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Abstract

In this paper we introduce a new class of facet-inducing inequalities for the Windy Rural
Postman Problem and the Windy General Routing Problem. These inequalities are called
Zigzag inequalities because they cut off fractional solutions containing a zigzag associated
with variables with 0.5 value. Two different types of inequalities, the Odd Zigzag and
the Even Zigzag inequalities, are presented. Finally, their application to other known Arc
Routing Problems is discussed.
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1 Introduction

Arc Routing Problems consist of finding a shortest tour (closed walk) on the links of a given
graph G satisfying certain conditions. Graph G can be undirected (all the links are edges that
can be traversed, at the same cost, in both directions), directed (all the links are arcs that must
be traversed in a given direction) or mixed (having edges and arcs simultaneously). Obviously,
routing problems defined on mixed graphs generalize the corresponding problems defined on
undirected and directed graphs. Finally, we have the ‘Windy’ Arc Routing Problems, which are
defined on an undirected graph where the cost of traversing an edge in a given direction can be
different to the cost of traversing it in the opposite direction. These problems generalize those
defined on mixed graphs because an arc (i, j) with cost c can be modelled as an edge with costs
cij = c and cji = ∞.

In this paper we deal with the Windy General Routing Problem, WGRP. This problem
can be defined as follows. Let G = (V, E) be an undirected and connected graph with two
non-negative costs cij and cji associated with each edge {i, j} ∈ E corresponding to the cost
of traversing it from i to j and from j to i, respectively. Given a subset ER ⊆ E of ‘required’
edges and a given subset VR ⊆ V of ‘required’ vertices, the objective is to find the tour on G
traversing each ‘required’ edge and each ‘required’ vertex at least once, at minimum cost.

This is a difficult combinatorial optimization problem that generalizes several well known
NP -hard Node and Arc Routing Problems. Note that if ER = ∅ and VR = V , we have as

∗corresponding author: angel.corberan@uv.es
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special cases the Graphical Traveling Salesman Problem (Cornuèjols, Fonlupt & Naddef, 1985,
Naddef & Rinaldi, 1991) when cij = cji ∀{i, j} ∈ E, and the Graphical Asymmetric Traveling
Salesman Problem (Chopra & Rinaldi, 1996) otherwise. On the other hand, if VR = ∅, the
WGRP reduces to the Windy Rural Postman Problem and if in addition ER = E, to the Windy
Postman Problem.

The Windy Postman Problem, WPP, was first introduced by Minieka (1979). This is an NP -
hard problem (Guan, 1984) that was also studied by Win (1987) and by Grötschel & Win (1988,
1992). Notice that it contains the undirected, directed and mixed versions of the well-known
Chinese Postman Problem (CPP, DCPP and MCPP, respectively) as particular cases. The
Windy Rural Postman Problem, WRPP, has been studied in Benavent et al. (2003, 2005). In
these papers, several heuristic algorithms are presented, as well as a formulation of the problem
and several families of valid linear inequalities. A polyhedral study of the WGRP has been done
by Corberán, Plana and Sanchis (2005). The WRPP formulation in Benavent et al. (2003) and
the WGRP formulation in Corberán et al. (2005) are exactly the same. Hence, from the point
of view of polyhedral combinatorics, both problems can be considered equivalent and therefore
the WGRP can be seen as an Arc Routing Problem.

Since some Arc Routing Problems on mixed graphs are particular cases of the Windy General
Routing Problem, they can be handled with a similar formulation. This formulation uses two
variables associated with each edge, representing the number of times the edge is traversed in
each direction and was used, for example, by Christofides et al. (1984) and Ralphs (1993) for the
Mixed Chinese Postman Problem. Furthermore, these problems can also be formulated using
only one variable for each edge, representing the number of times a given edge is traversed (in
any direction). This approach was first proposed by Nobert & Picard (1996) for the MCPP
and more recently by Corberán, Romero & Sanchis (2003) and by Corberán, Mej́ıa & Sanchis
(2005) for the Mixed Rural Postman Problem (MRPP) and the Mixed General Routing Problem
(MGRP).

When we use a cutting-plane algorithm to solve the WGRP or the MGRP (with either
of both formulations), fractional solutions satisfying all the known facet-inducing inequalities
are found for some instances. These fractional solutions have the ‘typical’ common feature of
containing closed walks associated with variables with 0.5 ‘extra’ value, which often look like
a zigzag. We have found a new class of facet-inducing inequalities which cut off this kind of
solution. The purpose of this paper is to present this new family of inequalities for the Windy
and Mixed General Routing Problems, which also applies to other Arc Routing Problems. These
inequalities generalize the 3-wheel inequalities proposed by Win (1987) for the WPP.

In section 2 the WGRP is defined and several known results are summarized. Section 3
describes two different versions of Zigzag inequalities for the WGRP, the odd case and the even
case. Section 4 is devoted to the application of these inequalities to other known Arc Routing
Problems. In section 5 some computational experiments are discussed and section 6 presents
the conclusions.

2 Problem definition and known results

As mentioned above, the Windy General Routing Problem consists of finding a minimum cost
closed walk traversing all the required edges, ER ⊆ E, and visiting all the required vertices,
VR ⊆ V , of an undirected graph G = (V,E) (WGRP tour). We can suppose w.l.o.g. that
VR = V , because it is easy to transform an instance which does not satisfy this condition into an
instance that does (see, for example, Christofides et al., 1981, or Eiselt, Gendreau & Laporte,
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1995). The graph GR = (V, ER) is, in general, non-connected. Let us denote by p the number
of its connected components and by V1, V2, . . . , Vp, with V1 ∪ . . . ∪ Vp = V , their corresponding
vertex sets. Given a node subset, S ⊆ V , let δ(S) denote the edge set with an end-point in S
and the other in V \ S and let E(S) be the set of edges with both end-points in S. Given two
node subsets S1, S2 ⊆ V , (S1, S2) will represent the set of edges with one end-point in S1 and
the other in S2, while δR(S), ER(S), (S1, S2)R will denote the previous sets, referring only to
the required edges. Finally, a vertex is called R-even (R-odd) if it is incident with an even (odd)
number of required edges.

