
The Accelerated Cross Entropy Method: An
Application to the Max-Cut Problem

MANUEL LAGUNA
Leeds School of Business, University of Colorado at Boulder, USA
laguna@colorado.edu

ABRAHAM DUARTE
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
Abraham.Duarte@urjc.es

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

Abstract

Cross entropy has recently been proposed as a heuristic method for solving
combinatorial optimization problems. We briefly review this methodology and then
suggest modifications and extensions with the goal of improving its performance. In
the context of the well-known max-cut problem, we compare an implementation of the
original cross entropy method with our proposed accelerated version. The suggested
changes are not particular to the max-cut problem and could be considered for future
applications of the cross entropy method to combinatorial optimization problems.

Keywords: combinatorial optimization, metaheuristics, max-cut problem, local search,
cross entropy

Version: December 12, 2006

The Accelerated CE Method / 2

1. Introduction
The cross entropy (CE) method was conceived by Rubinstein (1997) as a way of
adaptively estimating probabilities of rare events in complex stochastic networks. The
method was soon adapted to tackle combinatorial optimization problems (Rubinstein,
1999 and 2001). Recently, the Annals of Operations Research devoted a volume to the
cross entropy method (de Boer, et al. 2005a). Applications of the CE method to
combinatorial optimization include vehicle routing (Chepuri and Homem-de-Mello
2005), buffer allocation (Alon, et al. 2005), the traveling salesman problem (de Boer, et
al. 2005b), and the max-cut problem (Rubinstein, 2002). The description of other
applications, a list of references and computer implementations of the CE method can
be found at http://www.cemethod.org.

As stated by de Boer, et al. (2005b), the CE method, in its most basic form, is a fairly
straightforward procedure that consists of iterating the following two steps:

1. Generate a random sample from a pre-specified probability distribution
function

2. Use the sample to modify the parameters of the probability distribution in
order to produce a “better” sample in the next iteration

The basic CE method is very easy to implement, particularly when dealing with
combinatorial optimization problems for which the natural representation of solutions is
a binary string. The methodology is quite intuitive, focusing on the observations with
the best objective function values in order to bias the sampling process. In our
experience, however, the CE method (as described in the tutorial by Boer, et al. 2005b)
has some limitations. Specifically, the method requires of very large samples for
finding high-quality solutions to difficult problems and the search parameters are
generally difficult to adjust. The large samples make the process slow and the lack of
systematic mechanisms for searching the solution space—relying heavily in
randomization—make the outcomes unpredictable. This was our motivation for
exploring changes and extensions to the original CE methodology.

The proposed changes and extensions, which attempt to accelerate the CE method,
consist of modifying the way samples are treated in step 2 (above) and adding local
search to improve upon the trial solutions that the method generates. We show these
modifications in the following sections and we then apply them to the well-known max-
cut problem.

2. The Accelerated Cross Entropy Method
In order to facilitate the description of our proposed accelerated cross entropy (ACE)
method, we focus on unconstrained combinatorial problems with solutions represented
as binary strings. Hence, a solution to a problem is given by x = (x1, …, xn) where xj ∈
{0, 1} for all j and all possible instantiations of x are feasible. We assume that the
objective is to maximize the value of a real function f(x).

As part of the CE methodology, we define a vector p = (p1, …, pn) of probabilities
corresponding to parameters of n independent Bernoulli random variables. The
Bernoulli distribution has been found effective in the context of binary vectors, as
indicated by de Boer, et al. (2005b). This means that, in the sampling process, the

http://www.cemethod.org/

The Accelerated CE Method / 3

probability that xj = 1 is a Bernoulli random variable with parameter pj. In the absence
of a priori information, it is customary to initialize the probabilities for the Bernoulli
random variables to ½.

The CE method employs five parameters:

N = sample size
ρ = cutoff point for high-quality observations
α = smoothing constant for updating p
k = limit on the number of iterations without improvement
K = limit on the total number of iterations

Figure 1 shows a pseudo code of the CE method. The procedure starts by initializing
the probability vector p, the best objective function value f(x*), and the iteration
counters t (total number of iterations) and t′ (iterations without improvement). These
are steps 1 to 3 in Figure 1.

1. p0 = (½, …, ½)
2. f(x*) = 0
3. t = 1 and t′ = 0
while (t′ < k and t < K)
{

4. Generate a sample of size N, where the probability that

is for j = 1, …, n and s = 1, …, N.

1=s
jx

t
jp

5. Order the sample in such a way that f(x1) ≥ f(x2) ≥ … ≥ f(xN).

6. Calculate

⎡ ⎤

⎡ ⎤N

x
v

N

s

s
j

j ρ
=
∑
ρ

=1 for j = 1, …, n.

