NEW HEURISTIC ALGORITHMS FOR THE
WINDY RURAL POSTMAN PROBLEM

E. Benavent!, A. Corberan', E. Pinanal, I. Plana', J.M. Sanchis®

1 Dept. d’Estadistica i Investigacié Operativa. Universitat de Valencia. Spain

2 Dept. de Matemaética Aplicada. Universidad Politécnica de Valencia. Spain

May 21, 2003

Abstract

In this paper we deal with the Windy Rural Postman Problem. This problem
generalizes several important Arc Routing Problems and has interesting real-life
applications. Here, we present several heuristics whose study has lead to the
design of a Scatter Search algorithm for the Windy Rural Postman Problem.
Extensive computational experiments over different sets of instances, with sizes
up to 988 nodes and 3952 edges, are also presented.

1 Introduction

In the well known (undirected) Chinese Postman Problem (CPP) the cost of traversing
an edge (7,) from 7 to j is the same as that of traversing it from j to 4. If, as in some
real world applications, this is not the case, the problem is called the Windy Postman
Problem (WPP). The WPP was proposed by Minieka (1979), who named this problem
illustrating the work that a postman should perform on a windy day.

It is easy to see that, by a properly definition of the edge costs, the undirected, di-
rected and mixed Chinese Postman problems are special cases of the WPP. Therefore,
since the Mixed Chinese Postman Problem (MCPP) is N P-hard, the WPP is also a
N P-hard problem (Brucker, 1981 and Guan, 1984), although some particular cases can
be solved in polynomial time (Guan, 1984 and Win, 1989). An integer linear program-
ming formulation of the WPP was given in Grotschel & Win (1992). In that paper, the
authors also proposed a cutting plane algorithm, based on a partial description of the
Windy Postman polyhedron, producing good computational results. Concerning to the
approximate resolution of the WPP, several heuristic algorithms have been proposed
by Win (1987) and Pearn & Li (1994).

In this paper we deal with a generalization of the WPP, the Windy Rural Postman
Problem (WRPP). This problem can be described as follows. Let G = (V, E) be an
undirected and connected graph with two nonnegative costs, ¢;;, ¢j;, associated to each
edge (i,7) € E, representing the cost of traversing the edge from ¢ to j and from j to
1, respectively. Let Er be a subset of edges of /| that will be called the required edges

set. Then, the WRPP is the problem of finding a minimum cost closed walk traversing
every edge in Eg at least once.

Obviously, if Egr = E, the WRPP reduces to the WPP, but note that the WRPP
also generalizes the undirected, directed and mixed Rural Postman problems. There-
fore, the WRPP is a difficult N P-hard problem that contains as special cases most
of the known arc routing problems with a single vehicle. Moreover, besides its great
theoretical interest, the WRPP has some very interesting practical applications (see
Benavent et al., 2003).

Up to the authors knowledge, the only paper dealing with the WRPP is that of
Benavent et al. (2003). In their paper, authors propose an integer linear programming
formulation and different heuristics and lower bounds for the WRPP. Lower bounds
are obtained by means of a cutting plane procedure that, besides using the inequalities
in the WRPP formulation, it also identifies other violated valid inequalities coming
from families of facet defining inequalities for the RPP polyhedron. The upper bounds
are computed by means of three constructive heuristics and several improvement pro-
cedures. The computational results are very good. The cutting plane algorithm was
able to solve 185 out of 288 tested instances. For the unsolved instances, the average
deviation from the optimal value is always less than 1 %. On the other side, the best
solution among those obtained with the 3 heuristic procedures proposed in Benavent
et al. (2003) is 4% on average from the lower bound and it is computed in less than 1
second.

In what follows we will assume, for the sake of simplicity and without loss of gener-
ality, that all the nodes in V" are incident with required edges. From the original graph
G = (V, E), let Gg be the graph induced by the required edges, i.e. Ggr = (V, ER).
Graph Gy is in general not connected. The sets of nodes of the connected components
of G are usually called R-sets. A WRPP solution will be a strongly connected di-
rected multigraph G* = (V, A) satisfying that: every node in G* is symmetric, each arc
(1,7) € Ais a copy of an edge in F with a given orientation, and for each (7,) € Eg,
either (7, 7),(4,4), or both belong to A.

It is well known that there exists a closed walk (tour) traversing each arc of G*
exactly once. This tour is an alternative way of representing a WRPP solution.

In this paper, we present new heuristic algorithms which have a very good compu-
tational behavior on different sets of instances. In Section 2 we summarize two of the
algorithms described in Benavent et al. (2003) and present two new constructive algo-
rithms which are modified versions of them. Section 3 describes several improvement
procedures, while Section 4 describes four Multi-Start procedures that have been ob-
tained by randomizing certain steps of the constructive algorithms. Finally, an Scatter
Search algorithm that combines the best previous procedures is presented in Section
5. Computational results for each class of heuristics are included in their respective
sections. We have tried a large set of instances including those used by Benavent et al.
(2003) and also some new large instances that have been randomly generated. Some
conclusions are presented in Section 6.

2 Constructive Heuristics

As it has been mentioned earlier, the Mixed Chinese Postman Problem is a particular
case of the WRPP. For this problem, Frederickson (1979) proposed a constructive pro-
cedure, the Mized Algorithm, that has a worst case ratio of 5/3. A clever modification
of this algorithm (Raghavachari & Veerasamy, 1998) led to a procedure with a better
worst case ratio of 3/2. Not surprisingly, it has been shown very recently (see [5]) that
the modified algorithm, besides its better theoretical behavior, also produces very good
computational results. Then, we have introduced similar ideas into two of the heuris-
tics described in Benavent et al. (2003) to obtain two new constructive heuristics for
the WRPP, H1 and H2, that are described in what follows. First, we begin this section
by summarizing the original heuristic algorithms, WRPP1 and WRPP2, proposed in
[2]. The solutions generated by all the algorithms are improved by means of several
simple procedures also described in [2].

