
Reactive GRASP for the Strip Packing
Problem

R. Alvarez-Valdes † , F. Parreño ‡ , J.M. Tamarit † ,

†University of Valencia, Department of Statistics and Operations
Research, Burjassot, Valencia, Spain

‡University of Castilla-La Mancha. Department of Computer
Science, Albacete, Spain

Abstract

This paper presents a greedy randomized adaptive search procedure
(GRASP) for the strip packing problem, which is the problem of placing a
set of rectangular pieces into a strip of a given width and infinite length so
as to minimize the required length. We investigate several strategies for the
constructive and improvement phases and several choices for critical search
parameters. We perform extensive computational experiments with well-
known instances which have been previously reported, first to select the
best alternatives and then to compare the efficiency of our algorithm with
other procedures. The results show that the GRASP algorithm outperforms
recently reported metaheuristics.

Keywords: Strip packing; non-guillotine cutting; heuristics; GRASP

1 Introduction

The Two-Dimensional Strip Packing Problem (2SP) consists of finding the
best way of placing a given set of n rectangular pieces i = 1, .., n of given heights
and widths (hi, wi), without overlapping, into a strip of width W and infinite
height so as to minimize the required height H. We assume that the pieces have
a fixed orientation. An example proposed by Bengtsson[6] appears in Figure 1, in
which 80 pieces have to be packed into a strip of width W = 40. The problem has
many real-world applications in the paper, cardboard, glass and metal industries,
whenever the stock to be cut comes in large rolls which can be considered to be
of infinite length.

The problem is NP-hard in the strong sense because the strongly NP-hard one-
dimensional bin-packing problem can easily be transformed into the 2SP problem.
Therefore most research effort has been focused on developing heuristic algorithms
for this problem. Nevertheless, Martello et al.[28] have recently proposed a branch

1

Figure 1: Instance beng07, Table 10

and bound algorithm which solves instances of up to 200 pieces. Simple lower
bounds based on geometric considerations and an extremely good bound obtained
from a relaxation of the problem are described and used in the exact procedure.
Fekete and Schepers[15] have developed a framework for the exact solution of
multi-dimensional packing problems. For the special case of perfect packings,
Lesh et al.[23] have proposed another exact algorithm.

Many heuristic algorithms have been developed, ranging from simple construc-
tive algorithms to complex metaheuristic procedures. The most used constructive
approach is the Bottom-Left (BL) algorithm, proposed by Baker et al.[2] in 1980,
later improved by Liu and Teng[26], and the Bottom-Left-Fill (BLF)algorithm by
Chazelle[11]. In both procedures a list of rectangles is given and the rectangles
are placed in turn into the strip as far down and to the left as possible. Many
metaheuristic procedures use these algorithms, modifying at each iteration the
list of rectangles to be provided to BL or BLF. Iori et al.[21] propose a tabu
search algorithm, a genetic algorithm and a hybrid of both procedures. Genetic
algorithms have also been developed by Jakobs[22], Gomez and De la Fuente[17],
Liu and Teng[26], Leo and Wallace[25] and Yeung and Tang[34]. Lesh et al.[24]
also use a version of the BL algorithm and modify the list of rectangles randomly
according to a special probability distribution.

A completely different approach is proposed by the constructive algorithm
Best-Fit (BF) of Burke et al.[9]. The order in which the rectangles are placed into
the strip depends on the layout of the partial solution, and the rectangle fitting
best into this layout is selected. Later, Burke et al.[10] improve their heuristic

2

by adding a metaheuristic phase in which Tabu Search, Simulated Annealing and
Genetic Algorithms are used on the last part of the solution obtained by BF. Other
metaheuristic algorithms working directly on the solution layouts are the genetic
algorithm by Bortfeld[8] and the simulated annealing algorithm by Dowsland[14].
Following a completely different line, Zhang et al.[35] have recently proposed a
fast recursive heuristic.

In this paper, we present a reactive GRASP algorithm for the strip pack-
ing problem and provide computational results obtained on several sets of test
problems. This approach seems to be particularly adequate for the strip pack-
ing problem and, to the best of our knowledge, has only been used by Beltrán
et al.[5]. In the constructive phase of GRASP, the algorithm selects the most
promising rectangle according to the structure of the partial solution, in a similar
way of to the BF algorithm, avoiding the rigidity of static lists. However, as no
criterion will always provide the best rectangle to pack, the selection process is
randomized. Later, the improving phase tries to correct some wrong decisions
inherent to the randomized construction process. The remainder of the paper is
organized as follows. In Section 2 we describe a constructive algorithm. Section 3
contains the GRASP algorithm and Section 4 describes the computational results.
Finally, in Section 5 we draw some conclusions.

2 A constructive algorithm

The n pieces to pack are grouped into m types of pieces, of dimensions
(hi, wi), i = 1, ..,m, and we have to pack Qi copies of each type i, with

∑m
i=1 Qi = n.

We follow an iterative process in which we combine two elements: a list P of
types of pieces still to be packed, initially the complete list of pieces, and a list
L of empty rectangles of infinite height in which a piece can be packed, initially
containing only the strip S of width W . The rectangles will be denoted by the
pair {wi, li}, where wi is the width and li is the base level. At each step, we first
choose a rectangle from L and then we choose the piece to be packed from among
the pieces in P fitting into it. That usually produces new rectangles going into L
and the process goes on until all the pieces have been packed.

• Step 0: Initialization

L = {S}, the set of empty rectangles.

P = {p1, p2, . . . , pm}, the set of piece types still to be packed,

ordered by non-increasing wi. Ties are broken by non-increasing hi.

Qi is the number of pieces of type i to be packed.

C = ∅, the set of piece types i whose Qi copies are already packed.

3

• Step 1: Choosing the rectangle in L

Take from L a rectangle R∗ of dimensions {w∗, l∗},

such that l∗ = min{ li | {wi, li} ∈ L}.

Ties on rectangle lengths are broken by minimum wi.

If none of the pieces still to be packed can fit into R∗:

- R∗ is modified by lifting its bottom side to the minimal level li

of its adjacent rectangles and then it is merged with the rectangle(s) of

minimum level li.

- That leaves a closed rectangle below which is considered waste.

- Update the list of rectangles L

- Go back to select a new R∗

Otherwise, go to Step 2

• Step 2: Choosing the piece to pack

Once a rectangle R∗ has been chosen, we consider the pieces i of P fitting
into R∗ in order to choose which one to pack. For each of these pieces i
we compute mi = max{m ∈ Z+ | m ∗ wi ≤ w∗,m ≤ Qi}, the number of
copies of piece i fitting into the width of R∗, and consider all possible blocks
formed by 1, 2, ..,mi adjacent copies as alternatives to fill R∗. The height of
a block composed of k copies of piece i is hi and its width k ∗ wi. All these
alternatives form the set P∗. For the sake of simplicity, all the elements of
P∗ will be called pieces from this point on.