7. Update () 11 −α−+α= t
jj

t
j pvp for j = 1, …, n.

if (f(x*) ≥ f(x1)) then t′ = t′ + 1 else
{

8. x* = x1 and f(x*) = f(x1)
9. t′ = 0

}
10. t = t + 1

}

Figure 1. Pseudo code for the CE method

The main loop in Figure 1 includes the two main tasks that every CE method must
perform, namely, the generation of a sample and the updating of the parameters
associated with the chosen probability distribution. Step 4 generates a sample of size N
using independent Bernoulli trials with probability of success given by pt. The ordering
of the sample in step 5 is such that the best observation is placed in the first position of
the list and the worst is placed in the last position. The v-values calculated in step 6 are
the unadjusted probabilities for the current iteration. They are simply the average of
values corresponding to the variables of the top ⎡ ⎤Nρ solutions in the current sample.
Note that if α = 1, the updating of the probability vector in step 7 is such that pt = v.

The Accelerated CE Method / 4

This is the “unsmoothed updating” of the probability vector that is considered one of the
possible variants of the CE method. Steps 8 and 9 update the best solution found and
reset the counter of the number of iterations without improving, respectively. The
global iteration counter is updated in step 10.

The CE methodology focuses on combinatorial optimization problems that can be
represented as weighted graphs and classifies them into two groups: 1) those problems
whose decision variables are associated with the edges of the graph (edge problems) and
2) those problems whose decisions relate to the nodes of the graph (node problems).
The traveling salesman problem (TSP) is an example of the former while the max-cut
problem is an example of the latter.

The sample size N and the value of ρ are critical to the performance of the CE method.
de Boer, et al. (2005b) suggest that, for edge problems, the size of the sample should be
a function of n2, for instance, N = cn2, for c > 1. This means that for a TSP with n = 100
cities, each iteration of the CE method would require a sample larger than 10,000
observations. For node problems, the recommendation is to make N a linear function of
n, for instance, N = cn for c > 1. These recommendations assume that there is only one
parameter value that needs to be estimated for the probability distribution associated
with each variable in the problem. For example, the Bernoulli distribution has one
parameter only (i.e., the probability of success), but other distributions that may be
appropriate in some applications (e.g., the Normal or Beta) have more than one
parameter.

The CE literature also offers guidelines for adjusting ρ based on the value of n (see e.g.
de Boer, et al. 2005b). Generally speaking, it is recommended that the value of ρ
should decrease as N increases. For instance, it is recommended to set ρ = 0.01 if
n ≥ 100 and make ρ ≈ ln(n)/n when n < 100.

Although these guidelines seem intuitive and are based on some experimentation, our
experience has been that these critical parameters are difficult to adjust in order to find
high-quality solutions and to make the CE method converge. Note that the K parameter
is added as a safety mechanism, given that, theoretically, the method should converge.
Convergence in our context is defined as the point when either and/or f(x{ }1,0∈t

jp 1)
has not changed in k consecutive iterations.

These difficulties were the main motivation for developing the ACE method. To aid
convergence and reduce the sample size, we recommend the use of a local optimization
process. The local optimizer is applied to a percentage δ of solutions in the sample.
That is, given a sample of size N, ⎡ ⎤Nδ solutions are subjected to the local optimization
in a manner described in Figure 2. The pseudo code in Figure 2 assumes that the
sample has been ordered and therefore x1 is the best solution in the sample and xN is the
worst.

The rationale for the structure in Figure 2 is that subjecting the best solution in the
sample to the local optimization will tend to accelerate the convergence of the
procedure toward solutions of higher quality, especially in the early iterations of the
method. As the search progresses, the best solution might not change and therefore the
local optimization process (if deterministic) is not applied again to the best solution x1.

The Accelerated CE Method / 5

(We should point out that it is not necessarily wasteful to apply a local optimizer
containing randomized decisions more than once to the same solution.) Another
interesting aspect of the process in Figure 2 is the local optimization of a diverse set of
solutions. This strategy expands the exploration of the solution space and encourages
the search to move to regions that contain additional local optima. We have observed
that applying the local optimization to the best ⎡ ⎤Nδ solutions (instead of the diverse
set) drives the method to early convergence and generally worst outcomes.

1. L = ∅
2. Locally optimize x1 and add it to L
while (⎡ ⎤NL δ<)
{

3. Find the sample solution xs ∉ L that is the farthest away from
the set L of locally optimal solutions

4. Locally optimize xs and add it to L
}

Figure 2. Pseudo code for local optimization of sample solutions

The addition of local search to the CE method has the effect of reducing the size of the
sample needed to find high-quality solutions. The ACE method is summarized in
Figure 3.

1. p0 = (½, …, ½)
2. f(x*) = 0
3. t = 1
while (t < K)
{

4. Generate a sample of size N, where the probability that

is for j = 1, …, n and s = 1, …, N.

1=s
jx

t
jp

5. Order the sample in such a way that f(x1) ≥ f(x2) ≥ … ≥ f(xN).
6. Apply the local optimization procedure of Figure 2.

7. Calculate
N

x
v

N

s

s
j

j

∑
== 1 for j = 1, …, n.