2.1 Algorithm WRPP1

This algorithm consists of three phases. First, the components of graph G are joined
to obtain a connected graph. To do this, an auxiliary graph (G, having a node
for each connected component of Gy, is constructed. For any pair of nodes u and v
of Guu. the shortest path on G from any node in component u to any node in v is
calculated, and conversely. An edge between nodes u and v is created with cost equal
to the minimum of the average costs of these two paths. The average cost of a path
11,12, ...,1p is defined as %(Cim + Ciyiy + Ciyig + Cigiy - - -). Then, a shortest spanning tree
(SST) is computed on G,y The edges in the shortest path in G associated to each
edge in the spanning tree are added to G to obtain a new graph G';. Now, a minimum
cost matching problem on the odd degree nodes of graph G’ is solved. The costs used
in the matching problem are defined in the same way as before. Again, edges in the
paths in G corresponding to the edges in the matching solution are added to G’; to
obtain an even and connected graph G’%. Win’s exact algorithm for the WPP defined
on Eulerian graphs is then applied on G to obtain a feasible solution to the WRPP
on G. This algorithm (Win, 1989) consists of solving a minimum cost flow problem on
an auxiliary graph.

2.2 Algorithm WRPP2

Basically, this second algorithm executes the same phases of algorithm WRPP1 but in
a different order. It begins by assigning to each edge in G'g the direction associated
to its minimal traversing cost. Let us represent by G% the resulting directed graph.
The demand d(7) of each node 7 is then computed as the difference between the arcs
in G% entering at and leaving from i. From graph G% a new balanced mixed graph is
obtained as follows. First, an auxiliary digraph G, = (V, A) is constructed, where for
each arc (i, 7) in G% three arcs are put in A: two arcs (i,) and (j, i) with costs ¢;; and
¢ji, respectively, and capacity oo, and another arc (j,7) with cost ““Z=% and capacity
2. Note that by the definition of Gﬁl%, cij < Cj;.

On the graph Gz, @ minimum cost flow problem with demands d(i) is then solved.
From its solution, a balanced mixed graph G!' = (V, E', A') is constructed in the
following way. Let f;; and f;; be the flow units in the solution through the arcs (i, j)

of capacity oo and those of capacity 2, respectively. For each arc (7, j) in A of capacity
2:

o if fl; =0, f;i + 1 arcs (j,7) are added to A",
e if f/; =1, an edge (4,) is added to E', and
o if fl, =2, fi; +1 arcs (i,]) are added to A'.

If G! has odd degree nodes, a second phase consisting of the resolution of a minimum
cost matching problem is executed. Edge costs for the matching problem are defined
in the same way as in algorithm WRPPI. For each edge in the matching solution, the
edges in its associated path in G are added to G' to obtain an even mixed graph G2.
Again, edges in G? are oriented in the direction of their minimal traversing cost, and
a new network flow problem, similar to that described in the first phase, is solved to
obtain a symmetric digraph G®.

Finally, as graph G® may be disconnected, a third phase consisting of the resolution
of a shortest spanning tree connecting its components is executed.

2.3 Algorithm H1

This new constructive heuristic is a modification of algorithm WRPPI. As in the
Modified Mized Algorithm for the MCPP [19], the idea of the new algorithm is to try
to anticipate during the first steps what will happen in the last phases of the algorithm.

First, the algorithm connects the components of Gy by adding the edges of a
shortest spanning tree computed as in the first phase of algorithm WRPP1. Again,
let us represent by G = (V, E};) the resulting graph. Now, before solving a minimum
cost matching problem to make G, even, we will change the edge costs in such a way
the solution to the matching problem includes, at least partially, the solution to the
flow problem of the last phase.

In order to do this, first, the average cost C, of the edges in E} is computed as
C, = |E_1;,J2ijeE;3 Gitti Now, the sets By = {(i,§) € Ej : |¢ji — ci5| > K x C,} and
Ey = E\ E; are defined, where K is a positive parameter that, after some computational
testing, has been fixed to 0.2. Then, a directed graph G% is constructed with set of
nodes V' and an arc (i,j) for each edge (i,j) € E; (we assume ¢;; < c¢;;). Note
that the set of arcs in G% is associated to the edges in G’ whose traversal is quite
more expensive in one direction than in its opposite one. Our guess is that, in the
final solution, these edges will be traversed in the direction of their minimal cost.
The demand d(u) of each node u is then computed in graph G%. A minimum cost
flow problem with demands defined by d(u) is now solved on an auxiliary digraph
Gaur = (V, Agyz) defined as follows. Arc set A, contains two arcs (7,7) and (j,1),
with costs ¢;; and cj;, respectively, and infinite capacity, for each edge of the original
graph G. Furthermore, for the edges (i, j) € E1, another arc (j,7) with cost 5% and

capacity 2 is added to Agy,. This last arc would allow to change the direction formerly
assigned to edge (4,7) in graph G%.

