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Abstract

In this paper we present several heuristic algorithms and a cutting-plane
algorithm for the Windy Rural Postman Problem. This problem contains a
big number of important Arc Routing Problems as special cases and has very
interesting real-life applications. Extensive computational experiments over
different sets of instances are also presented.
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1 Introduction

In this work we study an interesting arc routing problem, the Windy Rural Post-
man Problem (WRPP). This problem can be briefly described as follows. Given an
undirected graph G = (V, E) with two nonnegative costs associated to each edge (cor-
responding to the costs of traversing edge e = (i, j) from i to j and from j to i,
respectively) and a subset ER of ”required” edges (representing those edges requiring
some service to be done along them), the WRPP consists of finding a tour of minimum
cost traversing each edge in ER at least once. The study and resolution of the WRPP is
of great interest both since it generalizes most of the known single-vehicle Arc Routing
Problems and it is the mathematical model describing several real-life problems.

An interesting application of the WRPP is described in what follows. Some 3-
dimensional structures, as bridges, buildings skeletons or metallic structures, need to be
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Figure 1: ROMA climbing robot

inspected periodically. The possibility of using autonomous robots, with TV cameras,
for these tasks present a very important advantage with regard to safety and quality.
During the last years several climbing robots have been developed. As an example,
Figure 1 shows the ROMA robot designed in the University Carlos III of Madrid (see
Balaguer et al., 2000). Due to the batteries they have incorporated, robots have a
limited working time and therefore it is crucial to optimize their movements, i.e. the
traversal of the structure should be of minimum length (Padrón, 2000). Figure 2 shows
how these 3-dimensional structures can be modelled as undirected graphs. Dashed
edges represent the 4 sides of each beam. Since all of them should be traversed for
inspection, they will be considered required edges. On the other hand, solid and dotted
lines in Figure 2 represent the different robot movements needed to change from one
side of a beam to another side or to another beam. Since these edges can be traversed
or not they will be considered as non required edges. Hence, the problem of finding a
minimum energy consumption traversal passing through every required edge at least
once can be modelled as a Rural Postman Problem. Moreover, since, for example, the
energy consumed by the robot for moving down or up is different, the model should be
extended to a Windy Rural Postman Problem.

If ER = E, i.e. all the edges have to be traversed, the WRPP reduces to the Windy
Postman Problem (WPP). The WPP was proposed in Minieka (1979) and, although
in the general case is NP-hard (Brucker, 1981, Guan, 1984), it can be polynomially
solved if the two possible orientations of each cycle have the same cost (Guan, 1984)
or if G is an even (Eulerian) graph (Win, 1989). This last result is the basis for a
heuristic algorithm proposed in Win (1989) to solve approximately the general case:
first transform G into an even graph and then apply the exact algorithm for the WPP

2



Figure 2: 3-D structures modelled as undirected graphs

on Eulerian graphs. In Pearn and Li (1994) another heuristic for the WPP is proposed
that, basically, consists of executing the phases of the Win’s algorithm in a different
order. The chapter by Hertz and Mittaz (2000) in the recent book edited by Dror
(2000) gives a nice description of these algorithms. An integer formulation of the WPP
and a cutting-plane procedure for its resolution were proposed in Grötschel and Win
(1992). In Laporte (1997) it is shown how several classes of Arc Routing Problems can
be modelled and solved as directed Traveling Salesman Problems. This last approach
seems to work well on graphs with few edges, which is not the case of the WPP and
the WRPP.

By an appropriate definition of the costs cij and cji associated to each edge e =
(i, j), it is easy to see that the undirected, directed and mixed versions of the well
known Chinese Postman Problem are particular cases of the WPP. Similarly, the Rural
Postman Problem defined on an undirected, directed or mixed graph is a particular
case of the WRPP. Therefore, the Windy Rural Postman Problem, is also NP -hard
and, besides its practical applications, is the most general single-vehicle arc routing
problem presented so far, and its study deserves considerable interest.

In Section 2 we extend the WPP formulation in Grötschel and Win (1992) to the
Rural case and in Section 3 we present several families of valid inequalities that have
been used in a cutting-plane procedure for the WRPP. Section 4 is devoted to describe
three constructive heuristic algorithms. All the algorithms have been tested on a set of
288 WRPP instances described in Section 5. The computational results are presented
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in Section 6 and the conclusions in Section 7.