8. Update () 11 −α−+α= t
jj

t
j pvp for j = 1, …, n.

if (f(x*) < f(x1))
{

9. x* = x1 and f(x*) = f(x1)
}
10. t = t + 1

}

Figure 3. Pseudo code for the ACE method

The first 5 steps in Figure 3 are very similar to the ones in Figure 1. The main
difference is that the stopping criterion has been simplified to performing a total number
of iterations K, eliminating the parameter k and the corresponding counter t′. In step 6,

The Accelerated CE Method / 6

the local optimization is applied as described in Figure 2. The updating of the
unadjusted probability values (i.e., the v vector) is now done in step 7. We point out
that the ACE method employs the entire sample to update v. This is equivalent to
setting ρ = 1 in the CE method. Hence, in the ACE method there is no need for
adjusting ρ but now we must adjust the value of δ. Regarding the sample size, we have
observed that the relationship N = cn is still valid (for node problems). However, the
effective values of c are now between 0.01 and 0.05. Steps 8 to 10 in Figure 3 are
similar to steps 7 to 10 in Figure 1, with the difference that the ACE method does not
keep track of the number of iterations without improvement of the best solution.

It might be tempting to argue that the ACE method described in Figure 3 is nothing else
but a multi-start procedure with a local search. However, our experiments show that
this is far from the truth. In other words, if we eliminate steps 7 and 8, fixing pt to its
initial value, the resulting procedure is significantly inferior to the proposed ACE
method. This means that it is not the local search alone but rather the combination of
the local search and the sampling procedure that contributes to the quality of the
solutions found with the ACE method.

3. The ACE Method for the Max-Cut Problem
The max-cut problem is a well-known NP-hard problem in combinatorial optimization
and is well-suited as test case in the current context. Given a graph G(V, E), where
V = {1, …, n} is the set of vertices and E is the set of edges, the problem consists of
finding a partition of the nodes into two subsets V1 and V2 such that the sum of the
weights of the edges going from one subset to the other is maximized. The problem can
be formulated as an integer quadratic program, as shown in Festa, et al. (2002). This
formulation leads to solution procedures for the max-cut problem that are based on
solving semidefinite programs, as shown by Goemans and Williams (1995).
Heuristically, the max-cut problem has been approached by representing a solution as a
binary vector x, where we can arbitrarily say that xi = 1 means that node i is assigned to
V1. Since the labels for the subsets V1 and V2 are arbitrary, one way of avoiding
symmetries in the solutions is to assign the first node to the first group and represent all
the solutions as x = (1, x2, x3, …, xn) and xi ∈ {0, 1}. Let wij be the weight of the edge
that connects nodes i and j, then the objective function value for a cut vector x is given
by:

∑
≠>

=
ji xxij

ijwf
:

)(x

The application of the CE method to the max-cut problem is easily achieved by a direct
implementation of the pseudo-code in Figure 1, as done by Rubinstein (2002). For the
ACE method, we also need to implement a local optimizer suitable for the max-cut
problem. As proposed by Festa, et al. (2002), given a solution x, we define two
quantities for each node i (i = 2, …, n):

∑
=

=σ
0:

0)(
jxj

ijwi and ∑
=

=σ
1:

1)(
jxj

ijwi

Using these quantities, a local neighborhood may be defined as consisting of examining
the benefit of changing the assignment of nodes (except node 1) from their current

The Accelerated CE Method / 7

subset to the other. We create a random ordering of all nodes i (for i = 2, …, n) and use
the ordering to examine, one by one, possible node exchanges. Reassignment of a node
occurs according to these rules:

1. if xi = 0 and 0)()(10 >σ−σ ii then make xi = 1
2. if xi = 1 and 0)()(01 >σ−σ ii then make xi = 0

The process stops when after a complete examination of the list, no node can be
reassigned according to these rules. Once a local optimal point has been reached, it
does not matter in which order the nodes are examined and therefore we do not apply
the local optimization to a locally optimal solution. Such an application would result in
a single pass through the nodes that would verify that indeed the current solution is
locally optimal with respect to the defined neighborhood.

In addition to the local optimization, the ACE method requires of a distance metric to
implement step 3 of Figure 2. That is, it is necessary to define the meaning of a solution
being “far away” from a set of other solutions. For the max-cut problem, we define the
distance d(x, L) between a solution x and a set of solutions xs ∈ L as follows:

d(x, L) = ()⎟
⎠

⎞
⎜
⎝

⎛
−∑= i

s
iiLs

xxabsmin
||,...,1

Then, the solution x that is the farthest away from L is the one that has the maximum
d(x, L) value of all the solutions under consideration. We now have defined the two
problem-specific elements required by the ACE method.

4. Computational Experiments
We have several goals for our experimentation. First, we want to perform tests with the
CE method to fine-tune its parameters and attempt to match the results reported by
Rubinstein (2002). We then want to fine-tune the ACE method and apply it to the
relatively small instances suggested by Rubinstein (2002). Finally, we want to figure
out whether the implementations of the CE and ACE methods are competitive when
compared to state-of-the-art procedures specifically designed for the max-cut problem.
For our computational experiments we employ the following sets of existing test
problem instances.