Let fi; be the flow through each arc (i,j) € Aqy, with infinite capacity. A list of
edges L is created, containing those edges satisfying one of the following conditions:

1,7) € E1 and fij Z 1

(i, 5)

L4 (Z,j) c El and f]z 2 1
(4,7) € Ea and fi; > 2
(

i,j) € By and fj;; > 2

Note that list L contains those oriented edges in G% for which a flow of at least 1
unit through them suggests that they will appear more than once in this direction or
in the opposite one in the solution. Furthermore, non oriented edges in G% but with a
flow of at least two units through them seem to be good candidates to appear in the
solution and, therefore, they have been added to L. Edges belonging to this list will
be those whose costs will be modified in the next phase of the algorithm.

The heuristic now proceeds to make graph G’ even. To do this, a minimum cost
matching problem is solved exactly as in the second step of algorithm WRPP1 but
using costs ¢;; = ¢j; = 0 for the edges in L. The other edges have original costs.

Edges in the resulting graph are finally oriented by solving a minimum cost flow
problem as at the end of algorithm WRPPI1. The costs used in this phase will be the
original ones for all the edges.

2.4 Algorithm H2

This other constructive heuristic is a modification of algorithm WRPP2. Again, we try
to guess which arcs will be added to the solution in the last phase of the procedure in
order to introduce them in the solution during the previous steps. We have then added
to the original WRPP2 heuristic an initial phase in which a shortest spanning tree is
computed. From the SST solution, some edge costs are changed. These new costs will
be used during the first two phases of WRPP2.

Algorithm H2 starts computing a SST connecting the components of graph G in
the same way as, for instance, algorithm WRPP1 does. However, the edges in the
shortest path in G associated to each edge in the spanning tree are not added here to
G, but listed in L and their average cost is computed (C, = ﬁ > ijeL Cijgcﬂ). For
each edge (7, j) € E (we will assume that ¢;; < ¢;;) new costs cfij and c;»i are now defined

as follows:

;o ;o . . .
® = c;ij—aC, and Cii = cji—aCy, if i and j are in different connected components
of Gg and ¢;; > aC,.

;o ;o o . L
e ;=0 and Cji = Cji — Cij, if © and j are in different connected components of Gy
and ¢;; < aCl,.

e c;; = cij and c; = cj;, otherwise,

where « is a parameter that after some testing has been fixed to 0.8.

Algorithm WRPP2 is then executed with these new costs. Only the computation
of the shortest spanning tree during the last phase of the algorithm, if needed (when
G? is not a connected graph), is performed with the original costs c;;.

2.5 Improvement Procedures

Several improvement procedures proposed in [2] have been also applied to the solutions
generated by heuristics H1 and H2. The two first methods are based on eliminating
redundant cycles from the solution. By redundant cycle we mean a cycle defined by
a subset of arcs associated to non required edges or to copies of required edges. Note
that a redundant cycle can be removed from the solution only if the resulting graph
keeps being strongly connected and contains at least one arc corresponding to each
original required edge. The last improvement procedure is widely used in the context
of Arc Routing Problems. It consists of first constructing an FEulerian tour traversing
the solution graph and then substituting any path of non-required arcs connecting two
consecutive required edges by a shortest path.

2.6 Computational comparison

Several computational experiments have been done in order to compare the perfor-
mance of the constructive algorithms WRPP1 and WRPP2 and their new versions H1
and H2. All the heuristics were run over 144 instances randomly generated by Benavent
et al. (2003) from the Albaida (Valencia, Spain) and the Madrigueras (Albacete, Spain)
real street networks. The characteristics of these instances are shown in table 7. Table
1 shows the results obtained with the four heuristic algorithms without applying the
above improvement procedures (row 1) and after applying them (row 2) over the full
set of instances. All the entries in the table are average percentage deviations from the
lower bound obtained with the cutting plane algorithm described in [2]. In all these
instances lower bounds are, in fact, optimal.

Average Deviation (%) | WRPP1 | WRPP2 | H1 | H2
Without improvements 4.22 3.92 4.17 | 3.38
With improvements 3.44 3.06 3.13 | 2.12

Table 1: Constructive heuristics comparison

From the results in Table 1 it can be noticed that modificated algorithms HI and
H2 present a better behavior than their respective original algorithms WRPPI and
WRPP2, both before and after the improvement procedures are applied.

3 New improvement procedures

In this section we present some new methods we have applied to improve the quality
of the solutions obtained by the heuristic algorithms described in this work. First, we

generate a compact representation of the solution, which may decrease the solution
cost as it substitutes the paths among required edges by shortest paths. Furthermore,
for a given order of traversal of the required edges, another method finds the optimal
direction in which each required edge has to be traversed. Finally, several local search
procedures are described.

3.1 Representing the WRPP solutions

A WRPP solution is a tour, that is, a closed walk containing each required edge at least
once in one of the two possible directions of traversal. Let us denote by m = |Eg|. We
assign to each required edge two different numbers: the first one, say k, 1 < k < m, is
associated to the traversal of the edge in one direction, and the second one, k 4+ m, to
the opposite direction of traversal. Let us consider a sequence of m numbers between
1 and 2m, such that, for each pair of numbers k and k+m, with 1 < k < m, exactly
one of them belongs to the sequence. This sequence determines a WRPP solution if
we assume that the tour follows the shortest path to travel from the end node of a
required edge to the initial node of the next required edge in the sequence, as well as,
in order to close the tour, from the end node of the last edge to the initial node of the
first one. Note that the optimal WRPP solution may indeed be represented in that
way, so we may restrict ourselves to work only with such solutions.

Therefore, we may represent a solution with a sequence of m numbers, called com-
pact representation, which is very convenient to be used in evolutionary algorithms
because it needs less memory and its length is constant. A similar representation
was introduced by Lacomme et al. (2001) for the Capacitated Arc Routing Problem
(CARP).

