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Abstract

This paper presents a Variable Neighborhood Search (VNS) algo-
rithm for the container loading problem. The algorithm combines a
constructive procedure based on the concept of maximal-space, with
five new movements defined directly on the physical layout of the
packed boxes, which involve insertion and deletion strategies.

The new algorithm is tested on the complete set of Bischoff and
Ratcliff problems, ranging from weakly to strongly heterogeneous in-
stances, and outperforms all the reported algorithms which have used
those test instances.
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1 Introduction

In today’s global economy a continuously increasing quantity of goods
are shipped over long distances in containers. The efficient loading of these
containers, that is, the minimization of the empty spaces inside them, is not
only an economic requirement but also an ecological issue due to the adverse
consequences of increased traffic on environmental resources. In this paper
we address the container loading problem and propose efficient algorithms
for solving it.

The Single Container Loading Problem (CLP) is a three-dimensional
packing problem in which a large parallelepiped, the container, has to be
filled with smaller parallelepipeds, the boxes, which are of different sizes and
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Figure 1: Instance 9 of Class 7 from Table 5

limited quantities, so that empty space is minimized (Figure 1). Within the
improved typology for cutting and packing problems proposed by Wäscher et
al. [19], the CLP can be classified as a three-dimensional rectangular single
large object placement problem (3-dimensional rectangular SLOPP). This is
an NP-hard problem as the NP-hard one-dimensional knapsack problem can
be transformed into the 3D SLOPP.

Many procedures have been proposed for solving the CLP, from wall-
building algorithms [11, 17] to complex metaheuristic schemes, such as Tabu
Search [4], GRASP [15, 16], Simulated Annealing, genetic [9] and hybrid al-
gorithms [5]. Sometimes these procedures include parallelization [10, 6, 13],
resulting in highly complex and time-consuming algorithms designed to ob-
tain high percentages of container utilization. All metaheuristic approaches
involve some kind of neighborhood structure within which to move from one
feasible solution to another. The moves are usually applied on the lists rep-
resenting the solutions, changing the order in which boxes are packed, rather
than on the physical layout of the boxes.

In this paper we follow a different approach. We define several movements
directly on the boxes and consider the geometric consequences of moving,
inserting or deleting boxes from a given packing. These moves are studied
separately and then combined in a Variable Neighborhood Search (VNS) pro-
cedure. As in most of the previously reported papers, our algorihm uses the
set of 1500 problems distributed over 15 classes with different characteristics
generated by Bischoff and Ratcliff [1], which can be seen as the benchmark
problems for computational experiments on CLP. The new algorithm out-
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performs the previously published approaches, taking only a fraction of the
computational time, mainly in the hardest classes of problems.

When speaking about real-world container loading problems, space us-
age is the most important objective but other issues such as cargo stability,
multi-drop loads or weight distribution ([1], [18], [7]) are also taken into ac-
count. Among these additional considerations, cargo stability is the most
important one. Sometimes it is explicitly taken into account in the design
of the algorithms. At other times the algorithms’ results are also evaluated
against standard measures of cargo stability. Our VNS algorithm does not
take stability considerations into account explicitly, but we have included a
postprocessing phase which compacts the solutions and makes them very sta-
ble according to the usual stability measures. Moreover, as container volume
usage is very high, stability almost becomes a consequence of this high cargo
compactness. If necessary, the little empty space left can be filled with foam
rubber, as some freight companies do, to ensure proper support of the boxes.

The remainder of this paper is organized as follows: in the next section
the basic constructive algorithm, based on the concept of maximal-space, is
presented. In section 3 several moves are defined, the corresponding neigh-
borhoods are built and a VNS algorithm implementation is presented. In
section 4 thorough computational experiments are described and results pre-
sented. Finally, in section 5 conclusions are drawn.