2 A formulation for the WRPP

In what follows we will assume, for the sake of simplicity, that all the vertices in V
are incident with required edges. This is not a serious restriction as there is a simple
way to transform WRPP instances which do not satisfy the assumption into instances
which do (see, for instance, Christofides et al., 1986, or Eiselt et al., 1995). From the
original graph G = (V,E), we will define the graph GR as the subgraph associated
with the required edges, i.e., GR = (V,ER). A WRPP solution is a strongly connected
directed multigraph G∗ = (V,A) satisfying:

• each arc (i, j) ∈ A is a copy of an edge in E with a given orientation,

• for each (i, j) ∈ ER either (i, j) ∈ A or (j, i) ∈ A, and

• every vertex in G∗ is symmetric (i.e., its indegree equals its outdegree).

It is well known that there exists a closed walk (tour) traversing each arc of G∗

exactly once. This tour will be called in what follows a WRPP tour.

In general, graph GR is not connected. The sets V1, V2, . . . , Vp of the connected
components of GR will be called R-sets. The subgraphs induced by these sets of
vertices will be called R-connected components.

Given a node subset, S ⊆ V , let δ(S) denote the edge set with an end-point in
S and the other in V \ S and let E(S) denote the edge set with both end-points in
S. Given two node subsets S, S ′ ⊆ V , let (S : S ′) denote to the edge set with one
end-point in S and the other in S ′. Finally, δR(S), ER(S), (S : S ′)R will denote to the
previous sets referred only to the required edges.

Let xij be the number of times edge (i, j) is traversed from i to j in a WRPP tour.
We propose the following formulation for the WRPP, where, for any subset F ⊆ E,

x(F ) will denote
∑

(i,j)∈F

(xij + xji):

Minimize
∑

(i,j)∈E

(cijxij + cjixji)
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s.t.:

xij + xji ≥ 1, ∀(i, j) ∈ ER (1)∑

(i,j)∈δ(i)

(xij − xji) = 0, ∀i ∈ V (2)

∑

i∈S,j∈V \S
xij ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (3)

xij, xji ≥ 0 (4)

xij, xji integer (5)

Inequalities (1) will be called traversing inequalities and imply that every required
edge is traversed. Symmetry equations (2) force graph G∗ to be symmetric, while con-
nectivity inequalities (3) assure graph G∗ to be connected. Note that, as constraints
(1) imply the weak connectivity within the R-connected components, connectivity in-
equalities (3) can be restricted to the edge cut-sets between different R-sets. Note
also that weak connectivity implies strong connectivity in a symmetric graph. This
formulation is a generalization of that proposed by Grötschel and Win (1992) for the
WPP.

3 Valid inequalities

We propose a cutting-plane procedure to exactly solve instances of the WRPP or, at
least, to obtain lower bounds on the optimal cost. Let X be the set of all the WRPP
tours, i.e., the set of all vectors x ∈ IR2|E| satisfying (1) to (5). Let us define the
associated polyhedron WRPP(G)= conv(X ), i.e., the convex hull of the vectors in X ,
whose (integral) extreme points correspond to the WRPP tours. We need some classes
of valid inequalities for the polyhedron WRPP(G). To this end we will use families
of valid inequalities that have been proved to be facet-inducing for the polyhedra
associated to other routing problems related to the WRPP.

Given that X has been defined as the set of all vectors x ∈ IR2|E| satisfying (1) to
(5), equations (2) are satisfied by all the points in WRPP(G) and inequalities (1), (3)
and (4) are valid inequalities for WRPP(G).

Other families of valid inequalities can be obtained from the undirected RPP poly-
hedron. This polyhedron has been studied by Corberán and Sanchis (1994, 1998) and
by Letchford (1997, 1999) and several families of facet-inducing inequalities have been
described:

• the trivial inequalities,

• the connectivity inequalities,

• the R-odd cut inequalities,
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• the K-C (K-Components) inequalities,

• the Honeycomb inequalities,

• the Path-Bridge inequalities.

Given an undirected graph G = (V, E), a tour for the RPP is a vector x ∈ Z|E|
such that the graph containing xe copies of each edge e ∈ E is an even and connected
graph containing all the required edges. Then, given a tour x ∈ Z2|E| for the WRPP
on G, the vector x′ ∈ Z|E|, defined as x′e = xij + xji for all e ∈ E, is a tour for the
(undirected) RPP on G. Hence, given a valid inequality for the RPP polyhedron

∑
e∈E

αex
′
e ≥ α0,

the corresponding inequality

∑

e=(i,j)∈E

αe(xij + xji) ≥ α0

is valid for the polyhedron WRPP(G).

