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Abstract

In this paper we present an exact algorithm for the Windy General Routing Problem. This
problem generalizes many important Arc Routing Problems and also has some interesting
real-life applications. The Branch & Cut method presented here is based on a cutting-plane
algorithm that identifies violated inequalities of several classes of facet-inducing inequalities
for the corresponding polyhedron. The whole procedure has been tested over different sets
of instances and is capable of solving to optimality large-size instances of several routing
problems defined on undirected, mixed and ‘windy’ graphs.

Key Words: Branch & Cut, Arc Routing, Windy General Routing Problem, Windy Rural
Postman Problem.

1 Introduction

The Chinese Postman Problem (CPP) consists of finding a shortest tour (closed walk) traversing
all the links of a given graph G. The CPP was originally proposed by Guan ([22]) for undirected
graphs, where all the links are edges that can be traversed in both directions with the same cost.
This problem is considered to be the first Arc Routing Problem to appear in the literature. When
G is a directed graph, where all the links are arcs that must be traversed in a given direction,
the problem is known as the Directed Chinese Postman Problem (DCPP) and was proposed by
Edmonds & Johnson ([18]). In the same paper, the Mixed Chinese Postman Problem (MCPP)
was introduced. This problem is defined on a mixed graph having edges and arcs simultaneously.
While the CPP and DCPP can be solved in polynomial time, the MCPP is NP-hard ([31]) and it
generalizes both the CPP and the DCPP. Finally, Minieka ([26]) proposed the Windy (Chinese)
Postman Problem (WPP), which is defined on an undirected graph where the cost of traversing
an edge (i, j) in a given direction, cij , can be different from the cost of traversing it in the
opposite direction, cji. Brucker [5] and Guan [23] showed that the WPP is NP-hard, although
it can be solvable in polynomial time if the graph is even ([33]), or if the two orientations of
every cycle have the same cost ([23]). Moreover, in [33] and [21] an ILP formulation and a
polyhedral study of the WPP are presented, as well as a cutting-plane algorithm capable of
solving medium-size instances to optimality. The WPP generalizes the undirected CPP when
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cij = cji, the DCPP, since each arc (i, j) with cost c can be modeled as an edge with costs cij = c
and cji = ∞, and hence the MCPP.

On the other hand, the CPP has also been generalized in another way. Orloff ([28]) proposed
the Rural Postman Problem (RPP) and the General Routing Problem (GRP). In the RPP the
tour does not have to traverse all the links of the graph but only those in a given subset of
‘required’ links. In the GRP the graph contains a subset of ‘required’ links to be traversed and
a subset of ‘required’ vertices to be visited. The GRP can also be considered as a generalization
of the Graphical Traveling Salesman Problem (GTSP), which consists of finding a shortest
tour visiting all the vertices of a given graph G at least once. The GTSP was introduced by
Cornuèjols et al. ([17]) and Fleischmann ([20]) and also studied in [27]. The RPP, GRP and
GTSP were initially defined for undirected graphs, but they can also be formulated on directed
(DRPP, DGRP, GATSP), mixed (MRPP, MGRP, GATSP) and ‘windy’ graphs (WRPP, WGRP,
GATSP). Note that the GTSP defined either on a directed, mixed or ‘windy’ graph is equivalent
to the Graphical Asymmetric Traveling Salesman Problem (GATSP), introduced by Chopra and
Rinaldi ([6]).

As mentioned above, the CPP, RPP and GTSP are special cases of the GRP. Furthermore,
routing problems on undirected, directed or mixed graphs can be generalized by the correspond-
ing problem defined on a ‘windy’ graph. Thus, the problem we deal with in this paper, the
Windy General Routing Problem (WGRP), is the most general problem among those men-
tioned above and includes all the others as special cases: the CPP, RPP, GTSP, GRP, DCPP,
DRPP, GATSP, DGRP, MCPP, MRPP, MGRP, WPP and WRPP. Hence, the theoretical and
computational results obtained in this paper can be applied to all these problems. In particular,
the exact algorithm for the WGRP we propose here can be used to solve instances of any of
these problems.

In addition, the WGRP is also interesting from a practical point of view because it is the
optimization model describing some real-life situations. Besides the usual routing applications,
consider for instance the case described in [3] of some climbing robots designed to inspect
complex 3-dimensional structures, such as bridges. They carry a limited battery, so their routes
must be carefully designed in order to minimize energy consumption ([2]). These robots are
remotely controlled and are equipped with TV-cameras to inspect the structure in such a way
that any possible damage in the bridge beams, for example, can be detected. All beams must be
inspected, so they can be represented by required edges. Some special movements must also be
performed by the robots in order to move from the end of one beam to the beginning of another
one or to another side of the same beam. These would be modeled by non-required edges.
And, since for example, the energy consumed by the robot is not the same if the movement is
upwards or downwards, the cost of traversing each edge can be different for each direction. So
the problem can be formulated as a WRPP.

In the next section we introduce the notation that will be used in this paper and present
an ILP formulation of the WGRP and the polyhedron associated with it. The section ends
with a summary of the polyhedral results known in the literature. Section 3 is devoted to
the separation algorithms used in the B&C algorithm, which is described in section 4. The
computational experiments performed on a wide set of instances are described in section 5,
while section 6 presents the conclusions.
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2 Problem formulation and polyhedral results

The Windy General Routing Problem consists of finding a minimum cost tour traversing at
least once all the required edges, ER ⊆ E, and visiting at least once all the required vertices,
VR ⊆ V , of an undirected graph G = (V,E). Associated with each edge (i, j) ∈ E there are two
non negative costs, cij and cji, corresponding to the cost of traversing it from i to j and from j
to i, respectively.

