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3 Unitat de biometria. Institut Valencià d’Investigacions Agràries.
4 Institut Valencià d’Estad́ıstica.

Abstract

In this paper we analyse the renal transplant waiting list of the
Páıs Valencià in Spain, using Queueing Theory. The customers of this
queue are patients with end-stage renal failure waiting for a kidney
transplant. We set up a simplified model to represent the flow of the
customers through the system, and perform Bayesian inference through
simulation to estimate parameters in the model. Finally, we consider
several scenarios by tuning the estimations achieved and computation-
ally simulate the behaviour of the queue under each one. The results
indicate that the system could reach equilibrium at some point in the
future and the model forecasts a slow decrease in the size of the waiting
list in the short and middle term.

Keywords: Health services, Queueing, Simulation, Stochastic
processes, Bayesian statistics.

1 Introduction

In general, the analysis of a queue is highly desirable. It allows managers to
gain knowledge of its behaviour for planning purposes, and it also permits
managers to have accurate information about the time clients are expected to
spend in the queue. In health care, where waiting lists are very common, the
queueing analysis becomes even more important since resources are usually
scarce and must be optimised. In this paper, we focus on a transplant
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waiting list; specifically, we analyse the renal transplant waiting list of the
Páıs Valencià, one of the seventeen autonomous regions into which Spain is
divided.

Patients with end-stage renal failure need to receive renal replacement
therapy to keep them alive. The three main types of therapy are haemodial-
ysis, peritoneal dialysis and kidney transplant. Under haemodialysis the
patient has to go to hospital to use a kidney machine. They do that two
or three times a week and they spend about three or four hours there each
time. Peritoneal dialysis requires patients to carry a bag of sterile fluid that
has to be changed every six to eight hours. Patients who receive a trans-
plant are given immunosuppressive drugs indefinitely to reduce the risk of
rejection, though in general it enables them to resume normal life activities
and that is the reason why it is considered to be the best treatment. In this
sense, several observational studies show that patients who undergo trans-
plantation enjoy a longer and a better quality of life than those under either
dialysis treatment (Port et al., 1993, Matesanz, 1994, Eggers, 1998, Wolfe
et al., 1999). In addition to being the more convenient treatment from a
social point of view, there is general agreement on the fact that it is also the
cheapest one (Eggers, 1992).

Kidneys for transplantation usually come from cadaveric donors, al-
though eventually they also can come from live ones (e.g. patients’ relatives).
Unfortunately, there is an imbalance between arrivals onto the waiting list
and donors, the former being greater than the latter. This happens in the
Páıs Valencià, in Spain and in most countries around the world (see Table
1). This means list sizes grow, although at different speeds depending on
the donation rate of the country. This shortage of organs is the reason why
the allocation of kidneys to patients must be done very carefully.

The allocation of the cadaveric kidney among the candidates is done
mainly on the basis of the affinity between the tissues of the donor and those
of the potential recipients. The more compatible the tissues, the lower the
risk of rejection. Firstly, their blood type must be compatible. Secondly,
the tissue type (known as HLA-type) of the donor is cross-matched with
that of the candidates. Finally, a test is performed to determine whether
the candidate has antibodies to the proteins of the donor. This test must
be negative for the candidate to be eligible. There are also other non-
immunological features which have an influence on the graft outcome, such
as age or gender (Chertow et al., 1996), which have to be taken into account
when allocating a kidney among the candidates.

Several analyses of renal transplant waiting lists can be found in scien-
tific papers, using different numerical techniques and pursuiting quite dis-
tinct objectives. Considerable research has been devoted to the analysis of
allocation policies which are able to guarantee equity (Wujciak and Opelz,
1993; De Meester et al., Smits et al., 1998, 2000; Zenios et al., 2000). Pa-
pers focused on management can also be found, such as that by Davies and
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Roderick (1998), which explores the overall demand for renal replacement
therapy in the UK over the next 15 years.