Let xij be the number of times edge {i, j} is traversed from i to j in a WGPP tour. Given
F ⊆ E, we denote by x(F ) =

∑
{i,j}∈F (xij + xji). The formulation given by Benavent et al.

(2003) for the WGRP is:

Minimize
∑

{i,j}∈E

(cijxij + cjixji)

s.t.:

xij + xji ≥ 1, ∀{i, j} ∈ ER (1)∑

{i,j}∈δ(i)

(xij − xji) = 0, ∀i ∈ V (2)

∑

i∈S,j∈V \S
xij ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (3)

xij , xji ≥ 0, ∀{i, j} ∈ E (4)
xij , xji integer, ∀{i, j} ∈ E (5)

where conditions (2) and (3) force the (directed) graph represented by the tour to be, respectively,
symmetric and connected, and conditions (1) imply that each required edge will be traversed.
The above system includes an equation associated with each vertex. The |V | equations (2) will
be referred to as the system equations and any |V |−1 of them are linearly independent.

Let WGRP(G) be the convex hull of all the tours x ∈ Z2|E| satisfying (1) to (4). In
Corberán, Plana & Sanchis (2005) it is shown that WGRP(G) is an unbounded polyhedron
with dimension 2|E| − |V | + 1, and that the following inequalities are, under mild conditions,
facet-inducing for WGRP(G):

• Trivial inequalities (4)
• Traversing inequalities (1)
• Connectivity inequalities (3)
• The R-odd cut inequalities:

x(δ(S)) ≥ |δR(S)|+ 1, ∀δ(S) R-odd cutset of G (6)
• The (standard) KC and the KC02 inequalities (see Corberán, Romero & Sanchis, 2003).
• The (standard) Path-Bridge (PB) and the Path-Bridge02 (PB02) inequalities (see Letch-

ford, 1997, and Corberán, Romero & Sanchis, 2003).
• The (standard) Honeycomb and the Honeycomb02 inequalities (see Corberán, Mej́ıa &

Sanchis, 2005).

In the above-mentioned paper it is also shown that all these inequalities except (4) and
(1) are configuration inequalities (Naddef & Rinaldi, 1991), i.e. each inequality is defined by a
partition of V , B = {B1, B2, . . . , Br}, and by some costs associated with ordered pairs of node
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sets Bi. The variables associated with the edges in E(Bi) have coefficient zero in the inequality,
and the variables xuv, xvu associated with the edges {u, v} ∈ (Bi, Bj) have coefficients equal
to the costs c(Bi, Bj) and c(Bj , Bi), respectively. However, it is worth noticing that, unlike
other Arc Routing Polyhedra, WGRP(G) has facet-inducing inequalities that are not strictly
configuration inequalities since they can have variables xuv, xst, with u, s∈Bi and v, t∈Bj , with
different coefficients. These inequalities are called weak configuration inequalities. This is the
case of the Zigzag inequalities presented in this paper. Associated with a (weak or standard)
configuration inequality, we have a configuration graph, GC , having node set B, a required edge
{Bi, Bj} for each required edge {u, v} of G with u ∈ Bi, v ∈ Bj and a non-required edge {Bi, Bj}
for each pair Bi, Bj such that (Bi, Bj) \ ER 6= ∅. In other words, GC is the graph resulting
after shrinking node sets Bi, i = 1, . . . , r, into a single vertex each, and shrinking each set of
non-required parallel edges into a single edge, but keeping all the required edges. Finally, in
Corberán, Plana & Sanchis (2005) a ‘lifting’ theorem providing conditions for a facet-inducing
inequality for WGRP(GC) to be facet-inducing for WGRP(G), is also included.

3 The Zigzag inequalities.

Although the above inequalities describe the polyhedron WGRP(G) tightly, it is not unusual
to find fractional solutions which satisfy all these inequalities and contain closed walks with
edges whose associated variables have an extra value of 0.5, i.e. xij + xji = 1.5 if eij ∈ ER and
xij + xji = 0.5 otherwise. Consider for example the WGRP instance in figure 1a, where the
required edges are represented in bold lines and each number represents the cost of traversing
the corresponding edge from the nearest node to the farthest node. Note that all the vertices
are R-even. Consider also the vector x∗ represented in figure 1b, where arcs drawn in solid
lines correspond to variables with value 1 while arcs in dotted lines correspond to variables with
value 0.5. This vector satisfies all the known inequalities and its cost is 54, while the cost of an
optimal WGRP tour is 62. In fact, x∗ is an extreme point of the polyhedron defined by all the
inequalities mentioned before. An inequality that is not satisfied by x∗ is

F (x) = x13 + x31 + x′13 + x′31 + x24 + x42 + x′24 + x′42 + x14 + x41 + x23 + x32 + 2x21 + 2x43 ≥ 6

since F (x∗) = 5. The coefficients of this inequality are shown in figure 1c.

Consider now the WGRP instance in figure 2a, where all the vertices are R-odd. Again, it
can be seen that the vector x∗ shown in figure 2b, where variables with value 1.5 are represented
by a solid and a dotted arc simultaneously, is an extreme point of the above polyhedron, but x∗

is not a WGRP tour. An inequality that is not satisfied by x∗ is (see figure 2c):

F (x) = x13 + x31 + x24 + x42 + x14 + x41 + x23 + x32 + 2x21 + 2x43 ≥ 6

since F (x∗) = 5.