The constructive algorithms for the WRPP presented in the previous section pro-
duce solutions that can be converted into WRPP tours. In order to obtain their
compact representation, we identify the first traversal of every required edge in the
tour thus determining the sequence in which the required edges are covered by it. Note
that the path followed in the original tour from a given required edge to the next one
not yet covered, may not be a shortest path, so the compact representation may in fact
have a lesser cost than the original tour. Furthermore, some required edges may be
traversed several times by the tour, so the compact representation may not be unique.
The following two sections present improvement procedures for the WRPP that can
be used with the compact representation.

3.2 Reversing the direction of traversal

Given the compact representation of a solution, aq,as,...,a,,, each element of the
sequence represents the traversal of a required edge in a given direction. If one edge
is traversed in the opposite direction, we obtain a different solution with possibly a
different cost but where the required edges are covered in the same order. We may
address the problem of determining the best direction of traversal of each required
edge by keeping unchanged the order in which they are covered. This can be solved
in polynomial time with a procedure proposed by Lacomme, Prins & Ramdane-Chérif

@, > > Oo——rO—>0
O -G e, - O -G o)
/ ! ! -/ / .
Wil 31 J2 ? Im (2% Jm+1

Figure 1: Reversing the direction of traversal

(see [13] or [20]), that is described as follows.

Let H be a directed graph which contains, for each required edge a, = (i, j,),
r=1,...,m, two arcs representing the two possible traversals of a, with their corre-
sponding costs. These arcs will be denoted (i,, j.) and (j,4..), with costs ¢;,;. and ¢;,;,
respectively, where /. and j/ are copies of nodes ¢, and j,. For each two consecutive
required edges in the solution, (i,,j,) and (4,41, Jr41), ¥ = 1,...,m — 1, four more arcs
are added to H: (jr,tr41), (Jr)Jrs1), (0, irg1) and (2L, j;,,), with costs equal to the
shortest path costs in G between their corresponding original nodes (see figure 1).

In order to take into account the cost of travelling from the end node of the last
edge an = (im,Jm) , to the initial node of the first edge ay = (i1,71) , we add two
new nodes, denoted by 4,,,1 and j,,+1, which are additional copies of nodes 7; and 7;
respectively, and four arcs: (Jm, im+1)s (Jms Jma1)s (i ime1) and (i), jma1) with the
costs of the corresponding shortest paths (see figure 1).

Then, two shortest paths are computed, one from i; to i,,,1 and another from jj
t0 Jma1, and the one with the lesser cost is selected. Note that, for every required edge
(ir,7r), ¥ = 1,...,m, this path uses exactly one arc from the two ones representing
it, (i, j-) and (j.,1.), thus determining the direction in which it must be traversed to
minimize the total cost.

3.3 Local search phase

Here we propose two improvement procedures based on local search. The first one is a
steepest-descent algorithm in which a simple move is performed at each iteration. This
move consists of interchanging the positions of two required edges in the sequence (see
Figure 2) and it is called 2-interchange. The second procedure is also a steepest-descent
algorithm in which each move is an Or-interchange (see [16]). In this move, a section
consisting of at most L consecutive required edges in the sequence is inserted elsewhere
between two consecutive required edges, the first one of which must be among the K
edges closest to the first edge of the section. This insertion is performed in such a way
that the direction of traversal remains unchanged (see figure 3). If the section consists
of only one edge, we also try to insert it changing its the direction of traversal (see
figure 4).

Some computational experiments have been done in order to find good values for
parameters L and K. Algorithm WRPP2 was used to generate a set of 100 different
solutions for each of a subset of 10 representative instances. The details about how these
solutions have been generated will be given in the next section. The two improvement

\ -

llllllll

o sl - A &
@moq fortel 040
520" 0s 030

Figure 2: 2-interchange

Figure 3: Or-interchange

D>

Figure 4: Or-interchange

Or-interchange parameters

_. 1070 . 3.0
< 1,065
c * G2 (5a0) o (410)
= 1.060 e (3,11)
ks e (412)
> 1.055
a e (411) e (511)
1.050 T T T T T 1
5.4 5.6 5.8 6.0 6.2 6.4

Time (seconds)

Figure 5: Results with different values for L and K

methods proposed in [2] were applied to each generated solution to eliminate redundant
cycles. The solutions were then transformed into their compact representation. The Or-
interchange algorithm mentioned above was finally applied with values for L between
3 and 5 and for K between 10 and 12. Figure 5 shows the average deviation of the best
solution found and the time used (in seconds) for each test. The numbers in brackets
show the values used for L and K. From these results, we decided to use L = 4 and
K =11.

To determine the best order in which the improvements methods should be applied,
more experiments were done. Again, the same set of 100 solutions were used in these
experiments. The redundant cycles of the solutions were eliminated and the transfor-
mation into the compact representation applied. Then the two local search procedures
(labeled 2-int and Or) and the method that finds the optimal traversal direction of
the edges described in Section 3.2 (labeled rev) were applied in different orders and
different combinations (each one on its own, two of them and all of them). Table 2
shows the average deviation from the lower bound of the best solution found and the
average computing times.

2-int | Or | rev | 2-int/Or | Or/2-int | Or/rev | Or/2-int/rev
Deviation (%) | 1.31 | 1.05 | 1.25 1.07 1.01 0.98 0.93
Time (scs.) 6.36 | 5.76 | 5.96 6.48 6.43 6.06 6.58

Table 2: Local Search. Ordering of improvement methods

From the results obtained, we decided to apply first the Or-interchange, then the
2-interchange and finally the reversing method.