For the Valencian Regional Health Authority the renal transplant waiting
list in the Páıs Valencià is an important concern. And that interest led them
to promote a study, the scope of which was to gain knowledge about fairly
basic issues such as whether or not the size of the queue would increase and,
if so, its rate of growth, as well as the expected length of patients’ waiting
times. This paper shows a first approach to addressing this issue by means
of statistical procedures and queueing modelling.

With regard to the renal transplant waiting list in the Páıs Valencià, it
is worth mentioning that there are 40 Transplantation Units in Spain, which
are coordinated by the National Organization of Transplants (Matesanz and
Miranda, 1996). Four of them are located in the Páıs Valencià. The Spanish
Network has one coordinator in each autonomous region, who is usually
a member of the Regional Health Service, and one in every Hospital as
well. Every Transplantation Unit is situated in a hospital and is responsible
for procuring organs for all patients belonging to its geographical area of
influence as well as for coordinating all steps involved in the transplantations.
When there is an available kidney in a Unit, it is first offered to suitable
candidates registered on its renal waiting list. If there are none, it is offered
to the other Units in the same autonomous region. If there are still no
compatible candidates, it is offered at national level, and in the case of the
absence of appropriate recipients in Spain, it is finally offered to official
transplant networks abroad.

The four waiting lists can be combined into a single one by just pooling
them together, which could be considered as the renal transplant waiting
list in the Páıs Valencià. And that is actually the way the Regional Health
Service considers it, as a single list that is analysed here from a statistical
point of view for the first time.

2 Data

Data consisted of two sets of individual registries: the first one contained
the information of patients with end-stage renal failure who arrived onto the
Renal Transplantation Waiting List between January 1997 and December
1999, both inclusive; the second one comprised donations which were made
throughout the same period. The information was supplied by the Registry
of Transplantations of the Páıs Valencià. For confidentiality reasons, data
related to the identification of either patients or donors were not provided.

We chose the period mentioned above for homogeneity reasons, since
there were only three Transplantation Units in the Páıs Valencià until 1996,
when the fourth one started its activity and greatly influenced the behaviour
of the system. As for the length of the period, we chose it to be long enough
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to have sufficient data to carry out the statistical inference.

3 Queueing analysis

Queueing Theory is a natural framework for analysing the renal transplant
waiting list as a system where ‘customers’ demand ‘service’. The three key
elements of a queue are the arrival pattern, the service mechanism and the
queue discipline. From a statistical point of view, the process of arrivals and
the process of service are considered to be stochastic and some inference is
carried out through statistical procedures. An introduction to the statistical
analysis of a queue can be found in Armero and Bayarri (2001).

The evolution of the renal transplant waiting list depends on two inde-
pendent processes: the process of new arrivals onto the waiting list and the
process of donations, together with the fact that a donor can give one or
both kidneys. Before setting up our queueing model, we first identify its el-
ements. In this sense, the customers are the patients who are waiting on the
list for a transplant. An arrival occurs when a new patient with end-stage
renal disease is admitted onto the waiting list and by the end of the study
has been transplanted or is still waiting. A departure from the system hap-
pens when a donor’s kidney is grafted onto a patient. The service time for a
patient is the time that stretches from the transplantation of the preceding
customer to their own transplant. Finally, the fact that a donor can give
one or two kidneys leads to a bulk service of random size. Figures 1 and 2
show graphical representations of the time that a customer is queueing to
be served, the service time and the total time spent in the system. Notice
that two-kidney donations (Figure 2) allow two customers to be served at
the same time.