Set 1 — Rubinstein (2002) introduced six problem instances on artificially created

complete graphs with known optimal solutions. The problems have 200
vertices and the weights range from 1 to 5.

Set 2 — This set comes from the 7th DIMACS Implementation Challenge and is

publicly available at http://dimacs.rugters.edu/Challenges/Seventh. The
number of vertices ranges from 512 to 3375 and the number of edges from
1536 to 10125. Burer et al. (2001) use all four instances in their experiments.
Festa et al. (2002) consider only one of them.

http://dimacs.rugters.edu/Challenges/Seventh

The Accelerated CE Method / 8

Set 3 — Helmberg and Rendl (2000) introduced a set of graphs with several densities
and sizes. Burer et al. (2001) and Festa et al. (2002) use the 24 graphs in the
set shown in Table 1. They consist of toroidal, planar and random graphs with
weights taking the values 1, 0, or -1.

Graph n Density
G1, G2, G3 800 6.12%
G11, G12, G13 800 0.63%
G14, G15, G16 800 1.58%
G22, G23, G24 2000 1.05%
G32, G33, G34 2000 0.25%
G35, G36, G37 2000 0.64%
G43, G44, G45 1000 2.10%
G48, G49, G50 3000 0.17%

Table 1. Problem instances in Set 3

Set 4 — This set contains twenty instances described in Festa et al. (2002). Ten of the

graphs have 1000 vertices and density equal to 0.60% and the other ten have
2744 vertices and density equal to 0.22%. The weight values are either 1, 0, or
-1.

All experiments were performed on a personal computer with a 3.2 GHz Intel Xenon
processor and 2.0 GB of RAM. In our first experiment we implemented the CE method
shown in Figure 1, which corresponds to Algorithm 4.1 in Rubinstein (2002).
According to Rubinstein, the best parameter values to solve the problems in Set 1 with
the CE method are ρ = 0.01, α = 0.9 and k = 5. In his experiments, he executes the CE
method for sample sizes ranging from 200 to 2000. Table I in Rubinstein (2002) shows,
for each graph in the test set, the deviation from the optimal solution and the total
number of iterations (i.e., the final value of t after the process in Figure 1 stops, which
as Rubinstein, we will denote by T). Rubinstein does not specify whether the results are
the best from several runs of the CE method or they are average values. When reporting
results associated with a method that has as many random components as CE, it is
essential to either report results on a very large set of problem instances or, when
dealing with a small set (as in the case of Set 1), execute the procedure several times on
each available instance. Regardless of how the numbers in Table I of Rubinstein (2002)
were obtained, we were unable to match these results and therefore proceeded to fine-
tune the parameters of the CE implementation.

We employ the fine-tuning system known as Calibra (Adenso-Diaz and Laguna, 2006)
with the goal of finding the most effective values for N, ρ, and α. We consider that
N = cn and therefore search for an effective c-value. Calibra utilizes design of
experiments and locally searches for the best values for up to 5 input parameters. We
configured Calibra to use Set 1 as the training set to search within the following set of
values:

c = {1.00, 1.01, 1.02, …, 10.00 }
ρ = { 0.01, 0.02, 0.03, …, 0.10 }
α = { 0.5, 0.6, 0.7, …, 1.0 }

We did not include k for fine-tuning because the quality of the solutions generated by
the CE procedure can only increase with the value of k. Calibra uses solution quality

The Accelerated CE Method / 9

for searching and hence would always choose the largest allowed value for k if this
parameter is allowed to be changed during the fine-tuning process. We set k to 10 and
K to 1000, letting Calibra adjust the other 3 parameters. We did this because with k = 5
we did not find a combination of the other three parameters that would yield solutions
of the quality reported by Rubinstein (2002). The Calibra run, with k = 10, suggested
the following settings: N = 5.87n, ρ = 0.02 and α = 1.

Table 2 reports the results obtained from running our CE implementation with k = 10,
ρ = 0.02 and α = 1 on the six problem instances in Set 1. We have empirically found
that solution quality is highly dependent on the seed for the random number generator.
In order to obtain statistically significant results we ran the method 20 times on each
instance. Table 2 presents the relative errors εi and the associated number of iterations
Ti as a function of the sample size N for the six instances in this set (i.e., for i=1,…,6).
Table 3 reports the associated computing times in seconds. Results in Tables 2 and 3
are the average values across the 20 runs.