Several criteria have been considered to select the piece to pack:

1. Max{wj} : Piece j with maximum width wj, breaking ties by non-
increasing hj.

2. Max{wj + 0.1 ∗ hj}

3. Max{wj + 0.5 ∗ hj}

4. Best profile : The piece j whose height hj is the most similar to the
difference between the base of R∗ and the base of one of the adjacent
rectangles. This criterion tries to leave as smooth as possible a profile
after packing the piece.

The first three criteria are based on the width, trying to fill the bottom
of rectangle R∗ as much as possible. Each one of them gives a different
importance to the height of the pieces. The fourth criterion tries to maintain

4

a profile of the current solution which is as smooth as possible, avoiding
peaks and troughs. However, all these criteria may delay the packing of tall
pieces which will cause large increases in the required height H at the end of
the process. In order to avoid this situation, we complement these criteria
by computing a double estimation of the effect of not packing the tallest
remaining piece.

When we select a piece, according to the chosen criterion, before packing
it we check whether it is the highest remaining piece fitting in R∗. If that
is the case, we place the piece into the strip. Otherwise, we do a double
computation:

– We put the tallest piece j into the strip and see if that piece increases
the current required height H. If it does, we determine the empty
area, E, defined by the new height and compare it with the area of
the pieces still to be packed, M , plus an estimation of the unavoidable
waste involved in the process: U = (W ∗ LB − A)/4, where LB is
a lower bound on the required length and A is the total area of the
pieces. If E > M + U , the tallest piece j is selected for packing and
mj copies of it are packed into R∗. Otherwise, we compute the second
estimation.

– We put the selected piece into the strip and then we put the tallest
piece j into one of the other rectangles of L or on top of the selected
piece, wherever it produces the minimum required length. We repeat
the argument of the first estimation, decide if the tallest piece j is
preferred for packing and then pack mj copies of it.

Figure 2 shows an example of this double estimation on the instance
ngcut11 whose data appear in Table 1, with n = 15 and W = 30. A partial
solution with 6 pieces in white and a current required length of H = 28 is
given in (a). If we use the first criterion, the widest remaining piece, piece
1 in dark gray, would be selected. However, the tallest piece is piece 2, with
h2 = 29. In the first estimation, the new required height is 52. If we put this
piece in, the empty area in (b) is E = 690, while the area of the remaining
pieces M = 630 and U = (30 ∗ 50 − 1483)/4 = 4.25. Therefore, one copy of
piece 2 is placed in the strip, as appears in (c), because Q2 = 1. In the next
step, the widest piece fitting in R∗ is piece 4, but the tallest piece is piece 7.
In the first estimation, in (d), if we put piece 7 in, the current required height
is not increased and then piece 7 is not selected. However, in the second
estimation, in (e), if we put piece 4 in first, we would have four rectangles
in L and piece 7 would only fit on top of piece 4. The required length would

5

increase to H = 61, and E = 605, M = 275, U = 4.25. Therefore, piece 7
is selected at this step and, as Q7 = 1, one copy of it is packed. The final
solution appears in (h) with H = 52, which is the optimal solution.

n = 15, W = 30
Piece wi hi Qi

1 23 3 3
2 5 29 1
3 2 21 3
4 11 17 3
5 7 14 2
6 5 8 2
7 8 21 1

Table 1: Instance ngcut11

• Step 3: Choosing a position in R∗ to pack the piece

Usually the piece to be packed does not completely fill rectangle R∗. There-
fore we have to decide its position inside R∗. Obviously, the piece will be at
the bottom of R∗, but its position on the left or right hand side of R∗ has
to be determined. Let us denote by Rl and Rr the rectangles of L adjacent
to R∗ on its left and on its right.

1. If Rl = ∅ (Rr = ∅), the piece goes on the left (right) hand side of R∗.
If Rl = Rr = ∅, the piece is placed on the right hand side.

2. Otherwise, we take into account ll and lr, the levels of Rl and Rr :

– If l∗ + hi = ll (l∗ + hi = lr), the piece is placed on the left (right)
hand side.

– If ll = lr, the piece is placed as near as possible to one side of the
strip.

– Otherwise, the piece is put adjacent to the rectangle with the max-
imum base level.

• Step 4: Updating the lists

Make Qi = Qi − k, where k is the number of copies of the piece i forming
the block chosen to be packed. If Qi = 0, remove piece type i from the list
P and add it to C.

Add the new rectangles to L. Merge two rectangles if they are adjacent and
are at the same level.

6

1

1

5

5

4 4

1

(a) Partial solution + widest
piece 3

1

1

5

5

4 4

2

(b) First estimation for high-
est piece 4

1

1

5

5

4 4

2

4

(c) Next step: widest piece 10

1

1

5

5

4 4

2

7

(d) First estimation for high-
est piece 15

1

1

5

5

4 4

2

7

4

(e) Second estimation: Pieces
10 and 15

(f) Complete solution

Figure 2: Estimating the effect of the highest piece

7

3 A GRASP algorithm

The GRASP algorithm was developed by Feo and Resende [16] to solve hard
combinatorial problems. For an updated introduction, refer to Resende and
Ribeiro[32]. GRASP is an iterative procedure combining a constructive phase
and an improvement phase. In the constructive phase a solution is built step by
step, adding elements to a partial solution. In order to choose the element to be
added, a greedy function is computed, which is dynamically adapted as the partial
solution is built. However, the selection of the element is not deterministic but
subjected to a randomization process. In that way, when we repeat the process,
we can obtain different solutions. After each constructive phase, the improvement
phase, usually consisting of a simple local search, tries to substitute some ele-
ments of the solution which are there as a result of the randomization by others,
producing an overall better solution.

3.1 The constructive phase

In our algorithm the constructive phase corresponds to the constructive algo-
rithm described in Section 2, introducing randomization procedures when selecting
the piece to pack. We denote by si the score of piece i ∈ P∗, according to the
criterion we are using at Step 2 of the constructive algorithm, for instance, if we
use the first criterion: si = wi. Let smax = max{si | i ∈ P∗} and let δ be a
parameter to be determined (0 < δ < 1). We have considered four alternatives:

1. Select piece i at random in set C = {j | sj ≥ smin + δ(smax − smin)}

(C is commonly called a Restricted Set of Candidates).