2 A constructive algorithm

We follow an iterative process in which we combine two elements: a list B
of types of boxes still to be packed, initially the complete list of boxes, and a
list S of empty maximal spaces, initially containing only the container C. At
each step, a maximal space is chosen from S and from the boxes in B fitting
into it one type of box and then one configuration of boxes of this type are
chosen to be packed. That usually produces new maximal spaces going into
S and the process goes on until S = ∅ or none of the remaining boxes fit
into any of the remaining maximal spaces. We give a simplified description
of the algorithm below. More details can be found in [16].

• Step 0: Initialization S={C}, the set of empty maximal spaces.
B = {b1, b2, . . . , bm}, the set of types of boxes still to be packed.
qi = ni (number of boxes of type i to be packed).
P = ∅, the set of boxes already packed.
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Figure 2: Maximal spaces in two dimensions

• Step 1: Choosing the maximal space in S

We have a list S of empty maximal spaces. These spaces are called
maximal because at each step they are the largest empty parallelepiped
available for filling with rectangular boxes. We can see an example for
a 2D problem in Figure 2. Initially we have an empty rectangle and
when we pack a piece into its bottom left corner, two maximal spaces
are generated. These spaces do not have to be disjoint. In the same
Figure 2 we see one more step of the filling process with the maximal
spaces generated.

At each step we take the maximal space with the minimum distance
to a corner of the container and use the volume of the space as a tie-
breaker. The corner of the maximal space with the lowest distance to
a corner of the container will be the corner into which the boxes will
be packed. The reason behind that decision is to first fill the corners
of the container, then its sides and finally the inner space.

• Step 2: Choosing the boxes to pack

Once a maximal space S∗ has been chosen, we consider the types of
boxes i of B fitting into S∗ in order to choose which one to pack. If
qi > 1, we consider the possibility of packing a layer, that is, packing
several copies of the box arranged in rows and columns, such that the
number of boxes in the layer does not exceed qi. In Figure 3 we can
see different possibilities for building a layer with boxes of dimensions
(9, 5, 3) on the base of the container with dimensions (20, 20, 20) . Sim-
ilar configurations could be built on the other sides of the container. If

4



some rotations of the pieces are not allowed, the corresponding config-
urations will not be considered.

Figure 3: Building layers with a piece in different positions

Two criteria have been considered to select the configuration of boxes:

i Best-Volume:

The layer producing the largest increase in the volume occupied
by boxes.

ii Best-Fit:

The layer which best fits into the maximal space. We compute the
distance from each side of the layer to each side of the maximal
space and put these distances in a vector in non-decreasing order.
The layer is chosen using the lexicographical order.

• Step 3: Updating the list S

Unless the layer fits into space S∗ exactly, packing it produces new
empty maximal spaces, which will replace S∗ in the list S. Moreover,
as the maximal spaces are not disjoint, the layer being packed can
intersect with other maximal spaces which will have to be reduced.
Therefore, we have to update the list S. Once the new spaces have
been added and some of the existing ones modified, we check the list
and eliminate possible inclusions. Figure 2 shows this process. When
the second box is packed into maximal space 1, the space into which
it has been packed is eliminated from the list and is replaced by two
new spaces 3 and 4. Maximal space 2 is also affected by the packing,
defining a new, reduced, maximal space 5.
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3 Variable neighborhood search algorithms

Variable neighborhood search (VNS) is a metaheuristic procedure devel-
oped by Mladenovic and Hansen [14] for solving hard combinatorial problems.
For an updated introduction, refer to Hansen and Mladenovic [12].

VNS explores the solution space through a systematic change of neigh-
borhoods. The procedure is based on the fact that a local minimum for a first
type of move is not necessarily a minimum for another type of move. The
VNS tries to avoid being trapped in local minima by considering more than
one neighborhood. It has been successfully applied to diverse combinatorial
optimization problems.

We have used five neighborhood structures, N1 to N5, considering differ-
ent insertion and elimination procedures. These structures will be defined in
the following subsections.

3.1 Definition of movements

The solution space in which we move is composed of feasible solutions
only. In this space we will define several moves for going from one solu-
tion to another. An initial solution is obtained by applying the constructive
algorithm described in the previous section.