Trivial and connectivity inequalities for the RPP correspond, respectively, to in-
equalities (4) and (3). The remaining inequalities above provide new families of valid
inequalities for WRPP(G). In our cutting-plane algorithm we have only used the R-odd
cut inequalities, the K-C inequalities and a special case of the Honeycomb inequalities.

The R-odd cut inequalities. Every WRPP tour traverses each edge cut-set of
G an even number of times. If δ(S) is an edge cut-set with an odd number of required
edges, then every WRPP tour must traverse at least the required edges plus an extra
edge in δ(S). Then the following inequalities, called R-odd cut inequalities, are valid
for WRPP(G):

x(δ(S)) ≥ |δR(S)|+ 1, ∀S ⊂ V with |δR(S)| odd (6)

The K-C inequalities. They are defined in terms of an associated K-C config-
uration. A K-C configuration (see Figure 3) is a partition {M0, . . .MK} of V , with
K ≥ 3, such that

• M1, . . .MK−1 and M0 ∪MK are clusters of one or more R-sets,

• |ER(M0 :MK)| is positive and even,

• E(Mi :Mi+1) 6= ∅, for i = 0, . . . , K − 1.

The corresponding K-C inequality is:
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Figure 3: K-C configuration.

(K−2) x
(
(M0 :MK)

)
+

∑

0 ≤ i < j ≤ K
(i, j) 6= (0, K)

| i−j | x
(
(Mi :Mj)

)
≥ α0 (7)

where the right hand side is α0 = 2(K−1) + (K−2)|(M0 :MK)R|.
The Honeycomb inequalities. They are a generalization of the previous K-C

inequalities. In a K-C configuration, a R-connected component (or a cluster of R-
connected components) is divided into two parts. In a Honeycomb configuration, this
is generalized simultaneously both in the number L of R-connected components we
divide and in the number of parts a R-connected component is divided. In general,
Honeycomb configurations can be extremely complicated. Nevertheless, we restrict
ourselves here to Honeycomb configurations where only one R-connected component is
divided (L=1) into a number γ ≥ 2 of parts. They consist of (see figure 4):
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Figure 4: Two Honeycomb configurations.
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• a partition {M1, . . . ,Mγ,W1, . . . , WK−1} of V , with γ ≥ 2, K ≥ 3, such that
(M1∪ . . .∪Mγ), W1, . . . , WK−1 are clusters of one or more R-sets, δ(Mi) contains
a positive and even number of required edges for all i and the graph induced by
the required edges on the vertex set {M1, . . . , Mγ} is connected.

• a tree T spanning the sets M1, . . . , Mγ,W1, . . . ,WK−1 such that the degree in T
of every vertex set Mi is 1, the degree of vertex sets Wj is at least 2 and the path
in the tree connecting any distinct Mi, Mj is of length 3 or more.

For these Honeycomb configurations, the coefficient αe of edge e ∈ E in the asso-
ciated Honeycomb inequality is equal to the number of edges traversed (if any) in the
spanning tree to get from one end-vertex of e to the other, except for those edges with
one end-vertex in Mi and the other in Mj, i 6= j, which coefficients are 2 units less.
Then, all the coefficients associated to edges in the above figures are equal to 1, except
where expressly shown. If we denote by αR to the sum of these α-coefficients for all
the required edges in the configuration, the Honeycomb inequality is then:

∑
e∈E

αexe ≥ 2(K − 1) + αR (8)

Figure 4 shows two such Honeycomb configurations. The bold lines represent edges
in δR(Mi) for some i and the thin lines represent edges in the spanning tree. The
rhs of the associated inequality is 6+(1+1+1+1) for the configuration on the left and
14+(1+4+1+6) for the configuration on the right.

3.1 The cutting-plane algorithm

The cutting plane algorithm starts by solving an initial LP containing the objective
function, all the inequalities (1), (2) and (4), a connectivity inequality (3) for each
R-set Vi and a R-odd cut inequality (6) for each R-odd vertex of G. At each iteration,
connectivity, R-odd cut, K-C and Honeycomb violated inequalities are found and added
to the LP. Connectivity inequalities can be separated exactly in polynomial time by
finding a minimum weight cut. The separation problem for inequalities (6) reduces to
the problem of determining an odd-cut of minimum weight. Using a result of Padberg
and Rao (1982), this problem can be solved exactly in polynomial time.