2. Select piece i at random in set C ′ = {j | sj ≥ δ(smax)}

3. Select piece i at random from among the best 100 (1 − δ)% of the pieces.

4. Select piece i from among the whole set P∗ but with probability proportional
to its score si (pi = si/Σsj)

Using one of these randomization procedures on one of the selection criteria
described above, a piece is chosen to be packed at each step of the constructive
procedure. Nevertheless, the estimations of the effect of the tallest piece are also
taken into account. These estimations are also randomized by using a parameter
γ. If E > γ ∗ (M + U), the tallest piece j is selected and a number of copies
randomly chosen between 1 and mj is packed. At each iteration the parameter γ
is randomly chosen in the interval (0.9, 1.6). A preliminary computational study
showed that the term M + U tends to underestimate the total area which will

8

be required by the remaining pieces and therefore the value of γ should oscillate
above value 1, though we also allow it to be slightly lower than 1.

3.2 Determining the parameter δ

A preliminary computational experience showed that no value of δ always
produced the best results. Therefore, we considered several strategies basically
consisting of changing the value of δ randomly or systematically along the itera-
tions. These strategies were:

1. At each iteration, choose δ at random from the interval [0.4, 0.9]

2. At each iteration, choose δ at random from the interval [0.25, 0.75]

3. At each iteration δ takes one of these 5 values in turn: 0.5,0.6,0.7,0.8,0.9.

4. δ = 0.75

5. Reactive GRASP

In Reactive GRASP, proposed by Prais and Ribeiro [30], δ is taken at ran-
dom from a set of discrete values. Initially, all values have the same prob-
ability of being chosen. In the iterative process we keep the value of the
solutions obtained for each value of δ. After a certain number of iterations
the probabilities are modified. Those corresponding to values of δ which have
produced good solutions are increased and, conversely, those corresponding
to values producing low quality solutions are decreased. The procedure is
described in Figure 3, following Delorme et al.[13]. The value of α is fixed
at 10, as in [30].

3.3 Improvement phase

Each solution built at the constructive phase is the starting point for a local
search procedure in which we try to improve the solution. We have studied four
alternatives:

I) From the initial solution of height H, we define a closed stock sheet of
width W and height H −1 and remove the last k% pieces from the solution.
We then have a sheet with some pieces packed into it and a list of pieces
still to be packed. We can apply the constructive algorithm developed by
Alvarez-Valdes et al.[1] for the non-guillotine cutting stock problem. If that
algorithm succeeds in getting a solution with all the pieces packed into the

9

Initialization:

D = {0.1, 0.2, . . . , 0.9}, set of possible values for δ

Sbest = ∞; Sworst = 0

nδ∗ = 0, number of iterations with δ∗, ∀ δ∗ ∈ D.

Sumδ∗ = 0, sum of values of solutions obtained with δ∗.

P (δ = δ∗) = p δ∗ = 1/|D| ,∀ δ∗ ∈ D

numIter = 0

While (numIter < maxIter)

{

Choose δ∗ from D with probability p δ∗ .

nδ∗ = nδ∗ + 1

numIter = numIter + 1

Apply Constructive Phase with δ∗, obtaining solution S

Apply Improvement Phase, obtaining solution S ′

If S
′

< Sbest then Sbest = S
′

.

If S
′

> Sworst then Sworst = S
′

Sumδ∗ = Sumδ∗ + S
′

If mod(numIter, 200) == 0 (every 200 iterations):

evalδ =
(

Sworst − meanδ

Sworst − Sbest

)α

∀δ ∈ D

p δ =
evalδ

(

∑

δ
′∈D

evalδ′

) ∀δ ∈ D

}

Figure 3: Reactive Grasp

10

sheet, that solution is an improved solution for the original problem. Figure
4 shows an example of this method on instance ngcut02 in Table 10. As
an algorithm for cutting a closed sheet has been used, the pieces tend to be
placed near the corners of the sheet, but it is easy to move them down to
obtain an adequate solution for the strip.

II) The pieces defining the maximum height H are removed from the solution
and placed on some of the waste rectangles at lower levels of the strip. If the
piece exceeds the dimensions of the waste rectangle, the pieces overlapping
it are deleted. The deleted pieces are packed again using the deterministic
constructive procedure. In Figure 5 we see an example of this method. One
piece is removed from the solution and placed on a waste rectangle. The
two pieces overlapping it are then removed and packed again, producing an
improved solution.

III) The third method consists of eliminating the last k% pieces of the solution
(for instance, the last 20%), as proposed by Beltran et al.[5], and filling the
empty space with the deterministic constructive algorithm (see Figure 6).
The chosen percentage has to guarantee that the required length for packing
the remaining pieces is strictly lower than the original one. If this is not the
case, we keep removing pieces until this condition is satisfied.

This method is based on the fact that wrong selections in the final stages of
the randomized constructive process may produce large increases in the final
required height H and therefore significant reductions may be obtained by
doing the final part of that process again. A similar strategy is followed by
Burke et al.[10]. They use their BF algorithm for packing n − k pieces and
then apply some metaheuristic procedures to pack the remaining k pieces.

IV) The fourth method is similar to the third one, but in this case all the pieces
with their upper side exceeding a height λH are removed, with 0 < λ < 1
(see Figure 7, with λ = 0.9).

4 Computational results

4.1 Test problems

There have been several sets of test problems proposed in the literature in
recent years. Some of them have been generated by repeatedly slicing an initial
rectangle into small pieces. They have the advantage of having a known optimal
solution and, moreover, the generation procedure can be controlled to produce
problems with different characteristics. Among this first group we have used:

11

(a) Initial solution (b) Reducing and closing (c) Filling

Figure 4: Improvement method I. Instance ngcut02, Table 10

(a) Selecting (b) Removing (c) Packing (d) Completing

Figure 5: Improvement method II. Instance ngcut10, Table 10

12

(a) Selecting (b) Removing (c) Filling

Figure 6: Improvement method III. Instance ngcut06, Table 10

(a) Selecting (b) Removing (c) Filling

Figure 7: Improvement method IV. Instance beng03, Table 10

13

1. A set of 21 problems by Hopper and Turton[19], with sizes ranging from 16
to 197 pieces, denoted as ht.

2. A set of 70 problems proposed by Hopper[18]. Subset T contains 35 guillo-
tine instances and subset N 35 non-guillotine instances, with a number of
pieces ranging from 17 to 199, denoted as hopper.

3. A set of instances provided by Wang and Valenzuela[33]. They describe a
generation procedure and use it to generate two types of problems: nice,
with pieces similar in shape and size, and path, with extreme (pathological)
variations of shape and size among pieces, ranging from 25 to 1000 pieces.

4. A set of instances generated by Burke et al.[9], with sizes from 10 to 3152,
denoted as N1 to N13.

5. An instance proposed by Ramesh Babu and Ramesh Babu[31] with 15 pieces.

6. A set of large instances generated by Pinto and Oliveira[29], with sizes from
50 to 15000 pieces, denoted as pinto.

A second group of test instances corresponds to problems adapted from other
cutting and packing problems. In this case, not all optimal solutions are known
and in general the optimal packing involves some parts of the strip remaining
unused. However, they are interesting because in real life situations we cannot
expect the required pieces to completely fill the given strip. Therefore, it is very
interesting to test the algorithms of this type of problem, because algorithms
working well on zero-waste problems do not always also perform well on this
other type of problem.