With the elements defined above, we considered an M/MX/1 queue
(Hall, 1991) to model the renal transplant waiting list. This means we
assume that the number of daily arrivals and the number of daily donations
are two independent stochastic processes which follow Poisson distributions
of rate λ and µ, respectively. Specifically, if NA(t) is the number of arrivals
in t days and ND(t) the number of donations in t days, the model states

NA(t) |λ ∼ Poisson(λt)
ND(t) |µ ∼ Poisson(µt)

(1)

It is worth remarking that λ not only governs the behaviour of the num-
ber of arrivals NA(t), but also that of TA, the time between two consecutive
arrivals. The same holds for µ with respect to the number of donations
ND(t) and TD, the time between two consecutive donations. Indeed, ex-
pression (1) is equivalent to
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TA |λ ∼ Exponential(λ)
TD |µ ∼ Exponential(µ)

(2)

In addition, the donations come in groups whose size is a random variable
X that may take values X = 1 and X = 2 such that

P (X = 2 | θ) = θ (3)

Thus, the distribution of the number of transplants in t days NT (t), given
the number of donations ND(t) and the proportion of two-kidney donations
θ is

NT (t) |ND(t), θ ∼ ND(t) + Binomial(ND(t), θ) (4)

Finally, we cannot assume that the discipline of the queue is FIFO (first-
in-first-out), that is, customers are served in the same order in which they
arrive into the system. This is due to the fact that patients are transplanted
depending on criteria mainly related to compatibility with the donor. So
it could be said that there is no typical discipline associated to this queue,
since patients are reordered every time a new donation happens.

An important feature of any queue is the traffic intensity ρ, which is
a measure of the congestion level of the system. Values lower than 1 in-
dicate that the system will eventually reach equilibrium. Values equal to
or higher than 1 indicate that the system is in a transient state and will
become clogged. Under the assumptions above, expression (5) allows it to
be computed.

ρ =
λ

µ(1 + θ)
(5)

Note that the numerator of the traffic intensity is the arrival rate, whereas
the denominator is the donation rate times the average number of kidneys
per donation, which could be seen as the transplantation rate. So in this
case, ρ simply compares the arrival rate to the transplantation rate. There-
fore, a value lower than one means there are more transplantations than
arrivals, which would imply equilibrium. A value higher than one would
indicate just the opposite, as mentioned above.

Quantities λ, µ, θ and ρ, the parameters of the model, are unknown
and need to be estimated using statistical tools. The statistical inference is
performed from a Bayesian perspective. To do so, the information about the
parameters provided by the data through the likelihood is combined with
prior knowledge (if available). Both sources of information are merged by
applying Bayes’ theorem which gives rise to the posterior distribution of the
parameters.
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A very appealing feature of the Bayesian approach are the posterior
predictive distributions. They allow us to forecast the values of possible
future observations of the variables we are interested in, taking into account
the data already observed. In Armero et al. (2003) the inference process that
leads to the posterior predictive distributions of TA, TD, NA(t), ND(t) and
NT (t) as well as to the posterior distribution of the parameters is explained
in detail.

4 Results

During the period under analysis, 531 new patients were included in the renal
transplant waiting list and 323 donations ocurred, 82 simple and 241 double,
which gave rise to 564 kidneys. Figures 3 and 4 show the daily frequency
of arrivals and donations, respectively. It can be seen that on most days
there are no arrivals or donations, and when there are, there are usually one
or at most two, further values being unlikely, although eventually possible.
Figure 5 shows the daily number of available kidneys for transplantation. It
reveals that usually both donor’s kidneys are usable.

As for transplantations, 293 out of the 564 kidneys were transplanted to
patients who entered the list during the period under study. The rest were
grafted onto patients already on the list before 1997.

To check the assumption of the Poisson distribution for the processes of
arrivals and donations, we used the Kolmogorov-Smirnov test. There was no
evidence against that hypothesis for the donation process (ks = 0,0055, p =
1) but there was some for the process of arrivals (ks = 0,0822, p = 0,0011).
This is because of the presence of some heterogeneity in the daily number of
arrivals. It may be due to the fact that an arrival is more likely to happen
on working days and improbably at weekends and holidays, in contrast to a
donation, which can happen any day at any time.

The results above, together with the length of the period considered
(1.095 days), determined both the posterior distributions of the parameters
and the posterior predictive distributions of the variables.