It is not known if the problem of separating K-C inequalities can be solved in poly-
nomial time or not. However, Corberán, Letchford and Sanchis (2001) have designed a
heuristic algorithm which works very well for the (undirected) RPP. They also separate
the above Honeycomb inequalities with L = 1. These algorithms have been adapted
here for the WRPP.

When the cutting-plane algorithm does not find more violated inequalities and the
LP relaxation is still not integral, we invoke the branch-and-bound option of CPLEX. If
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the IP solution is a tour for the WRPP, we have obtained an optimal WRPP solution.
Otherwise, the procedure terminates with a very tight lower bound.

4 Constructive Heuristics

In this section we will describe three heuristic algorithms. All the solutions generated
by these algorithms are improved by means of three simple procedures that will be
summarized at the end of the section. As in the preceding section, we will assume that
all the nodes in graph G = (V, E) are incident with required edges. The assumption
is made only to simplify the notation since all the heuristics are implemented to deal
with the case where it may exist nodes not incident with required edges.

We will denote by sij the cost of the shortest path in G from node i to node j. If
a path traverses the edge set P ⊆ E, then, the average cost of that path, denoted by

s̄ij, is defined as
∑

(i,j)∈P

(cij + cji)/2. Note that, since the shortest path from i to j will

be, in general, different to that from j to i, s̄ij and s̄ji will also be different.

4.1 Heuristic H1

The first heuristic, called H1, extends to the WRPP the approaches proposed by Win
(1989) for the WPP. In particular, the problem is solved by adding to graph GR a set
of edges that makes it connected. Then, a minimum cost matching problem is solved
and further edges are added to obtain an even graph; afterwards, the solution of a
minimum cost flow problem allows to construct a directed graph that is a solution of
the WRPP. Then, the heuristic has several phases that are described in detail in what
follows.

Phase 1: Shortest Spanning Tree

Recall that V1, V2, . . . , Vp ⊆ V denote the set of vertices of the connected compo-
nents of the required subgraph GR. If p = 1 go to Phase 2, otherwise,

i) build an undirected and complete graph H1 whose nodes w1, w2, . . . , wp represent
the connected components of GR and each edge (wi, wj) has a cost defined by:
min {s̄pq, s̄qp : p ∈ Vi, q ∈ Vj};

ii) Compute a shortest spanning tree (SST) in H1 and build the graph G1 = (V,ER∪
E1) where E1 is determined as follows: for each (wi, wj) in the SST, add to E1 a
copy of each edge in the shortest path corresponding to edge (wi, wj). Therefore,
the resulting G1 is a connected graph. If G1 has no odd-degree node, go to Phase
3; otherwise continue to Phase 2.

Phase 2: Minimum Cost Matching
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Let us denote by v1, v2, . . . , vk the odd degree nodes of G1. Build a complete graph
H2 with this set of nodes and edges (vi, vj) with cost equal to min{s̄ij, s̄ji}. Compute
a minimum cost perfect matching in H2, and build the set of edges E2 by adding to
it, for each edge in the optimal matching, a copy of all the edges in the corresponding
shortest path. Therefore, the resulting G2 = (V, ER ∪ E1 ∪ E2) is an even graph.

Phase 3: Win’s algorithm for the WPP defined on an even graph

i) For each edge (i, j) of G2, define its orientation from i to j if cij ≤ cji, and
from j to i otherwise, thus obtaining the arc set A1. Define now an auxiliary
network H3 = (V, A1 ∪ A2 ∪ A3) with node set V , as follows. Each node i ∈ V
is assigned a demand bi equal to the difference between its indegree minus its
outdegree relative to arc set A1. The arcs (i, j) ∈ A1 have cost cij and capacity
+∞. Create two new sets of arcs A2 and A3, where for each arc (i, j) ∈ A1:

- include in A2 an arc (j, i) with cost cji and capacity +∞ , and

- include in A3 and arc (j, i) with cost (cji − cij)/2 and capacity 2.

ii) Solve a minimum cost flow problem on network H3 with the above defined de-
mands, capacities and costs. Let us denote the optimal flow through an arc (i, j)
by fij, if (i, j) ∈ A1 ∪ A2, and by f ′ij, if (i, j) ∈ A3.

iii) Construct a new directed graph G3 = (V, A4) as follows: for each arc (i, j) ∈ A3,

- if f ′ij = 0, put fji + 1 copies of arc (j, i) in A4,

- if f ′ij = 2, put fij + 1 copies of arc (i, j) in A4.

