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ABSTRACT  
 
In this paper, we develop new heuristic procedures for the maximum diversity problem (MDP).  This NP-
hard problem has a significant number of practical applications such as environmental balance, 
telecommunication services or genetic engineering.  The proposed algorithm is based on the tabu search 
methodology and incorporates memory structures for both construction and improvement.  Although 
proposed in seminal tabu search papers, memory-based constructions have been largely ignored and most 
tabu search applications restrict themselves to the local search framework.  We will compare our tabu 
search construction with a memory-less design and with previous algorithms recently developed for this 
problem.  This construction can be coupled with a local search procedure or a short-term tabu search for 
improved outcomes.  Extensive computational experiments with medium and large instances show that 
the proposed procedure outperforms the best heuristics reported in the literature within short 
computational times. 
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1. Introduction 
 
The problem of selecting a subset of maximum diversity from a given set of elements is known as the 
maximum diversity problem (MDP).  This problem arises in a wide range of real-world settings and it has 
been the subject of several previous studies beginning with the work by Kuo, Glover and Dhir (1993).  
Some applications include environmental balance, telecommunication services or genetic engineering 
(see Glover et al. 1998 for a detailed description). 
 
Evolutionary methods based their success on maintaining a set of solutions, often called population, 
which achieved a good balance between quality and diversity.  For instance, Scatter Search (Laguna and 
Martí, 2003) operates on a small set of solutions called the reference set, which is created by selecting a 
few distinct, good and maximally diverse solutions from a larger set of initial solutions.  Therefore, in 
these methods, a maximum diversity problem often needs to be solved within low running times, since it 
is part of the optimization process applied to solve the problem at hand.  
 
The MDP can be formally stated as follows.  Let S = {si : i ∈ N} be a set of elements where N = {1, 2,.., 
n} is the set of indexes and each element si can be represented as a vector si = (si1, si2, ..,sir).  Let dij be the 
distance between elements si and sj, and let m < n be the desired size of the diverse set.  The problem then 
consists of selecting m elements in S in order to maximize the sum of the distances between the selected 
elements: 
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where xi = 1 indicates that element si has been selected.  This formulation appears in Kuo et al. (1993), 
but it was not solved directly.  The formulation is transformed to equivalent linear integer programs that 
offer greater computational efficiency.  One of these formulations was used as the basis for showing that 
the maximum diversity problem is NP-hard. 
 
Ghosh (1996) also proved the completeness of the problem. The author proposed a multi-start algorithm 
for the MDP and compared the heuristic solutions on small instances (n≤40) with the optima obtained 
from the formulation mentioned above. 
 
In Glover et al. (1998), four different heuristics are proposed for this problem.  Since different versions of 
this problem include additional constraints, the objective is to design heuristics whose basic moves for 
transitioning from one solution to another are both simple and flexible, allowing these moves to be 
adapted to multiple settings.  Moves that are especially attractive in this context are constructive and 
destructive moves that drive the search to approach and cross feasibility boundaries from different 
directions.  Such moves are also highly natural in the maximum diversity problem, where the goal is to 
determine an optimal composition for a set of selected elements.  The authors compare the solution 
obtained with their heuristics with the optimal solution in small instances (n≤30). 
 
Silva et al. (2004) present several GRASP algorithms (Resende and Ribeiro, 2001) for the MDP.  
Specifically, the authors propose three constructive algorithms within the GRASP framework and two 
local search methods for this problem.  Extensive computational experiments with medium instances 
(n≤500) show that their procedures outperform previous methods when they run for extremely long times 
(their methods employ on average more than 20 hours of CPU time on the instances with n=500). 
 
Tabu Search is a meta-heuristic that guides a local heuristic search procedure to explore the solution 
space beyond local optimality.  One of the main components of Tabu Search is its use of adaptive 
memory, which creates more flexible search behaviour.  Memory-based strategies are therefore the 
hallmark of tabu search approaches, founded on a quest for “integrating principles,” by which alternative 
forms of memory are appropriately combined with effective strategies for exploiting them. 
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The structure of a neighborhood in tabu search goes beyond that used in local search by embracing the 
types of moves used in constructive and destructive processes (where the foundations for such moves 
are accordingly called constructive neighborhoods and destructive neighborhoods).  We can implement 
memory structures within a constructive process to favor (or avoid) the inclusion of certain elements in 
the solution previously identified as attractive (or unattractive).  Such expanded uses of the 
neighborhood concept reinforce a fundamental perspective of TS, which is to define neighborhoods in 
dynamic ways that can include serial or simultaneous consideration of multiple types of moves.  
Constructive neighborhoods have been proposed from the very beginning of the methodology, as 
documented in Glover and Laguna (1997); however, they have rarely been applied in TS 
implementations. 
 
In this paper we introduce different solution methods for the MDP.  Specifically, we propose two 
constructive methods, the first one based on a GRASP construction and the second one based on memory 
structures.  Moreover, we propose an improved local search algorithm (as compared with those 
previously reported) and a short-term memory tabu search method.  Our experimentation with medium 
(n=500) and large instances (n=5000) shows that the application of tabu search methodology to this 
problem outperforms the previous approaches identified as the best. 
 
