
Multiobjective Clustering with Metaheuristic Optimization

Technology

Rafael Caballero
Department of Applied Economics (Mathematics), University of Málaga, Campus El Ejido s./n., 29071 Málaga,

Spain, rafael.caballero@uma.es

Manuel Laguna
Leeds School of Business, 419 UCB, University of Colorado, Boulder, Colorado 80309, USA,

laguna@colorado.edu

Rafael Martí
Department of Statistics and Operational Research, University of Valencia, Dr. Moliner 50, 46100

Burjassot (Valencia), Spain, rafael.marti@uv.es

Julián Molina
Department of Applied Economics (Mathematics), University of Málaga, Campus El Ejido s./n., 29071 Málaga,

Spain, julian.molina@uma.es

Abstract – We develop a metaheuristic procedure for multiobjective clustering problems. Our goal is to

find good approximations of the efficient frontier for this class of problems and provide a means for

improving decision making in multiple areas of application and in particular those related to marketing.

The procedure is based on the tabu and scatter search methodologies. Clustering problems have been the

subject of numerous studies; however, most of the work has focused on single-objective problems.

Clustering using multiple criteria and/or multiple data sources has received limited attention in the OR

and marketing literature. Our procedure is general and tackles several problems classes within this area

of combinatorial data analysis. We conduct extensive experimentation with both artificial and real data

(in a marketing-segmentation problem) to show the effectiveness of the proposed procedure.

Keywords: multiobjective optimization, scatter and tabu search, combinatorial data analysis, partitioning,

market segementation.

Caballero, et al. — 2

1 Introduction

We study optimization problems associated with cluster analysis, within the general area of

combinatorial data analysis. In particular, we are interested in partitioning problems for cluster analysis

that requires the simultaneous optimization of more than one objective function. Clustering problems

have a wide range of application areas and are particularly important in marketing studies. The following

example illustrates the need for modeling clustering problems in a multiobjective optimization

framework.

Consider a situation in which a firm would like to identify consumer segments that have different

levels of proneness to deals. The firm conjecture is that there may be customers prone to deals in general

and some other customers prone to specific type of deals. Suppose that the firm collects survey data (e.g.,

Likert-scale measurements) regarding the proneness of customers to deals, such as coupons, buy-one-get-

one-free, free gifts and rebates. The firm has data on demographics, such as age, household income,

education and gender. Also, additional data are available on customers’ behaviors pertaining deal

responsiveness, such as coupon redemption frequency and quantity of sale items purchased. With these

data, the firm could apply standard (single-criterion) clustering techniques to find clusters that are

homogenous with respect to the customers’ demographics. Homogeneity is given by the selection of the

objective function to be optimized when solving the associated clustering problem. As we discuss later,

there are a number of criteria that could be used to obtain homogenous clusters. The firm, instead, may

choose to cluster customers in order to maximize the explained variation in the actual customers’

responses to deals. It is possible, however, that neither of these clustering schemes turn out to be useful

to the firm that might be looking for clusters that are both homogenous according to some criterion and at

the same time explain the variation related to one or more dependent variables. We come back to this

situation in our computational experiments, where we use data collected by Lichtenstein, Burton and

Netemeyer (1997), who studied customers’ proneness to eight different types of sales promotions.

Caballero, et al. — 3

We assume the existence of an n×n symmetric matrix A = {aij} such that aij ≥ 0 for i ≠ j and

where the values of the elements in the main diagonal are irrelevant. The values in A reflect the level of

dissimilarity between each pair of objects in a data set, such that the larger aij is the more dissimilar object

i is from object j (and vice versa). Cluster analysis methods may be hierarchical or nonhierarchical. Our

work focuses on nonhierarchical (or partitioning) methods.

Partitioning methods consist of separating objects into K distinct clusters Ck of size nk. A feasible

partition of clusters satisfies the following conditions:

Ck ≠ ∅ for 1 ≤ k ≤ K

Ch ∩ Ck = ∅ for 1 ≤ h < k ≤ K

C1 ∪ C2 ∪ … ∪ CK = Collection of all objects

We consider two main classes of multiobjective partitioning problems: 1) partitioning of objects

using one partitioning criterion but multiple dissimilarity matrices and 2) partitioning of objects using one

dissimilarity matrix but more than one partitioning criteria. (Our computational experiments also include

partitioning problems using both multiple criteria and multiple dissimilarity matrices.) As mentioned by

Brusco and Cradit (2005), “The spectrum of possible indices for obtaining a partition based on proximity

data is limited only by the analyst’s imagination; however, most indices correspond to either the sum of

dissimilarity elements within clusters, or the maximum dissimilarity element (diameter) within clusters.”

Therefore, following Brusco and Stahl (2005), we will focus on partitioning criteria that consist of

minimizing a combination of the following four functions:

Partition diameter: ()⎟
⎠
⎞

⎜
⎝
⎛=

∈<=
ijCjiKk

af
k)(,...,11 maxmax

Unadjusted within-cluster dissimilarity: ∑ ∑
= ∈<

=
K

k Cji
ij

k

af
1)(

2

Caballero, et al. — 4

Adjusted within-cluster dissimilarity: ∑
∑

=

∈<

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
K

k k

Cji
ij

n

a

f k

1

)(
3

Average within-cluster dissimilarity: ∑
∑

=

∈<

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=

K

k kk

Cji
ij

nn

a

f k

1

)(
4 2/)1(

Minimizing the partition diameter entails the calculation of the diameter for each cluster. The

cluster diameter is the maximum dissimilarity between two objects that belong to the same cluster. This

criterion is quite different from the other three, which are based on adding the dissimilarity values within

each cluster. This is why a typical bi-criterion problem consists of finding a partition of objects that

minimizes the partition diameter and one of the other functions based on an aggregate within-cluster

dissimilarity measure.

