n = 60, the procedure is able to solve the K = 2 instance for f2 and the 

K = 2, 3 and 4 instances for f3 within the 2-hour limit.  No n ≥ 90 instances could be solved for either f2 or 

f3 within the specified time limit. 
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 Objective function value CPU time in seconds 

K f1 f2 f3 f1 f2 f3 

2 63 6292 403.333 0.120 0.04 0.02 

3 52 3063 304.456 0.160 5.41 0.06 

4 43 2045 259.069 0.130 865.8 3.76 

5 37 -- 220.065 0.150 > 2 hours 24.55 

6 28 -- 189.375 0.160 > 2 hours 194.81 

7 27 -- 163.875 0.150 > 2 hours 1173.17 

8 23 -- -- 0.130 > 2 hours > 2 hours 

Table 3  Branch-and-bound results for n = 30 

 

We now examine our choice for representing solutions within the search process.  A “natural” 

representation consists of an n-dimensional vector ( )nxxx ,,1 K= , where xi (0 ≤ xi ≤ K) is the index of 

the cluster to which object i is assigned.  Since clusters have no unique identity, this representation has the 

disadvantage of producing a potentially large number of x-vectors that map to the same clustering 

configuration.  As indicated in section 3.2, we chose a representation in which K objects become the 

centroids of the clusters in a given solution.  This representation attempts to minimize the “symmetry” 

problems cause by the lack of cluster identity.  However, there is no guarantee that the optimal clustering 

(with respect the criteria under consideration) can be represented with centroid mechanism that we 

described above. 

The purpose of our next experiment is to evaluate the merit of the centroid-based solution 

representation.  We compare the performance of two methods, one (referred to as Naïve) that consists of 

randomly assigning objects to clusters and another (referred to as Centroids) that randomly selects K 

objects to be the centroids of the clusters and where the remaining n-K objects are assigned to the closest 

cluster (as determined by the dissimilarity between the object under consideration and the cluster 
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centroid).  We generate 100n solutions with each method for each instance.  Table 4 reports for both 

methods, on each group of seven instances (K = 2, ..., 8), the average ± the standard deviation of the 

solution values for each objective function.  The last row shows the average of the average values and 

standard deviations over the 35 instances. 

 

 Naïve Centroids 

n f1 f2 f3 f4 f1 f2 f3 f4 

30 95.59 ± 

35.57 

4458.38 ± 

4321.00 

522.63 ± 

160.67  

200.20 ± 

152.70 

57.58 ± 

55.86 

3299.98 ± 

7742.71 

294.58 ± 

198.81 

91.12 ± 

78.71 

60 110.77 ± 

28.00 

19162.73 ± 

9271.57 

1213.25 ± 

206.91 

220.33 ± 

77.31 

70.86 ± 

60.57 

14840.47 ± 

35201.86 

672.10 ± 

437.92 

97.89 ± 

81.09 

90 111.13 ± 

22.00 

43832.46 ± 

13533.00 

1895.40 ± 

218.23 

222.99 ± 

50.60 

73.28 ± 

61.29 

33835.37 ± 

85967.57 

1042.04 ± 

679.36 

99.11 ± 

69.69 

120 120.53 ± 

22.43 

82076.26 ± 

19208.71 

2693.26 ± 

228.59 

234.19 ±  

29.05 

78.67 ± 

65.00 

62844.41 ± 

168649.29 

1470.51 ± 

986.93 

103.20 ± 

70.64 

150 120.66 ± 

20.71 

128755.13 ± 

22400.86 

3403.77 ± 

234.64 

234.74 ± 

25.01 

80.00 ± 

66.14 

99016.53 ± 

254334.29 

1863.16 ± 

1204.17 

103.82 ± 

67.33 

Average 111.74 ± 

25.74 

55656.99 ± 

13747.03 

1945.66 ± 

209.81 

222.49 ±  

66.93 

72.08 ± 

61.77  

42767.35 ± 

110379.14 

1068.48 ± 

701.44 

99.03 ± 

73.49 

Table 4  Random sampling results 

 

The results in Table 4 reveal the advantage of basing a search procedure in a solution 

representation that uses centroids.  For each problem size and optimization criterion, we find significant 

differences between the average quality of the solutions in the random samples.  This justifies our choice 

of the centroids method for representing solutions in our search procedure. 