2. Previous Approaches 
Ghosh (1996) proposes a multi-start algorithm for the MDP.  It consists of a construction phase and a 
local search post-processing.  The construction performs m iterations to obtain a solution.  In each 
iteration one element is selected according to an estimation of its contribution to the final diversity.  The 
local search implements a straightforward “hill climbing” heuristic based on performing the best available 
exchange.  Exchanges in this context consist of replacing one selected element with an unselected one.  In 
mathematical terms, given the set Sel of selected elements, if we replace sv∈Sel with su∈S-Sel, the 
objective value of the new solution can be trivially computed from the value of the original one with the 
expression z'=z+exchange(u,v) where: 
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The procedure scans the set of selected elements Sel (|Sel|=m) in search of the exchange whose 
application results in the largest increase of the objective function.  The method performs the best 
available exchange in each iteration until no further improvement is possible. As mentioned by other 
authors (see for instance Silva et al 2004) this multi-start method produces results of relatively low 
quality.  However, as will be shown, the local search phase has been used in several algorithms. 
 
In Glover et al. (1998) two constructive and two destructive heuristics are proposed.  The first 
constructive and destructive methods are based on the concept of the center of gravity of a set.  The 
center, s_center(X), of a set of elements X = {si : i ∈ I} is defined as: 
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Figures 1 and 2 present, respectively, an outline of the first constructive and destructive heuristics, where 
S is the set of elements and Sel denotes the set of selected elements. 
 

 1. Sel = ∅ 
 2. Compute sc = s_center(S) 
 while ( |Sel| < m ) 
  3. Let { }),(max),(/ *

*
ciSsci ssdssdi

i ∈
=  

  4. Sel = Sel ∪ {si*} 
  5. S = S - {si*} 
  6. sc = s_center(Sel) 
 end while 

Figure 1. Constructive heuristic C1 
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 1. Sel = S 
 2. Compute sc = s_center(S) 
 while ( |Sel| > m ) 
  3. Let { }),(min),(/ *

*
ciSsci ssdssdi

i ∈
=  

  4. Sel = Sel - {si*} 
  5. sc = s_center(Sel) 
 end while 

Figure 2. Destructive heuristic D1 
 
Algorithm C1 basically selects, at each step, the element si* with the maximum distance to the center from 
among the elements already selected.  The method finishes when m elements have been selected.  On the 
contrary, starting with all the elements selected, D1 unselects, at each step, the element si* with the 
minimum distance to the center from among the selected elements.  The method finishes when n-m 
elements have been unselected. 
 
The second constructive and destructive heuristics, C2 and D2, are variations on the first ones, where 
instead of constructing a center of the set, the distance between an element si and a set X = {sj : j ∈ I} is 
defined as follows: 
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C2 selects, at each step, the element with the maximum distance to the already selected elements Sel, 
where the distance to set Sel is computed with the expression above.  Symmetrically, D2 unselects, at each 
step, the element with the minimum distance to the set Sel of selected elements. 
 
As previously mentioned, Silva et al. (2004) implement three GRASP constructions: KLD, KLDv2 and 
MDI, and two local search procedures: GhA and Soma, where GhA is the method proposed by Ghosh 
(1996).  Their computational experimentation showed that when running time is limited, KLD coupled 
with GhA produces the best quality solutions.  On the other hand, when longer running times are 
admissible, KLDv2 coupled with GhA is the best method.  Therefore we will restrict our attention to 
these two combinations.  Nonetheless, as shown in their experimentation and confirmed in ours, all these 
methods present extremely long running times when solving medium-size instances. 
 
KLD computes for each element si the k elements with larger values of dij and calculates the sum sdi of 
these k values.  Then, at each iteration, it constructs a list of candidates RCL with the k non-selected 
elements with larger sdi values.  Then it randomly selects an element from RCL.  A reactive mechanism 
sets the value of parameter k according to the results obtained with four particular values given by the 
expression k=m+(1+α)(n-m)/2 for α= -0.2, -0.1, 0.1 and 0.2.  Strictly speaking, KLD is not a GRASP 
construction since RCL is computed offline and no adaptive mechanism is present. 
 
KLDv2 implements a pure GRASP construction with adaptive mechanisms.  Figure 3 shows the outline 
of this procedure.  At iteration c (|Sel|=c-1) KLDv2 computes for each element si the k-c non-selected 
elements with larger values of dij and calculates the sum sdi of these k-c values.  Then, the greedy function 
gf(i) is computed as  
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RCL is now formed with the k elements with larger gf(i) values, and the next element in Sel is randomly 
selected from RCL.  The method finishes when m elements have been selected.  The parameter k is set 
with the same reactive mechanism described in KLD. 
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 1. S = {si : i  = 1, 2,.., n}  
 2. Sel = ∅ 
 while ( |Sel| < m ) 

3. For each si ∈ S-Sel compute 
3.1 Di as the set of k-c elements sj ∈ S-Sel with larger 

values of dij. 
    ∑
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  4. Compute RCL with the k elements in S-Sel with larger 
gf(i) values 

  5. Select randomly si* in RCL 
  6. Sel = Sel ∪ {si*}  
  7. S = S - {si*} 
 end while 

Figure 3. Constructive heuristic KLDv2 
 
 
Finally, the most distant insertion heuristic, MDI, starts off by randomly selecting one element.  Then, in 
the second step, it selects the element with the longest distance to the element already selected.  From this 
point on, at each step, it constructs an RCL with the unselected elements with maximum distances.  Now, 
the distance associated to a non-selected element j is computed as the sum of two terms, the first one 
corresponding to the sum of distances between all the selected elements and the second term being the 
sum of distances between j and all the selected elements.  With these values, a reactive GRASP is 
implemented using the same mechanism described above. 
 
 
3. New Constructive Methods 
 
In this section we propose two types of constructive algorithms for the maximum diversity problem.  The 
first one is based on GRASP constructions while the second one implements memory structures to 
discourage previous selections.   
 