For the sake of simplicity we will assume throughout the paper that VR = V . This is not a
loss of generality since it is easy to transform a WGRP instance not satisfying this assumption
into an equivalent one which does (see for example [8] or [19]). The subgraph associated with
the required vertices and edges, GR = (V, ER), is in general non-connected. We denote by p the
number of its connected components (R-components) and by V1, V2, . . . , Vp, with V1∪. . .∪Vp = V ,
their corresponding vertex sets (R-sets). The R-sets play a very important role in the WGRP
because they define subgraphs of G that must be connected by the tour. Note, for example, that
if ER =∅, the WGRP becomes the GATSP and the R-sets are the vertices of the graph. Hence,
the number of R-sets is a significant parameter concerning the difficulty of a given instance.

Given S ⊆ V , δ(S) denotes the edge set with an end-point in S and the other in V \ S and
E(S) is the set of edges with both end-points in S. Given S1, S2 ⊆ V , (S1, S2) will represent the
set of edges with one end-point in S1 and the other in S2, while δR(S), ER(S), (S1, S2)R will
denote the previous sets referring only to the required edges. A vertex is R-even (R-odd) if it is
incident with an even (odd) number of required edges and a subset of vertices S ⊆ V is called
R-even (R-odd) if it contains an even (odd) number of R-odd vertices.

Let us associate two variables xij and xji with each edge (i, j), representing the number of
times edge (i, j) is traversed from i to j and from j to i, respectively. Given F ⊆ E, we denote
by x(F ) the sum of all the variables associated with the edges in F , x(F ) =

∑
(i,j)∈F (xij + xji),

and given (S1, S2), we denote by x(S1 : S2) the sum of the variables associated with the traversal
from S1 to S2 of the edges in (S1, S2),

x(S1 : S2) =
∑

(i, j)∈(S1, S2)
i∈S1, j∈S2

xij

Note that x(S1, S2) = x(S1 : S2) + x(S2 : S1).

The WGRP can be formulated as follows:

Minimize
∑

(i,j)∈E

(cijxij + cjixji)

s.t.: xij + xji ≥ 1, ∀(i, j) ∈ ER (1)∑

(i,j)∈δ(i)

(xij − xji) = 0, ∀i ∈ V (2)

∑

i∈S, j /∈S

xij ≥ 1, ∀S =
⋃

k∈Q

Vk, Q ⊂ {1, . . . , p} (3)

xij , xji ≥ 0, ∀(i, j) ∈ E (4)
xij , xji integer, ∀(i, j) ∈ E (5)

Conditions (1) guarantee that each required edge will be traversed at least once. Conditions
(2) and (3) ensure that the vehicle departs from each vertex as many times as it arrives at it and
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that the route is connected. Note that it is enough to connect the different R-sets. Basically,
this formulation is the same as the one proposed by Benavent et al. [3] for the WRPP. The only
difference is that here some R-sets Vi can consist of only one vertex.

The polyhedron associated with the feasible solutions to (1) to (4), WGRP(G), has been
studied in [12] and [32]. It is an unbounded polyhedron of dimension 2|E| − |V |+ 1, for which
many classes of facet-inducing inequalities are known. Given that WGRP(G) is not full dimen-
sional, different inequalities can induce the same facet. Such inequalities are called equivalent
and, among them, those with fewer non-zero coefficients are more appropriate for computational
purposes. The non-negativity inequalities (4), which induce facets of WGRP(G), are handled
implicitly by any LP solver. The |ER| constraints (1), which are also facet inducing, and the
system equations (2) will be explicitly included in the LP formulation. Our B&C procedure uses
separation algorithms for other classes of facet defining inequalities, which are briefly described
in what follows.

Connectivity and R-odd cut inequalities

Connectivity inequalities (3) induce facets of WGRP(G) if the subgraphs induced by S and
V \S are connected. On the other hand, the R-odd cut inequalities

x(δ(S)) ≥ |δR(S)|+1, ∀ δ(S) R-odd cutset of G (6)

are also facet-inducing of WGRP(G) if the subgraphs induced by S and V \S are connected.
Equations (2) associated with all the vertices in S⊂V imply that x(S : V\S) = x(V\S : S). Then,
inequalities (6) are equivalent to the following ones, which contain fewer non-zero elements:

x(S : V \S) ≥ |δR(S)|+ 1
2

, ∀ δ(S) R-odd cutset of G (7)

K-C and K-C02 inequalities

Standard K-C inequalities [15] are associated with a partition of the set of nodes V in K+1
subsets {M0,M1, . . . , MK−1,MK}, with K≥3, satisfying that each R-set Vi is contained either
in M0 ∪MK or in any set Mj , j =1, . . . , K−1, subgraphs G(Mi) are connected, set (M0,MK)
contains a positive and even number of required edges and sets (Mi,Mi+1) are non-empty, for
i=0, . . . ,K−1. The inequality, which can be represented by a graph like the one shown in figure
1, takes the form:

∑

(i,j)∈(M0,MK)

(K−2) (xij + xji) +
∑

(i,j)∈(Mi,Mj)6=(M0,MK)

|i− j| (xij + xji) ≥

≥ 2(K−1) + (K−2)(|(M0,MK)R|) (8)

K-C inequalities can be written in a simpler way as follows. Consider first the case when K
is an even number. If x(Mi : V \Mi) is replaced by x(V \Mi : Mi) in (8) for M1,M3, . . .MK−1,
then an equivalent inequality is obtained which, divided by 2, takes the form:

∑

(i,j)∈(M0,MK)

(K − 2)
2

(xij + xji) +
∑

(i,j)∈(Mi,Mj)6=(M0,MK)

(αij xij + αji xji) ≥

≥ K−1 +
(K−2)

2
(|(M0,MK)R|) (9)
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Figure 1: Graph representing a K-C inequality

where αij =





|j−i|−1
2 if i is odd and j is even

|j−i|+1
2 if i is even and j is odd

|j−i|
2 otherwise

Note that, when i is odd and j = i + 1 or j = i − 1, then αij = 0, and the inequality has
fewer non-zero coefficients. If K is odd, the original K-C inequality can be transformed in a
similar way.