We distinguish five types of movements: layer reduction, column inser-
tion, box insertion, and emptying a region of the container and filling it again
with two alternative procedures. In layer reduction, a layer of the solution
is removed from the current solution. In column insertion, a new column is
added to the solution in one of the empty spaces. In box insertion, a piece
is included in the solution in one of the empty spaces. Finally the fourth
and fifth moves consist of choosing two maximal spaces, emptying the small-
est parallelepiped containing both of them and filling it again by using the
constructive procedure with the two different objective functions described
above, Best-Volume and Best-Fit.

We first present a scheme of the procedures and then some examples of
their application in Figures 4, 5 and 6:

1. Layer reduction

1. Initialization:
Y= the list of layers in the current solution

2. Choosing the layer to reduce
Take Y , one of the layers of Y with k columns and l rows
Select the number r of columns (rows) to eliminate,
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1 ≤ r ≤ k (1 ≤ r ≤ l),

(if r = k or r = l , the layer may disappear completely).

3. Move the remaining layers to the nearest corner of the container,
measured by the lexicographical distance.

If none if them is moved, go to step 1.

4. Update the list S of maximal spaces.

5. Fill the empty maximal spaces by applying the constructive algo-
rithm with the Best-volume objective function.

In Step 3, if none of the layers is moved, no new spaces are generated
apart from the space previously occupied by Y and filling the same
space again will not produce any improvement.

2. Column insertion

1. Initialization:
B= the list of boxes outside the container in the current solution
S= the list of empty maximal-spaces

2. Choosing the space into which to insert new boxes: Take S ∈ S

3. Choosing the box to be inserted: Take B ∈ B.

4. Put box B into the corner of S nearest to a corner of the container.

5. Choose a possible direction for building a column of boxes.

In at least one dimension the box is larger than the space, but it
is possible that in the other dimensions more than one box can
fit into the space. In this case, we do not consider packing an
individual box but a column with as many boxes as possible, in
such a way that the column does not exceed the dimensions of the
space in more than one direction.

Let us suppose that S has dimensions (lS, wS, hS) and B dimen-
sions (lB, wB, hB). If lS ≤ lB, wS ≤ wB and hS ≤ hB, then only
one box B is inserted into S. But if, for instance, lS < lB but
wS > k ∗wB and hS > m ∗ hB, we can insert a column of k boxes
along the width or a column of m boxes along the height of S.

6. Remove the overlapping boxes of the container.

7. Update the list S of maximal spaces.

8. Fill the empty maximal spaces by applying the constructive algo-
rithm with the Best-volume objective function.
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3. Box insertion

1. Initialization:
B= the list of boxes outside the container in the current solution
S= the list of empty spaces

2. Choosing a box to insert: Take B ∈ B.

3. Choosing the space into which insert this piece: Take S ∈ S

4. Choosing the position of B in S: Consider packing box B in every
possible corner of S. Put the piece into the corner and remove the
overlapping boxes.

5. Update the list S of maximal spaces.

6. Fill the empty maximal spaces by applying the constructive algo-
rithm with the Best-volume objective function.

4.-5. Emptying a region

1. Initialization:
Y= the list of layers in the current solution
S= the list of empty spaces

2. Take a first space S1 ∈ S.

3. From among the spaces which are smaller than S1, take a second
space S2 ∈ S.

4. Create the smallest parallelepiped P containing S1 and S2. If P

has the same volume as any emptied region explored before, go to
2, because it is probably the same region and will not be studied.
Otherwise, remove all the boxes overlapping with P .

5. Update the list S of maximal spaces.

6. Fill the empty spaces by applying the constructive algorithm.

According to the objective function used in Step 6, Best-Volume or
Best-Fit, we have two different moves.

In Figures 4, 5 and 6 we can see some examples of these moves for a
two-dimensional problem. In Figure 4 we have an example of the reduction
of a layer in the solution. In fact, as the layer is composed of only one box,
reduction amounts to elimination. Figure 5 shows an example of column
insertion. The box width exceeds the space width, but along the length
of S a column of three boxes can be inserted. Finally Figure 6 shows an
example of emptying a region. First, two empty spaces are selected, then

8



all the pieces that overlap with the smallest rectangle that contains them
are removed and finally the resulting empty space is filled by applying the
constructive algorithm.