The GRASP methodology was developed in the late 1980s and the acronym was coined by Tom Feo (Feo 
and Resende, 1995).  Each GRASP iteration consists of constructing a trial solution and then applying an 
exchange procedure to find a local optimum (i.e. the final solution for that iteration).  The construction 
phase is iterative, greedy, and adaptive.  It is iterative because the initial solution is built considering one 
element at a time.  It is greedy because the addition of each element is guided by a greedy function.  It is 
adaptive because the element chosen at any iteration in a construction is a function of those previously 
chosen.  (That is, the method is adaptive in the sense of updating relevant information from one 
construction step to the next.)  The improvement phase typically consists of a local search procedure. 
 
Performing multiple GRASP iterations may be interpreted as a means of strategically sampling the 
solution space.  Based on empirical observations, it has been found that the sampling distribution 
generally has a mean value that is inferior to the one obtained by a deterministic construction, but the best 
overall trial dominates the deterministic solution with a high probability.  The intuitive justification of this 
phenomenon is based on the ordering statistics of sampling.  It implements a way of independently 
sampling the solution space and each construction consists of an independent algorithm.  In this sense, 
GRASP is a memory-less method since no information is recorded from one construction to the next. 
 
A different framework is given by the use of memory among constructions.  Instead of performing an 
independent sampling of the solution space, constructive methods based on memory structures perform a 
guided selection in this space.  Specifically, in tabu search constructions, the inclusion or exclusion of 
certain elements or groups of elements can be identified as attractive for intensification or diversification 
purposes.  In this section we focus our attention on constructive and destructive neighbourhoods in which 
an element is added to or dropped from the partial solution under construction.  In this context we 
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consider the inclusion of frequency memory for both intensification and diversification.  In the 
computational section we will compare both types of approaches, those with and without memory, to 
solve the maximum diversity problem. 
 
Based on each of the four methods proposed by Glover et al. (1998), we consider a GRASP construction.  
For example, in GRASP_C1 we replace the greedy selection given in algorithm C1 (see step 3 in Figure 1) 
with a random selection from a Restricted Candidate List containing the elements with the longest 
distance to the center.  Each time an element is added to the Sel set under construction, the center is 
updated and the distances recomputed.  Figure 4 shows a pseudo-code of this method. 
 
 

 1. Sel = ∅ 
 2. Compute sc = s_center(S) 
 while ( |Sel| < m ) 
  3. { }),(maxmax ciSs

ssdd
i ∈

=  , { }),(minmin ciSs
ssdd

i ∈
=  

  4.  RCL = { si ∈ S-Sel / d(si , sc) ≥ dmin + α(dmax− dmin ) } 
  5. Select si* randomly in RCL 
  4. Sel = Sel ∪ {si*} 
  5. S = S - {si*} 
  6. sc = s_center(Sel) 
 end while 

Figure 4. Constructive heuristic GRASP_C1 
 
GRASP_C1 constructs the restricted candidate list with all the non-selected elements with a distance to 
the current center within a percentage α of the maximum distance to this center.  This parameter α is 
initially set to 0.5 and is dynamically adjusted according to the best value of the constructions.  If after 
niter/5 consecutive constructions the incumbent value has not been improved, we increment α by 0.1 (up 
to a maximum of 0.9, where niter is the total number of constructions).  Analogously, we implement 
GRASP_C2 from constructive method C2.  In a symmetric way we implement GRASP_D1 and 
GRASP_D2, from constructive procedures D1 and D2, based on their destructive neighbourhoods.  In 
these cases the reactive mechanism starts with α set to 0.5 and reduces its value by 0.1 every niter/5 
consecutive constructions in which the incumbent value has not been improved (up to a minimum of 0.1).  
Note that in this case the construction of the RCL is given by the expression: 
 

RCL = { si ∈ S-Sel / d(si , sc) ≤ dmin + α(dmax− dmin ) } 
 
Based on the tabu search methodology we also adapt the four constructive methods proposed by Glover, 
et al. (1998).  We record in freq[i] the number of times that element si has been selected in previous 
constructions, and compute max_freq as the maximum of freq[i] for all i.  On the other hand, we record in 
quality[i] the average value of the previous solutions in which element si has been selected.  Let max_q 
be the maximum of quality[i] for all i.  Then, we modify the evaluation of the attractiveness of each non-
selected element in the current construction according to these quantities to favor the selection of 
elements with low frequency and high quality values. 
 
Algorithm Tabu_C1 performs the same steps as algorithm C1 but, instead of using the original d(si,sc) 
values, it uses the d'(si,sc) values according to the following expression: 
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Note that with the introduction of the value range(sc), we modify the distance value by only a percentage 
of the range of this distance.  This way, the modification is smooth enough to include both the 
information given in the original distance and the penalty value. 
 
The first execution of Tabu_C1 produces the same solution as C1 since freq[i]=quality[i]=0 for all i.  
Subsequent constructions perform alternative selections based on the frequency and quality values (see in 
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Figure 5 a pseudo-code of the method by which niter constructions are performed).  In a symmetric way 
we implement Tabu_D1 from constructive procedure D1. 
 