K-C02 inequalities ([14]) are similar to the standard K-C inequalities, since they are also
associated with a partition of the set of nodes V satisfying the same conditions, but have
different coefficients:

∑

(i,j)∈(M0,MK)

(K−1) (xij + xji) +
∑

(i,j)∈(M0,Mj),j 6=K

((j−1) xij + (j+1) xji) +

+
∑

(i,j)∈(Mi,Mj),i,j 6=0

|i−j| (xij + xji) ≥ 2(K−1) + (K−1)(|(M0,MK)R|) (10)

Like the standard K-C inequalities, K-C02 inequalities also have an equivalent version with
fewer non-zero elements. Both families of inequalities induce facets of WGRP(G) if certain
conditions are satisfied ([12]).

Path-Bridge inequalities

If we generalize a K-C inequality by allowing a number p≥1 of paths from M0 to MK such
that p + |(M0,MK)R| is odd, we obtain a Path-Bridge (PB) inequality ([25]). Figure 2 shows
a graph representing a Path-Bridge inequality. A PB inequality is called regular when all its
paths have the same number of nodes.

As with the K-C inequalities, equivalent Path-Bridge inequalities with fewer non-zero ele-
ments can be obtained. Details on these inequalities and the conditions under which they are
facet-inducing for WGRP(G) are given in [12]. In that paper it is also shown that other related
inequalities called Path-Bridge02 are also valid and facet-inducing for WGRP(G). Nevertheless,
since some of their coefficients must be obtained by sequential lifting, the PB02 inequalities have
not been used in the Branch & Cut method and are not presented here.

Honeycomb inequalities

Honeycomb (HC) inequalities ([16]) are also a generalization of K-C inequalities, but in a
different way. In this case the R-sets that were partitioned into M0 and MK are now partitioned
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Figure 2: Graph representing a Path-Bridge inequality

into L ≥ 2 subsets. Honeycomb inequalities, which are facet-inducing for the WGRP(G), are
quite complicated and their details can be found in [12]. An example of a simple Honeycomb
inequality is shown in figure 3. With a similar structure, but with different coefficients from
the standard Honeycomb inequalities, there is another family of facet-inducing inequalities, the
Honeycomb02 inequalities ([10], [12]). Versions of the Honeycomb and Honeycomb02 inequalities
with fewer non-zero coefficients can also be obtained.

M1

M3 M4

M2

M8M7

M6M5

1

1

1

11

1

1

3

1

1

1

Figure 3: Graph representing a Honeycomb inequality

Zigzag inequalities

In [13] a new class of facet-inducing inequalities for the WGRP and other Arc Routing
Problems is presented. This class contains two different families of inequalities, the Even and
the Odd Zigzag inequalities.

Let M1,M2,M3,M4 be a partition of V such that the subgraphs G(Mi) are connected and
|δR(Mi)| is even, i = 1, 2, 3, 4. Let αij be the number of required edges in (Mi,Mj) and suppose
that α12 = α34 = α14 = α23 = 0. The Even Zigzag inequality (see figure 4) is:

x(δ(M1 ∪M2)) + 2x(M2 : M1) + 2x(M4 : M3) ≥ α13 + α24 + 2 (11)

Basically, when |δR(Mi)| is odd, i = 1, . . . , 4, we have the Odd Zigzag inequalities, which
can look similar to the Even Zigzag inequalities (see figure 5a), but are in general rather more
complicated (see figure 5b). The inequality associated with the simple Odd Zigzag inequalities
(the case in which, again, α12 = α34 = α14 = α23 = 0) has the same form as that of the even
case (11). Since the general Odd Zigzag inequalities have not been used in our Branch & Cut
algorithm, they are not presented here.
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Figure 4: Graph representing an Even Zigzag inequality

M1

M4

M2

M3

0

0

0
2

2 2

2
2
2

2

1 1

11 1

1

1

1

1

1

1

3

M1

M4

M2

M3

11
1

20

0 2

1

1

1

1 1

(a) (b)

Figure 5: Graphs representing simple and general Odd Zigzag inequalities

3 Separation algorithms

In this section we present the separation algorithms used in the B&C algorithm for the inequal-
ities described in Section 2. Given an LP solution x∗ ∈ R2|E|, we define G∗ as the weighted
graph induced in G by the edges (i, j) with wij = x∗ij +x∗ji > 0. Given a subset T ⊂E, we denote
w(T ) =

∑
(i,j)∈T wij .

3.1 Connectivity and R-odd cut separation

Connectivity inequalities can be separated exactly in polynomial time by finding a minimum
weight cut in the graph obtained from G∗ by shrinking each R-set into a single vertex. Note
that when a subset of vertices is shrunk, all the parallel resulting edges are substituted by only
one edge whose weight is equal to the sum of all these edge weights. Faster heuristic algorithms,
based on computing the connected components induced by the edges of the shrunk graph with
weight greater than ε, for different values of ε, are also used.

The exact separation of R-odd cut inequalities can also be done in polynomial time by
means of the Padberg-Rao procedure ([29]) for finding odd cutsets of minimum weight. Again,
faster heuristic algorithms have also been used. They are based on computing the connected
components induced by the edges of G∗ with weight w′ij > ε, for different values of ε, where
w′ij = wij − 1 if (i, j) ∈ ER and w′ij = wij otherwise.
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3.2 K-C, K-C02, PB, HC and HC02 separation

It is not known wether the separation problem for all these classes of inequalities is NP-complete
or not. We have implemented heuristic algorithms for the separation of standard K-C, regular
PB and standard HC inequalities, which are based on those developed for the undirected GRP
(see [9] for the details). The separation algorithms for the K-C02 and HC02 inequalities have to
consider the asymmetry of the solution and thus differ from the previous procedures in some
steps. These algorithms are similar to those presented in [10] for the Mixed GRP and details are
not shown here. No algorithm for separating violated PB02 inequalities has been implemented
due to the difficulty of obtaining all the variable coefficients in short computing times. As
mentioned before, in these inequalities the coefficients associated with edges which link nodes
in different paths have to be computed using sequential lifting.