N ε1 (T1) ε2 (T2) ε3 (T3) ε4 (T4) ε5 (T5) ε6 (T6)
200 0.163 (68.6) 0.142 (70.2) 0.255 (66.3) 0.059 (71.1) 0.317 (21.4) 0.040 (20.8)
400 0.062 (40.6) 0.006 (49.4) 0.081 (38.2) 0.006 (44.9) 0.172 (25.5) 0.025 (26.2)
800 0.000 (25.6) 0.000 (31.3) 0.000 (23.7) 0.000 (27.9) 0.050 (26.1) 0.011 (30.3)

1200 0.000 (21.4) 0.000 (24.7) 0.000 (20.6) 0.000 (22.7) 0.013 (25.3) 0.006 (31.2)
1600 0.000 (21.1) 0.000 (23.0) 0.000 (20.5) 0.000 (22.2) 0.008 (25.1) 0.002 (30.5)
2000 0.000 (20.9) 0.000 (22.5) 0.000 (20.8) 0.000 (21.9) 0.001 (25.4) 0.001 (29.6)

Table 2. CE method results for Set 1

Our first observation about the results in Table 2 is that problems 5 and 6 are more
difficult than problems 1 to 4. This is due to the way the weights are generated, being
constant for the first two instances, uniformly distributed in instances 3 and 4, and
following a Beta distribution in the last two instances. We then observed that because
we set k = 10 then the T values are on average twice as large as those reported in Table I
of Rubinstein (2002). Recall that setting k = 10 was necessary to approach the deviation
values reported by Rubinstein (2002).

N Prob. 1 Prob. 2 Prob. 3 Prob. 4 Prob. 5 Prob. 6
200 3.11 3.26 3.06 3.26 1.06 1.04
400 3.67 4.50 3.50 4.08 2.45 2.56
800 4.65 5.73 4.38 5.12 4.95 5.81

1200 5.88 6.87 5.72 6.32 7.14 8.95
1600 7.79 8.58 7.58 8.30 9.41 11.59
2000 9.63 10.46 9.66 10.16 11.90 14.03

Table 3. Average running times (in seconds) for 20 executions of the CE method

The execution times in Table 3 follow a similar pattern as shown in Table II of
Rubinstein (2002). The actual values, however, are significantly different due to the
dissimilarity of the computer equipment used here and by Rubinstein (2002). With
these data, we are confident that our implementation of the CE method for the max-cut
problem—with some changes in the parameter settings—approximates the one
suggested in the literature.

The Accelerated CE Method / 10

In our next experiment we fine-tune the key search parameters for the ACE method.
We start by setting K to 100 and then we configure Calibra to use Set 1 for the fine-
tuning of c, δ, and α within the following set of values:

c = {0.01, 0.02, 0.03, …, 0.50 }
δ = { 0.5, 0.6, 0.7, …, 1.0 }
α = { 0.5, 0.6, 0.7, …, 1.0 }

Calibra suggested the following parameter values for the ACE method: N=0.031n,
δ = 0.9, and α = 0.9. Table 4 reports the performance comparison between the CE and
ACE methods as adjusted with Calibra. The results in this table are from running both
methods (a single time with the same random seed) on the six instances of Set 1. In the
table, there is a row for each problem instance in this set. All problem instances have
200 vertices and 19,900 edges. We show the objective function values (Value), the
percent deviation from the optimal solution (Dev) and the CPU time in seconds (Time).
These values show that both methods are quite capable of tackling the instances in Set
1. The optimal solution to all these artificial problems is 50,000. Regarding number of
optimal solutions found, the ACE method performs slightly better (5 out of 6) than the
CE method (4 out 6). The average percent deviation slightly favors the CE method.
The mechanisms added to the ACE method in order to accelerate the search are evident
in the computational times shown in Table 4.

 CE Method ACE Method
Instance Value Dev (%) Time Value Dev (%) Time

z1 50000 0.00 5.72 50000 0.00 0.36
z2 50000 0.00 7.31 50000 0.00 0.44
z3 50000 0.00 6.16 50000 0.00 0.38
z4 50000 0.00 7.28 50000 0.00 0.39
z5 49993.1 0.01 6.62 50000 0.00 0.44
z6 49995.8 0.01 7.86 49977.71 0.04 0.45

Average 49998.15 0.00 6.83 49996.29 0.01 0.41

Table 4. Performance comparison between CE and ACE on Set 1

We now apply both methods to the problems in Set 2. This set consists of four problem
instances, whose sizes are shown in the second and third column of Table 5. This table
also shows the objective function values, the percent deviation from the semidefinite
programming upper bound (Goemans and Williamson, 1995) denoted as SDP and the
computational time for each of the two methods. The problem instances in Set 2 are
significantly larger (in terms of the number of nodes) than those in Set 1 and the graphs
in Set 2 are not artificially structured in the same systematic way as in Set 1.