4.1 Posterior distributions

With the aim of expressing our initial vague knowledge about the parameters
in the model, and because we assumed independence between them, we
considered independent non-informative prior distributions for λ, µ and θ.
Specifically, we chose the following flat prior distributions:
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λ ∝ 1
λ

µ ∝ 1
µ

θ ∼ Uniform(0, 1)

(6)

Starting from the prior distributions in equation (6), the posterior dis-
tributions for the three parameters could be obtained analytically. They
turned out to be as follows:

λ | data ∼ Gamma(λ | 531, 1.095)
µ | data ∼ Gamma(µ | 323, 1.095)
θ | data ∼ Beta(θ | 242, 83)

(7)

The posterior distribution of the intensity traffic ρ was obtained by
simulation. For each parameter we generated 2.500 values from the cor-
responding posterior distribution in expression (7) and for every vector
(λ(i), µ(i), θ(i)), i = 1, . . . , 2.500 we computed the corresponding value ρ(i)

using expression (5), thus obtaining a sample {ρ(i), i = 1, . . . , 2.500} from
the posterior distribution of the traffic intensity p(ρ | data).

Point estimators, such as the mean and the variance for the parameters
can easily be computed from the distributions in expression (7) or from the
numerical approximation to the posterior distribution of ρ.

Specifically, the posterior expected value and the variance for the daily
rate of new arrivals λ were

E(λ | data) = 0,48493
V ar (λ | data) = 0,00044

which means that, on average, 0,48 new persons per day arrive onto the
list. Or equivalently (Armero et al., 2003), the expected time between two
consecutive arrivals onto the list is E(TA | data) = 1/0,48 = 2,06 days, that
is, approximately one arrival every two days. The small variance of the
posterior distribution is indicative of an accurate estimation.

The resulting estimations for the daily rate of donations µ were

E(µ | data) = 0,29498
V ar (µ | data) = 0,00027

They show that 0,29 donors per day are expected. Again, this means that
the mean time between two consecutive donations is E(TD | data) = 3,39
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days, which roughly speaking means that three donations happen every ten
days. Again, the small value of the variance shows a high concentration of
the posterior distribution.

As for the probability of a two-kidney donation θ,

E(θ | data) = 0,74462
V ar (θ | data) = 0,00058

which tell us that, on average, 75% donors have both kidneys profitable.
Results show high precision as well.

So, from the above results, in general terms we infer that in ten days,
on average we would expect 5 new arrivals onto the list and 3 donors who
would give 5,25 kidneys, which would suggest that the system could reach
equilibrium in the long run. The traffic intensity ρ is the right measure to
quantify this feature properly. From the sample of the posterior distribution
for ρ, the following was obtained

E(ρ | data) = 0,94900
V ar (ρ | data) = 0,00456

meaning that the system could achieve the steady-state, although there
still remains a non-negligible chance for the system to get more and more
congested, since P (ρ < 1 | data) = 0,788 cannot be considered conclusive.

4.2 Simulation

The posterior distributions of the parameters allowed us to gain knowledge
about some important features of the renal transplant waiting list. But man-
agers are usually very concerned about forecasting too, mainly for planning
purposes. So a further natural step consisted of predicting the behaviour of
the renal transplant waiting list for some period in the near future. To ad-
dress this issue, it is necessary to know the posterior predictive distribution
of the number of people waiting for a transplant at time t, p(NW (t) | data).
However, there is no analytical closed expression for such a distribution,
because the distribution p(NW (t) | λ, µ, θ) is involved in the computation,
and that distribution is unknown. So, we explored p(NW (t) | data) through
simulation.

To do so, we took the 2.500 values sampled from the posterior distribu-
tions of the parameters and for each vector (λ(i), µ(i), θ(i)), i = 1, . . . , 2.500
we simulated the evolution of the queue for the next year and a half (548
days), by means of time discrete event simulation (Law and Kelton, 2000)
using ARENA software (www.arenasimulation.com). For every simulation
i = 1, . . . , 2.500, we recorded the daily number of people in the waiting list
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from 1st January 2000 to 31st July 2001 {N (i)
W (t), t = 1, . . . , 548}. All sim-

ulations started at NW (0) = 446, the actual number of people waiting for a
kidney transplant on 31st December 1999.