3.3 Zigzag inequalities separation

We have designed a new heuristic separation algorithm for Even and Odd Zigzag inequalities
with α12 = α34 = α14 = α23 = 0. It is based on the idea that solutions x∗ violating such an
inequality contain an edge cutset consisting of four non-required edges whose associated variables
take the value 0.5, as in the solution depicted in figure 6a. In this example solid lines represent
required edges whose associated variables take value 1 and dotted lines represent non-required
edges with value 0.5. We assume that the graph G has at least 2 R-sets (with more than one
vertex) and that all the connectivity constraints are satisfied by x∗.

∞

∞

∞

∞

∞

∞

∞

1

1

1

1
1

1

1

GauxFractional solution

(a) (b)

Figure 6: Fractional solution x∗ and capacitated graph Gaux

Given x∗, we assign the following capacities to the edges in graph G∗: non-required edges
with x∗ij = 0.5 and x∗ji = 0 (or viceversa) will be given capacity 1, while all the other edges get
infinite capacity. This capacitated graph will be called Gaux (see figure 6b).

Let (i, j) be an edge with capacity 1 in Gaux. A maximum flow from i to j is computed
in Gaux. The flow cost will be at least four, otherwise there would be a violated connectivity
constraint. If the flow value is exactly four, an edge cutset (V1, V2) of capacity four is identified
(see figure 7). By construction, this edge cutset consists of four non-required edges satisfying
x∗ij = 0.5 and x∗ji = 0 with which we will try to find a zigzag. If this is not possible, we try
to find another edge cutset of capacity 4 by computing another maximum flow between two
vertices connected by another edge of capacity 1.

Let us suppose that, as in the example shown in figure 8, such a zigzag has been found.
Then we have four subsets with one or two nodes each defining the zigzag ‘corners’, which will
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Figure 7: Minimum capacity cutset
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Figure 8: Zigzag found

be the seeds for M1, M2, M3 and M4. Now we proceed to partition sets V1 and V2 into two
subsets each. To do this, the graph G1 = (V1, E1) is constructed, where E1 contains the edges
with two end nodes in V1 such that wij > 0 if (i, j) is non-required and wij > 1 if it is required.
In order to get a violated Zigzag inequality, the edges in E1 should not appear in the edge cutset
dividing V1. We now compute the connected components of G1. If the nodes defining a ‘corner’
of the zigzag are in the same component C, we consider the partition of V1 defined by M1 = C
and M3 = V1 \ C. Otherwise, if these nodes belong to two different components C1 and C2,
we would consider C = C1 ∪ C2. In the case that the other ‘corner’ in V1 was also in C, the
procedure would stop and we would look for another edge cutset (V1, V2). By proceeding in a
similar way, a partition of V2 = M2∪M4 is obtained (see figure 9). If M1, . . . ,M4 are all R-even
(R-odd), we have found a violated Even (Odd) Zigzag inequality. Otherwise different partitions
of V1 and V2 are considered by joining other components of G1 and G2.

Note that in the construction of graph Gaux it is possible to assign capacity 1 not only to the
non-required edges with x∗ij = 0.5 and x∗ji = 0, but also to those with x∗ij ≤ 0.75 and x∗ji = 0. It
is easy to see that in this case the inequality obtained would also be violated.

4 The Branch & Cut method

In this section we describe the details on our implementation of the Branch & Cut method.
Branch & Cut (B&C) algorithms were first introduced by Padberg and Rinaldi ([30]), and have
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Figure 9: Partition of V into M1, M2, M3 and M4

shown to be among the most efficient methods for solving NP-hard problems to optimality.
Basically, a B&C algorithm consists of a cutting-plane procedure working at the nodes of a
Branch & Bound tree. At each node, facet-defining inequalities that are violated by the current
LP solution are identified by the separation algorithms.

4.1 Initial relaxation and cutting plane algorithm

In what follows, we present the initial LP relaxation that will be the input to the LP solver as
well as how the separation algorithms are integrated to form the cutting plane algorithm.

Instead of using all the connectivity constraints presented in the formulation of the WGRP
(an exponential number), only one connectivity constraint for each R-set is included in the first
LP relaxation. Furthermore, some R-odd cut inequalities have been added, specifically those
associated with R-odd vertices and to the connected components S of the graph defined by the
R-odd vertices, if |S| is odd. Note that even an integer feasible solution for this LP may not
be a WGRP feasible solution, since not all the connectivity constraints are guaranteed to be
satisfied.

At each iteration of the cutting plane algorithm the exact and heuristic separation algo-
rithms are called in a specific order and a number of violated inequalities are added to the LP
relaxation, which is then solved again. The ordering applied is the following:

1. R-odd cut and connectivity separation heuristics with ε = 0. If no violated inequalities of
each class are found, apply the heuristics with ε = 0.25 and, if necessary, ε = 0.5.

2. Exact connectivity separation if the corresponding heuristics failed.

3. Exact R-odd cut separation if no violated inequalities have been found so far (and only
in 1 out of 2 iterations).

4. If the total number of violated inequalities found is less than 10, run heuristic algorithms
for separating K-C and K-C02 inequalities. If no violated inequalities of any of these
classes are found, execute the same heuristics with ε = 0.25 and, if necessary, and only at
the root node, with ε = 0.5.

5. If the total number of violated inequalities found is less than 10, run algorithms for
separating HC and HC02 inequalities.
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6. If the total number of violated inequalities found is less than 10, execute the Zigzag
heuristic.