 

 1.   freq[i]= quality[i]=0 ∀si∈S 
 For ( iter =1 to niter) 
 2.  Sel = ∅ 
 3 Compute sc = s_center(S) 
 while ( |Sel| < m ) 
  For (si ∈S-Sel) 
   4. [ ] [ ]

q
iqualityssd

freq
ifreqssdssdssd cicicici max_

),(
max_

),(),(),(' δβ +−=  

  5. Let  { }),('max),('/ *
*

ciSsci ssdssdi
i∈

=  

  6. Sel = Sel ∪ {si*}, freq[i*]= freq[i*]+1 
  7. S = S - {si*} 
  8. sc = s_center(Sel) 
 end while 
 9. Compute the solution's value z 
 10.  [ ] [ ] [ ]

[ ]ifreq
zifreqiqualityiquality +−

=
)1(   ∀si ∈Sel 

 end for 
 

Figure 5. Constructive heuristic TABU_C1 
 
In a similar way we adapt constructive procedures C2 and D2 to obtain Tabu_C2 and Tabu_D2 
respectively.  In Tabu_C2, we modify the distance to the already selected elements computed in C2 with 
the frequency and quality values as follows: 
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The same expression is implemented in Tabu_D2 to modify the selections according to the search 
information.  The values of freq[i] and quality[i] are updated in the same way given in algorithm 
Tabu_C1. 
 
 
4. Local search 
As mentioned in Section 2, the local search method proposed by Ghosh (1996) implements a 
straightforward improving heuristic based on performing, at each iteration, the best available exchange 
(i.e. replace sv∈Sel with su∈S-Sel).  Let LS be this procedure that scans the set of selected elements Sel in 
search of the best exchange.  Then, to perform a move, the method examines m(n-m) exchanges and 
selects the best according to the evaluation: 
 

{ }
∑
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The method performs moves while the objective value increases until no further improvement is possible.  
We have empirically found that this method provides good solutions but presents extremely long running 
times.  Silva et al. (2004), apply this method as a post-processing to their constructions, and this explain 
why their global algorithms present extremely long running times (more than 20 hours of CPU time on 
average on the instances with n=500). 
 
We have modified LS to increase its efficiency. Specifically, we define di associated with each si in Sel, 
as the contribution to the objective value z of the element si: 
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Instead of computing the move value exchange(u,v) for all sv∈Sel and su∈S-Sel, we select the element si* 
in Sel with the lowest contribution to the value of the current solution.  In mathematical terms, we select 
the element si* with the minimum di* value.  Note that the value z of the current solution can be obtained 
from these values with the expression: 

∑
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Then, instead of scanning the whole set S-Sel searching for the best exchange associated with si*, we 
restrict our method to performing the first improving move (without examining the remaining elements in 
S-Sel).  It has been well documented (see for instance Laguna et al. 1999) that in some settings, this first 
strategy provides better results than the best strategy and obviously takes significantly lower running 
times.  If there is no improving move associated with di*, we resort to the next element with the lowest di 
value and so on. This improved local search method, I_LS, performs iterations until no further 
improvement is possible. 
 
Finally, we implement a short-term tabu search method, LS_TS, which is also based on exchanges.  An 
iteration in this method begins by randomly selecting an element si in Sel.  The probability of selecting 
element si is inversely proportional to its di value.  The first improving move (si∈Sel, sj∈S-Sel) associated 
with si is performed.  (Note that if there is no improving move associated with si, we perform the best one 
available, even if it is a non-improving move.)  The move is executed even when the move value 
exchange(i,j) is not positive, resulting in a deterioration of the current objective function value.  The 
moved elements si, sj become tabu-active for TabuTenure iterations, and therefore they cannot be 
unselected (respectively selected) during this time.  The LS_TS method performs iterations until in 
MaxIter consecutive iterations the best solution found cannot be improved on. 
 
In this section we have considered three ways to improve a solution: the local search LS proposed by 
Ghosh (1996), our improved version of this local search method I_LS, and the final proposal based on the 
tabu search methodology LS_TS in which the neighborhood of a solution is systematically modified 
according to the tabu status.  It should be noted that the proposed tabu search implements a 
straightforward short-term memory function.  This is in line with our objective of designing a fast method 
capable of producing high quality solutions in short computation time.  However, if longer running times 
are admissible, this tabu search method could be easily improved with the addition of more complex 
memory structures and search strategies. 
 
 
5. Computational experiments 
For our computational testing, we implemented in C the constructive procedures C1, C2, D1 and D2 of 
Glover et al. (1998), the KLD, KLDv2 and MDI of Silva et al. (2004), our four variants of the GRASP 
construction: GRASP_C1, GRASP_C2, GRASP_D1, GRASP_D2, and our four variants of the Tabu 
method: Tabu_C1, Tabu_C2, Tabu_D1, Tabu_D2.  Regarding the improvement methods, we implemented 
the local search LS by Ghosh (1996), our improved local search method, I_LS and our short term memory 
tabu search method LS_TS.  In this section we analyze the performance of these 18 algorithms when 
solving the maximum diversity problem.  The codes were compiled with Borland Builder 5.0, optimizing 
for maximum speed.  The experiments were run on a Pentium IV at 3GHz with 1 MB RAM. 
 
We tested the procedures on four sets with a total of 120 instances: 
 

(1) Silva Instances: 20 nxn matrices with random integers generated from a [0,9] uniform 
distribution with n∈[100, 500] elements and m∈[0.1n, 0.4n].  These 20 instances are the 
largest instances introduced in Silva et al. (2004).  

 
(2) Random Type I Instances:  matrices with real numbers generated from a (0,10) uniform 

distribution.  We generate 20 instances with n=500 and m=50, another 20 instances with 
n=500 and m=200, and another 20 instances with n=2000 and m=200. 
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(3) Random Type II Instances:  matrices with real numbers generated from a (0,1000) uniform 

distribution.  We generate 20 instances with n=500. 
 