Then, for every t we averaged out the simulations to achieve the Monte
Carlo estimator (Gilks et al., 1996) for the expected value of NW (t)

E (NW (t) | data) ≈ 1
2.500

2.500∑

i=1

N
(i)
W (t)

The resulting mean value and a 95% prediction band for NW (t) are
shown in Figure 6. The graph confirms that, if the same conditions of the
analysed period hold, the size of the queue is expected to decrease very
slowly, although it also reflects that the further we go, the lower is the
accuracy of the forecast.

We can also contrast our results with what has really happened, since
the number of patients on the waiting list is available for the first day of
every year. Indeed, the size of the list on 1st January 2001, 2002 and
2003 were 401, 415 and 378, respectively. It is remarkable that the actual
behaviour of the waiting list roughly matched that predicted by the model
we considered. However, since our simulations stopped on 31st July 2001,
from a formal point of view we can only compare one observation, which is
that corresponding to 1st January 2001, that is, the observed value for time
t = 367. The model forecasted E(NW (367) | data) = 428 patients in the
list, with a 95% prediction band [360, 494], which includes the true observed
value 401.

Finally, we set up several scenarios by tuning the conditions of the system
and compared the results achieved with those obtained under the current
conditions. Explicitly, we simulated the behaviour of the queue under the
assumption of the three following increments in the donation rate:

Scenario 1 An average increase of 6 donations/year or, equivalently, one more kid-
ney every two months. This implies changing the posterior expected
value of µ from 0,29498 to 0,31142.

Scenario 2 An average increase of 12 donations/year (one more kidney every
month). This involves changing the posterior mean of µ from 0,29498
to 0,32786.

Scenario 3 An average increase of 24 donations/year (two more kidneys every
month), which means taking 0,36073 instead of 0,29498 as the posterior
expectation of µ.

Figure 7 shows the comparison between the predicted mean of the size
of the waiting list achieved under the current conditions and those obtained
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under the proposed scenarios. It can be seen how an increase in the do-
nations rate cuts down the size of the waiting list. Specifically, under the
current conditions, the model forecasts 428 people on average waiting for
a kidney transplant after one year and a half. This means a reduction of
around 4% in the size of the list . Under the conditions of scenario 1, the
model predicts, again on average, 413 people waiting in the renal transplant
waiting list after the same period, so that the reduction would be around
7%. Under scenario 2, the expected size of the list would be 397, that is, a
reduction of around 11%. And last, under scenario 3, the model forecasts an
expected value of 366 patients waiting for a kidney transplant, thus achiving
a reduction in the original size of around 18%.

This pattern holds true as long as the process of arrivals remains un-
changed. Indeed, a rise in the arrivals rate would compensate for the in-
crements in the donations rate, keeping the size of the queue as it is or
even increasing it if that increment is too pronounced. On the contrary, a
decrease in the former would cause a steeper decrease in the size of list.

5 Discussion

In this paper we propose a simplified but sensible model that roughly repre-
sents the flow of the patients on the renal transplant waiting list. However,
we are aware that the dynamics of the waiting system are considerably more
complex than our model. In fact, patients can leave the queue for several
reasons, either because they die, because they move to another waiting list in
another Spanish autonomous region, or because they abandon treatment. It
is also worth to remarking that there is no specific order of transplantation,
since a donor’s kidney is grafted onto the best suitable candidate according
to compatibility matching. Besides that, children are special patients be-
cause either of the dialysis treatments impedes their normal growth, so they
are prioritised on the list. In addition, when a graft fails the patient may be
included on the waiting list again. As for donations, most donations become
transplants, but a few of them do not because the kidney may be damaged
due to too long period of ischaemia. But even though we did not account
for these issues when we set up our model, the results obtained were quite
coherent and provided an initial quantification of the main features of the
system which, in turn, allowed us to forecast its evolution.