7. Heuristic separation for PB inequalities if the total number of violated inequalities found
is less than 8.

8. If no violated inequality of any class has been found, and only at the root node of the B&C
tree, run heuristics for K-C and K-C02 with iterative merging of adjacent R-components.

The cutting plane procedure is applied at each node of the tree until no new violated in-
equalities are found or a stopping criterium, called tailing-off, is satisfied. In our implementation
the cutting plane stops when the increase in the objective function during the last 5 iterations
is less than 0.00005%. At the root node this percentage has been fixed to 0.00001%.

4.2 Selection of violated R-odd cut inequalities

For large instances, the number of inequalities found during the exploration of the B&C tree
is so big that, in some cases, the optimal solution cannot be found due to memory limitations,
and very often computing times increase because of this problem. We have noticed that the
exact separation algorithm for R-odd cut inequalities usually finds a large number of violated
inequalities that are very similar to each other. Adding so many similar inequalities does not
seem to prove of much value to the effectiveness of the algorithm. Therefore only a small number
of the R-odd cut inequalities identified by the exact separation algorithm will be added.

Let ki be the number of edges in the edge cutset associated with a given inequality i. Then
we define the similarity between two inequalities i and j, sim(i, j), as the number of edges that
their associated cutsets have in common divided by max{ki, kj}. Also, the similarity between
an inequality i and a subset of inequalities R, sim(i, R), is defined as max{sim(i, j) : j ∈ R}.
The selection of the R-odd cut inequalities begins by first choosing the most violated inequality,
which is added to a new set R∗. Consider now another violated inequality i. If sim(i, R∗) ≤ 0.9,
i is incorporated to R∗ and the selection procedure continues. The inequalities in R∗ are the
ones that will be added to the current LP relaxation. From the computational experience, we
have observed that |R∗| is about 10%-20% of the total number of R-odd cut inequalities found.

4.3 Initial upper bound

In order to get good upper bounds, several heuristic algorithms have been used. First, the
constructive algorithms presented in [3] and [4] are invoked. Usually these algorithms produce
quite good feasible solutions for instances of moderate size. However, in larger instances, the gap
obtained at the root node is too big and a better upper bound is needed. For this purpose, the
Scatter Search algorithm described in [4] is applied. This is a more time consuming procedure
that will only be used when the gap at the root node is larger than 1%.

4.4 Artificial upper bound and restarting

Even with the upper bound provided by the Scatter Search algorithm, the gap is still big in
some of the larger instances. We have noticed that, in these cases, the lower bound is closer to
the optimal value than the upper bound. So, in order to overcome this difficulty, if the gap at
the root node is greater than 1.5%, we define an artificial upper bound with a value 1.005 times
the lower bound.
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If the B&C ends without finding an optimal solution, the procedure is restarted using a
greater artificial upper bound (1.010 times the lower bound). If, again, the B&C ends unsuc-
cessfully, it is restarted for the last time using the true upper bound.

At each iteration, some of the cuts found are stored in order to be used at the next iteration
if necessary. Specifically, if x∗ denotes the optimal LP solution at the root node, all the cuts
ax ≥ b such that ax∗ ≤ b + 0.1 are stored.

4.5 Branching strategies

Several branching strategies have been tested. We first tried branching on constraints because
some preliminary experiments showed that it performed better than branching on variables using
the standard strategy of Cplex. The idea is to choose a valid inequality ax ≥ b such that b∗ = ax∗

is a non-integer value, where x∗ denotes the optimal LP solution at the current node. Then two
subproblems are generated by adding the inequalities ax ≤ bb∗c and ax ≥ db∗e. The inequalities
we have used for branching are the connectivity and R-odd cut inequalities present at the initial
LP relaxation. When ax∗ is integer for all these inequalities, we branch on variables. We have
tested three different alternatives. The first one is branching on the variable whose fractional
value is closer to 0.5 (strategy ‘Const+Var’ in table 1). The second one consists of allowing Cplex
to choose “the best rule based on the problem and its progress” (row ‘Const+Cplex’ in table
1). Finally, we tested the Strong Branching strategy ([1]) implemented in Cplex (‘Const+SB’ in
table 1). Given that the best results were obtained with the ‘Const+SB’ strategy, we also tried
using only the Strong Branching strategy (‘SB’ in table 1).

Table 1 shows the results obtained on a test set of 23 instances of large size with the 4
different branching strategies. We set a time limit of 10 hours for the B&C method. The
first column gives the number of instances solved optimally and its percentage with respect to
the total number. The second column shows the average CPU time and the last two columns
present the average number of nodes of the B&C tree and the average gap, respectively. The best
results, both in terms of time and optimal solutions found, were clearly obtained with the Strong
Branching strategy. Therefore we decided to finally use this strategy in our implementation.

Optima/total % Time (sec) Nodes Gap
Const+Var 7 / 23 30.4% 30185.8 1025.9 1.544%
Const+Cplex 7 / 23 30.4% 31481.2 1041.7 1.718%
Const+SB 7 / 23 30.4% 28917.2 740.1 1.261%
SB 11/ 23 47.8% 22399.8 608.3 1.089%

Table 1: Testing different branching strategies

5 Computational experiments

In this section we present the computational results obtained on different sets of instances. The
B &C procedure has been coded in C/C++ using Cplex 9.0 MIP Solver with Concert Technology
2.0. All the tests were run on a Pentium IV at 1.7GHz machine with 512MB RAM with a time
limit of 10 hours.
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5.1 Data instances

The performance of our B&C algorithm has been tested on several sets of instances of dif-
ferent sizes and characteristics. Some of them have already been used in the literature as
test sets for other Arc Routing Problems. In what follows we describe the characteristics
of these instances and how they were generated. All the test instances can be found in
http://www.uv.es/∼corberan/instancias.htm.

5.1.1 Instances on ‘windy’ graphs

We first tested the B &C procedure on instances defined on ‘windy’ graphs. In particular we
have used different sets of WRPP and WGRP instances that are described next. Table 2 shows
the characteristics of the instances. It contains the problem type of each set of instances and
the average, minimum and maximum number of nodes, edges and R-sets, respectively.