(a) Selecting (b) Removing (c) Moving to the
corner

(d) Filling

Figure 4: Layer reduction

(a) Selecting the empty
space

(b) Inserting a column (c) Eliminating overlap

Figure 5: Column insertion

The four movements are complementary. There are two insertion moves
and three based on eliminating boxes and filling the resulting empty spaces
again. The difference between the insertion of a box and insertion of a column
is double: firstly, in the second move we can insert more than one box, and
secondly, when inserting one box we consider inserting it into each corner of
each maximal space.

3.2 Neighborhood structures

Using the movements described above, we can build five different neigh-
borhoods.

1. N1, based on layer reduction

The neighbors of a solution are the solutions obtained by applying the
layer reduction move, considering at Step 2 each layer Y ∈ Y (with k

columns and l rows) and for the chosen layer each possible reduction of r

columns (1 ≤ r ≤ k) and each possible reduction of r rows (1 ≤ r ≤ l).

9



(a) Selecting the spaces (b) Defining the region

(c) Removing overlapping boxes (d) Filling

Figure 6: Emptying a region

2. N2, based on column insertion

The neighbors of a solution are the solutions obtained by applying the
column insertion move, taking at Step 2 a maximal-space S in non-
decreasing order of volume, considering at Step 3 each box B outside
the solution and studying at Step 4 each possible direction in which a
column can be built.

3. N3, based on box insertion

The neighbors of a solution are the solutions obtained by applying the
box insertion move, taking at Step 2 a box B outside the solution in
non-decreasing order of volume, considering at Step 3 each maximal-
space S in non-decreasing order of volume and studying at Step 4 each
possible corner of S to pack B into.

4-5. N4 and N5, based on emptying a region

The neighbors of a solution are the solutions obtained by applying the
emptying move, taking at Step 2 a maximal-space S1 in non-decreasing
order of volume and considering at Step 3 each maximal-space S2,
smaller than S1, in non-decreasing order of volume.

The sets of possible neighbors are very large and therefore we do not
explore them fully, but at each iteration we explore only 1000 moves for the
first three neighborhoods and 100 for the last ones. For the moves based on
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emptying regions of the container, we take special care only to study moves
producing different regions in order to avoid repetitions.

3.3 Variable neighborhood descent

A first implementation to combine several neighborhoods in a determin-
istic way is given by the variable neighborhood descent (VND). Its steps are
the following:

Initialization: Select the set of neighborhood structures Np, for p = 1, ..., 5,
and start from the initial solution x obtained by the constructive algorithm.
Repeat the following sequence until no improvement is obtained:

(1) Set p← 1
(2) Repeat the following steps until p = pmax

(a) Exploration of neighborhood.
Find the best neighbor x′ of x(x′ ∈ Np(x));

(b) Move or not.
If the solution x′ obtained is better than x, set x← x′ and p← 1.
Otherwise, set p← p + 1;

We have also tested a variant in which instead of finding the best solution
in the neighborhood, a move is made as soon as a solution x′ that improves
x is found. This variant will be denoted as V NDfirst.

3.4 VNS

The basic VNS includes not only a systematic search of several neighbor-
hoods, as in VND, but also some stochastic moves designed to escape from
local optima, a strategy known as shaking. Its steps are the following:

Initialization: Select the set of neighborhood structures Np, for p = 1, ..., pmax,
that will be used in the shaking phase, and the set of neighborhoods Nl, for
l = 1, .., lmax, which will be used in the local search. Start from the initial
solution x obtained by the constructive algorithm.

Repeat the following sequence until the stopping condition is met:
(1) Set p← 1
(2) Repeat the following steps until p = pmax
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(a) Shaking. Generate a neighbor x′ of x at random, using the pth neigh-
borhood.