We have used several sets of these test problems:

1. A set of 38 problems from the literature, some of them built for the strip
packing problem and others adapted from the bin packing problem: 3 in-
stances by Christofides and Whitlock[12], denoted as cgcut, 10 instances by
Bengtsson [6], denoted as beng, and 25 instances by Beasley[3, 4], denoted
as gcut and ngcut.

2. A set of 500 instances, 10 classes of instances adapted from bin packing,
each of them composed of 50 problems, 4 of them generated by Martello et
al. [27] and the remaining 6 by Berkey and Wang [7], denoted as berkey.

14

4.2 Choosing the best strategies

In order to choose the best strategies for defining the GRASP algorithm, we
have done a limited computational study using some of the problem sets described
above. The test problems for this preliminary study have been classified into three
sets. The first set, denoted by Literature, contains the 38 gcut, ngcut, cgcut and
beng problems; the second set contains the 500 berkey instances; the third set
contains the 91 ht and hopper instances.

Table 2 compares the results obtained by the constructive algorithm of Section
2, when the piece to pack is selected according to every one of the four strategies
considered at Step 2. For the first two sets, the table reports the average per-
centage deviation from the lower bound by Iori et al.[21]; for the third set, the
percentage deviations from the known optimal solution. Among the three first
criteria, based on the width of the pieces, none of them seemed to obtain the best
results consistently, indicating that there is not a fixed value to be assigned to
the relative weight of the piece height. Therefore we decided to use the criterion:
Max{wj + κ ∗ hj}, where κ is taken at random from the interval (0.01, 0.75).

Average percentage deviation from bound

Literature berkey ht and hopper
Max{wj} 7,10 4,81 9,71

Max{wj + 0.1 ∗ hj} 7,64 4,82 9,18

Max{wj + 0.5 ∗ hj} 6,47 5,39 8,27

Best profile 13,27 10,10 13,66

Table 2: Selection of the piece

Table 3 compares the four randomization procedures described in Section 3.1,
when the constructive phase of the GRASP algorithm is run for 1000 iterations,
with no improvement phase. The parameter δ used in the first three strategies has
been set to 0.5. This table has the same structure as Table 2. The randomization
procedure RCL-Value Min seems to be the best alternative.

Average percentage deviation from bound
Literature berkey ht and hopper

RCL-Value Min 4,23 3,65 4,80

RCL-Value 5,54 5,28 6,44

RCL-Percentage 4,12 5,28 5,98

Biased 5,00 5,22 6,95

Table 3: Randomization procedures

Table 4 compares the results obtained by the randomized constructive phase
of the GRASP algorithm when using the alternatives for choosing δ described in

15

Section 3.2. The algorithm runs 1000 iterations and we use RCL-Value Min as
a randomization procedure, with no improvement phase. Again Table 4 has the
same structure as previous tables. It can be seen that Reactive GRASP obtains
slightly better results than the deterministic selection from 0.5 to 0.9.

Average percentage deviation from bound
Literature berkey ht and hopper

Random in [0.4, 0.9] 3,72 2,31 2,86

Random in [0.25, 0.75] 3,46 2,86 3,35

Deterministic from 0.5 to 0.9 3,29 2,18 2,94

Fixed to 0.9 3,77 2,19 3,35

Reactive Grasp 3,22 2,18 2,95

Table 4: Study of parameter δ

Table 5 compares the four improvement methods described in Section 3.3.
In Methods III and IV, after removing some pieces, the solution is completed
by using the constructive phase of the algorithm, but we modify the value of
parameter κ in the selection criterion: Max{wj + κ′ ∗ hj} and use κ′ = 0.75 − κ,
that is we complement the original value of κ with respect to the upper value
0.75. The improvement phase is only called if the solution of the constructive
phase H ≤ Hbest + 0.25(Hworst −Hbest), where Hworst and Hbest correspond to the
worst and best solutions obtained in the process. Methods III and IV produce
virtually the same results and we decided to use Method III.

Average percentage deviation from bound
Literature berkey ht and hopper

Method I 3,31 2,16 2,96

Method II 3,04 2,17 2,86

Method III 3,04 2,10 2,65

Method IV 3,06 2,10 2,66

Table 5: Improvement methods

4.3 Complete computational results

As a consequence of the results obtained in the previous subsection, the com-
plete GRASP algorithm will use the following strategies:

• Selection of the piece: Max{wj + κ ∗ hj}

• Randomization procedure: RCL-Value Min

• Selection of δ: Reactive GRASP

16

• Improvement phase: Method III

The algorithm was coded in C++ and run on a Pentium 4 Mobile at 2 Ghz.
In order to compare it with other algorithms, the stopping criterion was defined
as a time limit of 60 CPU seconds.

4.3.1 Results on zero-waste problems

Tables 6, 7, 8, 9 show the results obtained on problems for which optimal
solutions pack all pieces into a rectangle, completely filling the strip of width W
up to the optimal height H. At each table, the results of our GRASP algorithm
are compared with previously reported results.

Table 6 presents the results on the 21 ht, which have been used by many au-
thors. The instances are classified into 7 classes, according to their size. The first
five columns describe the characteristics of each instance. Column 6 corresponds
to the solutions obtained by the hybrid algorithm by Iori et al.[21]. They allow
the algorithm to run for 300 seconds on a Pentium III at 800 Mhz. Columns 7 and
8 contain the results obtained by the BLD* algorithm by Lesh et al.[24]. They
run their algorithm on a Pentium at 2000 Mhz. with several time limits, from
which we have taken the results after 60 seconds and 3600 seconds. Columns 9 to
12 show the results obtained by the Best-Fit algorithm [9] and its enhancements
adding Tabu Search (TS), Simulated Annealing (SA) and a genetic algorithm
(GA) [10]. They run their algorithms on a Pentium IV at 2 Ghz. Best-Fit is very
fast and it is run just once, while its combinations with metaheuristics are run 10
times, with a time limit of 60 seconds per run, and the best solution is reported.
Columns 13 and 14 show the average and best solutions obtained by Bortfeld’s
genetic algorithm, running 10 times for each instance. Bortfeld reports an average
time per run of 159 seconds on a Pentium at 2 Ghz. Finally, the last two columns
show the average and best results obtained by our GRASP algorithm over 10 runs.
The average percentages from optimum are calculated as (sol − opt)/opt because
this is the way in which some of the results are reported. The table shows that
our algorithm obtains the best results on each class.