1.1 Partitioning of Objects Using Multiple Criteria

Minimizing the diameter of a partition is conceptually different from minimizing a function based

on aggregating the within-cluster dissimilarity values. Hence, it is not reasonable to expect that a

partition that is optimal with respect to f1 will be also optimal with respect to f2, f3 or f4. In fact, even

though criteria f2, f3 and f4 are based on aggregating dissimilarity values, there is no guarantee of finding a

single partition that optimizes all of them simultaneously. Consider, for example, using the dissimilarity

matrix in Table 1 to solve a partitioning problem for K = 2.

Caballero, et al. — 5

 1 2 3 4

1 0 4 5 3

2 4 0 6 5

3 5 6 0 7

4 3 5 7 0

Table 1 Dissimilarity matrix

Table 2 shows the optimal solutions associated with each objective function under consideration.

Partition f1 f2 f3 f4

{1, 3} {2, 4} 5* 10 5 10

{1, 4} {2, 3} 6 9* 4.5 9

{3} {1, 2, 4} 12 12 4* 4*

* Optimal objective function value

Table 2 Optimal partitions for Table 1 data

The first partition in Table 2 is optimal with respect to f1, but is suboptimal with respect to all

other criteria. Likewise, the second partition is optimal with respect to f2 but suboptimal with respect to

the other functions. The third partition is somewhat special in that it is optimal for two out of the four

objective functions.

The challenge of this multiobjective optimization problem is finding efficient partitions for any

combination of the criteria described above. As mentioned above, a typical problem in this context

consists of formulating bipartite models to minimize f1 and either f2, f3 or f4 (Brusco and Cradit, 2005).

These problems are not the only ones that have been addressed in the literature. For instance, Hansen and

Delattre (1978) introduced f1 to the cluster analysis literature and also suggested using the concept of split

to find partitions of objects (Delattre and Hansen, 1980). The split of a cluster Ck is defined as the

Caballero, et al. — 6

minimum dissimilarity between an object in Ck and any other object not in Ck. The split may be used to

either maximize its minimum value (Delattre and Hansen, 1980) or maximize the sum (Hansen, Jaumard

and Frank, 1989).

1.2 Partitioning of Objects Using Multiple Dissimilarity Matrices

This problem arises when clustering of objects is done by considering more than one data set and

it is not possible to aggregate these multiple sets into one. The market segmentation problem described

by Krieger and Green (1996) is a typical case of partitioning using multiple dissimilarity matrices. The

problem consists of finding homogenous clusters in order to plan targeted marketing efforts. If the

clustering is based on a single data source, then traditional cluster analysis techniques can be applied.

However, there are situations where the market segmentation is more effective if several data sources are

used. For instance, Brusco and Stahl (2005) describe the case of a telecommunications company that

would like to find clusters of business customers based on their demographics and also based on current

satisfaction and their willingness to switch providers. While the two sources of data could be aggregated

to perform a traditional cluster analysis, the telecommunications company is more interested in

identifying homogenous clusters based on demographics while explaining the variation in current

satisfaction levels and willingness to switch. The appropriate approach is therefore to formulate the

problem as a multiobjective partitioning of objectives using multiple dissimilarity matrices (i.e., firm

demographics and customer satisfaction/willingness to switch). Note that this situation is similar to the

one we describe in the introduction of this paper to motivate the need for multiobjective clustering in

marketing.

In general terms, the problem is one in which performance drivers are known (first source of

data) along with their performance measures (second source of data) and it is desired to identify K

clusters that are homogenous with respect to the performance drivers and that at the same time they help

to explain the variation on the performance measures. A typical objective function in this situation is to

minimize the total adjusted within-cluster dissimilarity for the L sources of data:

Caballero, et al. — 7

minimize ∑
∑

=

∈<

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
K

k k

Cji

l
ij

l

n

a
f k

1

)(
3 for l = 1, …, L

where l
ija = dissimilarity of objects i and j according to data source l. Dissimilarity typically consists of

the Euclidean distance between two firms as calculated with the tuple of corresponding measures. In this

context, it is also usual to maximize the proportion of explained variation, which is calculated by

reference to the total sum of squares (TSS):

n

a
TSS ji

l
ij

l

∑
<= for l = 1, …, L

The multiobjective optimization problem becomes:

maximize
l

l
l

TSS
f

g 3
3 = for l = 1, …, L

Note that lg3 is bounded between zero and one. The extreme values occur at the trivial solutions that

consist of putting each object in a different cluster (K = n and lg3 = 0) and putting all objects in the same

cluster (K = 1 and lg3 = 1). We tackle this particular problem in the experiments presented in section 4.3.

Caballero, et al. — 8

2 Pareto Approach

Multiobjective partitioning problems have been approached in two general ways: 1) using

preemptive (or priority) weights to assign priorities to the objective functions, or 2) using weights to

aggregate the objective functions into a single one. Suppose that it is desired to find partitions that

minimize both f1 and f2. Under the preemptive-weight approach, the optimization problem may be

formulated as follows:

 Min P1f1 + P2f2

In this formulation, P1 and P2 are preemptive weights that determine the priority of the objective

functions. Objective functions of higher priority are optimized first follow by those with lower priority.