4 Multi-Start Algorithms

From the constructive algorithms described in Section 2, it is possible to design several
Multi-Start heuristics. Basically, Multi-Start algorithms consist of the execution of

10

a number of global iterations until some stopping criterium is satisfied. Each global
iteration generates a solution with a constructive algorithm and then improves it with
a local search method. A description of both phases follows.

Each one of the heuristics described in section 2 produces only one solution. In
order to obtain a set of different feasible solutions with each algorithm, several random
elements have been introduced in some of their steps. To get solutions as different from
each other as possible, the random elements have been introduced in the first phases
of the algorithms.

In the WRPPI1 and H1 algorithms, the construction of the spanning tree has been
modified. Now, at each step of the tree computation, the chosen edge will not be
necessarily that of minimum cost since it will be randomly chosen from a set of edges
with the lower costs. The size of this set has been fixed to [%1, where p is the
number of R-sets. The spanning tree thus obtained will be in general different for each
execution of the corresponding algorithm.

If p=1, i.e. Gy consists of only one connected component and the WRPP reduces
to a WPP, the above procedure would not work, as no spanning tree is needed. In
such a case, edge costs are randomly modified previously to each execution of the
algorithm. The cost modification should be large enough to get different solutions, but
not as large as to produce bad solutions. New costs are randomly generated in the
interval [0.5¢;;, 1.5¢;;], where ¢;; denotes the original costs.

Since the spanning tree computation is done in the last phase of algorithms WRPP2
and H2, its randomization is also not appropriate in this case. Here, we have tried two
different strategies. The first one consists of modifying the cost of the edges in the
same way as in the case p = 1 above. The second one does not modify the cost of the
edges, but the cost of the shortest paths. The cost ¢;; of the shortest path between
every pair of nodes i, j is substituted by a new cost randomly chosen in the interval
[0.6¢;5,1.4¢;;], i.e. with a maximum deviation of 40% from the original cost. After
some computational testing, the second strategy resulted to be more efficient, so we
decided to use this one.

The improvement phase consists of applying first the Or-interchange, then the 2-
interchange and finally the reversing procedure. The Multi-Start procedures thus ob-
tained will be denoted by MS1, MS2, MSH1 and MSH2, respectively.

4.1 Computational results

Table 3 presents the average percentage deviations of the best solutions obtained on the
Albaida and Madrigueras instances after performing 250 iterations of the Multi-Start
algorithms, while table 4 shows the average deviations after running the algorithms
for 2 minutes, without limit of iterations. Figures 6 and 7 show the evolution of the
average deviations on all the instances with both stopping criteria.

From the results, notice that algorithm MS2 is the best of all four procedures,
achieving deviations of 0.47% and 0.64% for the Albaida and Madrigueras instances
respectively, if we let it run for 2 minutes, although most of the best solutions are found
within the first 40 seconds. After that time it becomes more difficult for MS2 to find
better solutions.

11

Deviation (%) | MS1 | MS2 | MSH1 | MSH2
Albaida 1.22 | 0.68 | 1.05 0.71
Madrigueras | 2.26 | 0.82 | 2.03 1.12
Table 3: MS with 250 iterations
Deviation (%) | MS1 | MS2 | MSH1 | MSH2
Albaida 0.80 | 0.47 | 0.75 0.60
Madrigueras | 1.98 | 0.64 | 1.91 1.21

Table 4: MS with 120 seconds

Evolution of Multi-Start Algorithms against iterations

6.0
> ———Ms1
5 —--—- MSH1
ks MS2
>
- = = MSH2
2 MS
0.0 T T T
51 101 151 201
Iterations
Figure 6: Multi-start evolution (iterations)
Evolution of Multi-Start Algorithms against time
3.0 -
2.5 1y
€ 20 ——— st
c
2 151 <., I —--—- MSH1L
ks Sve i ... TTTTTETTT
0 e T MS2
% 05 - - - -Msh2
0.0

21 41

61

Time (seconds)

81

101

Figure 7: Multi-start evolution (time)

12

First solution \ j Second solution
1 518 21
11 4
2 24
22 15
New solution

Figure 8: Order crossover operator

5 A Scatter search algorithm

Scatter search (see the recent book by Laguna & Marti, 2003) is a population-based
method that has been shown to yield promising outcomes for solving hard combinatorial
optimization problems. The Scatter Search process tries to capture information not
contained separately in the original solutions, takes advantage of improving methods,
and makes use of strategy instead of randomization to carry out component steps. Our
implementation is based on the description given in [8].

The procedure starts with the construction of an initial reference set of solutions
(RefSet) from a large set P of diverse solutions. The solutions in RefSet are ordered
according to quality, where the best solution is the first one in the list. The search is
then initiated by combining solutions in RefSet. Although the method can use com-
binations of any number of solutions, in this implementation we restrict our attention
to combinations of 2 solutions. RefSet is updated with the newly created solutions
using different strategies. The procedure stops when, after combining all the solutions
in RefSet, it remains unchanged.

Our scatter search algorithm starts with an initial population P with 200 different
solutions generated with the construction phase of the MS2 heuristic, to which only
the Or-interchange and the reversing direction procedures are applied. From this set,
the best k£ solutions are included in RefSet. Other [solutions are added in such a
way that the diversity of RefSet is as large as possible. In order to do this we define
the distance between any pair of solutions as m minus the number of shortest paths
between required edges that both solutions have in common. Then, we iteratively
select the solution from P to be added to RefSet as the one whose minimum distance
to those solutions already in RefSet is maximal.