Both constraints belong to a new family of inequalities that will be called Zigzag inequalities.
We show below that these inequalities are valid and facet-inducing for WGRP(G). Although
the final form of these inequalities can be similar in some cases, the meaning of the inequalities
and the conditions needed to be facet-inducing are quite different for the odd and even cases.
Hence, we will distinguish between Even Zigzag inequalities (the four nodes are R-even) and
Odd Zigzag inequalities (the four nodes are R-odd).

4



¹¸

º·
M3

¹¸

º·
M1

¹¸

º·
M4

¹¸

º·
M2

¡
¡

¡
¡

¡¡ @
@

@
@

@@

10 20

10 20

20 10

20 10

9

9

8

8

9

9

8

8

¹¸

º·
M3

¹¸

º·
M1

¹¸

º·
M4

¹¸

º·
M2

?

6

?

6

-

-

............................ª ...
...

...
...

...
...

...
...

...
.I

¹¸

º·
M3

¹¸

º·
M1

¹¸

º·
M4

¹¸

º·
M2

¡
¡

¡
¡

¡¡ @
@

@
@

@@

0 2

0 2

1 1

1 1

1

1

1

1

1

1

1

1

(a) (b) (c)

Figure 1: WGRP instance, fractional solution and Even Zigzag configuration.
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Figure 2: WGRP instance, fractional solution and Odd Zigzag configuration.

3.1 Even Zigzag inequalities

Consider a partition of the set of vertices V into 4 parts, M1, M2, M3 and M4, where each
M i contains an even number of R-odd vertices. Let αij denote the number of required edges in
(M i,M j) and suppose that the following condition is satisfied:

α12 = α34 = α14 = α23 = 0 (7)

The configuration graph GC associated with the Even Zigzag inequalities is defined by the
partition of V above and by the following coefficients (see figure 1c):

c(M1, M2) = c(M3,M4) = 0, c(M2,M1) = c(M4,M3) = 2, c(M i,M j) = 1, otherwise.

Given a set of edges, (S1, S2), we will denote by x(S1 : S2) =
∑
{i,j}: i∈S1,j∈S2

xij . We will call
the following inequality Even Zigzag inequality

F (x) = x(δ(M1 ∪M2)) + 2x(M2 : M1) + 2x(M4 : M3) ≥ α13 + α24 + 2 (8)

Theorem 1 Even Zigzag inequalities (8) are valid for WGRP(G).

Proof: Any WGRP tour x must traverse all the required edges in one of its two possible
directions. Given that the coefficient in the inequality of the two variables associated with these
edges is equal to 1, x has at least an F -cost of α13 + α24 on these variables. Furthermore, the
tour x must traverse the cutset δ(M1∪M3) in both directions. This is done with F -cost greater
than or equal to 2. ¨
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Theorem 2 Even Zigzag inequalities (8) are facet-inducing for WGRP(G) if GC is a complete
graph and α13, α24 ≥ 2 (and even).

Proof: We will first prove that Zigzag inequalities are facet-inducing for WGRP(GC). The
dimension of WGRP(GC) is twice the number of edges in GC minus 3. This is the number of
linearly independent WGRP tours satisfying F (x) = α13 + α24 + 2 we have to define. Each tour
is a vector with two components xij , xji associated with each edge e = {i, j} in GC expressing
the number of times edge e is traversed in each direction.

Given that α13 and α24 are even, it is possible to direct all the required edges in GC in such
a way that they induce a (directed) symmetric subgraph. Let xd denote the incidence vector of
this subgraph, i.e. xd

ij = 1 if e = {i, j} is a required edge that has been oriented from i to j and
xd

ij = 0 otherwise. Note that F (xd) = α13 + α24.

We select the components corresponding to the 4 non-required edges e12, e23, e34 and e14 in
the direction given by the zigzag, i.e. in the direction M1-M2-M3-M4-M1. In what follows, we
build a WGRP tour associated with each unselected component xij . Given an edge eij , y(

→
eij)

(respectively y(
←
eij)) denotes the vector with zero in all its components except for component

xij (respectively xji), which is equal to 1. For each non-selected component xij associated
with an edge eij ∈ δ(M1 ∪M3) we define the tour xd + y(

→
eij) + y(

←
eij). For each non-selected

component of edges e ∈ (M1,M3) we define the tour xd + y(
→
e ) + y(

→
e34) + y(

←
e14) or the tour

xd + y(
←
e ) + y(

→
e12) + y(

→
e23). Similarly, for each non-selected component of edges e ∈ (M2,M4)

we define the tour xd + y(
→
e )+ y(

→
e12)+ y(

←
e14) or the tour xd + y(

←
e )+ y(

→
e23)+ y(

→
e34). We define

a final tour using xd and the 4 selected components: xd + y(
→
e12) + y(

→
e23) + y(

→
e34) + y(

←
e14). All

these tours satisfy F (x) = α13 + α24 + 2. If we subtract xd from all the tours and arrange them
in rows it is easy to see that the matrix has full rank. Hence, the Even zigzag inequalities are
facet-inducing for WGRP(GC). By applying the lifting theorem in Corberán, Plana & Sanchis
(2005), they are also facet-inducing for WGRP(G). ¨

3.2 Odd Zigzag inequalities

In addition to the instance shown in figure 2, a more complex one will be used to introduce the
Odd Zigzag inequalities. Consider the fractional solution depicted in figure 3a, corresponding to
a WGRP instance in which all edges are required. Again, arcs drawn in solid lines correspond to
variables with value 1, arcs in dotted lines correspond to variables with value 0.5 and variables
with value 1.5 are represented with a solid and a dotted arc simultaneously. This is also a typical
solution where variables with an extra value of 0.5 form a zigzag. This kind of solution violates
the Odd Zigzag inequalities that are presented in what follows.