We have verified that the solution representation based on centroids is an effective solution 

method in its own right when tackling small problem instances.  Specifically, we applied the Centroids 

random sampling procedure to the problems with n = 30 associated with Table 3 and, in computing times 
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not exceeding an average of 5 seconds, the procedure is able to match all the known optimal solutions to 

these problems.  The quality of the solutions found with Centroids deteriorates (when compared to the 

solutions found with our metaheuristic) as the size of the problem instances increases. 

In the next subsections, we present the results of applying our metaheuristic to multiobjective 

problems.  We used the following parameter settings: 

 

b = 2*p 

NSize = 2*K 

TabuTenure = 20 

InitPhase = 3 

 

Our solution procedure is capable of tackling problems that simultaneously consider multiple criteria and 

multiple matrices.  We divide our main experiments with synthetic data into three blocks: experiments 

with multiple criteria, experiments with multiple matrices and experiments with both multiple criteria and 

multiple matrices.  In order to assess the quality of the output produce by multiobjective procedures, we 

consider three well known measures taken from the literature: 

 

Number of points: This refers to the ability of finding efficient points.  The preference is 

to find more rather than fewer (potentially) efficient points. 

 

SSC: This metric, suggested by Ziztler and Thiele (1999) measures the Size of the Space 

Covered (SSC).  SSC measures the volume of the dominated points and, therefore, the 

larger the value the better. 
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C(A,B): This is known as the coverage of two sets measure and was also suggested by 

Zizler and Thiele (1999).  C(A,B) represents the proportion of points in the estimated 

efficient frontier B that are dominated by the efficient points in the estimated frontier A. 

4.1 Experiments with Multiple Criteria 

For this set of experiments, we employ the procedure (which we will refer to as Bi-Heur) recently 

published by Brusco and Cradit (2005).  There are two main differences between our metaheuristic 

(SSPMO) and Bi-Heur: 

 

1. Bi-Heur considers f1 as the primary objective and fi (i = 2, 3 or 4) as the secondary objective while 

SSPMO simultaneously handles f1, f2, f3 and f4. 

 

2. A single run of SSPMO yields an approximation of the efficient frontier while a single run of Bi-

Heur results in a single (possibly) efficient point. 

 

Hence, in order to compare our results, we executed SSPMO once for each problem instance in our data 

set, with n = 30 to 150 and K = 2 to 8.  For each run, we record the approximation of the efficient frontier 

and the total execution time.  We then used Bi-Heur to find solutions to the bicriterion problems (f1, f2), 

(f1, f3) and (f1, f4).  For each bicriterion problem, Bi-Heur was executed multiple times from randomly 

generated initial partitions (as recommended by the authors).  The number of runs was limited by the 

amount of time used during the SSPMO run.  In other words, we launched Bi-Heur from a random 

partition as many times as possible as long as the total computational time did not exceed the one 

employed by SSPMO.  We rotated through the 3 bi-criterion problems in order to allocate similar 

computational time to all of them. 

Table 5 reports the average of the objective function values found by each approach.  The 

accompanying Table 6 shows two multiobjective measures: average SSC and average number of points.  
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In addition, Table 6 includes the average computational effort (in CPU seconds) associated with obtaining 

each (potentially) efficient point.  We report this because the total computational effort is the same for 

both approaches. 