To combine the solutions in the reference set, we apply a version of the classical
order crossover similar to that used in Lacomme et al. (2001) (see figure 8). Given two

13

WRPP solutions in their compact representation (as sequences of the required edges),
{ir, 09, yim}, {J1, 92, - - -, jm}, two elements of the first solution, i,,1,, are randomly
selected. The new solution will contain the segment {i,,i,41,...,7,} as it appears in
the first solution. Then, starting from the element j,,; in the second solution, all the
elements in this solution not yet included in the new one are sequentially added to the
first segment in the new solution. Note that the solutions are really cycles. Therefore,
if the new solution has not been completed when we arrive to element j,,, we continue
the inspection of the second solution starting now from j;.

Similarly, starting with the segment {i;11,...,%m,%1,...,%y—1}, another solution is
obtained. The best of the two new solutions is selected, and a local search phase is
applied to it. This phase consists of the Or-interchange, the 2-interchange and the
reversing direction procedures described earlier.

If the new solution is good enough, it can immediately replace the worst solution
in RefSet (dynamic strategy) or be stored in a secondary set that will be used to
update RefSet when all possible combinations of solutions have been performed (static
strategy). In the last case, the new Refset will contain the best solutions among those
in the old Refset and in the secondary set. The dynamic strategy changes RefSet very
quickly and usually produces good solutions in short times, while the static strategy
can be slower but usually produces better solutions.

Table 5 shows the results obtained with both strategies on the Albaida and
Madrigueras instances for different values of k£ (number of solutions in RefSet selected
for quality) and [(number of solutions in RefSet selected for diversity). As it can be
seen from the tables, the static strategy always outperforms the dynamic one, while
running times are quite similar. Therefore, we decided to implement in our algorithm
the static strategy.

As an alternative, we have tried a different method of combining solutions. The
two parent solutions are transformed into a directed graph each, where the shortest
path from a required edge to the next one is represented by an arc. Now a new graph
is constructed containing all the arcs of these two graphs. Note that this new graph
can contain duplicated arcs and arcs traversed in both directions. An eulerian circuit,
which is also a solution of the WRPP, is now found in this graph and then transformed
into the compact representation described in section 3.1. As with the method for
combining solutions explained above, the local phase is applied to the new solution
and, if appropriated, RefSet is updated. The results obtained with the Scatter Search
algorithm, using the static strategy and this new combination method, on the same
sets of instances are shown in Table 6. Since this alternative produced worst results
both in terms of quality and computing time, it was not further explored.

5.1 Computational results

In order to analyze the behavior of the Scatter Search algorithm proposed in the pre-
vious section, we have performed an extensive computational study on several sets of
instances of different sizes and characteristics, summarized in table 7.

First, we have tested the algorithm on the three sets of instances proposed in
[2]: Albaida, Madrigueras and Christofides et al. instances. The next set of WRPP

14

RefSet size (k-1) | 5-5 | 10-0 | 10-5 | 15-0
Deviation (%) | 0.68 | 0.67 | 0.56 | 0.59

Albaida # of optima 9 11 9 9
Time (scs.) | 3.33 | 3.21 | 4.32 | 3.47
Deviation (%) | 0.76 | 0.76 | 0.74 | 0.69

Madrigueras # of optima 0 1 0 1
Time (scs.) 9.36 | 9.18 | 10.59 | 10.73

(a) Dynamic list

RefSet size (k-1) | 5-5 | 10-0 | 10-5 | 15-0
Deviation (%) | 0.50 | 0.53 | 0.41 | 0.40

Albaida # of optima 11 11 16 15
Time (scs.) 3.32 1 3.23 | 3.60 | 3.49
Deviation (%) | 0.66 | 0.61 | 0.51 | 0.49

Madrigueras # of optima 1 2 3 3
Time (scs.) 9.60 | 9.34 | 10.58 | 10.22

(b) Static list

Table 5: Scatter Search. Dynamic versus static list

RefSet size (k-1) | 5-5 | 10-0 | 10-5 | 15-0
Deviation (%) | 0.76 | 0.86 | 0.52 | 0.57

Albaida # of optima 3 2 6 5
Time (scs.) 14.45 | 13.26 | 18.91 | 17.33
Deviation(%) 1.95 | 1.90 | 1.79 | 1.77

Madrigueras # of optima 0 0 0 0
Time (scs.) 50.65 | 45.14 | 55.07 | 50.95

Table 6: Scatter Search. Alternative combination

15

instances has been generated from some RPP instances described in Hertz, Laporte
& Nanchen (1999). We have used the largest instances proposed in that paper. They
all have 100 nodes and correspond to 9 instances in which the set E of edges, all of
them with unit cost, forms a grid graph (class G) and to other 9 instances defined
on graphs in which almost all nodes have degree 4 (class D). From each of these 18
undirected rural postman instances, 6 WRPP instances were obtained by using the two
procedures described in [22] and in [2]. Note that although the original RPP instances
have 100 nodes, this number varies in the WRPP generated instances. The reason is
that, before generating the WRPP instances, a preprocessing algorithm is applied to
the original RPP instances in order to simplify them by removing all those nodes not
incident with required edges. This is a well known procedure for arc routing problems
(see [4] or [6]).