Since the demands are all even numbers, it can be shown that there always exists
an optimal flow such that f ′ij ∈ {0, 2}, for all (i, j) ∈ A3.

Graph G3 is connected and symmetric and contains all the original required edges
(as oriented arcs). Therefore, graph G3 is a WRPP solution.

4.2 Heuristic H2

This heuristic consists of the same basic phases of H1 but applied in a different order.
Thus, in the first two phases, a minimum cost flow problem and a matching problem
are solved, thus obtaining a symmetric graph that may be not connected. These first
two phases are similar to the algorithm Reverse-Win presented by Pearn and Li (1994)
for the WPP. In the case where the resulting graph is not connected, a third phase is
executed in which a shortest spanning tree is computed to connect it.

Phase 1 Minimum Cost Flow
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i) For each edge in ER, create an arc oriented according to its minimal traversing
cost. Let G1 = (V,A1) be the resulting directed graph. Let bi the difference
between the indegree and the outdegree of node i in G1.

ii) Solve the Minimum Cost Flow Problem defined on the network H2 = (V, A1 ∪
A2 ∪ A3), where:

- the demand of each node i ∈ V is bi;

- arcs (i, j) ∈ A1 have cost cij and capacity +∞;

- A2 contains an arc (j, i) with cost cji and capacity +∞, for each arc (i, j) ∈ A1;

- A3 contains an arc (j, i) with cost (cji − cij)/2 and capacity 2, for each arc
(i, j) ∈ A1.

Again, let fij be the flow through arc (i, j) ∈ A1 ∪ A2 and let f ′ij be the flow
through arc (i, j) ∈ A3, in the optimal flow solution.

iii) Construct a mixed graph G3 = (V, E1 ∪ A4), as follows: for each arc (i, j) ∈ A3,

- if f ′ij = 0, put fji + 1 copies of arc (j, i) in A4,

- if f ′ij = 1, put an edge (i, j) in E1, and

- if f ′ij = 2, put fij + 1, copies of arc (i, j) in A4.

Note that the directed graph induced in G3 by the arc set A4 is symmetric. If
graph G3 is even, then execute Phase 3, otherwise continue with Phase 2.

Phase 2 Minimum Cost Matching

i) Similarly to Phase 2 of heuristic H1, solve a Minimum Cost Matching Problem
defined on a complete graph whose nodes are the odd degree nodes of G3 and
the edge costs are equal to the minimum of the average shortest path costs in G
between its two end nodes. Then, for each edge in the optimal matching, add to
E1 a copy of each original edge in the corresponding shortest path. Let E2 the
resulting edge set; then, G4 = (V, E2) is an undirected even graph.

ii) Apply Win’s algorithm (Phase 3 of heuristic H1) to graph G4 and let A5 be the
set of arcs in the solution. Then, G5 = (V, A4 ∪ A5), is a symmetric graph that
covers all the required edges at least once; if G5 is connected, then it is a feasible
WRPP solution, otherwise, it is necessary to execute Phase 3.

Phase 3 Shortest Spanning Tree

Solve a Shortest Spanning Tree defined on a complete graph whose nodes represent
the connected components of G5, and where edge costs are defined as the minimum of
the average cost paths between nodes of different connected components (similarly to
Phase 1 of heuristic H1). Then, consider a new arc set A6, which is built as follows:
for each edge of the solution tree, add to A6 two opposite arcs for each original edge
of the corresponding shortest path. Graph G6 = (V, A4 ∪ A5 ∪ A6) is symmetric and
connected and is a feasible WRPP solution.
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4.3 Heuristic H3

This is a simple heuristic consisting of two phases. In the first one, a Shortest Spanning
Tree, computed as in the first phase of heuristic H1, connects all the components of
graph GR. Then, for each edge e in the SST, add to GR a copy of each edge in the
shortest path corresponding to e. The resulting G1 is an undirected and connected
graph. At the beginning of second phase, edges in G1 are oriented according to the
minimum traversal cost, and demands bi are computed as the difference between the
arcs entering at and leaving from any node vi in G1. If bi > 0, then vi is a source node
with supply bi, while if bi < 0, it is a sink node with demand −bi. A Transportation
Problem is defined with these supplies and demands, and with arc costs given by the
shortest paths in G. Let fij be the solution to this problem, then add fij copies of arc
(i, j) to G1 to get a connected and symmetric directed graph that is a feasible WRPP
solution.