 CE Method ACE Method
Instance |V| |E| Value Dev Time Value Dev Time SDP
g3-15 3375 10125 1.73E+07 94.5% 5218.0 2.69E+08 14.3% 3944.6 3.13E+08
g3-8 512 1536 3.63E+07 20.6% 356.8 4.02E+07 12.2% 8.3 4.57E+07
pm3-15-50 3375 10125 2102 39.5% 5336.2 2895 16.7% 2583. 9 3474
pm3-8-50 512 1536 386 26.8% 271.5 442 16.1% 7.9 527
Average 1.34E+07 45.3% 2795.6 7.72E+07 14.8% 1636.2

Table 5. Performance comparison between CE and ACE on Set 2

The Accelerated CE Method / 11

The shortcomings of the CE method are now evident. CE is not able to provide high-
quality heuristic solutions to the max-cut problems in Set 2 (as measured by the
deviation to a known upper bound). In this test set, ACE is superior both in terms of
solution quality and computational time.

So far, we have focused on direct comparisons between the CE and ACE methods.
Experiments with Set 1 did not show any discernable performance difference between
the two methods. The second experiment provided some evidence that ACE may be
more robust than CE when tackling larger, unstructured max-cut problems. Although
the intention all along has been to use the max-cut problem as a case for testing a
hybridized CE method, it is our obligation to establish—and inform the reader—where
the CE and ACE implementations stand in regard to state-of-the-art solution procedures
for the max-cut problem. To this end, we consider the benchmarks established by Festa,
et al. (2002). Specifically, we compare our implementations to the CirCut heuristic due
to Burer et al. (2001), and the GRASP, GRASP with Path Relinking (GPR) and the
Variable Neighborhood Search coupled with Path Relinking (VNSPR) due to Festa et al
(2002). These methods were run on a SGI Challenge computer at 196 Mhz MIPS
R10000 and 7.6 GB of RAM. Van Keken (2005) reports a comparison among different
platforms including the aforementioned computer and the 3.2 GHz Intel Xenon that we
used in our experiments. His tests show that our computer is approximately 4.52 times
faster than the SGI Challenge, so we use this factor in order to normalize the times
shown in Tables 7 and 8.

Instance |V| |E| CE ACE CirCut GRASP GPR VNSPR SDP
G1 800 19176 11419 11584 11624 11540 11563 11621 12078
G2 11374 11595 11617 11567 11567 11615 12084
G3 11380 11574 11622 11551 11585 11622 12077
G11 800 1600 506 552 560 552 564 564 627
G12 500 542 552 546 552 556 621
G13 486 564 574 572 580 580 645
G14 800 4694 2980 3030 3058 3027 3041 3055 3187
G15 2966 3012 3049 3013 3034 3043 3169
G16 2959 3015 3045 3013 3028 3043 3172
G22 2000 19990 10381 13297 13346 13185 13203 13295 14123
G23 10370 13247 13317 13203 13222 13290 14129
G24 10381 13250 13314 13165 13242 13276 14131
G32 2000 4000 176 1336 1390 1370 1392 1396 1560
G33 146 1314 1360 1348 1362 1376 1537
G34 128 1342 1368 1348 1364 1372 1541
G35 2000 11778 6155 7570 7670 7567 7588 7635 8000
G36 6133 7566 7660 7555 7581 7632 7996
G37 6154 7585 7666 7576 7602 7643 8009
G43 1000 9990 6433 6612 6656 6592 6621 6659 7027
G44 6509 6618 6643 6587 6618 6642 7022
G45 6427 6592 6652 6598 6620 6646 7020
G48 3000 6000 3164 6000 6000 6000 6000 6000 6000
G49 3152 6000 6000 6000 6000 6000 6000
G50 3178 5880 5880 5862 5880 5880 5988
Total objective value 123457 149677 150623 149337 149809 150441 157743
Average deviation 21.74 5.11 4.51 5.33 5.03 4.63

Table 6. Summary of experimental results for instances in Set 3

The Accelerated CE Method / 12

Table 6 summarizes the results obtained from applying the CE and ACE methods to the
problem instances in Set 3. The objective function values found by these two methods
are shown in the fourth and fifth columns of this table. The remaining columns of
objective function values were taken directly from Table 2 in Festa et al. (2002). The
last row shows the average percent deviation of the solutions found by each method
from the semidefinite programming upper bound (SDP) shown in the last column of the
table.

Instance |V| |E| CE ACE CirCut GRASP GPR VNSPR
G1 800 19176 1948.97 43.56 352 467.0 467.0 5029.2
G2 1570.31 40.6 283 450.7 457.3 5026.3
G3 1828.83 41.7 330 454.2 453.1 5285.4
G11 800 1600 1327.38 39.11 74 61.1 63.1 2231.0
G12 1332.52 36.97 58 60.8 62.8 2400.9
G13 1137.44 37.11 62 61.5 63.5 2318.4
G14 800 4694 2294.67 40.57 128 105.8 108.2 3702.2
G15 1437.52 41.64 155 105.8 108.0 3801.8
G16 1437.41 39.41 142 105.8 108.0 3664.2
G22 2000 19990 3714.24 774.46 493 1475.0 1487.6 43728.8
G23 3692.83 680.89 457 1503.3 1493.1 42855.5
G24 3711.16 815.2 521 1495.6 1481.6 43307.3
G32 2000 4000 3719.39 680.67 221 434.1 446.2 18217.9
G33 3651.69 750.34 198 437.8 450.4 16876.5
G34 3692.89 755.22 237 435.2 467.5 17567.7
G35 2000 11778 3808.2 780.65 440 812.2 808.4 36995.8
G36 3944.27 669.51 400 816.8 806.6 36991.8
G37 3850.69 655.45 382 811.9 803.3 37784.5
G43 1000 9990 2835.58 83.21 213 301.1 305.1 7815.0
G44 3633.83 79.72 192 304.6 304.6 7636.9
G45 3641.03 79.45 210 302.9 306.9 7561.7
G48 3000 6000 3729 1566 119 1266.2 1301.1 14317.0
G49 3765.47 1591 134 1363.9 1387.8 14325.0
G50 3783.77 1941 231 1098.9 1127.2 32551.3
Average 2895.38 510.98 251.3 613.84 619.52 17166.34