Nodes Edges R-sets
Set Problem Aver. Min Max Aver. Min Max Aver. Min Max
CHR WRPP 25.1 7 50 58.9 10 184 4.0 1 7
HG WRPP 83.4 60 100 149.3 105 180 13.3 4 20
HD WRPP 84.6 68 100 172.9 141 193 4.0 1 7
ALB WRPP 116 116 116 174 174 174 14.1 9 22
MAD WRPP 196 196 196 316 316 316 23 7 33
A500 WRPP 400.8 265 488 1268.2 842 1719 33.9 1 76
A1000 WRPP 848.3 599 988 2521.8 1656 3952 49.3 1 150
B500 WRPP 446.1 318 498 1131.5 630 1537 37.9 1 102
C750 WRPP 673.4 502 750 1706 1013 2288 55.8 1 152
D1000 WRPP 895.1 661 999 2286.7 1297 3073 76.1 1 202
GA500 WGRP 500 500 500 1135 855 1505 99.2 7 311
GB500 WGRP 500 500 500 1209.8 887 1549 93.3 1 281

Table 2: Characteristics of the ‘windy’ instances

Some of the WRPP sets were already used in [3] and [4] and were generated from undirected
RPP instances taken from the literature. From a given RPP instance, 6 WRPP instances were
generated with the same graph but different costs using the two strategies given by Win ([33]):

• For each edge (i, j), two integer values k1, k2 ∈ [−a, a] are randomly selected. New costs
are defined as cij = max{1, c′ij + k1} and cji = max{1, c′ij + k2}. Values 5, 8 and 10 for a
were used.

• For each edge (i, j), two integer values k1, k2 ∈ [a, b] are randomly selected. New costs are
defined as cij = k1, cji = k2. Intervals [1, 100], [1, 200] y [1, 500] were used.

Set CHR in table 2 contains 144 WRPP instances generated from the 24 RPP instances
proposed by Christofides et al. ([7]). Sets HG and HD in table 2 contain 54 WRPP instances
each, that were generated from the 18 largest RPP instances presented in Hertz et al. ([24]).
Of these instances, 9 correspond to graphs with a grid structure (set HG) and the other 9 to
graphs whose vertices have degree 4 (set HD). Finally, sets ALB and MAD were generated by
Benavent et al. ([3]) from the street networks of two Spanish towns (Albaida and Madrigueras).
In these instances each edge is selected as required with probability p ∈ {0.3, 0.5, 0.7}. If there
is a vertex not incident with any required edge, new required edges are selected until no such
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vertices remain. For each value of p, 2 instances are generated, thus obtaining 6 RPP instances
from each graph. Applying Win’s strategies, a total of 72 WRPP instances were obtained for
each set ALB and MAD.

In order to obtain larger instances, we have generated two types of random WRPP instances.
As before, different undirected RPP instances are initially built, from which the final WRPP
ones are generated. The first set corresponds to ‘pure’ random graphs, while the second one will
be associated with graphs that try to imitate street networks.

We first select |V | points in a square of size 1000× 1000. For the first type of instances, |E|
edges are randomly generated as pairs of nodes (i, j) with costs defined by cij = bbij +0.5c, where
bij are the Euclidean distances. If the resulting graph is not connected, edges in 5 different trees
spanning the connected components of the graph are also added. Each edge is defined as required
with probability p. An RPP instance has been generated for each possible combination of the
parameters |V | ∈ {500, 1000}, |E| ∈ {1.5|V |, 2|V |, 3|V |} and p ∈ {0.25, 0.50, 0.75}, producing
a total of 18 graphs. Win’s first strategy to assign costs has been used with parameter a ∈
{50, 80, 100} to generate 3 instances from each graph. These 54 random instances are grouped
into 2 sets called A500 and A1000. Numbers 500 and 1000 refer to the number of nodes of the
graphs.

Three subsets of new instances have been generated in such a way that they are similar to
real street networks. To do this, |V | points in the 1000×1000 square are again randomly chosen.
For each vertex v, d edges connecting v to its d closest neighbors are added. The idea is to avoid
long edges crossing the graph from side to side that would not appear in real networks. As for
the previous sets, if the resulting graph is not connected, edges in 5 different spanning trees are
also added. Costs are also generated based on Euclidean distances. If, given an edge (i, j), there
is a vertex k such that cij ≥ 0.98(cik + ckj), edge (i, j) is removed to forbid ‘almost parallel’
edges. The first strategy by Win is applied to obtain asymmetric costs. Two instances have been
generated for each combination of the parameters |V | ∈ {500, 750, 1000}, p ∈ {0.25, 0.50, 0.75},
d ∈ [3, 6] and a ∈ {10, 20}, obtaining a total of 72 instances, grouped into 3 sets denoted by
B500, C750 and D1000, corresponding to the different values of |V |.

Since the graphs associated with the above instances can contain vertices which are not
incident with required edges, a simplification procedure similar to that presented in [8] or in [19]
has been applied. Therefore the number of vertices of the simplified instances can be less than
the initial value fixed for |V |.

We have randomly generated WGRP instances by proceeding as above except that we do
not simplify the graph, considering all the vertices not incident with required edges as (isolated)
required vertices. We have obtained 27 and 24 WGRP instances with 500 vertices grouped in
the sets GA500 and GB500.