4.4 Improvement procedures

Several simple improvement procedures are applied to the solutions obtained with the
above three heuristics. The two first procedures look for cycles in the solution graph
such that, either after deleting them or after reversing the direction of their arcs, a
better solution is obtained. Let us denote by xij the number of times edge (i, j) is
traversed from i to j in the present solution.

The first improvement strategy looks for simple cycles involving just two nodes and
works as follows. Given two nodes i and j, such that xij + xji ≥ 3, we compute

δ =

{
min{xij, xji} if xij 6= xji

xij − 1 if xij = xji

It is obvious that by removing δ arcs from i to j and from j to i, we obtain another
feasible solution with not greater cost (see Figure 5).

u v

Figure 5: Improvement procedure 1

The second improvement procedure looks for more general cycles. The algorithm
works on an auxiliary graph G′ (see Figure 6) with the same nodes as the original
graph and the following arcs:

12



a) For every arc (i, j) corresponding to a required edge, and such that xij ≥ 3, put on

G′ an arc (j, i) with cost −2cij and capacity bxij−1

2
c.

b) For every arc (i, j) corresponding to a non-required edge, and such that xij ≥ 2,
put on G′ an arc (j, i) with cost −2cij and capacity bxij

2
c.

c) For the remaining arcs (i, j) in the solution, put on G′ an arc (j, i) with a cost of
cji − cij and capacity xij.

Solution graph

(1)

(1)

(1)

(1)

Auxiliary graph

Figure 6: The auxiliary graph G′. Number in brackets represent arc capacities.

The first two types of arcs represent the possibility of removing a pair of arcs from
the solution while the third type represent the cost of changing the orientation of the
corresponding arc in the solution. Then solve a minimum cost flow problem on G′, with
demands and supplies equal to zero for all the vertices. Let fij be the flow associated to
arc (i, j) in the optimal solution: we then perform the following changes to the WRPP
solution graph (see Figure 7):

• if arc (i, j) has been included in G′ due to conditions a) or b) above, then remove
2fij copies of arc (j, i) from the solution;

• if arc (i, j) has been included in G′ due to condition c), then change the orientation
of fij arcs (j, i) in the solution graph.

The solution graph obtained after the application of this second improvement pro-
cedure (see Figure 7) is symmetric and traverses all the required edges. Nevertheless, it
can be non-connected. In such a case we compute a shortest spanning tree in a similar
way to the constructive algorithms presented before. For each edge in the tree we add
two opposite arcs to the solution graph to obtain a connected solution.

The third improvement procedure consists of first constructing an Eulerian tour
traversing the solution graph and then by substituting any path containing only non
required arcs and connecting two consecutive required edges by a shortest path.
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Solution graph

(1)

(1)

(1)

(1)

Minimum cost flow

New solution graph

Figure 7: The new solution obtained after the second improvement procedure.

5 The test instances

We have tested our algorithms on three sets of randomly generated WRPP instances.
Instances have been generated as follows.

The first set of instances were generated from the 24 RPP instances proposed in
Christofides et al. (1981). These RPP instances have up to 84 vertices, 180 edges,
74 required edges and 8 R-connected components. Let us call C01 to C24 these RPP
instances. From each of these 24 RPP instances we have generated 6 WRPP instances,
by computing from each original cost c′ij, two new costs cij and cji by means of the
following strategies proposed in Win (1987):

Strategy 1. For each edge e = (i, j) ∈ E, let k1 and k2 be two integer values randomly
selected in an interval [−a, a], where a = 5, 8, and 10 as in Win (1987). Then,
set cij = max{1, c′ij + k1}, and cji = max{1, c′ji + k2}.

Strategy 2. For each edge e = (i, j) ∈ E, let k1 and k2 be two integer values randomly
selected in an interval [a, b], where [a, b] = [1, 100], [1, 200], and [1, 500] as in Win
(1987). Then, set cij = k1, and cji = k2.

In order to obtain larger WRPP instances, we have generated 144 more instances
from two undirected graphs representing the real street networks of Albaida (Valencia,
Spain) and Madrigueras (Albacete, Spain).

The graph of Albaida is an undirected graph with 116 vertices and 174 edges. In a
first step, several RPP instances are generated from this graph as follows. Each original
edge is selected as a required edge with probability p. In the case where some vertices
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were not incident with required edges, other edges are selected as required with the same
probability and the procedure repeats until all the vertices are incident with required
edges. Two RPP instances have been generated for each value of p ∈ {0.3, 0.5, 0.7},
named A31, A32, A51, A52, A71 and A72, where the first digit refers to the probability
p, and the second one identifies the instance. All these instances have the original
Albaida graph edge costs cij.