In other words, the preemptive weights create a hierarchy of objective functions. Under this approach,

lower priority objective functions are not allowed to alter the level of attainment of the objective functions

at a higher priority. In our example, we would first find *
1f , the optimal value for the objective function

with the higher priority. Then, a search for a partition that minimizes f2 is conducted in such a way that

*
11 ff ≤ . In order to generate more than one solution, the diameter restriction may be relaxed (from its

optimal value), resulting in the multiobjective approach known as the ε-constraint method. The main

disadvantage of this approach is that in order to find an approximation of the Pareto frontier, a potentially

large number of problems of the following form must be solved:

 Min fv

 s.t.

 ε≤if i = 1, …, p, i ≠ v

Caballero, et al. — 9

The task becomes computationally impractical as the number of objective functions (p) increases. This is

the approach followed by Brusco and Cradit (2005) and that we use for comparison purposes in section

4.1.

In the second approach, the multiobjective optimization problem is transformed to a single-

objective function problem of the form:

 Min ∑
=

p

i
ii fw

1

In this model, wi represents the weight assigned to the objective function fi. Approximating the Pareto

frontier with this approach entails the solution of this problem with different sets of weight values.

Brusco and Stahl (2005) state the following in reference to this approach (page 85):

“The principal limitation of multiobjective programming is the selection of an

appropriate weighting scheme. The severity of this problem increases markedly when

three or more criteria are considered.”

This is the approach used by Brusco, Cradit and Stahl (2002) in their simulated annealing procedure.

However, as we discuss in section 4.3, the approach has some severe limitations when dealing with

combinatorial multiobjective optimization problems.

Our focus is to tackle the partitioning problems described above with the goal of finding an

approximation Ê of the efficient frontier (or Pareto front) E. We do this by simultaneously considering all

the objective functions in a given problem. We do not aggregate the objective functions nor do we

prioritize them. The approach is based on searching in the direction of both the individual objective

functions and ideal points constructed employing concepts from compromise programming. The search

itself is conducted within the framework of metaheuristic optimization, as described in the next section.

Caballero, et al. — 10

3 Metaheuristic Search

Our metaheuristic search procedure is based on two well-known methodologies: tabu search

(Glover and Laguna, 1997) and scatter search (Laguna and Martí, 2003). Our first application of this

technology in the area of multiobjective optimization was related to nonlinear objective functions. In

particular, we developed a procedure called SSPMO for nonlinear multiobjective optimization in

continuous variables (Molina, et al. 2006). Our current development extends SSPMO to tackle the

multiobjective clustering problems described above. We first provide a summarized description of

SSPMO and then we discuss the search mechanisms that were specifically designed for the current

context.

3.1 Summarized Description of SSPMO

SSPMO consists of two phases:

1. Generation of an initial set of efficient points through various tabu searches

2. Combination of solutions and updating of Ê via a scatter search

The first phase starts with p + 1 linked tabu searches, where p is the number of objective functions in the

problem. The objective functions are considered one at a time (in arbitrary order). The tabu searches

focus on finding the optimal solution to the single-objective optimization problems. Let 1x be the last

point visited at the end of the first tabu search. Then, another tabu search is launched, starting from 1x , to

search for the optimal solution to the second single-objective optimization problem. This process is

repeated until all the single-objective problems have been considered. A final tabu search is performed

considering the first objective function one more time, starting from px . At this point, Ê contains the p

solutions that best approximate the optimal solutions to the single-objective problems and all other

efficient solutions found during the tabu searches.

Caballero, et al. — 11

Additional tabu searches are performed guided by a global criterion, as typically done in

compromise programming (Zeleny, 1982). In particular, we use the ∞L metric:

() ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=
−=

∞ idealanti
i

ideal
i

i
ideal

i
ipi ff

xff
wxL

K,1
max

where ideal
if is the best known value for objective function i, idealanti

if − is the worst possible outcome

associated with objective i, and ()xfi is the value of the ith objective function value associated with

solution x. For a given set of weights (wi > 0 and ∑ =
i

iw 1) solution x is efficient if it minimizes)(xL∞ .

This property is the motivation behind the compromise-programming approach for the tabu searches that

we perform beyond the first p+1. A new set of randomly generated weights is used for every tabu search.

The first phase stops when InitPhase tabu searches are performed without changes in Ê. It should be

noted that the tabu search procedure used for this first phase is also applied as the improvement method in

the second phase.

The scatter search phase is initiated immediately after the termination of the tabu search phase.

The first step consists of building an initial reference set (RefSet) by drawing, without replacement,

solutions from Ê. Let b (b > p) be the size of RefSet. We first select the p solutions from Ê that best

approximate the optimal values for each of the objective functions in the problem. Then, we sequentially

choose b-p additional solutions from Ê, where each selection is made with the criterion of maximizing the

minimum distance between the chosen solution and the solutions currently in the reference set. In this

case, distance is measured in the objective function space using a normalized ∞L metric. Note that all the

solutions in the initial RefSet are efficient (with respect to those in Ê). We maintain this property

throughout the search because we have determined that there is no benefit in combining solutions that

have been shown to be dominated. An iteration of the scatter search phase starts with the application of

Caballero, et al. — 12

the combination method. The method consists of combining all pairs of reference solutions (i.e., all pairs

of solutions in RefSet) in order to generate new solutions. Each combination of reference solutions yields

4 trials solutions. A tabu search is initiated from each of these trial solutions in an attempt to improve

them. Trial solutions generated by the combination method and those visited during the tabu searches are

tested for efficiency (i.e., they are tested for possible inclusion in Ê). After the application of the

combination and improvement methods, the RefSet is rebuilt following a process that is similar to the one

described above for the initial reference set. In order to encourage a diversified exploration of the

objective function space, we keep a record (TabuRefSet) of past reference solutions. No member of

TabuRefSet can be chosen as a reference solution. Therefore, the rebuilding of RefSet is done with those

solutions currently in Ê that do not belong to TabuRefSet.