(b) Local search by VND.
(b1) Set l← 1;
(b2) Repeat the following steps until l = lmax

- Exploration of neighborhood.
Find the best neighbor x′′ of x′ in Nl(x);

- Move or not.
If the solution x′′ is better than x′, set x′ ← x′′ and l← 1.
Otherwise, set l← l + 1;

(c) Move or not. If this local optimum is better than the incumbent, move
there (x← x′′) and continue the search with N1; otherwise, set p← p + 1.

Initially we use the same set of neighborhoods, N1 to N5, for the shak-
ing step and for the VND. A preliminary computational experiment shows
that the moves based on inserting a box or a column hardly transform the
solution, and the opposite occurs for the other moves involving elimination
of boxes. We then have a balance between intensification and diversifica-
tion shaking. Nevertheless, we have defined a stronger shaking movement in
which we eliminate a percentage of the boxes in the current solution and fill
the container again using the constructive procedure with the Best-volume

objective function. This percentage varies between 10% and 30% of the boxes
in the solution. This move defines a new neighborhood, N6, which is only
used in the Shaking phase.

4 Computational results

The above algorithm was coded in C++ and run on a Pentium Mobile at
1500 MHz with 512 Mbytes of RAM. In order to assess the relative efficiency
of our algorithms we have compared them with the most recent and efficient
algorithms proposed for the container loading problem on the set of 1500
problems suggested by Bischoff et al. [2] and Davies and Bischoff [7]. Those
instances are subdivided into 15 test cases each with 100 instances which are
referred to as BR1 to BR15. The number of different box types in each class
are 3, 5, 8, 10, 12, 15, 20, 30, 40, 50, 60, 70, 80, 90 and 100. According to the
decreasing average number of boxes per type, the problem structure changes
gradually from weakly heterogeneous to strongly heterogeneous. In test class
BR1 there are on average 50.15 boxes for each box type, but in test class
BR15 the average number is only 1.33. The average of available cargo is over
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99.46% of the capacity of the container and for each individual instance it
never exceeds the volume of the container. As the dimensions of the boxes
were generated independently of the dimensions of the container, there is no
guarantee that all the boxes will fit into the container. What is more likely
is that the given percentage should be seen as a (quite loose) upper bound
on the volume of the container that optimal packing could attain.

All computational results tables present average values for the 100 in-
stances of each class. Each instance was only solved once. As the procedures
have a random component, if we had solved them more than once, we could
have obtained different solutions. However, if we compute the average for
each instance over several runs and then the average of these averages over
the 100 instances of each class, it is well-known that we would not obtain
significantly different results. Obviously, if we compute the best value over
several runs for each instance and then the averages for each class we would
obtain better results, but with running times increased as many times as
the runs we executed. Our option was to keep the running times low and
therefore we decided to run each instance just once.

In order to choose the best strategies for defining the VND and VNS

algorithms, we have done a limited computational study using some of the
problem instances described above. The first series of experiments compare
separate local searches in the five defined neighborhood structures N1, N2,
N3, N4 and N5, using the first 10 instances of each class. The results appear
in Table 1. As can be expected, the table shows that the searches in N1, N2,
N3 are faster, but produce solutions of worse quality. The opposite holds for
the neighborhoods N4 and N5, which give better results but require much
longer running times.

We have used the five neighborhoods Ni, i = 1, . . . 5, in the implementa-
tion of the VND algorithm. The order in which the five neighborhoods are
considered can influence the quality of the solution produced by the VND

algorithm. Therefore, we have adopted a strategy consisting of alternating
neighborhoods based on elimination and neighborhoods based on insertion.
First, neighborhood N4, based on emptying a region and filling it again with
Best-Volume objective; then N2, inserting a column; N5, emptying a region
and filling it again with Best-Fit objective; N3, inserting a box; and finally
N1, removing a layer of the solution. In Table 2 we compare the results ob-
tained using this order (VNS 42531 ) with the alternative of first using the
simplest and fastest moves and calling the more complex moves only when
they fail to produce improved solutions, that is, using the neighborhoods in
order N3, N2, N1, N4 and N5 (VNS 32145 ). The results show that taking
the neighborhoods in the proposed order produces much better results than
taking them in order of complexity, though the computing times are longer
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Emptying a region
N3 N2 N1 N4 N5