(4) Glover Instances: 20 nxn matrices in which the values are the distances between each pair 
of points with coordinates randomly generated in [0,10].  These n points have r coordinates 
with r ranging from 2 to 21.  Glover et al. (1998) introduced these instances with small sizes 
(n≤30). We have generated 20 instances with n=500. 

 
We start our experimentation by considering the constructive methods.  These previously published 
methods are implemented with the search parameters recommended by their authors.  Our GRASP 
variants are reactive and the value of the α parameter is dynamically adjusted.  The first experiment has 
the goal of finding appropriate values for the two critical search parameters  β and δ in the tabu 
constructions.  Specifically we consider β = 0.1, 0.05, 0.01, 0.005 and δ = 0.001, 0.0005 and 0.0001 and 
run the method for 10 seconds.  In this preliminary experiment we use 8 instances from the Silva set, 8 
random Type I instances with n= 500, 8 random Type I instances with n=2000, and 8 random Type II 
instances.  Table 1 reports, for each set of instances and each parameter combination, the average 
percentage deviation of the solution obtained with the Tabu_C2 method and each parameter combination 
with respect to the best solution found (when running the seven variants).  Similarly, Table 2 shows these 
values for the Tabu_D2 method. 
 
 

Table 1. Preliminary experiment with Tabu_C2 
 

β 
 
δ 

Silva  
(n≤500) 

Type I 
(n=500) 

Type I 
(n=2000) 

Type II 
(n=500) 

 

0.1 0 0,665% 0,162% 0,566% 0,211%  
0.05 0 0,675% 0,393% 0,479% 0,143%  
0.01 0 0,559% 0,588% 0,272% 0,264%  
0.005 0 0,614% 0,759% 0,615% 0,087%  
0.1 0.001 0,443% 0,494% 0,283% 0,041%  
0.1 0.0005 0,437% 0,530% 0,283% 0,027%  
0.1 0.0001 0,228% 0,473% 0,256% 0,126%  

 
 

Table 2. Preliminary experiment with Tabu_D2 
 

β 
 
δ 

Silva  
(n≤500) 

Type I 
(n=500) 

Type I 
(n=2000) 

Type II 
(n=500) 

 

0.1 0 0,280% 0,182% 0,041% 0,340%  
0.05 0 0,731% 0,011% 0,022% 0,259%  
0.01 0 0,846% 0,290% 0,009% 0,103%  
0.005 0 1,123% 0,372% 0,023% 0,151%  
0.1 0.001 0,224% 0,003% 0,019% 0,321%  
0.1 0.0005 0,119% 0,248% 0,024% 0,321%  
0.1 0.0001 0,000% 0,171% 0,028% 0,321%  

 
 
Table 1 and 2 show that the best solutions on average are obtained with the values β = 0.1 and δ =0.0001 
in both algorithms.  Therefore, in subsequent experiments we will use these values. 
 
In our next experiment we compare the best constructive methods known for the maximum diversity 
problem with our proposals.  As documented in Glover et al (1998), C2 and D2 provide better solutions 
than C1 and D1.  Our results are in line with their previous experience and therefore we do not report 
results for C1, D1, GRASP_C1, GRASP_D1, Tabu_C1 and Tabu_D1, since we have found that C2 , D2 and 
their variants systematically provide better results than them (and we want to focus on the comparison 
among competitive methods). 
 
Tables 3 to 7 compare the GRASP_C2, GRASP_D2, Tabu_C2, Tabu_D2 and the previous approaches C2, 
D2, KLD, KLDv2 and MDI.  These tables show, for each procedure, the average percentage deviation 
from the best solution found, the number of best solutions, and the number of constructions performed 
with each method.  Since optimal solutions are not known, deviations are reported considering the best 
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solution found during each experiment.  We have limited the execution of each method to 10 seconds; 
therefore, the stopping parameter of each method is set to achieve this target value. 
 
 
Table 3.  Best constructive methods – Silva instances. 
 C2 D2 KLD KLDv2 MDI GRASP_C2 GRASP_D2 Tabu_C2 Tabu_D2 
Dev. 1.722% 1.079% 7.927% 15.657% 4.864% 0.297% 0.162% 0.621% 0.315% 
#Best 0 0 0 0 0 6 13 1 8 
#Const. 5140.5 2663.6 18205.8 351.8 304.6 4273.7 1984.2 3749.4 1673.9 
 
 
Table 4.  Best constructive methods – Type I instances (n = 500, m = 50). 
 C2 D2 KLD KLDv2 MDI GRASP_C2 GRASP_D2 Tabu_C2 Tabu_D2 
Dev. 1.027% 0.729% 12.215% 17.240% 9.791% 0.174% 0.277% 0.473% 0.245% 
#Best 0 3 0 0 0 10 4 2 5 
#Const. 3002.9 840.0 7810.6 658.9 416.3 2719.9 663.7 2481.1 871.0 
 
 
Table 5.  Best constructive methods – Type I instances (n = 2000, m = 200). 
 C2 D2 KLD KLDv2 MDI GRASP_C2 GRASP_D2 Tabu_C2 Tabu_D2 
Dev. 0.392% 0.258% 8.806% 11.946% 6.497% 0.447% 1.586% 0.007% 0.258% 
#Best 0 1 0 0 0 0 0 19 1 
#Const. 151.5 33.9 552.6 16.7 7.1 135.5 27.7 128.3 34.2 
 
 
Table 6.  Best constructive methods – Type I instances (n = 500, m = 200). 
 C2 D2 KLD KLDv2 MDI GRASP_C2 GRASP_D2 Tabu_C2 Tabu_D2 
Dev. 0.487% 0.034% 3.208% 7.627% 0.750% 0.630% 0.127% 0.207% 0.001% 
#Best 0 9 0 0 0 0 1 0 19 
#Const. 1493.1 1205.7 7468.9 66.3 56.3 1203.3 917.3 987.8 1149.9 
 