3.2 Specific SSPMO Mechanisms for Clustering

A solution x is represented as a set of K objects, where each object is considered the “centroid” of a

cluster. That is { }Kxxx ,,1 K= , where xk (1 ≤ xk ≤ n) is the centroid of cluster k. Objects that do not

belong to x are assigned to clusters represented by the closest centroid. The assignment is done as

follows:

 ()
⎭⎬
⎫

⎩⎨
⎧ ′=′=

= hk xiKhxik aaiC ,,,1, min:
K

 for k = 1, …, K

For problems with one matrix ijij aa =′ . For problems with more than one dissimilarity matrix

∑=′
l

l
ijlij aa λ , where lλ is a weight assigned to data source l. In this case, we have one objective for

each data source, i.e., p = L. Therefore, if we are performing the first p+1 search in the initial phase of the

method, all lambda values are zero except for the one corresponding to the dissimilarity matrix under

consideration, for which the lambda value is set to one. Afterwards, the lambda values are the same as

Caballero, et al. — 13

the weights used to create compromise solutions (i.e., w=λ). The justification for the choice of solution

representation is presented in section 4.

For the tabu searches, we construct the neighborhood of a solution x by generating NSize distinct

(r, q) pairs, where q ∉ x, 1 ≤ q ≤ n and 1 ≤ r ≤ K. A neighbor of x is such that xr is replaced by q. The

search moves to the best neighbor, where best is determined either by a single objective (during the p+1

initial searches) or by the ∞L metric. If the current solution x is not dominated by any of its NSize

neighbors, the solution is considered for membership in Ê. Also, after the search moves to the best

neighbor, x is added to the tabu list. Solutions remain in the tabu list for TabuTenure iterations. This is

the simplest form of short-term memory tabu search that does not invoke aspiration level criteria.

The combination of two reference solutions is done as follows. Let 1x and 2x be the two

reference solutions being combined. Then, the resulting trial solution tx is such that

⎩
⎨
⎧

≥
<

=
5.0
5.0

2

1

rx
rx

x
k

kt
k

where r is a random number between 0 and 1. If t
h

t
k xx = for k ≠ h, the trial solution tx is repaired by

randomly selecting q ∉ tx (1 ≤ q ≤ n) and making qxt
k = .

4 Computational Experiments

For our computational comparison we generated problem instances with the procedure suggested

by Brusco and Cradit (2005) and Hansen and Delattre (1978). These authors created dissimilarity

matrices of sizes n = 30, 60 and 90 by first generating points within a unit circle, then computing the

Euclidean distance between pairs of points, and finally multiplying the distances by 100 and eliminating

the fractional part. We have extended this set by adding two larger matrices with n = 120 and 150,

respectively. The five matrices result in 35 instances when considering 7 different K values, ranging from

Caballero, et al. — 14

2 to 8. An additional set of 5 matrices with n = 30, 60, 90, 120 and 150 was created to provide data for

experiments with multiple dissimilarity matrices. In this case, we use the pair of matrices of each size to

provide two sources of data for each problem. As before, 7 K-values are considered, yielding 35 problem

instances. All our experiments are performed on a Pentium machine with a single 2.4 GHz processor and

512 MB of RAM. Our C codes were compiled on Visual C++ 2005 Express Edition.

Brusco and Stahl (2005) provide exact procedures, based on the branch-and-bound methodology,

for solving clustering problems with the single objectives f1, f2 and f3. Their FORTRAN codes can be

downloaded from http://garnet.acns.fsu.edu/~mbrusco/. No computer code is provided for the f4 criterion.

We use the dissimilarity matrix of size 30 to apply Brusco and Stahl’s code to the 7 problem instances

that correspond to K = 2 to 8. This was done to assess the capability of a state-of-the-art exact method for

the class of problems that we are tackling. We limited the execution of the branch-and-bound code to 2

hours. The results are shown in Table 3. The first column shows the K value. The next three columns

show the optimal solutions associated with each instance and each objective function. The last three

columns show the time in CPU seconds.

The optimal solutions reported in Table 3 are the “extremes” of the efficient frontier for the

multiobjective problem. These optimal values may be used to assess the quality of heuristic solutions

when considering one objective function at a time. However, the branch and bound codes by Brusco and

Stahl do not provide a way of finding efficient solution within these extreme points for problems with one

data source and more than one objective function.

The results in Table 3 show that the branch and bound is an effective method for solving

clustering problems with the f1 criterion. Even for the largest problem instances with n = 120, the

procedure finds and confirms the optimal solution in less than 15 CPU seconds. However, the procedure

encounters difficulties with problem instances based on f2 and f3. The pattern observed in Table 3 extends

to larger problem instances. For n = 60, the procedure is able to solve the K = 2 instance for f2 and the

K = 2, 3 and 4 instances for f3 within the 2-hour limit. No n ≥ 90 instances could be solved for either f2 or

f3 within the specified time limit.