From each RPP instance two WRPP instances have been generated for each value
of a ∈ {5, 8, 10} (according to Strategy 1) and for each interval [a, b] = [1, 100], [1, 200]
and [1, 500] (according to Strategy 2). Hence, we have 72 WRPP instances generated
from the Albaida graph, all of them with 116 vertices and 174 edges.

The graph of Madrigueras is an undirected graph with 196 vertices and 316 edges.
From this graph, we have generated 72 WRPP instances in the same way as for the
Albaida instances.

6 Computational results

We now describe the results of the computational testing of the ANSI-C implementation
of the cutting plane algorithm and of heuristics H1, H2, and H3 performed on a PC
based on Pentium III 1GHz CPU.

Table 1 shows the computational results obtained on the WRPP instances gener-
ated from the Christofides et al. (1981) set of instances. Each row summarizes the
results obtained for the 6 WRPP instances generated from each RPP instance. Col-
umn labelled ‘# of R-sets’ shows the number of connected components of the graph
induced by the required edges. It is well known that the difficulty of the Rural Postman
Problem grows exponentially with the number of R-sets. The entries corresponding
to heuristics H1, H2 and H3 are average percentage deviations from the lower bound
obtained with the cutting plane procedure. For each heuristic, column (1) shows the re-
sults obtained without applying the improvement procedures described in Section 4.4,
while column (2) shows the results obtained after applying them. Column (labelled
‘Best’) contains the average deviations obtained with a ‘whole procedure’ consisting
of executing the three heuristics above and selecting the best solution obtained. The
number of instances in which the cutting plane algorithm reached the optimal solution
without invoking B&B is shown in column ‘# of LB opt.’. All the instances were solved
to optimality with the B&B. Last column shows the averaged running time taken by
the cutting plane (and B&B) procedure. Computing times for the heuristics are not
shown as they are negligible (always less than 1 second). Last row shows the average
results for all the instances.

Similarly, Tables 2 and 3 show the computational results obtained on the WRPP
instances generated from the Albaida and Madrigueras graphs.

The results of the cutting plane are very good. It was able to solve up to optimality
185 out of 288 instances. For the unsolved instances, the average deviations from the
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# of # of H1 H2 H3 # of Time
inst. R-sets (1) (2) (1) (2) (1) (2) Best LB opt. (scs.)

C01 6 4 0.75 0.75 13.69 8.47 22.16 6.04 0 6 2.2
C02 6 4 7.74 5.07 12.76 9.23 23.78 4.17 2.08 4 2.5
C03 6 4 9.63 6.53 8.14 5.71 29.92 7.59 3.59 3 3.4
C04 6 3 5.57 4.78 11.00 9.59 30.50 10.36 4.31 4 2.5
C05 6 5 7.43 5.40 19.95 10.92 42.18 5.67 2.07 4 3.1
C06 6 7 10.77 9.61 15.59 13.84 43.35 11.09 7.98 4 3.5
C07 6 3 5.75 3.14 6.41 0.89 32.20 9.05 0.89 6 2.0
C08 6 2 7.33 6.26 6.60 5.20 26.80 6.43 0.99 5 2.0
C09 6 3 8.40 3.27 10.88 3.96 25.11 2.43 1.35 3 2.7
C10 6 4 5.37 5.01 20.12 10.88 26.78 7.41 4.15 6 2.5
C11 6 3 3.11 3.11 12.73 7.52 46.72 8.68 1.28 5 1.7
C12 6 3 17.06 8.46 12.33 9.18 15.71 1.40 1.37 5 1.8
C13 6 3 5.31 5.31 14.20 8.75 29.17 10.28 2.93 6 1.4
C14 6 6 10.88 7.45 11.12 7.60 33.99 9.64 6.22 3 3.8
C15 6 8 2.80 1.73 11.42 8.11 17.09 6.11 1.73 6 3.1
C16 6 7 12.45 9.96 10.78 6.09 32.84 11.29 3.99 3 4.6
C17 6 5 12.63 10.75 17.44 11.34 28.49 11.45 6.65 5 2.1
C18 6 8 5.68 5.07 15.72 13.66 22.71 4.18 3.30 6 2.4
C19 6 7 8.94 7.60 16.69 15.45 31.29 6.51 5.02 4 5.5
C20 6 7 4.88 3.25 5.83 3.47 40.58 5.76 2.18 4 5.6
C21 6 6 5.93 3.31 8.43 6.64 36.18 10.72 3.23 3 6.5
C22 6 6 5.22 4.68 6.38 5.85 34.30 9.58 3.74 4 5.2
C23 6 6 5.34 3.88 5.66 4.28 24.26 4.72 2.61 4 6.6
C24 6 7 8.12 5.79 12.72 9.21 26.23 8.33 5.23 4 3.6