 
Table 7.  Best constructive methods - Type II instances (n = 500, m = 50). 
 C2 D2 KLD KLDv2 MDI GRASP_C2 GRASP_D2 Tabu_C2 Tabu_D2 
Dev. 1.270% 1.219% 12.175% 17.358% 9.862% 0.207% 0.470% 0.493% 0.374% 
#Best 0 0 0 0 0 10 2 4 4 
#Const. 3050.1 858.5 7787.7 660.8 416.5 2690.3 655.8 2483.5 867.1 
 
 

 
 
Tables 3 to 8 show that considering the four constructive methods by Glover et al. (1998), D2 consistently 
outperforms the other three methods (we do not report the results for C1 and D1 to keep the size of the 
tables relatively small) since it always obtains lower percentage deviations than them.  Considering the 
three methods by Silva et al. (2004), KLD, KLDv2 and MDI, the best one in terms of solution quality is 
the MDI in all the set of instances considered (except in Glover instances, where the best algorithm is 
KLD).  However, the D2 method always outperforms these three approaches.  It should be noted that in 
these experiments all the methods run for 10 seconds, and within this time limit, D2 is able to perform 
1094.2 constructions on average, while MDI only performs 291.8 constructions on average. 
 
Regarding our new approaches, Tables 3 to 8 show that in some sets of instances the GRASP 
constructions provide the best results.  This is the case of Tables 3, 4 and 7 in which the GRASP_C2 and 
GRASP_D2 methods present average percentage deviations of 0.297, 0.162 respectively in Silva instances 
(Table 3), 0.174, 0.277 in Type I instances (Table 3), and 0.207, 0.470 in Type II instances (Table 7).  On 
the other hand, in the other types of instances, the tabu variants obtain the best results.  Specifically, in 

Table 8.  Best constructive methods - Glover instances. 
 C2 D2 KLD KLDv2 MDI GRASP_C2 GRASP_D2 Tabu_C2 Tabu_D2 
Dev. 0,021% 0,006% 6,371% 7,160% 7,325% 0,336% 0,024% 0,018% 0,006% 
#Best 5 11 0 0 0 0 7 6 11 
#Const. 2441,8 963,7 5998,1 417,9 550,0 2389,1 897,6 2149,6 971,0 
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Table 5 the Tabu_C2 method presents an average percentage deviation of 0.007, while in Tables 6 and 8 
the Tabu_D2 method achieves a percentage deviation of 0.001 and 0.006 respectively. 
 
Considering Type I instances with n=500, in Table 4 (m=50) we can observe relatively large deviations 
from the best solution found in some methods (see for example the 17.240% for the KLDv2).  On the 
other hand, in Table 6 (m=200) the average percent deviations are considerably smaller (with a maximum 
of 7.627 for the KLDv2).  In this sense we can say that, in this type of instances, the larger the density of 
the graph, the easier the problem is to solve.  
 
Overall the results in Tables 3 to 8 indicate that the best method is the Tabu_D2, closely followed by 
GRASP_C2.  The ranking of the methods considering the average value of the average percentage 
deviation across the six tables is: Tabu_D2 (0.200%), Tabu_C2 (0.303%), GRASP_C2 (0.348%), 
GRASP_D2 (0,441%), D2 (0.554%), C2 (0.820%), MDI (6.515%), KLD (8.450%), and KLDv2 
(12.831%). 
 
In our next experiment we undertake to compare the best methods for solving the maximum diversity 
problem.  Specifically, we consider the two best constructions, Tabu_D2 and GRASP_C2, and the three 
improving methods described in Section 4: LS, I_LS and LS_TS.  Each combination produces a multi-
start method in which an iteration consists of a construction phase, performed with one of the two former 
methods, and an improving phase, performed with one of the three later methods.  After preliminary 
experimentation the tabu search parameters in the LS_TS method, TabuTenure and MaxIter, were set to 
14 and 25 respectively.  Tables 9 to 14 report the comparison among these six combinations.  As in 
previous experiments, these tables show, for each procedure, the average percentage deviation from the 
best solution found, the number of best solutions that each method is able to match, and the number of 
constructions with their corresponding improvement performed with each method.  Since optimal 
solutions are not known, deviations are reported considering the best solution found during each 
experiment. 
 
 
Table 9. Best methods (construction + improvement) - 20 Silva instances. 

  Tabu_D2   GRASP_C2  
 LS I_LS LS_TS LS I_LS LS_TS 

Deviation 0.0443% 0.0446% 0.0130% 0.0563% 0.0377% 0.0332% 
#Best 9 13 13 10 12 13 

#Const. 443.1 1463.1 864.1 132.7 925.4 644.4 
 
 
Table 10. Best methods (construction + improvement) - Type I instances (n = 500, m = 50). 

  Tabu_D2   GRASP_C2  
 LS I_LS LS_TS LS I_LS LS_TS 

Deviation 0.182% 0.092% 0.038% 0.265% 0.185% 0.052% 
#Best 3 6 9 0 1 8 

#Const. 124.6 728.3 523.7 237.0 555.4 432.0 
 
 
Table 11. Best methods (construction + improvement) - Type I instances (n = 2000, m = 200). 