 

 Bi-Heur SSPMO 

n f1 f2 f3 f4 f1 f2 f3 f4 

30 42.43 2198.86 247.97 63.08 39.00 2156.14 240.54 47.24 

60 54.43 9843.14 566.01 69.93 47.71 9688.14 546.89 54.43 

90 54.29 22373.29 872.89 71.03 49.29 22367.00 865.27 58.21 

120 59.57 42665.71 1245.97 70.19 53.71 42272.00 1223.17 59.66 

150 58.14 67063.57 1581.84 70.59 54.86 67014.71 1560.95 61.73 

Avg. 53.77 28828.91 902.93 68.96 48.91 28699.60 887.36 56.25 

Table 5 Average objective function values 

 

 Bi-Heur SSPMO 

n No. of points SSC Time No. of points SSC Time 

30 3.00 0.23 2.80 83.86 0.51 4.20 

60 3.00 0.20 31.03 150.14 0.52 23.48 

90 3.00 0.13 132.78 224.43 0.46 156.12 

120 3.00 0.16 424.67 248.86 0.44 183.35 

150 3.00 0.12 1312.78 287.29 0.45 411.55 

Avg. 3.00 0.17 380.81 198.91 0.48 155.74 

Table 6 Comparison of SSPMO and Bi-Heur using multiobjective measures 

 

Bi-Heur is very sensitive to the initial partition and this is why its authors recommend executing the 

heuristic from 100 initial random partitions.  This results in a very time-consuming process that is not 
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capable of generating more than one (possibly) efficient solution for each bi-criterion problem (as shown 

in the second column of Table 6).  Tables 5 and 6 show the advantage of our procedure when tackling 

clustering problems with multiple criteria.  SSPMO produces approximations of the efficient frontier with 

SSC values that are at least twice as large as those produced by Bi-Heur.  The results are similar when 

comparing SSPMO and Bi-Heur taking each bicriterion problem at a time.  In other words, SSPMO 

outperforms Bi-Heur when examining the results of the three bicriterion problems (f1, f2), (f1, f3) and (f1, 

f4).  Using the output from this experiment, we also calculated the associated C(A,B) values: 

 

C(SSPMO, Bi-Heur) = 0.345 

C(Bi-Heur, SSPMO) = 0.007 

 

These values are additional evidence of the merit of SSPMO in the context of multiobjective clustering.  

The aggregate coverage of two sets indicates that almost 35% of the points estimated to be efficient by Bi-

Heur are actually denominated by points found by SSPMO.  The opposite only occurs less than 1% of the 

time. 

4.2 Experiments with Multiple Dissimilarity Matrices 

Brusco and Stahl (2005) discussed the application of branch-and-bound to the bicriterion problem 

of minimizing f3 when two dissimilarity matrices (A and B) are considered.  A single execution of their 

FORTRAN code (bbbiwcss.for) results in an efficient point.  In order to obtain several efficient points, the 

code must be executed with different weight values.  We modified the code as suggested in Brusco and 

Stahl (2005).  In particular, we created a loop with a variable iloop varying from 0 to 10.  The weight for 

matrix A is iloop/10 while the weight for matrix B is (1 – iloop/10).  In this way, 11 efficient points are 

obtained, including the optimal solutions associated with each matrix. 

Brusco’s and Stahl’s exact procedure is capable of tackling problems with up to 30 objects.  We 

applied the modified branch-and-bound code to our two 30-object matrices and set K = 2, …, 8.  The 
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branch-and-bound code generated only two distinct efficient points for problems with K > 3.  For the 

problem with K = 2, only 3 efficient points were found.  The approach required 221 seconds to find 6 

efficient points for the problem with K = 6.  SSPMO required 9 seconds to find an approximation of the 

efficient frontier with 86 points, including 5 of the efficient points found by the branch-and-bound 

procedure.  Figure 1 shows SSPMO’s approximate frontier and the 6 efficient points. 
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Figure 1 Efficient frontier for the minimization of f3 with two 30-object matrices and K = 3 

 

The only efficient point that SSPMO is not able to find is (395.111, 492.972).  The best approximations to 

this point are (401.627, 489.404) and (396.942, 501.706).  In both cases, neither objective function value 

is more than 2% away from the efficient point.  We do not present the results for K = 3 because in all of 

these instances SSPMO matches the known efficient solutions in a fraction of the time required by the 

branch-and-bound code. 