Consider a partition of the set of vertices V into 4 parts, M1, M2, M3 and M4, where each
M i contains an odd number of R-odd vertices.

Let us call H = (M1,M2) ∪ (M3,M4) (horizontal edges) and D = (M2,M3) ∪ (M1,M4)
(diagonal edges). Note that H ∪ D = δ(M1 ∪ M3). Let us define a subset of required edges
F ⊂ (H ∪D)R satisfying (see figure 3b, where edges in F are represented in bold lines)

|HR \ F|+ |DR ∩ F| = |DR \ F|+ |HR ∩ F| (9)

The configuration graph GC associated with the Odd Zigzag inequalities is defined by the
partition of V and the set F above, and by the following pair of coefficients associated with each
edge eij (see figure 3b):
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Figure 3: An Odd Zigzag configuration with set F in bold lines.

(cij , cji) =





(0, 2) ∀eij ∈ H \ F , i ∈ M1 ∪M3, j ∈ M2 ∪M4

(2, 2) ∀eij ∈ H ∩ F
(1, 3) ∀eij ∈ D ∩ F , i ∈ M1 ∪M3, j ∈ M2 ∪M4

(1, 1) otherwise

The corresponding Odd Zigzag inequality is then

x(δ(M1∪M2))+2x(M2 :M1)+2x(M4 :M3)+2x(Fzz) ≥ α13+α24+α14+α23+2|H∩F|+ 2 (10)

where x(Fzz) denotes the variables associated with the edges in F in the direction given by the
zigzag.

Odd Zigzag inequalities (10) are in general weak configuration inequalities. However, when
F=∅ they are standard configuration inequalities and their coefficients are equal to those of the
Even Zigzag inequalities (see figure 2). Note that F=∅ is only possible when |HR| = |DR|.

Set F can be understood in the following way. The edges in δR(M1∪M3) (an even number)
can be oriented to obtain a (directed) symmetric subgraph. Given any such orientation, set
F is defined by all the required edges that have been oriented in the opposite direction to the
zigzag, i.e. in the direction M4−M3−M2−M1−M4. In particular, set F in figure 3b is defined
from the orientation associated with the fractional solution shown in figure 3a. Other sets F
can be defined to obtain valid inequalities but only the one shown in figure 3b has an associated
inequality violated by the fractional solution.

Theorem 3 Odd Zigzag inequalities (10) are valid for WGRP(G).

Proof: Let F (x) ≥ c0 denote the inequality and let x be a WGRP tour. Each WGRP tour
must traverse every required edge in one of its two possible directions. Given that the coefficient
in the inequality of the two variables associated with each edge in δ(M1 ∪M2) is at least 1, and
those associated with each edge in H ∩ F is 2, x has at least an F -cost of c0−2. If x traverses
any edge in H\F or in D∩F in the direction from M2 ∪M4 to M1 ∪M3, then it has an extra
F -cost of 2 units and the inequality is satisfied. Therefore, we can suppose that x traverses all
the edges in HR\F and in DR∩F in the direction from M1∪M3 to M2∪M4 and, from (9), that
x traverses all the edges in DR \ F and in HR ∩F in the direction from M2 ∪M4 to M1 ∪M3.
Since all the nodes are R-odd, the tour x cannot traverse each required edge exactly once and
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an extra matching on the four nodes is needed. Notice that all the matchings have F -cost of
at least two except the matching with F -cost zero defined by an edge not in F traversed in the
direction from M1 to M2 and another from M3 to M4. But in this case the graph associated
with x is not symmetric. ¨

Theorem 4 Odd Zigzag inequalities (10) are facet-inducing for WGRP(G) if GC \ F is a
complete graph, if there are two required edges e13 ∈ (M1,M3) and e24 ∈ (M2,M4) and if the
remaining required edges in GC can be oriented to induce a (directed) symmetric graph satisfying
that:
(a) all the edges in (H∪D)R\F are oriented in the direction of the zigzag: M1−M2−M3−M4−M1,
(b) all the edges in F are oriented in the opposite direction: M4−M3−M2−M1−M4.

Proof: We will first prove that Odd Zigzag inequalities are facet-inducing for WGRP(GC).
As for the even case, we need to find twice the number of edges in GC minus 3 linearly independent
WGRP tours satisfying F (x) = c0. Again, each tour is a vector with two components xij , xji

associated with each edge e = {i, j} in GC .

We first select the four components corresponding to the given required edges e13 and e24. Let
xd denote the incidence vector of the symmetric subgraph induced by the orientation mentioned
in the theorem. Note that the four selected components in xd are zero and that F (xd) = c0− 2.

Since GC \ F is a complete graph, it is possible to select another 4 components associated
with 4 edges not in F , e12∈(M1, M2), e23∈(M2,M3), e34∈(M3,M4) and e14∈(M1,M4), in
the direction given by the zigzag. In what follows, we build a WGRP tour associated with each
unselected component xij .