  Tabu_D2   GRASP_C2  
 LS I_LS LS_TS LS I_LS LS_TS 

Deviation 0.284% 0.101% 0.099% 0.334% 0.232% 0.204% 
#Best 1 7 6 0 2 4 

#Const. 4.3 16.7 14.8 3.1 13.7 12.0 
 
 
Table 12. Best methods (construction + improvement) - Type I instances (n = 500, m = 200). 

  Tabu_D2   GRASP_C2  
 LS I_LS LS_TS LS I_LS LS_TS 

Deviation 0.038% 0.024% 0.013% 0.036% 0.028% 0.018% 
#Best 4 3 5 5 0 3 

#Const. 66.2 315.4 198.5 47.9 137.2 76.1 
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Table 13. Best methods (construction + improvement) - Type II instances (n = 500, m = 50). 
  Tabu_D2   GRASP_C2  
 LS I_LS LS_TS LS I_LS LS_TS 

Deviation 0.141% 0.094% 0.047% 0.271% 0.162% 0.129% 
#Best 2 2 8 1 3 5 

#Const. 312.9 728.2 517.3 237.3 581.2 138.5 
 
 
Table 14. Best methods (construction + improvement) - Glover instances. 

  Tabu_D2   GRASP_C2  
 LS I_LS LS_TS LS I_LS LS_TS 

Deviation 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 
#Best 20 20 20 20 20 20 

#Const. 243,3 602,1 397,5 474,4 790,4 510,3 
 
 
Tables 9 to 14 show that in all the sets of instances and in both types of constructions, the local search by 
Ghosh (LS) provides lower quality results than the improved local search (I_LS), with the exception of 
the Glover instances (Table 14) in which all the variants are able to obtain the best result.  Moreover, the 
LS_TS method, which incorporates memory structures, improves upon the other two local search variants 
in all the cases.  For instance, in Table 10 (Type I instances with n = 500 and m = 50) we can observe in 
the Tabu_D2 method, an average percentage deviation of 0.182%, 0.092% and 0.038% for the LS, I_LS 
and LS_TS respectively.  Similarly, in the same table, the GRASP_C2 method presents 0.265%, 0.185% 
and 0.052% deviations for the LS, I_LS and LS_TS variants.  Comparing the improved local search, 
I_LS, with the original local search LS by Ghosh (1996), we can conclude from the number of 
constructions, #Const, (with their corresponding improvement) that the former is much more efficient 
than the LS method since it is able to perform about 4 times the number of iterations. 
 
Considering the 120 instances together and the number of best solutions that each method is able to 
match, the Tabu_D2 construction coupled with the LS_TS improvement is the best method overall, since 
it is able to obtain 61 best solutions, which compares favourably with the other combinations (53 for the 
GRASP_C2+LS_TS, 51 for the Tabu_D2+I_LS, 39 for the Tabu_D2+Ghosh, 38 for the GRASP_C2+I_LS 
and 36 for the GRASP_C2+Ghosh).  It should be noted that, as expected, the tabu search improvements 
are more time-consuming than the memory-less improvements I_LS (see a lower number of constructions 
#Const. for the LS_TS in all the cases); however, they are memory-guided, and are able to reach better 
solutions in a lower number of iterations than the greedy I_LS improvement method. 
 
In our last experiment, we consider 10 large Type I instances with n = 2000 and m = 200.  The 
experiment has the goal of showing how the average value of the best solution found improves over time.  
We compare our best approach Tabu_D2+LS_TS with the best previously published method: KLDv2+LS 
(see Silva et al., 2004).  Both procedures were run for 100 seconds and the best solution found was 
reported every ten seconds.  The results of this experiment are shown in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Average value of the best solution found over time 
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The diagram in Figure 6 clearly shows that the Tabu_D2+LS_TS method is able to obtain high quality 
solutions from the first iterations (within 10 seconds).  When the optimization process starts, this 
procedure quickly moves to the range of high quality solutions and maintains its lead during the rest of 
the solution time.  On the contrary, the KLDv2+LS needs 30 seconds to obtain solutions of relatively 
good quality, although inferior to those obtained with Tabu_D2+LS_TS, and from this point on it only 
experiences a moderate improvement. 
 
The tables in the Appendix contain the best solutions achieved with our tabu search method, 
Tabu_D2+LS_TS, in each particular instance within 10 seconds of CPU time on a Pentium IV at 3GHz. 
 
 
Conclusions 
 
The objective of our study has been to compare memory-based with memory-less designs to solve the 
maximum diversity problem.  Unlike local search methodologies, memory structures have not yet been 
extensively studied in the context of constructive methods.  In this paper we have proposed four 
constructive methods based on tabu search which incorporates memory structures, and four memory-less 
constructions based on GRASP methodology.  These eight procedures can be coupled with an improving 
phase.  We have proposed two variants, an efficient local search (as compared with a previous 
development) and a short-term tabu search improvement phase.  Overall, experiments with 120 instances 
clearly show the effectiveness of the use of memory in both construction and improvement for solving 
this problem. 
 
We have identified seven previous relevant procedures for this problem (Glover et al. 1998, Silva et al. 
2004).  Our Adaptive Memory Programming implementation (construction + local search with memory 
structures) was shown to be competitive in the problem instances considered, outperforming those seven 
previous approaches. 
 
As an avenue for future research, it may be advantageous to exploit the knowledge associated with 
solving this problem to design different mechanisms for selecting a maximum diverse set of solutions in 
the context of evolutionary procedures such as Scatter Search. 
 
 
Acknowledgments 
Research by Rafael Martí is partially supported by the Ministerio de Educación y Ciencia (refs. TIN2004-
20061-E and TIC2003-C05-01) and by the Agencia Valenciana de Ciència i Tecnologia (ref. GRUPOS03 
/189). 
 