Finally, two sets of randomly generated instances of larger sizes have also been
tried. As with the previous set of instances, different RPP instances are initially built,
from which the final WRPP instances are generated. In order to do this, |V| points in a
square of size 1000 x 1000 are first selected. Then |E| edges are randomly generated as
pairs of nodes i and j with costs defined by ¢;; = |b;; + %j, where b;; are the Euclidean
distances. This is the same cost function as the one proposed in the TSPLIB (see
[21]). If the resulting graph is not connected, edges in 5 different trees spanning the
connected components of the graph are also added. Finally, each edge is defined as
required with probability P. An RPP instance has been generated for each possible
combination of the following parameters: |V| = 500, 1000, |E| = 1.5|V|,2|V], 3|V| and
P = 0.25,0.50,0.75, producing a total of 18 instances. As in the Hertz et al. set of
instances, all the nodes not incident with required edges have been removed by applying
the simplification procedure previously mentioned. Then, the number of nodes in the
new RPP instances will vary depending on the different sets of required edges randomly
generated. From each simplified RPP instance, 3 WRPP instances are created using
the first strategy of Win’s procedure [22] as follows: For each edge e = (i,), let k be
an integer randomly selected in [—a, a]. Set ¢j; = ¢ + k. If ¢j; <0, set ¢j; = 1. Select
another random integer & and set cj; in the same way. While in [22] values 5, 8 and
10 for @ were used, since in our RPP instances costs ¢;; are larger, we have used values
50, 80 and 100 for a.

The algorithms have been coded in C' and run on a Personal Computer with a 1700
MHz Pentium IV processor. Table 8 shows the computational results obtained by the
Scatter Search algorithm with different values for the size of RefSet.

For each set of instances, the table shows the deviation percentage from a lower
bound obtained with the cutting plane procedure described in Benavent et al. (2003),
the number of optimal solutions found, the average computing time and the average
percentage of this time used to generate the initial population P.

Table 8 shows the results of the Scatter Search algorithm with two sizes of RefSet:
10 and 15. Further computational testing was done with RefSet containing a larger
number of solutions, but the improvement in the results was too small to justify the
big increase in computing times. For each size, two different compositions of the initial
RefSet were tried: all the solutions selected from P for quality, or some of them selected
to contribute to its diversity.

16

V] |E| |Er| | R-sets
Average | 25.1 58.9 28.1 4.0
Christofides et al. Min 7 10 4 1
Max 50 184 78 8
Average | 116 174 96.3 23
Albaida Min 116 174 83 7
Max 116 174 129 33
Average | 196 316 1729 | 314
Madrigueras Min 196 316 152)
Max 196 316 230 47
Average | 83.4 | 149.3 | T7.2 13.3
Hertz et al. (G) Min 60 105 41 4
Max 100 180 113 20
Average | 84.6 | 1729 | 85.2 14.1
Hertz et al. (D) Min 68 141 50 9
Max 100 193 121 22
Average | 400.8 | 1268.2 | 481.3 | 33.9
Random 500 Min 265 842 190 1
Max 488 1719 770 76
Average | 848.3 | 2521.8 | 1148.6 | 49.3
Random 1000 Min 599 | 1656 450 1
Max 988 | 3952 | 2229 150

Table 7: Characteristic of the instances

17

As expected, computational results improve with larger sizes of RefSet, although
computing times also increase. Note also that the use of the solutions selected for
diversity usually produces better results. More precisely, the use of values (10-5) for
the RefSet size seems to be the best option in most cases.

The solutions obtained by our Scatter Search algorithm on the instances of moderate
size (Christofides et al.) are very good in terms of deviation percentage, number of op-
timal solutions obtained and computing time. Concerning the instances of medium size
(Albaida, Madrigueras and Hertz et al.), the results show deviation percentages lesser
than 1% and low computing times. Finally, the deviation observed on the instances
of large size (random instances) are still good (less than 2% from the lower bound)
although computing times are quite large. Nevertheless, note that a big percentage of
this time is consumed to generate the initial population P. We think that the use of
faster constructive algorithms would result in the improvement of the performance of
the Scatter Search algorithm.

6 Conclusions

In this paper we have described and tested several heuristic algorithms for the Windy
Rural Postman Problem. The WRPP is an interesting problem that generalizes
other well known Routing Problems and has interesting real world applications. We
have first proposed two new constructive algorithms for the WRPP and discussed
several improvement procedures. Some random elements have been introduced in the
constructive algorithms to obtain different Multi-Start procedures that have been able
to find solutions which are less than 1% far from the lower bounds in few seconds
on medium size instances. This deviation percentage has been improved up to 0.5%
with a Scatter Search algorithm that, basically, combines pairs of solutions from an
initial population generated by one of the Multi-Start procedures. The performance of
the Scatter Search algorithm has been extensively tested on a wider set of instances,
some of them of large size. It has been able to find solutions with deviations less than
2% from the lower bounds on instances with hundreds of nodes and thousands of edges.

Acknowledgments: The contribution by E. Benavent, A. Corberan, I. Plana and
J.M. Sanchis has been partially supported by the Ministerio de Ciencia y Tecnologia
of Spain through projects TIC2000-C06-01 and HF2001-0071.

References

[1] C. Balaguer, A. Giménez, J.M. Pastor, V.M. Padrén & M. Abderrahim, A climbing
autonomous robot for inspection applications in 3D complex environments, Robotica
18, 287-297, 2000.

[2] E. Benavent, A. Carrotta, A. Corberan, J.M. Sanchis & D. Vigo, Heuristics and
Lower Bounds for the Windy Rural Postman Problem. DEIO Technical Report
TR03-2003, March 2003.