For each non-selected component associated with an edge e ∈ (M1,M2) \ F and depending
on its direction, we define the tour x1 = xd + y(

→
e ) + y(

←
e14) + y(

→
e24) + y(

→
e13) + y(

←
e13) or the

tour x2 = xd + y(
←
e ) + y(

→
e34) + y(

←
e24) + y(

→
e13). For the non-selected components of each edge

e ∈ (M1,M2)∩F , we define the tour x3 = xd + y(
→
e )− y(

←
e ) + y(

←
e14) + y(

→
e24) + y(

→
e23) + y(

←
e13)

or the tour x4 = xd + y(
←
e ) + y(

→
e34) + y(

←
e24) + y(

→
e13). For the non-selected components of edges

e ∈ (M1,M3) we define the tour x5 = xd + y(
→
e ) + y(

←
e13) + y(

→
e24) + y(

→
e12) + y(

←
e14) or the tour

x6 = xd +y(
←
e )+y(

→
e13)+y(

→
e24)+y(

→
e12)+y(

←
e14). For edges e ∈ (M2,M3)\F , we define the tour

x7 = xd+y(
→
e )+y(

→
e34)+y(

←
e24)+y(

→
e13)+y(

←
e13) or the tour x8 = xd+y(

←
e )+y(

→
e24)+y(

←
e14)+y(

→
e13),

and for edges e ∈ (M2,M3)∩F , the tour x9 = xd+y(
→
e )−y(

←
e )+y(

→
e34)+y(

←
e24)+y(

→
e12)+y(

←
e13) or

the tour x10 = xd +y(
←
e )+y(

→
e24)+y(

←
e14)+y(

→
e13) are defined. For edges in (M3,M4), (M2,M4)

and (M1,M4) we proceed as before. All these tours satisfy F (x) = c0.

Finally, 5 more tours using xd and some of the 8 selected components are constructed. If we
subtract xd from all the tours and arrange them in rows, the matrix in figure 4 is obtained. The
first rows correspond to the tours associated with non-selected components in F , while the last
5 rows correspond to the most-recently mentioned tours. Given that this matrix has full rank,
the Odd Zigzag inequalities are facet-inducing for WGRP(GC). Again, by applying the lifting
theorem in Corberán, Plana & Sanchis (2005), they are also facet-inducing for WGRP(G). ¨

4 Zigzag inequalities and other polyhedra.

In this section we study the application of the Zigzag inequalities to other known arc routing
polyhedra that are closely related to the WGRP.
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Non-selected Other
components non-selected Selected components

in F components (1,3) (3,1) (2,4) (4,2) (1,2) (2,3) (3,4) (4,1)

1 -1 0 0 . . . 0 0
0 1 0 0 . . . 0 0
0 0 1 -1 . . . 0 0
0 0 0 1 . . . 0 0 0 *

. . .
0 0 0 0 . . . 1 -1
0 0 0 0 . . . 0 1

0 I *

0 1 0 1 1 2 1 0
1 1 1 0 1 0 0 1

0 0 1 1 0 1 0 1 1 0
1 0 1 1 0 0 1 1
0 1 1 1 1 1 0 0

Figure 4: Matrix appearing in the proof of theorem 4

4.1 Windy Postman Problem

When all the edges are required, the WGRP reduces to the WPP. In this case αij is the total
number of edges in (M i,M j). Note that the Even Zigzag inequalities do not apply to this
problem, while the Odd Zigzag inequalities are valid and facet-inducing for WPP(G) under the
conditions presented above. In the special case when F = ∅, the Odd Zigzag inequalities are
equivalent to the 3-wheel inequalities proposed by Win (1987) and hence they induce the same
facets. To illustrate this, consider the Odd Zigzag configuration shown in figure 5a, where all
the edges are required and the numbers represent the coefficients of the corresponding variables
in the Zigzag inequality F (x) ≥ 6. Due to the symmetry equation associated with node M1, the
sum x21 + x41 + x31 in the inequality can be replaced by x12 + x14 + x13 to obtain an equivalent
inequality in which variables x12, x14 and x13 now have coefficients 1, 2 and 2, respectively,
while variables x21, x41 and x31 have coefficients 1, 0 and 0. We then proceed in a similar way
with node M2 and we obtain an equivalent inequality whose coefficients are shown in figure 5b.
Dividing this inequality by 2 and representing only those arcs corresponding to variables with
a non-zero coefficient, the 3-wheel inequality F ′(x) ≥ 3 by Win (1987) and its associated graph
(shown in figure 5c) are obtained. However, note that when F 6= ∅, Odd Zigzag inequalities
presented here are a new class of facet-inducing inequalities for the WPP. In fact, it can be
seen that the extreme point shown in Win’s Thesis (Figure 4.8b, page 74), which satisfies all
the 3-wheel inequalities, violates the Odd Zigzag inequality defined by node sets M1 = {6},
M2 ={3, 4, 5}, M3 ={2} and M4 ={1} and by edge set F={e46}.

4.2 Arc Routing Problems on undirected graphs

Given an instance G = (V, E, cij , cji) of a Windy Arc Routing Problem, if cij = cji is satisfied
∀e = {i, j} ∈ E, the instance can also be considered as an instance of the corresponding
Undirected ARP. Obviously, the natural formulation for this instance uses only one variable per

9
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Figure 5: In the WPP the Odd Zigzag inequalities with F=∅ reduce to 3-wheel inequalities

edge and the Zigzag inequalities do not apply. If a formulation with two variables per edge
is used instead (handling an undirected instance as a windy instance), Zigzag inequalities are
facet-inducing for the associated polyhedron.

4.3 Arc Routing Problems on directed graphs

An instance of an Arc Routing Problem defined on a directed graph can be transformed into
an instance of the corresponding Windy ARP in which the cost of traversing the edges in the
forbidden directions are set to infinity. The variables associated with the forbidden directions
can then be removed from the Windy formulation and the natural formulation for the Directed
ARP, with just one variable associated with each arc, is obtained. Hence, the Zigzag inequalities
are valid for Directed ARPs. Nevertheless, it is not difficult to see that Odd Zigzag inequalities
are dominated by flow inequalities and therefore they are not facet inducing for the directed
ARP polyhedra.