 
References 
 
Ghosh, J.B. (1996), Computational aspects of the maximum diversity problem, Operations research letters 
19, pp. 175-181. 

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publisher. 

Glover, F., Kuo, C.C. and Dhir K.S. (1995), A discrete optimization model for preserving biological 
diversity, Appl. Math. Modeling 19, pp. 696-701. 

Glover, F., Kuo, C.C. and Dhir K.S. (1998), Heuristic algorithms for the maximum diversity problem", 
Journal of information and Optimization Sciences 19 (1), pp. 109-132. 

Kuo, C.C., Glover, F. and Dhir K.S. (1993), Analyzing and modeling the maximum diversity problem by 
zero-one programming, Decision Sciences 24 (6), pp. 1171-1185. 

Laguna, M., Martí, R. and Campos, V. (1999), Intensification and Diversification with Elite Tabu Search 
solutions for the LOP, Computers and Operations Research, 26, 1217-1230 

Laguna, M. and Martí, R. (2003), Scatter Search. Methodology and Implementations in C, Kluwer 
Academic Publishers. 



Tabu Search for the Maximum Diversity Problem / 14 

Resende, M.G.C. and Ribeiro, C.C. (2001) “Greedy Randomized Adaptive Search Procedures” in State-
of-the-art Handbook in Metaheuristics, F. Glover and G. Kochenberger (Eds.), Kluwer Academic 
Publishers, Boston, pp. 219-250.  

Silva, G.C., Ochi, L.S. and Martins, S.L. (2004), Experimental comparison of greedy randomized 
adaptive search procedures for the maximum diversity problem, Lecture notes in computer science 3059, 
pp. 498-512, Springer. 

 

 

Appendix 
 
Table 15.  Tabu_D2 + LS_TS results within 10 seconds. 

Instance Value Instance Value  Instance Value 
Silva.1 333 Type2.1 777890,13  Glover.1 19485,21 
Silva.2 1195 Type2.2 779963,81  Glover.2 19701,57 
Silva.3 2457 Type2.3 776471,44  Glover.3 19547,23 
Silva.4 4142 Type2.4 775308,75  Glover.4 19596,49 
Silva.5 1247 Type2.5 775611,44  Glover.5 19602,63 
Silva.6 4450 Type2.6 774360,06  Glover.6 19421,56 
Silva.7 9437 Type2.7 776388,75  Glover.7 19534,33 
Silva.8 16225 Type2.8 778223,50  Glover.8 19487,36 
Silva.9 2694 Type2.9 774801,75  Glover.9 19221,66 
Silva.10 9689 Type2.10 773941,00  Glover.10 19703,37 
Silva.11 20734 Type2.11 776950,31  Glover.11 19587,14 
Silva.12 35878 Type2.12 772770,69  Glover.12 19360,25 
Silva.13 4655 Type2.13 780191,94  Glover.13 19366,73 
Silva.14 16948 Type2.14 781655,94  Glover.14 19458,59 
Silva.15 36298 Type2.15 780300,63  Glover.15 19422,18 
Silva.16 62456 Type2.16 775436,06  Glover.16 19680,24 
Silva.17 7133 Type2.17 774662,81  Glover.17 19331,42 
Silva.18 26254 Type2.18 775501,06  Glover.18 19461,42 
Silva.19 56572 Type2.19 778802,75  Glover.19 19477,35 
Silva.20 97344 Type2.20 778571,75  Glover.20 19604,88 

 
 
Table 16.  Tabu_D2 + LS_TS results in Type I instances within 10 seconds. 

(500, 50) Value (500, 200) Value  (2000, 200) Value 
Type1_55.1 7833,82 Type1_52.1 107394,77  Type1_22.1 113840 
Type1_55.2 7754,9 Type1_52.2 107155,99  Type1_22.2 113836 
Type1_55.3 7749,64 Type1_52.3 107247,66  Type1_22.3 113531 
Type1_55.4 7759,12 Type1_52.4 106986,30  Type1_22.4 113425 
Type1_55.5 7748,51 Type1_52.5 106922,26  Type1_22.5 113416 
Type1_55.6 7763,04 Type1_52.6 107164,53  Type1_22.6 113961 
Type1_55.7 7752,7 Type1_52.7 107040,06  Type1_22.7 113701 
Type1_55.8 7735,16 Type1_52.8 107014,24  Type1_22.8 113728 
Type1_55.9 7753,93 Type1_52.9 107476,19  Type1_22.9 113698 

Type1_55.10 7778,65 Type1_52.10 107195,75  Type1_22.10 113571 
Type1_55.11 7769,61 Type1_52.11 107144,27  Type1_22.11 113631 
Type1_55.12 7757,65 Type1_52.12 106812,73  Type1_22.12 113648 
Type1_55.13 7783,80 Type1_52.13 107631,87  Type1_22.13 113456 
Type1_55.14 7791,08 Type1_52.14 107403,87  Type1_22.14 113602 
Type1_55.15 7718,71 Type1_52.15 107006,89  Type1_22.15 113850 
Type1_55.16 7792,77 Type1_52.16 107370,02  Type1_22.16 113617 
Type1_55.17 7785,98 Type1_52.17 107056,92  Type1_22.17 113757 
Type1_55.18 7756,26 Type1_52.18 106953,64  Type1_22.18 113733 
Type1_55.19 7755,41 Type1_52.19 107008,59  Type1_22.19 113558 
Type1_55.20 7733,86 Type1_52.20 106735,14  Type1_22.20 113574 
 