Construc. Box Insertion Column Insertion Layer reduction Best-Volume Best-Fit
Problem Vol.(%) Vol.(%) Time Vol.(%) Time Vol.(%) Time Vol.(%) Time Vol.(%) Time
BR 1 84,34 87,60 0,01 88,92 0,01 87,75 0,01 92,08 0,04 92,08 0,04
BR 2 85,61 87,23 0,02 89,36 0,02 88,41 0,01 91,84 0,05 92,10 0,07
BR 3 85,81 87,82 0,02 88,55 0,02 87,94 0,02 91,73 0,10 92,45 0,17
BR 4 87,07 87,29 0,02 88,21 0,02 88,72 0,03 92,99 0,23 92,66 0,17
BR 5 86,46 87,40 0,02 88,68 0,03 88,58 0,05 92,00 0,23 91,58 0,30
BR 6 88,21 88,40 0,04 89,43 0,04 88,79 0,06 91,22 0,31 91,79 0,37
BR 7 85,96 84,65 0,05 85,81 0,04 85,77 0,12 90,47 0,66 90,12 0,50
BR 8 85,96 86,71 0,10 87,27 0,12 87,17 0,33 89,07 1,01 89,08 1,12
BR 9 86,23 86,65 0,12 86,80 0,11 87,38 0,49 89,29 1,77 89,23 1,90
BR 10 85,72 86,46 0,17 86,20 0,16 86,93 0,71 88,63 2,38 88,62 2,06
BR 11 85,85 86,76 0,20 86,99 0,31 87,62 1,47 88,81 3,59 88,58 3,80
BR 12 85,18 87,04 0,34 86,86 0,30 87,34 1,51 88,66 5,14 88,40 5,18
BR 13 85,40 85,93 0,62 85,71 0,50 86,19 3,36 87,83 9,28 87,13 6,53
BR 14 84,87 85,72 0,72 85,87 0,74 86,18 4,42 87,67 9,70 87,11 9,09
BR 15 85,41 85,19 0,87 85,31 0,89 85,70 6,39 87,27 16,84 86,70 12,90
Mean 85,87 86,72 0,22 87,33 0,22 87,36 1,27 89,97 3,42 89,84 2,95
*The best values appear in bold

Table 1: Comparing the neighborhoods
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V ND 42531 V ND 32145
Problem Vol.(%) Time Vol.(%) Time
BR 1 92,82 0,08 92,54 0,28
BR 2 93,26 0,19 93,39 0,83
BR 3 93,10 0,34 91,94 1,85
BR 4 93,73 0,67 92,60 1,35
BR 5 92,73 0,98 91,60 1,73
BR 6 92,67 2,07 91,09 2,23
BR 7 91,38 2,21 90,54 3,25
BR 8 90,56 5,62 90,55 6,23
BR 9 90,73 8,18 89,76 7,03
BR 10 89,94 10,95 89,71 8,74
BR 11 90,22 16,88 88,90 12,00
BR 12 89,88 19,28 89,55 19,37
BR 13 88,75 27,25 88,60 20,82
BR 14 88,73 34,78 88,38 33,30
BR 15 88,70 59,01 88,24 29,11
Mean 91,15 12,57 90,49 9,87
*The best values appear in bold

Table 2: Comparing the orders in which the neighborhoods are used

for strongly heterogeneous classes.
Table 3 shows the results obtained by three versions of the algorithm: the

standard VND, V NDfirst and V NDseq. In V NDseq the neigborhoods are
used in the same order as V ND, but in the Local Search, when a solution
is improved using the pth neigborhood, instead of setting p = 1 and going
back to the first neighborhood, the algorithm proceeds sequentially to the
(p+1)th. Both V ND and V NDseq present similar results; however, V NDseq

requires a slightly lower computational effort.
Table 4 compares several implementations of the V NS algorithm. Columns