5.1.2 Instances on mixed graphs

Since the WGRP contains the Mixed General Routing Problem as a special case, we have tested
our algorithm in some sets of MGRP and MRPP instances taken from the literature. In [10], 81
MGRP instances were randomly generated from the street networks of Albaida and Madrigueras
mentioned before, as well as from a third city called Aldaya, grouped on sets M-Alba, M-Madr
and M-Alda in table 3. In [11], other sets of MGRP and MRPP instances were generated. The
process used to generate these instances is similar to the one described for the sets B500, C750
and D1000 of WRPP instances. If all the vertices are considered as required vertices, we obtain
GRP instances. Otherwise, to obtain RPP instances, the simplification procedure mentioned
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above is applied. In both cases, from the undirected graphs, mixed instances are obtained by
transforming edges into arcs using a given probability p ∈ {0.25, 0.5, 0.75}. Two sets of 18
MRPP instances, denoted by MRB500 and MRD1000, and 2 of 18 MGRP instances, called
MGB500 and MGD1000, were generated.

Nodes R-sets
Set Problem Aver. Min Max Aver. Min Max
MRB500 MRPP 449 357 498 35.8 1 102
MRD1000 MRPP 899.7 708 999 68.8 1 188
M-Alba MGRP 116 116 116 25.8 1 70
M-Madr MGRP 196 196 196 65.0 2 168
M-Alda MGRP 214 214 214 69.1 2 214
MGB500 MGRP 500 500 500 86.8 3 245
MGD1000 MGRP 1000 1000 1000 169.2 2 480

Edges Arcs
Sets Aver. Min Max Aver. Min Max
MRB500 583 261 987 550.8 210 976
MRD1000 1178.1 521 1969 1137.3 470 1984
M-Alba 113.1 84 164 60.9 10 90
M-Madr 192.5 118 298 123.5 18 198
M-Alda 224 224 224 127 1 127
MGB500 620.7 311 1021 597.3 277 991
MGD1000 1239.9 611 2033 1209.9 532 2031

Table 3: Characteristics of the ‘mixed’ instances

5.1.3 Instances on undirected graphs

We have also tested our algorithm on 47 instances defined on undirected graphs. These 40 GRP
and 7 GTSP instances are described in [9] and their characteristics are presented in table 4. The
first 2 sets of instances consist of 15 GRP instances each, randomly generated from the Albaida
and Madrigueras graphs, denoted U-Alba and U-Madr respectively. The set denoted by U-GRP
contains 10 GRP instances generated from the Albaida graph by visually selecting the required
edges. The set denoted by GTSP contains 7 GTSP instances generated from instances from the
TSPLIB.

Nodes Edges R-sets
Set Problem Aver. Min Max Aver. Min Max Aver. Min Max
U-Alba GRP 116 116 116 174 174 174 38.2 11 73
U-Madr GRP 196 196 196 316 316 316 53.4 7 112
U-GRP GRP 116 116 116 174 174 174 48.2 11 65
GTSP GTSP 181.7 150 225 329.9 296 392 181.7 150 225

Table 4: Characteristics of the ‘undirected’ instances

5.2 Computational results

The computational results obtained on the above sets of instances are reported in tables 5, 6 and
7. In all the tables the first column shows the name of the set of instances tested. The number
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of optimal solutions obtained for each set and the total number of instances is given in column
2. Column 3 gives the percentage of optima with respect to the total number of instances. The
average computing time (in seconds), number of B&C nodes explored and the gap for each of
the sets are presented in the last three columns.

Optima/total % Time (sec) B&C Nodes Gap
CHR 144 / 144 100% 0.2 0.2 0%
HG 54 / 54 100% 1.5 1.3 0%
HD 54 / 54 100% 1.4 1.3 0%
ALB 72 / 72 100% 2.3 1.5 0%
MAD 72 / 72 100% 9.8 2.7 0%
A500 27 / 27 100% 39.5 6.5 0%
A1000 27 / 27 100% 607.3 38.2 0%
B500 24 / 24 100% 162.9 23.7 0%
C750 21 / 24 87.5% 5183.9 143.9 0.027%
D1000 20 / 24 83.3% 8972.9 282.0 0.410%
GA500 27 / 27 100% 3279.9 57.1 0%
GB500 19 / 24 79.2% 8463.0 193.4 0.607%

Table 5: Results on ‘windy’ instances

As can be seen in table 5, our algorithm solved all the WRPP instances of small and medium
size. It was also capable of solving to optimality all the large WRPP and WGRP instances
generated completely at random (A500, A1000 and GA500). On the other hand, instances
generated trying to imitate real networks proved to be more difficult and, in some cases, the
algorithm could not find the optimal solution, although the final gap is very small. These results
also confirm that, as expected, WGRP instances are harder than WRPP ones, since they have
a greater number of R-sets.

Optima/total % Time (sec) B&C Nodes Gap
MRB500 18 / 18 100% 18.7 4.8 0%
MRD1000 18 / 18 100% 1106.8 40.7 0%
M-Alba 25 / 25 100% 1.7 4.6 0%
M-Madr 25 / 25 100% 508.5 101.1 0%
M-Alda 31 / 31 100% 58.8 25.2 0%
MGB500 18 / 18 100% 2721.4 59.7 0%
MGD1000 13 / 18 72.2% 10839.3 21.8 0.057%

Table 6: Results on ‘mixed’ instances

Table 6 reports the computational results obtained on the MRPP and MGRP sets of in-
stances. Again, it can be noticed that MRPP instances are easier than MGRP ones. The
performance of the B&C procedure is very good on these types of instances, especially consider-
ing that the heuristics for the WGRP could not be applied in this case and therefore an initial
upper bound was not available. All the instances were solved to optimality except for 5 very
large MGRP instances. Note that the instances in set MGD1000 have 1000 vertices and, on
average, 169 R-sets and 2400 links, 1200 of which are required. For 3 of the unsolved instances,
the algorithm was not able to find a feasible solution, therefore these instances were not con-
sidered at the calculation of the average gap shown in the table. However, their computation
time (10 hours) and the number of nodes of their B&C trees have indeed been included in the
corresponding averages.
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In [10], computational experiments with a cutting-plane algorithm for the MGRP are pre-
sented. This procedure, which invokes the Branch and Bound option of Cplex when the final
solution of the cutting-plane algorithm is fractional, gives good computational results on the
Albaida, Madrigueras and Aldaya instances. However, 3 instances from the Albaida test set, 5
from the Madrigueras one and 8 from the Aldaya one could not be solved. It can be observed in
table 6 that all these instances have been solved by our B&C algorithm, as well as other MRPP
and MGRP instances of larger size and greater difficulty.