18

RefSet size (k-1) 5-5 10-0 10-5 15-0
Deviation (%) | 032 | 043 | 027 | 032

Christofides et al. # of optima 106 115 111 110
(144 instances) Time (scs.) 0.66 0.65 0.71 0.71
Pop. time (%) 79.90 81.04 75.16 76.57
Deviation (%) 0.50 0.53 0.41 0.40

Albaida # of optima 11 11 116 15
(77 instances) Time (scs.) 3.32 3.23 3.60 3.49
Pop. time (%) | 76.97 | 78.76 | 70.68 | 73.19
Deviation (%) | 0.66 | 0.60 | 051 | 0.48

Madrigueras # of optima 1 2 3 3
(77 instances) Time (scs.) 9.60 9.34 10.58 10.22
Pop. time (%) 74.86 77.00 68.10 70.72
Deviation (%) | 116 | 130 | 092 | 001

Hertz et al. (D) # of optima 4 3 5 10
(54 instances) Time (scs.) 2.25 2.17 2.53 2.45
Pop. time (%) | 70.82 72.79 62.39 63.88
Deviation (%) 1.06 1.11 0.69 0.78

Hertz et al. (G) # of optima 12 10 22 18
(54 instances) Time (scs.) 2.12 1.85 2.20 2.17
Pop. time (%) 72.96 76.08 64.14 66.84
Deviation (%) 1.79 L.77 1.67 1.69

Random 500 nodes # of optima 0 0 0 0
(27 instances) Time (scs.) 104.86 | 96.57 | 153.55 | 159.35
Pop. time (%) | 72.31 76.68 | 59.74 | 59.64
Deviation (%) 1.70 1.71 1.69 1.78

Random 1000 nodes # of optima 0 0 0 0

(27 instances) Time (scs.) 1322.57 | 1322.73 | 1811.09 | 1597.10

Pop. time (%) | 84.73 | 84.91 | 72.94 | 75.76

19

Table &: Scatter Search. Static list

[3] P. Brucker, The Chinese Postman Problem for Mixed Graphs. In Proc. Int. Work-
shop, Bad Honnef, 1980. Lecture Notes in Computer Science, 100, 354-366, 1981.

[4] N. Christofides, V. Campos, A. Corberan & E. Mota, An Algorithm for the Rural
Postman Problem on a directed graph, Mathematical Programming Study, 26, 155-
166, 1986.

[5] A. Corberan, R. Marti & J.M. Sanchis, A GRASP heuristic for the Mixed Chinese
Postman Problem, Furopean Journal of Operational Research 142, 70-80, 2002.

[6] H.A. Eiselt, M. Gendreau & G. Laporte, Arc-Routing Problems, Part 2: the Rural
Postman Problem, Operations Research, 43, 399-414, 1995.

[7] G.N. Frederickson, Approximation algorithms for some postman problems, Journal
of the ACM, 26, 538-554, 1979.

[8] F. Glover, M. Laguna & R. Marti, Fundamentals of Scatter Search and Path Re-
linking, Control and Cybernetics, 29, 653-684, 2000.

[9] M. Grotschel & Z. Win, A cutting plane algorithm for the Windy Postman Problem,
Mathematical Programming, 55, 339-358, 1992.

[10] M. Guan, On the Windy Postman Problem, Discrete Applied Mathematics, 9,
41-46, 1984.

[11] A. Hertz, G. Laporte & P. Nanchen, Improvement procedures for the undirected
Rural Postman Problem, INFORMS J. Comput., 11, 53-62, 1999.

[12] P. Lacomme, C. Prins & W. Ramdane-Chérif, A Genetic Algorithm for the Ca-
pacitated Arc Routing Problem and its extensions. In E.J.W. Boers et al. (Eds.)
Applications of Fvolutionary Programming. Lecture Notes in Computer Science,
2037, 473-483. Springer-Verlag, Berlin, 2001.

[13] P. Lacomme, C. Prins & W. Ramdane-Chérif, Fast Algorithms for General Arc
Routing Problems. IFORS 2002, 08-12/07/2002, Edimbourg, UK.

[14] M. Laguna & R. Marti, Scatter Search: Methodology and Implementations in C.
Kluwer Academic Publishers, 2003.

[15] E. Minieka, The Chinese Postman Problem for Mixed Networks, Management
Science, 25, 643-648, 1979.

[16] I. Or, Traveling Salesman-Type Combinatorial Problems and their relation to the
Logistics of Regional Blood Banking. PhD Dissertation, Northwestern University,
Evanston, USA, 1976.

[17] V.M. Padrén, Herramientas de planificacién de movimientos con restricciones para,
robots escaladores en estructuras tridimensionales complejas. PhD Dissertation (in

spanish), Dept. de Ingenieria Eléctrica, Electrénica y Automatica, University Carlos
IIT of Madrid, Spain, 2000.

20

[18] W.L. Pearn & M.L. Li, Algorithms for the Windy Postman Problem, Computers
and Ops. Res. 21, 641-651, 1994.

[19] B. Raghavachari & J. Veerasamy, Approximation Algorithms for the Mixed Post-
man Problem. In: Bixby RE, Boyd EA and Rios-Mercado RZ (Eds.) Proceedings
of 6th Integer Programming and Combinatorial Optimization, Vol. 1412 of LNCS,
Springer-Verlag, 169-179, 1998.

[20] W. Ramdane-Chérif, Problemes de Tournées sur Arcs. PhD Thesis, University of
Troyes, France, 2002 (in French).

[21] G. Reinelt, TSPLIB: a Traveling Salesman Problem Library. ORSA Journal of
Computing 3, 376-384, 1991.

[22] Z. Win, Contributions to routing problems. PhD Dissertation, University of Augs-
burg, Germany, 1987.

23] Z. Win, On the Windy Postman Problem on Eulerian Graphs, Mathematical Pro-
grammang, 44, 97-112, 1989.

21