2 and 3 correspond to a simple implementation, V NSred, in which only neigh-
borhood N4 is used in shaking and local search. Columns 4 and 5 correspond
to V NSseq, which is similar to V NDseq, which uses the five neighborhoods,
but in the Local Search when a solution is improved using the pth neighbor-
hood, instead of setting p = 1 and going back to the first neighborhood, the
algorithm proceeds to the (p + 1)th. Columns 6 and 7 correspond to V NS,
a standard implementation of the algorithm as described in section 3.4, run-
ning for 15 iterations. The number of iterations in these three procedures
has been set to obtain similar running times. The results are quite similar,
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V ND First V ND V ND Seq

Problem Vol.(%) Time Vol.(%) Time Vol.(%) Time
BR 1 92,63 0,11 92,82 0,08 92,93 0,13
BR 2 93,27 0,20 93,26 0,19 93,58 0,26
BR 3 92,96 0,55 93,10 0,34 93,06 0,52
BR 4 92,77 0,60 93,73 0,67 93,29 0,75
BR 5 92,36 1,23 92,73 0,98 92,35 1,14
BR 6 91,97 1,15 92,67 2,07 92,08 1,20
BR 7 90,55 2,44 91,38 2,21 91,89 2,22
BR 8 90,69 4,63 90,56 5,62 91,61 5,42
BR 9 90,49 6,34 90,73 8,18 90,08 7,15
BR 10 89,61 11,05 89,94 10,95 90,41 10,34
BR 11 89,55 13,08 90,22 16,88 89,85 15,53
BR 12 89,36 14,40 89,88 19,28 89,75 21,62
BR 13 88,31 21,93 88,75 27,25 89,08 29,82
BR 14 88,70 39,76 88,73 34,78 88,37 32,86
BR 15 88,05 39,93 88,70 59,01 88,58 35,49
Mean 90,75 10,49 91,15 12,57 91,13 10,96
*The best values appear in bold

Table 3: Comparing VND strategies
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V NSred 60 Iter V NSSeq 18 Iter V NS 15 Iter
Problem Vol.(%) Time Vol.(%) Time Vol.(%) Time
BR 1 94,07 1,84 94,85 2,98 94,56 1,97
BR 2 95,19 3,60 95,10 5,60 94,93 4,75
BR 3 94,54 9,46 94,97 11,06 94,55 7,40
BR 4 94,85 10,21 94,52 15,12 94,41 13,44
BR 5 94,11 17,63 94,19 22,62 94,19 18,59
BR 6 93,35 29,17 93,61 31,71 93,63 26,01
BR 7 92,70 41,41 93,38 58,00 92,99 43,73
BR 8 91,94 88,45 92,36 122,05 92,23 104,92
BR 9 91,50 118,97 91,69 141,84 92,05 123,88
BR 10 91,08 169,90 92,04 218,05 91,81 182,46
BR 11 90,96 248,00 91,16 309,12 91,22 272,24
BR 12 90,83 295,56 90,94 375,65 91,23 404,09
BR 13 90,12 436,72 90,88 502,25 90,50 527,07
BR 14 89,92 515,50 90,46 640,32 90,05 620,18
BR 15 89,74 686,03 90,35 788,24 90,22 764,01
Mean 92,33 178,16 92,70 216,31 92,57 207,65
*The best values appear in bold

Table 4: Comparing VNS alternatives

but we can see that the VNS versions which use several neighborhoods are
better than that using just one. If we compare the two versions of the V NS

using the five neighborhoods, we see that V NDseq produces slightly better
results in similar computing times. The reason may lie in the fact that we
have changed the order in which the neigborhoods are searched, first putting
the more efficient and time-consuming one. It is faster to follow the com-
plete cycle of neighborhoods instead of going back to the first one whenever
an improved solution is found, and the time saved is well-used making more
iterations.