Table 7 shows the results obtained on the 70 hopper instances. The first set
corresponds to guillotine patterns, while the second corresponds to non-guillotine
patterns. Within each set, the instances are classified into 7 classes, according to
their size. Only Lesh et al.[24] have used some of these problems and the com-
parison only includes their results with time limits of 60 and 3600 CPU seconds.
It can be observed that the percentage deviation from the optimal solution tends
to decrease with increasing problem sizes. For the same strip dimensions, many
smaller pieces are easier to pack than fewer larger ones. The table also shows that
the GRASP algorithm outperforms the BLD* algorithm on each instance class.

17

Class Instance Problem size Opt. Iori Lesh solutions Burke solutions Bortfeld solutions GRASP solutions
W n solution 60 s 3600 s Best-Fit BF+TS BF+SA BF+GA Average Best Average Best

C1 01 20 16 20 20 21 20 20 20 20 20

02 20 17 20 21 22 21 20 21 20 20

03 20 16 20 20 24 20 20 20 20 20

Average percentage deviation from optimum 1.59 10.17 1.59 0.00 1.59 1.59 1.59 0.00 0.00
C2 04 40 25 15 15 16 16 16 16 15 15

05 40 25 15 16 16 16 16 16 15 15

06 40 25 15 15 16 16 16 16 15 15

Average percentage deviation from optimum 2.08 6.25 6.25 6.25 6.25 3.33 2.08 0.00 0.00
C3 07 60 28 30 31 32 31 31 31 30 30

08 60 29 30 31 34 32 31 32 31 31

09 60 28 30 30 33 31 31 31 30 30

Average percentage deviation from optimum 2.15 9.04 4.23 3.23 4.23 3.16 3.16 1.08 1.08
C4 10 60 49 60 64 63 62 61 62 61 61

11 60 49 60 63 62 62 61 62 61 61

12 60 49 60 62 62 61 61 62 61 61

Average percentage deviation from optimum 4.75 3.74 2.70 1.64 3.23 3.52 2.70 1.64 1.64
C5 13 60 73 90 94 92 92 93 92 91 92 91 91

14 60 73 90 93 92 92 92 92 91 92 91 91

15 60 73 90 94 92 92 93 92 92 92 91 91

Average percentage deviation from optimum 3.91 2.17 2.17 2.88 2.17 1.46 2.17 2.03 1.46 1.10 1.10
C6 16 80 97 120 126 123 122 123 122 122 122 121.9 121

17 80 97 120 124 123 122 122 121 121 121 121.9 121

18 80 97 120 124 123 122 124 122 122 122 121.9 121

Average percentage deviation from optimum 3.74 2.44 1.64 2.43 1.37 1.37 1.37 1.72 1.64 1.56 0.83
C7 19 160 196 240 246 245 244 245 244 244

20 160 197 240 244 244 244 244 242.9 242

21 160 196 240 245 245 245 245 243 243

Average percentage deviation from optimum 2.04 1.91 1.77 1.91 1.52 1.23 1.36 1.23

Mean deviation from optimum (all problems) 5.22 2.89 2.24 2.96 2.56 2.10 0.96 0.84
Mean deviation from optimum (subset Iori) 3.04 5.75 3.05 2.32 3.14 2.41 1.98 0.90 0.77
Mean deviation from optimum (subset Lesh) 3.82 2.65 1.91 2.65 1.77 1.41 1.77 1.87 1.55 1.33 0.96
Number of optimal solutions 5/21 2/21 3/21 2/21 8/21 8/21

Table 6: Comparison on Hopper and Turton[19] instances

18

Percentage deviation from optimal solutions
Type Class Size of problem GRASP Lesh solutions

W n Mean Best 60 s 3600 s
Guillotine 1 200 17 0.0 0.0

2 200 25 3.2 3.2

3 200 29 3.7 3.7

4 200 49 3.0 2.7

5 200 73 2.4 2.2

6 200 97 2.1 1.9

7 200 199 1.5 1.4

Average distance from optimum 2.3 2.2

Non Guillotine 1 200 17 0.9 0.9 6.0 4.5

2 200 25 3.3 3.3 6.4 4.7

3 200 29 3.6 3.6 6.0 4.6

4 200 49 3.0 2.8 5.1 3.9

5 200 73 2.6 2.3 4.6 4.0

6 200 97 2.2 2.1 4.0 3.0

7 200 197 1.3 1.2 2.3 1.8

Average distance from optimum 2.4 2.3 4.9 3.8

Overall 2.3 2.2

Table 7: Computational results – Zero-waste instances by Hopper[18]

Table 8 shows the results obtained on the set of problems used by Burke et
al.[9, 10]. Columns 1 to 5 show the source and the characteristics of each instance.
Columns 6 to 9 show the results obtained by the Best-Fit algorithm [9] and its
improvements when it is combined with Tabu Search (TS), Simulated Annealing
(SA) and genetic algorithm (GA)[10]. Columns 10 and 11 show the average and
best results of 10 runs of the GRASP algorithm. The comparison on Wang and
Valenzuela [33] instances is only approximate, because Burke et al.[10] use the
original floating point data while we use integer data obtained by multiplying the
original data by 10 and rounding to the nearest integer. It can also be noted
that Burke et al.[9, 10] allow the pieces to be rotated, while our algorithm does
not. The table shows that our GRASP algorithm performs very well on these
instances, outperforming even the BF+SA algorithm, which seems to be the best
combination.

Table 9 shows the results of the GRASP algorithm on pinto instances, which
are specially interesting because they include some very large instances of up
to 15000 pieces. We have run our algorithm on these instances to check if it
could handle such very large instances efficiently and we compare our results with
the results of the Bottom-Left algorithm reported in [29]. The table shows that
within the time limit of 60 CPU seconds our algorithm is able to find the optimal
solution for the largest instances and near-optimal solutions for the smaller ones.
That confirms the comment in Table 7: instances with many small pieces are
easier that those with few large pieces.