On the other hand, from the results given in tables 5 and 6, it can be concluded that
ARP instances defined on windy graphs are harder than those defined on mixed graphs. For
example, if we compare the results obtained for the sets GB500 and MGB500, which have similar
characteristics, we can see that all the instances in the set MGB500 were solved to optimality,
while this was not possible for 5 instances in the GB500 set.

Optima/total % Time (sec) B&C Nodes Gap
U-Alba 15 / 15 100% 4.7 3.5 0%
U-Madr 15 / 15 100% 60.8 26.7 0%
U-GRP 10 / 10 100% 53.7 38.9 0%
GTSP 6 / 7 85.7% 5886.0 359.0 0.744%

Table 7: Results on ‘undirected’ instances

Finally, table 7 shows the results obtained with our B&C algorithm on the instances defined
on undirected graphs. In spite of not being a specific algorithm for solving instances with
symmetric costs, the results obtained with the B&C procedure on the GRP instances are quite
good, although, as expected, its performance is not so good on the GTSP instances. Note that,
since they are pure Node Routing Problems, they need more specific techniques. Moreover, as
noted in [9], the only unsolved GTSP instance is based on the TSPLIB instance ts225, which
was deliberately constructed to be difficult for cutting-plane algorithms.

Table 8 shows the average number of violated inequalities of each type found by the separation
algorithms for each set of instances. Violated R-odd cut and K-C inequalities are more frequent
than the other classes of inequalities. In some sense, it seems that K-C inequalities play the role
of the parity constraints, which do not exist for general (non-binary) variables. The violated
inequalities of each class found depends heavily on the characteristics of the instances, such as
wether there are isolated required vertices or not, the number of R-sets or the ‘asymmetry’ of the
costs. Note also that the number of violated inequalities found is much bigger for the instances
generated imitating real networks than for those generated completely at random.

6 Conclusions

In this paper we have presented a B&C algorithm to solve the Windy General Routing Problem,
which is an important Arc Routing Problem that has many applications and contains many other
well-known routing problems as special cases.

We have implemented separation algorithms for several families of facet-defining inequalities.
Most of these algorithms are based on the corresponding algorithms previously designed in the
context of other routing problems. A new separation algorithm for the Zigzag inequalities has
been presented. We have tried different techniques to improve the performance of the B&C,
such as the use of less dense versions of facet-inducing inequalities, heuristic algorithms to get
upper bounds, artificial upper bounds and selection of violated inequalities.
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Conn R-odd K-C K-C02 HC HC02 PB ZZ Total
CHR 0.9 5.8 2.7 2.0 0.3 0.3 0.0 0.1 12.0
HG 2.2 30.6 8.2 5.3 1.6 0.6 0.3 0.6 49.3
HD 5.7 48.0 20.9 9.1 3.8 1.6 0.7 1.3 91.1
ALB 6.6 65.3 18.8 10.8 3.4 2.2 0.7 1.3 109.2
MAD 5.8 150.7 33.8 13.8 4.7 1.4 0.7 1.1 211.9
A500 2.9 211.9 9.7 5.6 0.3 0.1 1.3 0.8 232.6
A1000 1.5 600.9 10.6 14.0 0.3 0 2.0 0.4 629.8
B500 22.3 1085.5 93.3 42.8 31.8 8.3 2.9 2.2 1289.0
C750 33.6 2222.7 162.5 65.2 42.1 2.6 6.3 5.6 2540.7
D1000 47.3 2935.6 226.5 79.9 27.1 3.3 23.6 5.0 3348.3
GA500 25.1 294.3 27.5 7.8 0.7 0.0 5.6 0.1 361.3
GB500 71.0 1479.8 187.2 66.2 41.0 3.3 23.4 2.6 1874.5
MRB500 7.0 20.7 12.3 8.2 0.9 0.1 0.9 0.3 280.4
MRD1000 14.4 1110.4 75.5 35.5 10.4 0.3 3.6 1.4 1251.5
M-Alba 19.8 34.5 8.4 3.5 2.4 1.4 1.1 0 71.1
M-Madr 42.3 83.6 61.2 5.0 4.4 1.0 8.7 0.3 206.4
M-Alda 31.6 125.3 29.9 11.2 4.8 0.9 5.4 0.3 209.4
MGB500 33.2 654.2 97.0 34.8 16.5 1.3 5.8 0.7 843.6
MGD1000 46.1 875.1 101.1 48.9 12.2 1.2 9.4 1.8 1095.7
U-Alba 21.2 75.9 17.3 11.2 3.8 3.6 2.1 0.1 135.1
U-Madr 27.2 222.8 68.0 16.5 12.9 4.4 3.7 2.3 357.7
U-GRP 35.6 55.6 172.0 56.0 85.8 41.7 1.9 1.0 449.6
GTSP 305.1 0 0 0 0 0 115.7 0 420.8

Table 8: Number of violated inequalities

This exact algorithm has been tested on a wide set of WRPP and WGRP instances and has
been able to solve instances up to 1000 nodes, 4000 edges and 300 R-sets. Since the WGRP
generalizes many other problems, our algorithm can also be used to solve instances of such
problems. Particularly we have extended the tests to instances of other routing problems defined
on mixed and undirected graphs that have already been used in the literature. In spite of not
being specifically designed for this kind of problems, our algorithm has performed quite well on
instances of the MRPP, MGRP, GRP and GTSP. We think that these results are very good and
confirm the usefulness of the polyhedral approach to solving difficult combinatorial optimization
problems.
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