For the complete computational results we use the complete set of 1500
instances generated by Bischoff and Ratcliff [1], instead of just solving the
first ten instances of each class as has been done in previous tables. We
use the algorithm V NSseq but we have changed its stopping criterion. As
this algorithm is much faster than other previous algorithms against which
it is going to be compared, we let it run for a minimum of 30 iterations
and then go on until no improvement is found in the last 5 iterations or
a maximum of 60 iterations is reached. Using this new stopping criterion,
the average times are increased around 10% of the times reported in Table 4,
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but the average results are slightly improved. As the algorithm does not take
into account cargo stability considerations, a postprocessing phase has been
added in which the solution is compacted. We have developed a compacting
procedure which takes each box from bottom to top and tries to move it down,
along axis Z, until it is totally or partially supported by another box. Then,
a similar procedure takes boxes from the end of the container to the front and
tries to move them to the end, along axis Y . Finally, there is a procedure
moving them from left to right, along axis X. The three procedures are
called iteratively while some boxes are moved. When the compacting phase
is finished, the empty spaces are checked for the possibility of packing some
of the unpacked boxes. In some cases, the results obtained by the V NSseq

are improved after this compacting procedure.
Table 5 compares the V NSseq algorithm with the most recent and effi-

cient metaheuristic procedures reported in the literature. The Table includes
results from the parallel algorithms proposed by Mack et al. [13]: a par-
allel simulated annealing algorithm, PSA MB ; a parallel hybrid algorithm,
PHYB MB ; and a massive parallel hybrid algorithm PHYB XL MB ; and our
GRASP algorithm [16] with iteration limits of 5000, 50000 and 200000. For
all these algorithms, except GRASP with 5000 iterations, the authors only
report the results on classes BR1 to BR7. Mack et al. [13] use computers
Pentium-PC at 2Ghz, a LAN of 4 computers for the parallel implementation
of PSA and PHYB and a LAN of 64 computers for the PHYB.XL imple-
mentation. Algorithms GRASP and VNS run on a Pentium Mobile at 1.5
GHz.

VNS takes much shorter running times (except when compared with
GRASP 5000) and obtains the best results on average and in each individ-
ual class, except for BR7 in which GRASP 200000 obtains a better result.
The lower half of the table compares V NSseq with GRASP 5000 because the
other algorithms have not been run on these classes. In this case, V NSseq

clearly outperforms GRASP 5000 with moderately longer running times. In
general, the improvements obtained by the V NSseq are very important, con-
sidering the high efficiency of the other algorithms and the distance to the
upper bound.

5 Conclusions

We have developed a new heuristic algorithm based on variable neighborhood
search for the container loading problem. We have proposed several new
neighborhoods based on the elimination of layers, insertion of columns or
boxes and a stronger move based on emptying a region of the container.
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Parallel methods GRASP

Class PSA PHY B PHY B.XL 5000 iter 50000 iter 200000 iter V NSseq

BR 1 93,24 93,41 93,70 93,27 93,66 93,85 94,93
BR 2 93,61 93,82 94,30 93,38 93,90 94,22 95,19
BR 3 93,78 94,02 94,54 93,39 94,00 94,25 94,99
BR 4 93,40 93,68 94,27 93,16 93,80 94,09 94,71
BR 5 92,86 93,18 93,83 92,89 93,49 93,87 94,33
BR 6 92,27 92,64 93,34 92,62 93,22 93,52 94,00
BR 7 91,22 91,68 92,50 91,86 92,64 92,94 93,53
Mean B1-B7 92,91 93,20 93,78 92,94 93,53 93,82 94,34
Average times B1-B7 81 222 596 8 77 302 28
BR 8 91,02 92,78
BR 9 90,46 92,18
BR 10 89,87 91,92
BR 11 89,36 91,46
BR 12 89,03 91,20
BR 13 88,56 91,08
BR 14 88,46 90,65
BR 15 88,36 90,38
Mean B8-B15 89,39 91,46
Overall mean 91,05 92,89
Overall mean times 101 296
*The best values appear in bold

Table 5: Comparison of algorithms
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The computational results show that these ideas work well for a large set of
instances. Our experimentation shows that the VNS methodology competes
favorably with the best known algorithms for the container loading problem.
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