Table 7. Solution times for problem instances in Set 3

Table 6 reveals that the quality of the solutions generated by the ACE method is in the
same general neighbourhood of those found by the best solution procedures for the
max-cut problem that have appeared in the literature. It also reveals that the
performance of the original CE method for the max-cut problem is a distant last. The
superiority of the CirCut method is evident in Table 6. Only in two cases (G32 and
G43) CirCut fails to provide the best-known solution to the problems in Set 3.
Moreover, the CirCut method, on average, is the fastest of all (see Table 7). This
method is designed to solve binary quadratic programs, in particular the max-cut
problem. It is based on a rank-two relaxation scheme that leads to a nonconvex
nonlinear optimization problem with number of variables equal to the number of nodes
in the graph. A cut is obtained from the solution to the relaxed problem and the solution
is perturbed in order to apply the relaxation procedure several times and obtain
additional cuts. Only the VNSPR procedure, with numerous search strategies and large
computational effort, approaches the quality of the solutions found by CirCut.

The Accelerated CE Method / 13

Regarding computational time, the ACE method is very competitive, as evident in Table
7.

In our final experiment we use the instances in Set 4 to compare the quality of the
solutions obtained with the CE, ACE, CirCut, GPR and VNSPR. The graphs in this test
set contain positive and negative weight values, a feature exploited by the local search
mechanisms in the GRASP and path relinking variants. The objective values obtained
in this comparison are shown in Table 8. As before, we executed our computer
implementations to obtain the CE and ACE solutions, and we simply reproduce the
values reported by Festa, et al. (2002) to populate the rest of the table. The deviation is
now computed with respect to the best known solution (Max) since the SDP upper
bound is not known for the instances in this set. Unfortunately, Festa et al. (2002) do
not report the performance of GRASP on this set of test problems and this is why the
corresponding column is missing in Table 8.

Instance |V| |E| CE ACE CirCut GPR VNSPR Max
sg3dl101000 1000 3000 768 860 880 884 892 892
sg3dl102000 782 860 892 896 900 900
sg3dl103000 766 862 882 878 884 884
sg3dl104000 788 860 894 884 896 896
sg3dl105000 762 852 882 868 882 882
sg3dl106000 762 850 886 870 880 886
sg3dl107000 782 854 894 890 896 896
sg3dl108000 748 842 874 876 880 880
sg3dl109000 780 864 890 884 898 898
sg3dl1010000 774 864 886 888 890 890
sg3dl141000 2744 8232 200 2328 2410 2378 2416 2416
sg3dl142000 198 2356 2416 2382 2416 2416
sg3dl143000 184 2342 2408 2390 2406 2408
sg3dl144000 182 2348 2414 2382 2418 2418
sg3dl145000 202 2328 2406 2374 2416 2416
sg3dl146000 194 2338 2412 2390 2420 2420
sg3dl147000 202 2310 2410 2384 2404 2410
sg3dl148000 206 2326 2418 2378 2418 2418
sg3dl149000 192 2312 2388 2362 2384 2388
sg3dl1410000 172 2350 2420 2390 2422 2422
Total objective value 9644 31906 32962 32628 33018 33018
Average deviation 70.81 3.42 0.22 1.24 0.05
Average solution time 3444.6 356.8 236.8 613.8 23496.4

Table 8. Summary of experimental results for instances in Set 4

For the graphs in Set 4, the ACE method now lags behind the specialized max-cut
procedures used for comparison. The ACE method produces solutions of reasonable
quality, but it cannot compete with the highly customized methods (which embed a fair
amount of problem-specific search mechanisms and strategies). Note that CE does not
use any problem-specific knowledge and only the local search is problem-specific in the
ACE method. The CE method, as originally proposed for the max-cut problem, cannot
tackle the difficult problems in Set 4. CE’s average deviation against the best-known
solution is just over 70%, rendering the procedure useless for this class of graphs. The
relative ranking of the methods according to their average solution time (shown in the
last row of Table 8) is the same as in the previous experiment. CirCut is still the fastest

The Accelerated CE Method / 14

method while VNSPR is still the slowest (with an average of more than 6 hours of CPU
time).