Consider now the Even Zigzag inequalities. The fractional solution described in figure 2b
would be obtained for a DRPP instance similar to that in figure 2a with the appropriate arc
directions. Therefore, the Even Zigzag inequalities do apply for the DRPP/DGRP:

Theorem 5 The Even Zigzag inequalities F (x) ≥ α13+α24+2 are facet-inducing for DGRP(G)
if the following conditions are satisfied:
(a) there are at least four arcs forming the zigzag M1 −M2 −M3 −M4 −M1,
(b) half of the α13 required arcs in (M1,M3) are directed from M1 to M3 and the other half
from M3 to M1. A similar condition is needed for the α24 required arcs in (M2,M4).

Proof: The proof is similar to that of the WGRP and the details are omitted here. Just notice
that the dimension of DGRP(G) is |A| − |V |+ 1 (see Corberán, Romero & Sanchis, 2003) and
the required arcs induce a symmetric subgraph. ¨

4.4 Arc Routing Problems on mixed graphs

As on directed graphs, an instance of an Arc Routing Problem defined on a mixed graph can be
transformed into an instance of the corresponding Windy ARP. Then, removing the variables
associated with the forbidden directions, a formulation for the Mixed ARP, with just one vari-
able associated with each arc and two variables associated with each edge, is obtained. This
formulation, which we here call F2, is used, for example, by Christofides et al. (1984) and
Ralphs (1993) for the MCPP. Nobert & Picard (1996) and Corberán et al. (2003, 2005) propose
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a formulation for the MCPP and for the MRPP/MGRP, respectively, that uses only one variable
for each edge which expresses the number of times a given edge is traversed (in any direction).
We call this formulation F1. A theoretical and computational comparison of formulations F1
and F2 for Arc Routing Problems on mixed graphs can be found in Corberán, Mota & Sanchis
(2005).

Let us first consider formulation F2, which is more closely related to the windy formulation.
It is easy to find two MGRP instances with fractional solutions similar to those shown in figures
1 and 2 for the WGRP. Hence, Zigzag inequalities apply to the MGRP. Given an MGRP instance
G = (V, E,A), where V is the set of vertices, E is the set of edges and A is the set of arcs,
the polyhedron associated with the set of solution vectors corresponding to formulation F2 is
represented here as MGRPF2(G). It can be shown that its dimension is 2|E|+ |A| − |V |+ 1.

Obviously, Zigzag inequalities for the WGRP are valid for MGRPF2(G). Furthermore, as
the following theorem states, they also have the facet inducing property if the required arcs have
the appropriate direction.

Theorem 6 Zigzag inequalities are facet-inducing for MGRPF2(G) if there are at least 4 links
defining a zigzag M1-M2-M3-M4-M1 and,
(a) for the even case: the required edges in GC can be oriented in such a way that the required
links induce a symmetric graph.
(b) for the odd case: there are two required edges e13 ∈ (M1,M3) and e24 ∈ (M2,M4), and
the remaining required edges in GC can be oriented in such a way that, together with the
required arcs in GC, they induce a symmetric graph in which all the links in (H ∪ D)R \ F are
oriented in the direction of the zigzag and all the links in F are oriented in the opposite direction.

Proof: The proof is similar to that of theorems 2 and 4 and the details are omitted here. ¨

Let us now consider formulation F1. It uses only one variable per edge, i.e. associated with
each MGRP tour there is an incidence vector y = (ye : e∈E∪A) ∈ Z|E|+|A|, where ye denotes
the number of times a link e∈E∪A appears in the tour. It is based on the characterization of
an Eulerian mixed graph given by Ford & Fulkerson (1962): G is Eulerian if, and only if, G is
connected, even and balanced. A graph G is called balanced if, for every S ⊂ V , the difference
between the number of arcs leaving S and the number of arcs entering S is less than or equal
to the number of edges in δ(S) (balanced-set condition for set S). As in Corberán et al. (2003,
2005), we assume that the transformation of the original MGRP instance mentioned in section 2
not only obtains V = VR, but also ENR = ∅ (basically replacing each non-required edge by two
non-required arcs). Therefore, formulation F1 considers the MGRP to be defined on a strongly
connected mixed graph G = (V, E, A) := (VR, ER, AR ∪ ANR). It is easy to see that the set of
tours for the MGRP is then the set of vectors y ∈ Z|E|+|A| satisfying:

yij ≥ 1, ∀(i, j) ∈ AR, ∀{i, j} ∈ ER (11)
y(A+(S))− y(A−(S)) ≤ y(E(S)), ∀S ⊂ V (12)

y(A+(S)) ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (13)
y(δ({i})) ≡ 0 mod 2, ∀i ∈ V (14)

yij ≥ 0, ∀(i, j) ∈ ANR (15)
yij integer, ∀(i, j) ∈ AR ∪ANR, ∀{i, j} ∈ ER (16)

where (11) implies that all the required links are in the solution, (12), (13) and (14) assure
that the resulting graph will be balanced, connected and even, respectively. A+(S) (A−(S))
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represents the set of arcs leaving (entering) a vertex subset S, while E(S) denotes the set of
edges incident with S. Let (S1, S2) denote the set of links (arcs and edges) with an endpoint
in S1 and another in S2, let A(S1, S2) be the set of arcs from S1 to S2 and E(S1, S2) the set of
edges between S1 and S2. A vertex is called R-even (R-odd) if it is incident with an even (odd)
number of required links. Given a set H of links, let y(H) be the sum of the variables associated
with all the links in H.