Caballero, et al. — 15

 Objective function value CPU time in seconds

K f1 f2 f3 f1 f2 f3

2 63 6292 403.333 0.120 0.04 0.02

3 52 3063 304.456 0.160 5.41 0.06

4 43 2045 259.069 0.130 865.8 3.76

5 37 -- 220.065 0.150 > 2 hours 24.55

6 28 -- 189.375 0.160 > 2 hours 194.81

7 27 -- 163.875 0.150 > 2 hours 1173.17

8 23 -- -- 0.130 > 2 hours > 2 hours

Table 3 Branch-and-bound results for n = 30

We now examine our choice for representing solutions within the search process. A “natural”

representation consists of an n-dimensional vector ()nxxx ,,1 K= , where xi (0 ≤ xi ≤ K) is the index of

the cluster to which object i is assigned. Since clusters have no unique identity, this representation has the

disadvantage of producing a potentially large number of x-vectors that map to the same clustering

configuration. As indicated in section 3.2, we chose a representation in which K objects become the

centroids of the clusters in a given solution. This representation attempts to minimize the “symmetry”

problems cause by the lack of cluster identity. However, there is no guarantee that the optimal clustering

(with respect the criteria under consideration) can be represented with centroid mechanism that we

described above.

The purpose of our next experiment is to evaluate the merit of the centroid-based solution

representation. We compare the performance of two methods, one (referred to as Naïve) that consists of

randomly assigning objects to clusters and another (referred to as Centroids) that randomly selects K

objects to be the centroids of the clusters and where the remaining n-K objects are assigned to the closest

cluster (as determined by the dissimilarity between the object under consideration and the cluster

Caballero, et al. — 16

centroid). We generate 100n solutions with each method for each instance. Table 4 reports for both

methods, on each group of seven instances (K = 2, ..., 8), the average ± the standard deviation of the

solution values for each objective function. The last row shows the average of the average values and

standard deviations over the 35 instances.

 Naïve Centroids

n f1 f2 f3 f4 f1 f2 f3 f4

30 95.59 ±

35.57

4458.38 ±

4321.00

522.63 ±

160.67

200.20 ±

152.70

57.58 ±

55.86

3299.98 ±

7742.71

294.58 ±

198.81

91.12 ±

78.71

60 110.77 ±

28.00

19162.73 ±

9271.57

1213.25 ±

206.91

220.33 ±

77.31

70.86 ±

60.57

14840.47 ±

35201.86

672.10 ±

437.92

97.89 ±

81.09

90 111.13 ±

22.00

43832.46 ±

13533.00

1895.40 ±

218.23

222.99 ±

50.60

73.28 ±

61.29

33835.37 ±

85967.57

1042.04 ±

679.36

99.11 ±

69.69

120 120.53 ±

22.43

82076.26 ±

19208.71

2693.26 ±

228.59

234.19 ±

29.05

78.67 ±

65.00

62844.41 ±

168649.29

1470.51 ±

986.93

103.20 ±

70.64

150 120.66 ±

20.71

128755.13 ±

22400.86

3403.77 ±

234.64

234.74 ±

25.01

80.00 ±

66.14

99016.53 ±

254334.29

1863.16 ±

1204.17

103.82 ±

67.33

Average 111.74 ±

25.74

55656.99 ±

13747.03

1945.66 ±

209.81

222.49 ±

66.93

72.08 ±

61.77

42767.35 ±

110379.14

1068.48 ±

701.44

99.03 ±

73.49

Table 4 Random sampling results

The results in Table 4 reveal the advantage of basing a search procedure in a solution

representation that uses centroids. For each problem size and optimization criterion, we find significant

differences between the average quality of the solutions in the random samples. This justifies our choice

of the centroids method for representing solutions in our search procedure.

We have verified that the solution representation based on centroids is an effective solution

method in its own right when tackling small problem instances. Specifically, we applied the Centroids

random sampling procedure to the problems with n = 30 associated with Table 3 and, in computing times

Caballero, et al. — 17

not exceeding an average of 5 seconds, the procedure is able to match all the known optimal solutions to

these problems. The quality of the solutions found with Centroids deteriorates (when compared to the

solutions found with our metaheuristic) as the size of the problem instances increases.

In the next subsections, we present the results of applying our metaheuristic to multiobjective

problems. We used the following parameter settings:

b = 2*p

NSize = 2*K

TabuTenure = 20

InitPhase = 3

Our solution procedure is capable of tackling problems that simultaneously consider multiple criteria and

multiple matrices. We divide our main experiments with synthetic data into three blocks: experiments

with multiple criteria, experiments with multiple matrices and experiments with both multiple criteria and

multiple matrices. In order to assess the quality of the output produce by multiobjective procedures, we

consider three well known measures taken from the literature:

Number of points: This refers to the ability of finding efficient points. The preference is

to find more rather than fewer (potentially) efficient points.

SSC: This metric, suggested by Ziztler and Thiele (1999) measures the Size of the Space

Covered (SSC). SSC measures the volume of the dominated points and, therefore, the

larger the value the better.

Caballero, et al. — 18

C(A,B): This is known as the coverage of two sets measure and was also suggested by

Zizler and Thiele (1999). C(A,B) represents the proportion of points in the estimated

efficient frontier B that are dominated by the efficient points in the estimated frontier A.

4.1 Experiments with Multiple Criteria

For this set of experiments, we employ the procedure (which we will refer to as Bi-Heur) recently

published by Brusco and Cradit (2005). There are two main differences between our metaheuristic

(SSPMO) and Bi-Heur:

1. Bi-Heur considers f1 as the primary objective and fi (i = 2, 3 or 4) as the secondary objective while

SSPMO simultaneously handles f1, f2, f3 and f4.

2. A single run of SSPMO yields an approximation of the efficient frontier while a single run of Bi-

Heur results in a single (possibly) efficient point.