As part the experimentation with multiple matrices, we ran SSPMO using the two 30-object 

matrices, K = 2, 3 and 4 and all the objective functions (f1 to f4) considered at the same time.  To the best 

of our knowledge, there is no published procedure that is capable of tackling such a problem.  The results 
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that we present in Table 7 compare the performance of SSPMO and the simple Naïve method described 

above.  The rationale for the experiment is twofold.  We would like to determine whether SSPMO 

provides an advantage over a simple approach and we would like to establish a benchmark for future 

research in this area. 

 

 Naïve SSPMO 

K No. of points SSC Time No. of points SSC Time 

2 473 0.016538 1217.5 1095 0.017594 1183.5 

3 2847 0.096896 9228.2 8496 0.103708 9251.3 

4 8627 0.070108 7011.3 15496 0.098749 8007.2 

Table 7  Results for multiple matrices (n = 30) and multiple objective functions (f1, …, f4). 

 

Table 8 shows the coverage of two sets measure associated with the results in Table 7 

 

K C(SSPMO, Naïve) C(Naïve, SSPMO) 

2 0.116 0.003 

3 0.206 0.002 

4 0.217 0.017 

Table 8 Coverage of two sets measure for the results reported in Table 7 

 

Table 7 and 8 reveal the usefulness of our approach.  Although the absolute differences in SSC values 

may seem small, the relative differences are indeed significant.  When solving problems with multiple 

matrices and objective functions, SSC values are not expected to be much larger than zero.  This is due to 

the increase in dimensionality of the objective function space.  As the number of dimensions increases, 

the number of efficient points in the approximation of the frontier must increase exponentially in order to 

maintain a high SSC value.  The volume calculation (i.e., SSC) in Table 7 shows the effect of dealing with 
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8 objective functions at the same time (i.e., 4 different criteria and 2 sources of data).  This experiment 

shows that current metaheuristic technology is not capable of dealing with the exponential increase in the 

number of points that is necessary to obtain better volume measures in high-dimensional multiobjective 

combinatorial optimization problems.  The merit of SSPMO is therefore more obvious when examining 

the C(A,B) values reported in Table 8. 

4.3 Experiments with Segmentation 

We perform one final experiment in which we use real data from a market segmentation problem.  

Given a set of customers, a set of descriptor variables and a response variable, the problem is to find a 

clustering of the customers that maximizes both a measure of homogeneity and the explanation power of 

the response variable.  As described in Brusco, Cradit and Stahl (2002), the bicriterion problem consists 

of finding partitions that simultaneously maximize the proportion of variation explained by the descriptor 

variables and the response variable.  The “classical” market segmentation problem deals with creating 

homogenous groups and therefore deals with the single objective of maximizing the variation explained 

by the descriptor variables.  In the bicriterion problem, the maximization of the variation explained by the 

response variable is also considered. 

The input for this experiment consists of market data (variables and observations).  The objective 

functions are ω2(C) and η2(C), as denoted in Brusco, Cradit and Stahl (2002).  Both functions represent 

the ratio of the between-clusters sum of squares and the total sum of square, for a given cluster C.  The 

sum of squares in ω2(C) are calculated using the descriptor variables while the sum of squares in η2(C) 

are calculated using the response variable.  In other words, ω2(C) = lg3  (see section 1.2) when the 

dissimilarity matrix is obtained by calculating the Euclidean distances between every pair of observations 

(customers) using the descriptor variables.  The same is true for η2(C) when using the response variable.  

The simulated annealing procedure (SAH) of Brusco, Cradit and Stahl (2002) operates in the scalar 
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objective function that assigns a weight to ω2(C) and another weight to η2(C).  The sum of the weights is 

required to be equal to one. 