19

Source Instance Problem size Opt Burke solutions GRASP solutions
W n Best-Fit BF+TS BF+SA BF+GA Mean Best

Wang and Nice25 100 25 100 108.0 106.9 104.0 108.4 103.9 103.7

Valenzuela[33] Nice50 100 50 100 109.7 106.6 104.4 106.9 104.7 104.6

Nice100 100 100 100 107.9 105.2 105.0 105.9 104.5 104.0

Nice200 100 200 100 106.9 104.2 104.7 104.9 103.8 103.6

Nice500 100 500 100 103.4 103.2 103.5 103.5 102.4 102.2

Nice1000 100 1000 100 103.8 103.8 103.8 103.8 102.3 102.2

Path25 100 25 100 110.2 105.8 103.1 108.2 104.2 104.2

Path50 100 50 100 113.6 103.7 103.4 103.7 101.9 101.8

Path100 100 100 100 106.7 104.7 103.0 104.4 102.7 102.6

Path200 100 200 100 104.1 103.5 103.4 103.8 102.3 102.0

Path500 100 500 100 103.8 103.1 103.5 103.4 103.2 103.1

Path1000 100 1000 100 103.1 102.8 102.9 102.9 102.7 102.5

Burke N1 40 10 40 45 40 40 40 40 40

et al.[9, 10] N2 30 20 50 53 50 50 50 50 50

N3 30 30 50 52 51 51 52 51 51

N4 80 40 80 86 83 82 83 81 81

N5 100 50 100 105 103 103 104 102 102

N6 50 60 100 102 102 102 102 101 101

N7 80 70 100 108 105 104 104 101 101

N8 100 80 80 83 82 82 82 81 81

N9 50 100 150 152 152 152 152 151 151

N10 70 200 150 152 152 152 152 151 151

N11 70 200 150 153 153 153 153 151 151

N12 100 500 300 306 306 306 306 303.2 303

N13 640 3152 960 964 964 964 964 963 963

Ramesh P1 1000 50 375 400 400 400 400 375 375

Babu[31]
Mean percentage deviation from optimum 5.53% 3.29% 2.86% 3.61% 1.94% 1.86%

Table 8: Computational results – Problems from literature

Instance Problem size Optimum Bottom-Left GRASP solutions
W n solution Mean Best

50cx 400 50 600 674 617 617

100cx 400 100 600 679 617.7 617

500cx 400 500 600 692 605.3 605

1000cx 400 1000 600 690 602.9 602

5000cx 400 5000 600 687 600 600

10000cx 400 10000 600 681 600 600

15000cx 400 15000 600 660 600 600

Table 9: Computational results – Problems by Pinto and Oliveira[29]

20

4.3.2 Results on general problems

Tables 10 and 11 contain the computational results on the sets of more general
problems for which the optimal solution includes some wasted areas of the strip.
For these instances the lower bound based on the total area of the pieces may be
very loose and some other bounds have to be used. Martello et al.[28] developed a
very good lower bound based on solving a relaxed problem, the One-Dimensional
Contiguous Bin Packing Problem. The bounds appearing in Tables 10 and 11 have
been provided by Iori et al.[21], using the Martello et al.[28] procedure. Table 10
presents the results on a first subset of these problems, containing gcut, ngcut,
cgcut and beng instances. It includes the results reported by Iori et al.[21] and
by Lesh et al.[24]. For the small ngcut instances the solutions by Iori et al.[21]
and GRASP coincide. In fact, both provide all the optimal solutions, as reported
by Martello et al.[28]. For gcut instances, we see that all algorithms get the
optimal solutions for instances gcut01 and gcut03. For the remaining instances,
except gcut05 in which all algorithms coincide, GRASP outperforms the other
algorithms. For the remaining instances in the table, GRASP also obtains better
results than the hybrid algorithm by Iori et al[21].

Table 11 contains the average results obtained on the 500 berkey instances.
The table compares the results of the Iori et al.[21] hybrid algorithm, the Lesh
et al.[24] BLD* algorithm and the Bortfeld[8] genetic algorithm with our GRASP
algorithm. The overall results of the last line of the table clearly show that
GRASP outperforms the other algorithms. The results are not homogeneous
among classes. For classes 1, 7 and 9, all algorithms get solutions which are quite
near to the lower bounds and therefore there are no significant differences between
them. For the other classes, the distances to the lower bounds increase as do the
differences between algorithms. In all these cases, the GRASP algorithm clearly
obtains the best solutions.

5 Conclusions

We have developed a new heuristic algorithm based on GRASP techniques
for the strip packing problem. We have followed the basic scheme of GRASP,
because from the beginning we felt that this scheme was particularly well suited
to this problem, but we have also included some new features that are partly
responsible for the good results obtained. When we select the piece to pack, we
consider not only individual pieces, but also blocks of pieces of the same type
for packing together. That adds some flexibility to the process. Also, we have
added a double estimation to foresee the future effect of the tallest pieces on
the final solution. This aspect is very important for Strip Packing. The basic

21

Source of problem Instance Size of problem LB Iori Lesh solutions GRASP solutions
W n solution 60 s 3600 s Average Minimum

Beasley [4] 01 10 10 23 23 23 23

ngcut 02 10 17 30 30 30 30

03 10 21 28 28 28 28

04 10 7 20 20 20 20

05 10 14 36 36 36 36

06 10 15 29 31 31 31

07 20 8 20 20 20 20

08 20 13 32 33 33 33

09 20 18 49 50 50 50

10 30 13 80 80 80 80

11 30 15 50 52 52 52

12 30 22 87 87 87 87

Beasley [3] 01 250 10 1016 1016 1016 1016 1016 1016

gcut 02 250 20 1133 1207 1211 1195 1191 1191

03 250 30 1803 1803 1803 1803 1803 1803

04 250 50 2934 3130 3072 3054 3002 3002

05 500 10 1172 1273 1273 1273 1273 1273

06 500 20 2514 2675 2682 2656 2627 2627

07 500 30 4641 4758 4795 4754 4693 4693

08 500 50 5703 6240 6181 6081 5912.2 5908

09 1000 10 2022 2256 2256

10 1000 20 5356 6393 6393

11 1000 30 6537 7736 7736

12 1000 50 12522 13172 13172

13 3000 32 4772 5009.5 5009

Christofides and 01 10 16 23 23 23 23

Whitlock[12] 02 70 23 63 65 65 65

cgcut 03 70 62 636 676 661 661

Bengtsson [6] 01 25 20 30 31 30 30

beng 02 25 40 57 58 57 57

03 25 60 84 86 84 84

04 25 80 107 110 107 107

05 25 100 134 136 134 134

06 40 40 36 37 36 36

07 40 80 67 69 67 67

08 40 120 101 101 101

09 40 160 126 126 126

10 40 200 156 156 156

Mean percentage deviation from bound (all problems) 2.84% 2.84%
Mean percentage deviation from bound (subset Iori) 2.77% 1.62% 1.61%
Mean percentage deviation from bound (subset Lesh) 5.02% 4.82% 4.11% 3.17% 3.16%
Number of proven optimal solutions (matching LB) 11/30 2/8 2/8 18/38 18/38

Table 10: Computational results– Adapted packing instances from literature.