Global 144 7.37 5.42 11.93 8.15 30.12 7.45 3.20 107 3.3

Table 1: Computational results on the Christofides et al. (1981) instances
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# of # of H1 H2 H3 # of Time
inst. R-sets (1) (2) (1) (2) (1) (2) Best LB opt. (scs.)

A31 12 33 5.31 4.23 7.63 6.37 26.5 9.3 3.71 2 22.3
A32 12 28 5.02 4.15 6.31 4.48 28.9 11.1 3.34 8 17.2
A51 12 18 4.19 3.58 4.29 3.49 24.6 10.4 2.93 8 12.9
A52 12 21 5.04 3.71 5.24 4.14 28.8 9.3 3.15 8 16.6
A71 12 7 1.65 1.41 2.41 1.58 28.9 7.2 0.79 9 14.1
A72 12 8 1.92 1.66 1.93 1.67 25.9 8.9 0.84 10 17.4

Global 72 3.85 3.12 4.63 3.62 27.3 9.37 2.46 45 16.7

Table 2: Computational results on the Albaida instances

# of # of H1 H2 H3 # of Time
inst. R-sets (1) (2) (1) (2) (1) (2) Best LB opt. (scs.)

M31 12 42 6.65 4.64 4.36 3.61 36.2 13.0 3.38 2 88.2
M32 12 47 8.93 7.28 3.80 2.89 35.1 14.7 2.89 1 109.2
M51 12 28 4.62 4.03 4.11 3.44 30.8 11.1 3.19 5 82.5
M52 12 22 3.89 3.42 3.02 2.37 31.9 11.0 2.23 6 42.2
M71 12 5 1.25 1.20 1.60 1.01 29.4 9.6 0.88 11 19.1
M72 12 8 2.18 2.01 2.37 1.64 29.8 9.5 1.45 8 31.0

Global 72 4.59 3.76 3.21 2.49 32.2 11.5 2.34 33 62.0

Table 3: Computational results on the Madrigueras instances
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optimal value are 0.80% for the Christofides et al. instances, 0.37% for the Albaida
instances and 0.18% for the Madrigueras instances. Furthermore, all these instances
were solved when the B&B option of CPLEX was invoked.

On the other hand, as it can be seen in Tables 1 to 3, the improvement procedures,
although simple, produce a significative decrease of the solution values. The solution
average improvement is in the range 0.73% to 1.95% for heuristic H1, 0.72% to 3.78%
for heuristic H2 and it reaches a 22.7% for heuristic H3. The simpler heuristic H3
produces, in general, the worst results. Heuristic H1 is the best in the Christofides
et al. and in the Albaida instances, while heuristic H2 produces better results in the
Madrigueras instances. Given that the computing times are very low, we think that
the best strategy is to apply the three heuristics and choose the best solution obtained.
In this case, as it can be seen in columns labelled ‘best’, we obtain average percentage
deviations of 3.20, 2.46 and 2.34 for the three set of instances. We think these are
satisfactory results for medium size instances.

7 Conclusions and future research directions

In this paper we deal with an interesting arc routing problem, the Windy Rural Post-
man Problem, that, besides its practical applications, generalizes most of the known
arc routing problems with a single vehicle. Here, a formulation of the WRPP and three
constructive heuristic algorithms and a cutting plane procedure have been proposed.
Extensive computational results assessing the quality of the upper and lower bounds
obtained have been reported.

Several directions of research about the WRPP are currently being developed. One
consisting of the design of metaheuristics that based on the constructive algorithms
here described can obtain high quality feasible solutions, although at a greater
computational effort. A second one is devoted to the study of the polyhedron
associated to the WRPP solutions. Finally, although the computational experiments
reported above show that our cutting plane algorithm works well in practice, further
improvements may still be achieved. Firstly, further separation routines for other
known valid inequalities can be added. Secondly, one can embed the cutting plane
procedure in a branch-and-cut scheme in such a way that optimality can always be
guaranteed.
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(Ref: TIC2000-C06-01). A. Carrota and D. Vigo thanks the Ministero dell’ Istruzione,
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