As discussed in Ehrgott and Gandibleux (2000), the biggest additional challenge when solving 

multiobjective combinatorial optimization problems as opposed to multiobjective linear programs is the 

presence of efficient solutions that are not optimal for any scalarization of the problem.  Scalarization 

refers to the transformation of the multiobjective problem into a single-objective problem by means of 

optimizing a function that is the weighted sum of the multiple objective functions (as discussed in section 

2). 

Efficient solutions that cannot be found by solving the scalar optimization problem are referred to 

as unsupported efficient solutions.  Those efficient solutions that are optimal for the scalar problem are 

called supported efficient solutions. The set of unsupported efficient solutions is important and it has been 

shown that the ratio of unsupported to supported points is large in multiobjective combinatorial 

optimization problems.  More details about searching for unsupported efficient solutions can be found in 

Ulungu and Teghem (1994) or in Visée et al. (1998) 

Lichtenstein, Burton and Netemeyer (1997) tackle a market segmentation problem related to 

consumers’ proneness to deals.  In their study, they surveyed customers walking out of two grocery 

stores.  The survey focused on measuring eight deal-specific proneness types: proneness toward coupons, 

sales, cents-off, buy-one-get-one-free, free-gift-with-purchase, end-of-aisle displays, rebates/refunds, and 

contests/sweepstakes.  They used SPSS to find a K-means solution with 2 and 3 clusters.  The resulting 

clusters were used to perform an ANOVA on ten dependent variables.  The clusters obtained following 

this method are meant to be homogenous with respect to the independent variables (i.e., with respect to 

the eight deal-specific proneness types). 

We used this market data to compare the performance of SSPMO and SAH in the context of the 

bicriterion market segmentation problem.  Because SAH can deal only with one dependent variable, we 

chose “quantity of coupons redeem”, which is one of the ten response variables examined by 

Lichtenstein, Burton and Netemeyer (1997).  Hence, the data set consists of 524 observations (customers), 
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8 independent variables and 1 dependent variable.  Figure 2 shows the approximations of the efficient 

frontier found by SAH and SSPMO for K = 3. 

SSPMO finds 748 points and in the same amount of computational time (3646.01 CPU seconds) 

SAH finds only 11 points.  Figure 2 shows that the SAH is not capable of finding efficient points in areas 

of the frontier that are not convex.  These are the areas where unsupported efficient points lie and where 

scalar-based approaches fail.  The results using other independent variables in the data set are the same.  

Results with K = 2 show an even more dramatic picture of the inability of SAH to find efficient points 

because the entire efficient frontier is non-convex. 
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Figure 2  Efficient frontier approximation for market segmentation problem with K = 3 

 

The extension of SAH described by Brusco, Cradit and Tashchian (2003) attempts to find efficient 

solutions to market segmentation problems that consider more than one response variable.  We did not 



Caballero, et al. — 26 

conduct experiments with this modified version of SAH because we expect to encounter similar problems 

regarding the existence of unsupported efficient points. 

5 Conclusions 

We have described the development and testing of a metaheuristic approach to multiobjective 

clustering problems.  The proposed procedure is based on two well known metaheuristic methodologies: 

tabu search and scatter search.  We have been able to show the merit of our procedure by applying it to 

several clustering problems and comparing it to exiting heuristic and exact approaches.  We believe that 

this study advances the state-of-the-art in finding good approximations of efficient frontiers for 

multiobjective clustering problems.  Our experimentation goes beyond problems related to problems with 

artificially created dissimilarity matrices and shows that the proposed approach is effective and can deal 

with practical problems, such as those arising in market segmentation.  Also, the structure of our search 

procedure is such that it is not affected by the presence of unsupported efficient points.  Multiobjective 

problems in data analysis seem to be a fertile application ground for metaheuristic optimization methods.  

We expect to see additional development of multiobjective metaheuristic procedures that target problems 

in this field. 
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