The polyhedron associated with the set of solution vectors corresponding to formulation
F1 is here called MGRPF1(G) and its dimension is |E ∪ A| − q + 1, where q is the number of
connected components of the graph (V, E) (see Corberán, Romero & Sanchis, 2003). The Zigzag
configuration for MGRPF1(G) consists of a partition of the set of vertices V into 4 parts, M1,
M2, M3 and M4 satisfying:

Even case: Each M1, M2, M3 and M4 contains an even number of R-odd vertices and α12 =
α34 = α14 = α23 = 0.

Odd case: Each M1, M2, M3 and M4 contains an odd number of R-odd vertices and the graph
induced by the required links in GC , plus two extra arcs a12 and a34 from M1 to M2 and
from M3 to M4 respectively, is not a balanced graph.

Here, αij represents the number of required links in (Mi,Mj). The configuration graph, GC ,
associated with the Zigzag inequalities is defined by the partition of V above and by the follo-
wing coefficients: c(A(M1,M2)) = c(A(M3,M4)) = 0, c(A(M2,M1)) = c(E(M1,M2)) =
c(A(M4,M3)) = c(E(M3,M4)) = 2, c(M i,M j) = 1, otherwise. Figure 6 shows an odd
configuration. The Zigzag inequality for MGRPF1(G) is:

y(M1 ∪M2,M3 ∪M4) + 2y((M1,M2) \A(M1,M2)) + 2y((M3,M4) \A(M3, M4)) ≥
≥ α13 + α24 + α23 + α14 + 2|(M1,M2)R \A(M1,M2)|+ 2|(M3,M4)R \A(M3,M4)|+ 2 (17)
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Figure 6: An Odd Zigzag configuration for the MGRP with formulation F1.

Theorem 7 Zigzag inequalities (17) are valid for MGRPF1(G). Moreover they are facet-
inducing for MGRPF1(G) if there are at least two arcs a12 ∈ A(M1,M2) and a34 ∈ A(M3,M4)
and two other links defining a zigzag M1-M2-M3-M4-M1 and:
(a) for the even case: the required links in GC induce a balanced graph.
(b) for the odd case: there are two required edges e13 ∈ (M1, M3), e24 ∈ (M2,M4) and the
remaining required links in GC induce a balanced graph.
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Proof: The proof that Zigzag inequalities are valid for MGRPF1(G) and facet-inducing for
MGRPF1(GC) is similar to those in theorems 1 to 4 and the details are omitted here. Moreover,
the lifting theorem in Corberán et al. (2005) can be applied to show that Even Zigzag inequalities
are facet-inducing for MGRPF1(G). However, the same theorem cannot be applied for the odd
case, since its first condition is not satisfied because of the need for the two required edges
e13∈(M1,M3) and e24∈(M2,M4) in condition (b) above. Nevertheless, a slightly different lifting
theorem can be specifically developed for the Odd Zigzag inequalities. Its proof is technical and
is omitted here. ¨

As in Corberán et al. (2003, 2005), formulation F1 can be expressed in terms of semitours.
A semitour for the MGRP is the family of links z obtained from any tour for the MGRP y by
deleting one copy of every required link, i.e. y = z + yR, where yR is the incidence vector of the
required links. Given that Zigzag inequality (17) can be written as F (z + yR) ≥ F (yR) + 2, the
Zigzag inequality with respect to semitours is simply F (z) ≥ 2 .

Finally, we would like to point out that although Zigzag inequalities are facet-inducing for
MGRPF2(G) and MGRPF1(G), there is not a one-to-one correspondence between these facets.
Consider, for example, the MGRP instance G shown in figure 7a, in which all the links are
required and numbers near the links represent their costs. While the polyhedron MGRPF2(G)
has a facet induced by a Zigzag inequality, this is not the case for MGRPF1(G). Using the
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Figure 7: WGRP instance G and fractional vectors

cutting-plane algorithm based on formulation F2 for the MGRP described in Corberán, Mota
& Sanchis (2005), the fractional solution shown in figure 7b is obtained (numbers near the
links represent their corresponding variable values). This solution does not satisfy the Zigzag
inequality F (x) ≥ 8. Note that this inequality is valid and facet-inducing for MGRPF2(G).
On the other hand, it is easy to see that the corresponding Zigzag inequality with respect to
formulation F1, F (y) ≥ 12, is not valid for MGRPF1(G), but such an inequality is not needed
here. Note that the corresponding fractional vector in terms of formulation F1 shown in figure
7c is not a solution of the cutting-plane algorithm since it is a convex linear combination of two
MGRP tours.

5 Computational experiments

In order to know if the Zigzag inequalities are useful from a computational point of view, its
associated separation problem has to be studied. At this moment we do not know if the problem
of separating these inequalities can be solved in polynomial time or not. Answering this question
and developing efficient exact or approximate separation algorithms do not seem easy tasks, and
we want to deal with them in the near future.
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Here we have just tried to visually identify violated Zigzag inequalities on randomly generated
WPP instances of small size. The reason for choosing the WPP is that, except for Win’s odd-
wheel inequalities (and 3-wheel inequalities are a particular case of the Zigzag ones), all the
other known facet inducing inequalities can be separated in polynomial time.

A cutting-plane procedure with separation algorithms for the Odd-cut inequalities is applied
to each WPP instance. If the obtained solution is integral, it is an optimal tour. Otherwise, the
fractional solution is depicted and we visually look for a violated Zigzag inequality. If none is
found, the procedure stops. Otherwise, the violated inequality is added to the current LP and
the procedure continues as usual.