As mentioned previously, the length of the period was chosen as being
long enough to have enough statistical power, but it was also short enough
to avoid the impact of technological progress on the admission and trans-
plantation policies. The latter is clearly reflected in the fact that the age
limits for being admitted either as a patient on the list or as a donor have
increased notably in recent years. This could suggest considering the arrival
and transplantation rates as dynamic processes instead of constant during
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a period in a further approach.
The assumption of the Poisson process seems appropiate for the pro-

cess of donations but not for that of arrivals, which shows overdispersion,
probably due to some measurement error. However, the M/MX/1 queueing
model is very robust to this hypothesis, thus making inference reliable.

It is also worth remarking that the has always been a queue, since pa-
tients gathered on the list from the very beginning and so there has always
been a ‘stock’ of patients waiting. This fact is also key to trusting the model.

Also, the discipline of the queue, that is the order in which patients are
transplanted, does affect their waiting time in the system but has nothing
to do with the size of the list. Since we were only concerned with mak-
ing inferences about the latter, the true discipline of the queue becomes
irrelevant.

We mentioned that both the number of arrivals and the number of do-
nations are the two stochastic processes that determine the behaviour of the
system. However, when we set up our scenarios, we just tuned the number
of donations. We did so because managers can influence the process of do-
nations much more than that of arrivals. Indeed, part of the work of the
coordinators of the hospitals consists of convincing a potential donor’s rela-
tives to give the healthy organs of that potential donor for transplantation.

In summary, we believe the model we propose here picks up the main fea-
tures of the renal transplant waiting list and provides a basic quantification
of the situation of the system. It also allows its evolution to be forecasted
in the short and middle term, achieving sensible results.

6 Future extensions

There is an ongoing project together with the Transplantation Units in the
Páıs Valencià to analyse the queue more deeply, considering a more realistic
model that accounts for compatibility of tissues, age and sex between re-
cipients and donors as well as potential abandonments of the queue. This
involves updating the data and collecting new information from the clinical
reports that was not present in the Registry of Transplants of the Regional
Health Service.
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Country New arrivals Number of People in the list
onto the list transplants on 31-Dec-2002

Páıs Valencià Unavailable 196 378
Spain Unavailable 2.032 4.014
Austria 539 410 774
Belgium 549 349 876
Cyprus 30 46 140
Denmark 194 171 375
Finland 223 172 214
France 2.637 2.255 5.227
Germany 3.372 2.184 9.623
Israel 172 165 594
Italy 3.711 1.588 8.434
Sweden 370 308 445
Switzerland 352 204 498
The Netherlands 803 560 1.287
UK 2.438 1.573 6.419
USA 22.603 14.722 53.880

Table 1: Number of new arrivals onto the renal transplant waiting list, num-
ber of transplants effected and size of the list in several countries in 2002.
Source: Organización Nacional de Trasplantes (Spanish National Organiza-
tion of Transplants.)
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Figure 1: Graphical representation of queueing time, service time and total
time spent in the system by a customer when only one kidney is obtained
from the donor.
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Figure 2: Graphical representation of queueing time, service time and total
time spent in the system by the customers when the two kidneys are obtained
from the donor.
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Figure 3: Daily frequency of new arrivals of patients onto the waiting list.
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Figure 4: Daily frequency of the number of donors.
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Figure 5: Daily frequency of the number of donated kidneys.

18



1-Jan-2000 1-Mar-2000 1-May-2000 1-Jul-2000 1-Sep-2000 1-Nov-2000 1-Jan-2001 1-Mar-2001 1-May-2001 1-Jul-2001

200

250

300

350

400

450

500

Average
95% predictive bands

Figure 6: Predicted values of the size of the renal transplant waiting list for
the period 1-Jan-2000 to 1-Jul-2001
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Figure 7: Predicted values of the size of the renal transplant waiting list
for the period 1-Jan-2000 to 1-Jul-2001, according to the current process of
donations and tuning it, by increases of 6, 12 and 24 in the expected number
of donations/year.

20