Hence, in order to compare our results, we executed SSPMO once for each problem instance in our data

set, with n = 30 to 150 and K = 2 to 8. For each run, we record the approximation of the efficient frontier

and the total execution time. We then used Bi-Heur to find solutions to the bicriterion problems (f1, f2),

(f1, f3) and (f1, f4). For each bicriterion problem, Bi-Heur was executed multiple times from randomly

generated initial partitions (as recommended by the authors). The number of runs was limited by the

amount of time used during the SSPMO run. In other words, we launched Bi-Heur from a random

partition as many times as possible as long as the total computational time did not exceed the one

employed by SSPMO. We rotated through the 3 bi-criterion problems in order to allocate similar

computational time to all of them.

Table 5 reports the average of the objective function values found by each approach. The

accompanying Table 6 shows two multiobjective measures: average SSC and average number of points.

Caballero, et al. — 19

In addition, Table 6 includes the average computational effort (in CPU seconds) associated with obtaining

each (potentially) efficient point. We report this because the total computational effort is the same for

both approaches.

 Bi-Heur SSPMO

n f1 f2 f3 f4 f1 f2 f3 f4

30 42.43 2198.86 247.97 63.08 39.00 2156.14 240.54 47.24

60 54.43 9843.14 566.01 69.93 47.71 9688.14 546.89 54.43

90 54.29 22373.29 872.89 71.03 49.29 22367.00 865.27 58.21

120 59.57 42665.71 1245.97 70.19 53.71 42272.00 1223.17 59.66

150 58.14 67063.57 1581.84 70.59 54.86 67014.71 1560.95 61.73

Avg. 53.77 28828.91 902.93 68.96 48.91 28699.60 887.36 56.25

Table 5 Average objective function values

 Bi-Heur SSPMO

n No. of points SSC Time No. of points SSC Time

30 3.00 0.23 2.80 83.86 0.51 4.20

60 3.00 0.20 31.03 150.14 0.52 23.48

90 3.00 0.13 132.78 224.43 0.46 156.12

120 3.00 0.16 424.67 248.86 0.44 183.35

150 3.00 0.12 1312.78 287.29 0.45 411.55

Avg. 3.00 0.17 380.81 198.91 0.48 155.74

Table 6 Comparison of SSPMO and Bi-Heur using multiobjective measures

Bi-Heur is very sensitive to the initial partition and this is why its authors recommend executing the

heuristic from 100 initial random partitions. This results in a very time-consuming process that is not

Caballero, et al. — 20

capable of generating more than one (possibly) efficient solution for each bi-criterion problem (as shown

in the second column of Table 6). Tables 5 and 6 show the advantage of our procedure when tackling

clustering problems with multiple criteria. SSPMO produces approximations of the efficient frontier with

SSC values that are at least twice as large as those produced by Bi-Heur. The results are similar when

comparing SSPMO and Bi-Heur taking each bicriterion problem at a time. In other words, SSPMO

outperforms Bi-Heur when examining the results of the three bicriterion problems (f1, f2), (f1, f3) and (f1,

f4). Using the output from this experiment, we also calculated the associated C(A,B) values:

C(SSPMO, Bi-Heur) = 0.345

C(Bi-Heur, SSPMO) = 0.007

These values are additional evidence of the merit of SSPMO in the context of multiobjective clustering.

The aggregate coverage of two sets indicates that almost 35% of the points estimated to be efficient by Bi-

Heur are actually denominated by points found by SSPMO. The opposite only occurs less than 1% of the

time.

4.2 Experiments with Multiple Dissimilarity Matrices

Brusco and Stahl (2005) discussed the application of branch-and-bound to the bicriterion problem

of minimizing f3 when two dissimilarity matrices (A and B) are considered. A single execution of their

FORTRAN code (bbbiwcss.for) results in an efficient point. In order to obtain several efficient points, the

code must be executed with different weight values. We modified the code as suggested in Brusco and

Stahl (2005). In particular, we created a loop with a variable iloop varying from 0 to 10. The weight for

matrix A is iloop/10 while the weight for matrix B is (1 – iloop/10). In this way, 11 efficient points are

obtained, including the optimal solutions associated with each matrix.

Brusco’s and Stahl’s exact procedure is capable of tackling problems with up to 30 objects. We

applied the modified branch-and-bound code to our two 30-object matrices and set K = 2, …, 8. The

Caballero, et al. — 21

branch-and-bound code generated only two distinct efficient points for problems with K > 3. For the

problem with K = 2, only 3 efficient points were found. The approach required 221 seconds to find 6

efficient points for the problem with K = 6. SSPMO required 9 seconds to find an approximation of the

efficient frontier with 86 points, including 5 of the efficient points found by the branch-and-bound

procedure. Figure 1 shows SSPMO’s approximate frontier and the 6 efficient points.

200

250

300

350

400

450

500

550

600

650

700

200 250 300 350 400 450 500 550 600

f 3 (Matrix A)

f 3
 (M

at
rix

 B
)

SSPMO
B&B

Figure 1 Efficient frontier for the minimization of f3 with two 30-object matrices and K = 3

The only efficient point that SSPMO is not able to find is (395.111, 492.972). The best approximations to

this point are (401.627, 489.404) and (396.942, 501.706). In both cases, neither objective function value

is more than 2% away from the efficient point. We do not present the results for K = 3 because in all of

these instances SSPMO matches the known efficient solutions in a fraction of the time required by the

branch-and-bound code.