5. Conclusions
We embarked in the project of implementing and testing the cross entropy method
because (1) the methodology has appeared in several recent publications, (2) it is very
intuitive and (3) we were intrigued by the results reported in problems such as the one
used here for testing. Our first task was to implement the CE method as described by
Rubinstein (2002) in an attempt to reproduce his results. As we describe in the previous
section, we were unable to match his reported outcomes exactly. However, after fine-
tuning the procedure, our results were similar in terms of solution quality although
convergence was achieved with more iterations than those reported by Rubinstein
(2002).

Once we gained a more complete understanding of the CE methodology, we decided to
develop an extension that would include hybridization with local search and systematic
diversification. Our motivation was to overcome what we identified as possible
deficiencies of the CE method. Namely, we wanted to accelerate convergence and
reduce sample sizes. Our ideas are put together as a generic way of modifying the CE
methodology and we have tested them on the max-cut problem. We have provided
experimental evidence that shows the merit of our extensions to the basic CE
methodology. The implementation of the ACE method is competitive with an
implementation of GRASP for the same problem. It is not competitive, however, with
more sophisticated procedures specifically tailored for the max-cut problem (i.e.,
GRASP and VNS hybrids and Circut). This level of sophistication was achieved at a
high cost in terms of design and implementation time. If this total time is important,
then ACE becomes a very attractive alternative.

Acknowledgments
Rafael Martí was partially supported by the Ministerio de Educación y Ciencia under
reference code TIN2006-02696. Abraham Duarte was partially funded by a research
grant from the Ayudas a la Movilidad program of the University Rey Juan Carlos. We
would like to thank Mr. Camilo Sesto for sharing his wisdom and making this project
particularly enjoyable.

References
Adenso-Díaz, B. and M. Laguna (2006) “Fine-tuning of Algorithms Using Partial
Experimental Designs and Local Search,” Operations Research, vol. 54, no. 1, pp. 99-
114.

Alon, G., D. P. Kroese, T. Raviv and R. Y. Rubinstein (2005) “Application of the
Cross-Entropy Method to the Buffer Allocation Problem in a Simulation-Based
Environment,” Annals of Operations Research, vol. 134, pp. 137-151.

Burer, S., R. D. C. Monteiro and Y. Zang (2001) “Rank-two Relaxation Heuristics for
Max-cut and Other Binary Quadratic Programs,” SIAM Journal on Optimization, vol.
12, pp. 503-521.

The Accelerated CE Method / 15

Chepuri, K. and T. Homem-de-Mello (2005) “Solving the Vehicle Routing Problem
with Stochastic Demands using the Cross-Entropy Method,” Annals of Operations
Research, vol. 134, pp. 153-181.

de Boer, P-T, D. P. Kroese, S. Mannor and R. Y. Rubinstein (2005a) “The Cross-
Entropy Method for Combinatorial Optimization, Rare Event Simulation and Neural
Computation,” Annals of Operations Research, vol. 134.

de Boer, P-T, D. P. Kroese, S. Mannor and R. Y. Rubinstein (2005b) “A Tutorial of the
Cross Entropy Method,” Annals of Operations Research, vol. 134, pp. 19-67.

Festa, P., P. M. Pardalos, M. G. C. Resende and C. C. Ribeiro (2002) “Randomized
Heuristics for the Max-cut Problem,” Optimization Methods and Software, vol. 7, pp.
1033-1058.

Goemans, M. X. and D. P. Williams (1995) “Improved Approximation Algorithms for
the Max-cut and Satisfiability Problems using Semidefinite Programming,” Journal of
the ACM, vol. 42, pp. 1115-1145.

Helmberg, C. and F. Rendl (2000) “A Spectral Bundle Method for Semidefinite
Programming,” SIAM Journal on Optimization, vol. 10, pp. 673-696.

Rubinstein, R. Y. (1997) “Optimization of Computer Simulation Models with Rare
Events,” European Journal of Operations Research, vol. 99, pp. 89–112.

Rubinstein, R. Y. (1999) “The Simulated Entropy Method for Combinatorial and
Continuous Optimization,” Methodology and Computing in Applied Probability, vol. 2,
pp. 127–190.

Rubinstein, R. Y. (2001) “Combinatorial Optimization, Cross-Entropy, Ants and Rare
Events,” in Stochastic Optimization: Algorithms and Applications, S. Uryasev and P. M.
Pardalos (eds.), Kluwer Academic Publishers, pp. 304–358.

Rubinstein, R.Y. (2002) “Cross-Entropy and Rare Events for Maximal Cut and Partition
Problems,” ACM Transaction on Modeling and Computer Simulation, vol. 12, no. 1, pp.
27-53.

Van Keken, P. (2005) “Linux PC Single CPU Benchmark Comparison”
http://www.geo.lsa.umich.edu/~keken/benchmarks/single_cpu.html