22

Size of problem LB Iori Lesh solutions Bortfled solutions GRASP solutions
W n solution 60 s 3600 s Average Best Average Best

Class 1 10 20 60.3 61.2 61.5 61.3 62.0 61.6 61.3 61.3

10 40 121.6 121.9 122.1 122.0 122.3 122.0 121.9 121.9

10 60 187.4 189.0 189.1 188.9 189.1 189.0 188.7 188.6

10 80 262.2 262.8 262.9 262.8 262.9 262.8 262.9 262.8

10 100 304.4 305.5 305.9 305.5 305.2 305.0 305.6 305.5

Average deviation from bound 0.64% 0.81% 0.68% 0.97% 0.75% 0.65% 0.63%
Class 2 30 20 19.7 19.9 20.0 19.8 20.5 20.5 19.8 19.8

30 40 39.1 40.0 39.5 39.1 39.5 39.1 39.1 39.1

30 60 60.1 61.6 61.0 60.6 60.5 60.1 60.2 60.1

30 80 83.2 84.7 84.0 83.6 83.4 83.3 83.2 83.2

30 100 100.5 101.8 101.1 100.8 100.7 100.7 100.5 100.5

Average deviation from bound 1.78% 1.12% 0.42% 1.24% 0.88% 0.14% 0.10%
Class 3 40 20 157.4 164.5 164.6 164.2 167.3 166.7 163.5 163.5

40 40 328.8 338.5 336.6 334.8 336.9 335.4 333.8 333.8

40 60 500.0 517.0 513.0 510.1 511.1 509.8 506.6 506.4

40 80 701.7 719.2 716.9 713.0 714.5 712.5 710.0 709.8

40 100 832.7 848.3 847.8 844.1 844.4 842.6 840.2 839.7

Average deviation from bound 3.05% 2.71% 2.23% 2.84% 2.52% 1.77% 1.73%
Class 4 100 20 61.4 65.6 64.5 63.9 66.7 66.3 63.4 63.4

100 40 123.9 131.5 129.6 128.1 127.9 127.1 126.3 126.2

100 60 193 202.2 201.0 199.9 197.6 196.6 196.7 196.3

100 80 267.2 278.9 278.8 276.6 273.6 272.2 272.2 271.8

100 100 322 332.5 334.6 332.1 328.6 327.3 327.3 327.0

Average deviation from bound 5.08% 4.41% 3.54% 3.74% 3.19% 2.13% 2.02%
Class 5 100 20 512.2 536.8 536.6 534.8 537.8 536.6 533.9 533.9

100 40 1053.8 1084.7 1084.2 1076.7 1082.7 1081.4 1074.7 1074.4

100 60 1614.0 1666.2 1656.9 1651.1 1654.1 1650.8 1645.9 1645.2

100 80 2268.4 2307.9 2303.2 2297.2 2303.0 2299.5 2290.4 2289.6

100 100 2617.4 2697.2 2680.8 2669.5 2672.5 2666.9 2652.0 2649.0

Average deviation from bound 3.15% 2.85% 2.43% 2.77% 2.59% 2.10% 2.05%
Class 6 300 20 159.9 174.9 172.5 170.3 179.8 179.1 167.3 167.2

300 40 323.5 345.8 343.8 339.2 338.9 337.0 333.6 333.1

300 60 505.1 532.0 536.6 529.7 522.9 519.8 520.6 519.9

300 80 699.7 732.2 743.9 733.9 724.2 719.4 718.9 717.3

300 100 843.8 875.2 890.6 882.1 872.4 868.1 865.4 864.1

Average deviation from bound 5.99% 6.45% 5.13% 5.52% 4.96% 3.22% 3.08%
Class 7 100 20 490.4 501.9 501.9 501.9 503.1 502.7 501.9 501.9

100 40 1049.7 1059.9 1059.4 1059.0 1060.8 1059.4 1059.0 1059.0

100 60 1515.9 1529.6 1530.4 1529.7 1530.6 1529.7 1529.6 1529.6

100 80 2206.1 2224.1 2223.7 2222.2 2225.9 2222.9 2222.2 2222.1

100 100 2627 2646.5 2648.4 2646.5 2650.2 2648.8 2645.2 2644.1

Average deviation from bound 1.16% 1.17% 1.12% 1.27% 1.19% 1.11% 1.10%
Class 8 100 20 434.6 470.9 466.0 461.6 467.4 465.9 458.0 458.0

100 40 922.0 979.4 978.6 967.8 962.0 956.2 954.4 953.0

100 60 1360.9 1436.7 1437.5 1425.1 1407.0 1398.9 1405.9 1402.5

100 80 1909.3 2015.3 2014.9 1992.0 1976.1 1967.3 1973.6 1967.5

100 100 2362.8 2483.7 2491.4 2466.7 2432.4 2422.3 2439.5 2433.7

Average deviation from bound 6.16% 5.99% 4.93% 4.34% 3.85% 3.76% 3.57%
Class 9 100 20 1106.8 1106.8 1106.8 1106.8 1107.0 1106.8 1106.8 1106.8

100 40 2189.2 2190.6 2190.9 2190.6 2191.7 2191.2 2190.6 2190.6

100 60 3410.4 3410.4 3410.4 3410.4 3417.5 3417.5 3410.4 3410.4

100 80 4578.6 4588.1 4588.1 4588.1 4588.1 4588.1 4588.1 4588.1

100 100 5430.5 5434.9 5434.9 5434.9 5434.9 5434.9 5434.9 5434.9

Average deviation from bound 0.07% 0.07% 0.07% 0.13% 0.12% 0.07% 0.07%
Class 10 100 20 337.8 353.5 352.0 351.1 355.3 354.2 350.5 350.5

100 40 642.8 673.7 670.1 665.7 666.8 664.7 664.5 664.2

100 60 911.1 953.0 946.9 940.1 935.3 932.6 935.5 934.3

100 80 1177.6 1234.7 1226.1 1217.8 1211. 2 1207.4 1209.7 1208.1

100 100 1476.5 1542.3 1536.0 1525.3 1512.4 1507.8 1515.1 1512.1

Average deviation from bound 4.67% 4.11% 3.48% 3.25% 3.05% 3.03% 2.93%
Overall 3.17% 2.97% 2.40% 2.61% 2.31% 1.80% 1.73%

Table 11: Computational results – Random instances proposed by Martello and Vigo

[27] and Berkey and Wang[7].

23

Bottom-Left algorithm does not include any such strategy and it is very common
to observe that its solutions show high spikes at the top that decrease the quality
of solutions. Burke et al.[9] takes it into account by adding a postprocessing phase
to their Best-Fit algorithm in which the pieces defining the final height H of the
solution are considered for rotation, thus eliminating the spikes.

Besides these concrete aspects, we have also explored several randomization
procedures and several improvement moves to determine the best algorithmic
structure for this problem. We do not think that this search for the best strategies
and the best values of the involved parameters could be considered a disadvantage
of the method. A preliminary study was conducted over a restricted set of test
instances and then the complete algorithm was tested on all the test instances,
obtaining good results on all of them, at least matching and frequently improving
the best reported results. Therefore, the algorithm can be used as a black box,
without further parameter tuning, and the results show that it performs well on
a wide range of problems. However, the modular structure of the algorithm can
also be used to modify some parts and adjust it, if necessary, to problems with
special characteristics, different from those tested in this paper.