As part the experimentation with multiple matrices, we ran SSPMO using the two 30-object

matrices, K = 2, 3 and 4 and all the objective functions (f1 to f4) considered at the same time. To the best

of our knowledge, there is no published procedure that is capable of tackling such a problem. The results

Caballero, et al. — 22

that we present in Table 7 compare the performance of SSPMO and the simple Naïve method described

above. The rationale for the experiment is twofold. We would like to determine whether SSPMO

provides an advantage over a simple approach and we would like to establish a benchmark for future

research in this area.

 Naïve SSPMO

K No. of points SSC Time No. of points SSC Time

2 473 0.016538 1217.5 1095 0.017594 1183.5

3 2847 0.096896 9228.2 8496 0.103708 9251.3

4 8627 0.070108 7011.3 15496 0.098749 8007.2

Table 7 Results for multiple matrices (n = 30) and multiple objective functions (f1, …, f4).

Table 8 shows the coverage of two sets measure associated with the results in Table 7

K C(SSPMO, Naïve) C(Naïve, SSPMO)

2 0.116 0.003

3 0.206 0.002

4 0.217 0.017

Table 8 Coverage of two sets measure for the results reported in Table 7

Table 7 and 8 reveal the usefulness of our approach. Although the absolute differences in SSC values

may seem small, the relative differences are indeed significant. When solving problems with multiple

matrices and objective functions, SSC values are not expected to be much larger than zero. This is due to

the increase in dimensionality of the objective function space. As the number of dimensions increases,

the number of efficient points in the approximation of the frontier must increase exponentially in order to

maintain a high SSC value. The volume calculation (i.e., SSC) in Table 7 shows the effect of dealing with

Caballero, et al. — 23

8 objective functions at the same time (i.e., 4 different criteria and 2 sources of data). This experiment

shows that current metaheuristic technology is not capable of dealing with the exponential increase in the

number of points that is necessary to obtain better volume measures in high-dimensional multiobjective

combinatorial optimization problems. The merit of SSPMO is therefore more obvious when examining

the C(A,B) values reported in Table 8.

4.3 Experiments with Segmentation

We perform one final experiment in which we use real data from a market segmentation problem.

Given a set of customers, a set of descriptor variables and a response variable, the problem is to find a

clustering of the customers that maximizes both a measure of homogeneity and the explanation power of

the response variable. As described in Brusco, Cradit and Stahl (2002), the bicriterion problem consists

of finding partitions that simultaneously maximize the proportion of variation explained by the descriptor

variables and the response variable. The “classical” market segmentation problem deals with creating

homogenous groups and therefore deals with the single objective of maximizing the variation explained

by the descriptor variables. In the bicriterion problem, the maximization of the variation explained by the

response variable is also considered.

The input for this experiment consists of market data (variables and observations). The objective

functions are ω2(C) and η2(C), as denoted in Brusco, Cradit and Stahl (2002). Both functions represent

the ratio of the between-clusters sum of squares and the total sum of square, for a given cluster C. The

sum of squares in ω2(C) are calculated using the descriptor variables while the sum of squares in η2(C)

are calculated using the response variable. In other words, ω2(C) = lg3 (see section 1.2) when the

dissimilarity matrix is obtained by calculating the Euclidean distances between every pair of observations

(customers) using the descriptor variables. The same is true for η2(C) when using the response variable.

The simulated annealing procedure (SAH) of Brusco, Cradit and Stahl (2002) operates in the scalar

Caballero, et al. — 24

objective function that assigns a weight to ω2(C) and another weight to η2(C). The sum of the weights is

required to be equal to one.

As discussed in Ehrgott and Gandibleux (2000), the biggest additional challenge when solving

multiobjective combinatorial optimization problems as opposed to multiobjective linear programs is the

presence of efficient solutions that are not optimal for any scalarization of the problem. Scalarization

refers to the transformation of the multiobjective problem into a single-objective problem by means of

optimizing a function that is the weighted sum of the multiple objective functions (as discussed in section

2).

Efficient solutions that cannot be found by solving the scalar optimization problem are referred to

as unsupported efficient solutions. Those efficient solutions that are optimal for the scalar problem are

called supported efficient solutions. The set of unsupported efficient solutions is important and it has been

shown that the ratio of unsupported to supported points is large in multiobjective combinatorial

optimization problems. More details about searching for unsupported efficient solutions can be found in

Ulungu and Teghem (1994) or in Visée et al. (1998)

Lichtenstein, Burton and Netemeyer (1997) tackle a market segmentation problem related to

consumers’ proneness to deals. In their study, they surveyed customers walking out of two grocery

stores. The survey focused on measuring eight deal-specific proneness types: proneness toward coupons,

sales, cents-off, buy-one-get-one-free, free-gift-with-purchase, end-of-aisle displays, rebates/refunds, and

contests/sweepstakes. They used SPSS to find a K-means solution with 2 and 3 clusters. The resulting

clusters were used to perform an ANOVA on ten dependent variables. The clusters obtained following

this method are meant to be homogenous with respect to the independent variables (i.e., with respect to

the eight deal-specific proneness types).

We used this market data to compare the performance of SSPMO and SAH in the context of the

bicriterion market segmentation problem. Because SAH can deal only with one dependent variable, we

chose “quantity of coupons redeem”, which is one of the ten response variables examined by

Lichtenstein, Burton and Netemeyer (1997). Hence, the data set consists of 524 observations (customers),

Caballero, et al. — 25

8 independent variables and 1 dependent variable. Figure 2 shows the approximations of the efficient

frontier found by SAH and SSPMO for K = 3.