The WPP instances are generated as follows. First, |V | ∈ (10, 19) vertices are randomly
selected in a 1000×1000 square and the distances between all of them are computed as cij =
bdij + 0.5c, where dij are the Euclidean distances. Then, the d∈ (3, 5) shortest edges incident
with every vertex i are added and those edges {i, j} for which cij ≥ 0.98(cik +ckj) for some {i, k}
and {k, j} are removed. If the resulting graph is not connected, edges in the d shortest trees
spanning the connected components are also added. A total of 400 undirected connected graphs
are built in this way to obtain two different sets of WPP instances. The difference between both
test sets is the way in which edge costs are selected. The 200 instances in the first set have costs
which are directly related to the Euclidean distances. The new costs c′ij are computed from the
original costs cij by adding an integer number randomly selected in (−a, a) (see Win, 1987),
where parameter a is a random percentage (between 15% and 30%) of the average edge cost.
The costs of the 200 instances in the second set are randomly generated in (1, 4).

instance LB Zigzag1 Zigzag2 LBzz

wppe1 7177.5 1 - 7186∗

wppe2 10647.5 - 1 10651∗

wppe3 11618.0 - 1 11629∗

wppe4 7167.5 1 - 7196∗

wppne1 46.5 1 - 47∗

wppne2 89.0 - 2 89.5
wppne3 110.5 - -
wppne4 77.5 1 - 78∗

wppne5 76.0 - 1 76∗

wppne6 85.5 - 1 86∗

Table 1: Computational results

The cutting-plane procedure was able to solve 196 out of 200 instances in the first set and
194 in the second set. Table 1 shows the computational results obtained for the 10 unsolved
instances, where wppe1 to wppe4 are the instances with costs based on Euclidean distances and
wppne1 to wppne6 are the instances with random costs. Column LB gives the value of the lower
bound obtained with the cutting-plane procedure, while LBzz shows the bound obtained after
the addition of the violated Zigzag inequalities. A ‘∗’ means that not only the optimal value but
also an optimal WPP solution was obtained. The number of Odd Zigzag inequalities found for
each instance is shown in columns Zigzag1 (those equivalent to 3-wheel inequalities) and Zigzag2.
Note that 8 instances were solved to optimality after the addition of a Zigzag inequality. For
the instance wppne2, the addition of 2 Zigzag inequalities was not enough to obtain an optimal
solution. Finally, we did not find any violated Zigzag inequality for the instance wppne3. The
performance of the cutting-plane procedure was very good on these small size instances. We
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think that it will perform worse on larger instances, thus making the Zigzag inequalities more
useful.

15

14
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11

5 15

14

5,11, ...

12, ...

Figure 8: WPP fractional solution and Odd Zigzag configuration

Figure 8 shows part of the fractional solution obtained by the cutting-plane algorithm when
applied to the instance wppne5, whose data are given in Table 2. As in previous figures, arcs
drawn in solid lines correspond to variables with value 1, arcs in dotted lines represent vari-
ables with value 0.5, while variables with value 1.5 are drawn with a solid and a dotted arc
simultaneously. This fractional solution violates the Odd Zigzag inequality

x15,12 + x12,15 + x5,14 + x14,5 + x14,15 + x15,14 + x5,12 + x12,5 +
+x11,12 + x12,11 + x2,11 + 3x11,2 + 2x5,15 + 2x14,12 ≥ 8

whose configuration is also shown in Figure 8, where the only edge in F , e = {2, 11}, is repre-
sented in bold. After adding this inequality, the cutting-plane algorithm was capable of finding
the optimal solution.

vertex x-coord y-coord
1 683 647
2 290 439
3 599 828
4 946 88
5 543 820
6 926 313
7 108 325
8 187 357
9 845 757
10 764 584
11 511 621
12 330 759
13 992 156
14 161 860
15 143 925

{i, j} cij cji {i, j} cij cji

{1, 3} 1 2 {1, 4} 2 4
{1, 5} 3 4 {1, 9} 2 4
{1, 10} 3 1 {1, 11} 3 3
{2, 8} 2 1 {2, 11} 3 4
{2, 12} 4 3 {3, 5} 3 1
{3, 9} 1 1 {3, 10} 1 2
{3, 11} 4 2 {4, 6} 2 2
{4, 10} 2 4 {4, 13} 1 1
{5, 11} 4 1 {5, 12} 2 2
{5, 14} 1 3 {5, 15} 1 1
{6, 10} 3 3 {6, 13} 4 4
{7, 8} 3 1 {7, 12} 1 2
{8, 12} 4 2 {9, 10} 4 3
{10, 11} 4 1 {11, 12} 2 2
{12, 14} 1 4 {12, 15} 1 3
{14, 15} 2 2

Table 2: WPP instance data

15



6 Conclusions

In this paper a new class of facet-inducing inequalities for several well known Arc Routing Pro-
blems is introduced, the Zigzag inequalities. Two different versions, the odd case and the even
case, are presented. While Even Zigzag inequalities are configuration inequalities, Odd Zigzag
ones are, as far as we know, the first described class of weak configuration inequalities that
induce facets for an Arc Routing Polyhedron.

In summary, Even Zigzag inequalities are facet-inducing for the polyhedra associated with
the Directed Rural Postman Problem, Directed General Routing Problem, Mixed Rural Post-
man Problem (F1 and F2), Mixed General Routing Problem (F1 and F2), Windy Rural Post-
man Problem and Windy General Routing Problem. Odd Zigzag inequalities are proved to be
facet-inducing for the polyhedra associated with the Mixed Chinese Postman Problem (with
formulations F1 and F2), Mixed Rural Postman Problem (F1 and F2), Mixed General Routing
Problem (F1 and F2), Windy Postman Problem (where they generalize Win’s 3-wheel inequal-
ities), Windy Rural Postman Problem and Windy General Routing Problem.

Acknowledgments: The authors wish to thank the Ministerio de Ciencia y Tecnoloǵıa of Spain
(project TIC2003-05982-C05-01) and the Generalitat Valenciana (Ref: GRUPOS03/189) their
support.
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