Finally, we would like to note that the algorithm is quite flexible and could be
adapted to accommodate other conditions or constraints, such as the possibility
of rotating the pieces.

Acknowledgements

This work has been partially supported by the Spanish Ministry of Science and
Technology, DPI2005-04796, and by Project PBI-05-022, Consejeria de Ciencia y
Tecnologia, Junta de Comunidades de Castilla-La Mancha.

References

[1] Alvarez-Valdes, R., Parreño, F., Tamarit, J.M. (2005) A GRASP
algorithm for constrained two-dimensional non-guillotine cutting problems,
Journal of the Operational Research Society 56, 414-425.

[2] Baker, B.S., Coffman, E.G., Rivest, R.L. (1980) Orthogonal packing
in two dimensions, SIAM Journal on Computing 9, 846-855.

[3] Beasley, J.E. (1985) Algorithms for unconstrained two-dimensional guillo-
tine cutting, Journal of the Operational Research Society 36, 297-306.

[4] Beasley, J.E. (1985) An exact two-dimensional non-guillotine cutting tree
search procedure, Operations Research 33, 49-64.

24

[5] Beltrán, J.C., Calderón, J.E., Cabrera, R.J., Moreno, J.M.

(2002) Procedimientos constructivos adaptativos (GRASP) para el problema
del empaquetado bidimensional, Revista Iberoamericana de Inteligencia Ar-

tificial, 15, 26-33.

[6] Bengtsson, B. E.(1982) Packing rectangular pieces - a heuristic approach,
The Computer Journal 25, 353-357.

[7] Berkey, J. O., Wang, P. Y. (1987) Two dimensional finite bin packing
algorithms, Journal of the Operational Research Society 38, 423-429.

[8] Bortfeld, A.(2005) A genetic algorithm fot the two-dimensional strip pack-
ing problem with rectangular pieces, European Journal of Operational Re-

search, in press.

[9] Burke, E.K., Kendall, G., Whitwell, G. (2004) A new placement
heuristic for the orthogonal stock-cutting problem, Operations Research 52,
655-671.

[10] Burke, E.K., Kendall, G., Whitwell, G. (2006) Metaheuristic en-
hancements of the Best-Fit heuristic for the orthogonal stock cutting prob-
lem, submitted to INFORMS Journal on Computing(2nd revision).

[11] Chazelle, B. (1983) The Bottom-Left bin packing heuristic: an efficient
implementation, IEEE Transactions on Computers 32, 697-707.

[12] Christofides, N., Whitlock, C. (1977) An algorithm for two-
dimensional cutting problems, Operations Research 25, 30-44.

[13] Delorme, X., Gandibleux, X., Rodriguez, J. (2003) GRASP for set
packing problems, European Journal of Operational Research 153 (3), 564-
580.

[14] Dowsland, K.A.(1993) Some experiments with simulated annealing tech-
niques for packing problems, European Journal of Operational Research 68,
389-399.

[15] Fekete, S.P., Schepers, J. (2004) An exact algorithm for higher-
dimensional orthogonal packing, submitted to: Operations Research

[16] Feo, T., Resende, M.G.C. (1989) A probabilistic heuristic for a com-
putationally difficult set covering problem, Operations Research Letters 8,
67-71.

25

[17] Gómez, A., De la Fuente, D. (2000) Resolution of strip-packing prob-
lems with genetic algorithms, Journal of the Operational Research Society

51, 1289-1295.

[18] Hopper, E.(2000) Two-dimensional packing utilising evolutionary algo-
rithms and other meta-heuristic methods, PhD thesis Cardiff University,

School of Engineering.

[19] Hopper, E., Turton, C.H.(2001) An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem, European Jour-

nal of Operational Research 128 , 34-57.

[20] Hopper, E., Turton, C.H.(2001) A review of the application of meta-
heuristic algorithms to 2D strip packing problems, Artificial Intelligence Re-

view, 16, 257-300.

[21] Iori, M., Martello, S., Monaci, M. (2003) Metaheuristic algorithms for
the strip packing problem, in: P.M. Pardalos and V. Korotkith, editors, Opti-

mization and Industry: New Frontiers, Kluwer Academic Publishers, 159-179.

[22] Jakobs, S. (1996) On genetic algorithms for the packing of polygons, Euro-

pean Journal of Operational Research 88, 165-181.

[23] Lesh, N., Marks, J., Mitzenmacher, M.(2004) Exhaustive approaches
to 2D rectangular perfect packings, Information Processing Letters, 90, 7-14.

[24] Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M. (2005) New
heuristic and interactive approaches to 2D rectangular strip packing, ACM

Journal of Experimental Algorithmics, 10, 1-18.

[25] Leo, H.W., Wallace, K.S.(2004) Strip-packing using hybrid genetic ap-
proach, Engineering Applications of Artificial Intelligence, 17, 169-177.

[26] Liu, D., Teng, H.(1999) An improved BL-algorithm for genetic algorithm
of the ortogonal packing of rectangles, European Journal of Operational Re-

search 112 , 413-420.

[27] Martello, S., Vigo, D. (1998) Exact solution of the two-dimensional
finite bin packing problem, Management Science 44, 388-399.

[28] Martello, S., Monaci, M., Vigo, D. (2003) An exact approach to the
strip packing problem, INFORMS Journal on Computing 15 (3), 310-319.

26

[29] Pinto, E., Oliveira, J.F. (2005) Algorithm based on graphs for the
non-guillotinable two-dimensional packing problem, 2nd ESICUP Meeting,
Southampton.

[30] Prais, M., Ribeiro, C.C. (2000) Reactive GRASP: An application to
a matrix decomposition problem in TDMA traffic assignment, INFORMS

Journal on Computing 12, 164-176.

[31] Ramesh Babu, A., Ramesh Babu, N. (1999) Effective nesting of rectan-
gular parts in multiple rectangular sheets using genetic and heuristic algo-
rithms, International Journal of Production Research 37, 1625-1643.

[32] Resende, M.G.C, Ribeiro, C.C. (2003) Greedy Randomized Adap-
tive Search Procedures, in Handbook of Metaheuristics, F.Glover and
G.Kochenberger, Eds., Kluwer Academic Publishers, pp. 219-249.

[33] Wang, P.Y., Valenzuela, C.L. (2001) Data set generation for rectangular
placement problems, European Journal of Operational Research 134, 378-391.

[34] Yeung, L.H.W., Tang, W.K.S (2004) Strip-packing using hybrid genetic
approach, Engineering Applications of Artificial Intelligence 17, 169-277.

[35] Zhang, D., Kang, Y., Deng, A. (2006) A new heuristic recursive algo-
rithm for the strip rectangular packing problem, Computers & Operations

Research 33, 2209-2217.

27