SSPMO finds 748 points and in the same amount of computational time (3646.01 CPU seconds)

SAH finds only 11 points. Figure 2 shows that the SAH is not capable of finding efficient points in areas

of the frontier that are not convex. These are the areas where unsupported efficient points lie and where

scalar-based approaches fail. The results using other independent variables in the data set are the same.

Results with K = 2 show an even more dramatic picture of the inability of SAH to find efficient points

because the entire efficient frontier is non-convex.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Explained Variation (Independent Variables)

E
xp

la
in

ed
 V

ar
ia

tio
n

(D
ep

en
de

nt
 V

ar
ia

bl
e)

SSPMO
SAH

Figure 2 Efficient frontier approximation for market segmentation problem with K = 3

The extension of SAH described by Brusco, Cradit and Tashchian (2003) attempts to find efficient

solutions to market segmentation problems that consider more than one response variable. We did not

Caballero, et al. — 26

conduct experiments with this modified version of SAH because we expect to encounter similar problems

regarding the existence of unsupported efficient points.

5 Conclusions

We have described the development and testing of a metaheuristic approach to multiobjective

clustering problems. The proposed procedure is based on two well known metaheuristic methodologies:

tabu search and scatter search. We have been able to show the merit of our procedure by applying it to

several clustering problems and comparing it to exiting heuristic and exact approaches. We believe that

this study advances the state-of-the-art in finding good approximations of efficient frontiers for

multiobjective clustering problems. Our experimentation goes beyond problems related to problems with

artificially created dissimilarity matrices and shows that the proposed approach is effective and can deal

with practical problems, such as those arising in market segmentation. Also, the structure of our search

procedure is such that it is not affected by the presence of unsupported efficient points. Multiobjective

problems in data analysis seem to be a fertile application ground for metaheuristic optimization methods.

We expect to see additional development of multiobjective metaheuristic procedures that target problems

in this field.

Acknowledgments

We wish to thank Prof. Michael Brusco for sharing his branch-and-bound and SAH computer

programs. We also like to thank Prof. Donald Lichtensein for sharing his market data. The generosity of

colleagues like Prof. Brusco and Lichtenstein is what allows researchers to advance knowledge in our

fields of study.

Caballero, et al. — 27

6 References

Brusco, M. J. and J. D. Cradit (2005) “Bicriterion Methods for Partitioning Dissimilarity Matrices,”

British Journal of Mathematical and Statistical Psychology, vol. 58, no. 2, pp. 319–332.

Brusco, M. J., J. D. Cradit and S. Stahl (2002) “A Simulated Annealing Heuristic for a Bicriterion

Partitioning Problem in Market Segmentation,” Journal of Marketing Research, vol. XXXIX, pp. 99-109.

Brusco, M. J., J. D. Cradit and A. Tashchian (2003) “Multicriterion Custerwise Regression for Join

Segmentation Settings: An Application to Customer Value,” Journal of Marketing Research, vol. XL, pp.

225-234.

Brusco, M. J. and S. Stahl (2005) Branch and Bound Applications of Combinatorial Data Analysis,

Springer: New York, ISBN 0-387-25037-9.

Delattre, M. and P. Hansen (1980) “Bicriterion Cluster Analysis,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 2, no. 4, pp. 227-291.

Erhgott, M. and X. Gandibleux (2000) “A Survey and Annotated Bibliography on Multiobjective

Combinatorial Optimization,” OR Spektrum, vol. 22, pp. 425-460.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers: Boston, MA.

Hansen, P. and M. Delattre (1978) “Complete-Link Cluster Analysis by Graph Coloring,” Journal of the

American Statistical Association, vol. 73, no. 362, pp. 397-403.

Caballero, et al. — 28

Hansen, P., B. Jaumard and O. Frank (1989) “Maximum Sum-of-Splits Clustering,” Journal of

Classification, vol. 6, pp. 177-193.

Krieger, A. M. and P. E. Green (1996) “Modifying Cluster-Based Segments to Enhance Agreement with

an Exogenous Response Variable,” Journal of Marketing Research, vol. 33, pp. 351-363.

Laguna, M. and R. Martí (2003) Scatter Search: Methodology and Implementations in C, Kluwer,

Boston, MA.

Lichtenstein, D. R., S. Burton and R. G. Netemeyer (1997) “An Examination of Deal Proness Across

Sales Promotion Types: A Consumer Segmentation Perspective,” Journal of Retailing, vol. 73, no. 2, pp.

283-297.

Molina, J., M. Laguna, R. Martí and R. Caballero (2006) “SSPMO: A Scatter Tabu Search Procedure for

Non-Linear Multiobjective Optimization,” to appear in INFORMS Journal on Computing.

Ulungu, E. and J. Teghem (1994) “The Two-phase Method: An efficient Procedure to Solve Bi-objective

Combinatorial Optimization Problems,” Foundations of Computing and Decision Sciences, vol. 20, no. 2,

pp. 149-165.

Visée, M., J. Teghem, M. Pirlot, and E. Ulungu (1998) “Two-Phase method and Branch and Bound

Procedures to Solve the Bi-objective Knapsack Problem,” Journal of Global Optimization, vol. 12, pp.

139-155.

Zeleny, M. (1982) Multicriteria Decision Making, McGraw-Hill: New York.

Caballero, et al. — 29

Zitzler, E. and L. Thiele (1999) “Multiobjective Evolutionary Algorithms: A Comparative Case Study

and the Strength Pareto Approach,” IEEE Transactions on Evolutionary Computation, vol. 3, pp. 257–

271.

